

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

فَالٰٓتِي عَالٰٓي

اَفَرَأَوْ يَا سَمِّ رَبِّكَ الَّذِي خَلَقَ (1) خَلَقَ الْإِنْسَانَ مِنْ عَلَقٍ (2) اَفَرَأَوْ
وَرَبُّكَ الْاَكْرَمُ (3) الَّذِي عَلَمَ بِالْقَلْمَنِ (4) عَلَمَ الْإِنْسَانَ مَا لَمْ يَعْلَمْ (5)

صدق الله العظيم
(سورة العلق الایات من ١-٥)

Dedication

I dedicate this research to my:
Parents,
Teachers,
Colleagues,
Friends and
All students of Sudan University.

Acknowledgement

I would like to express my thanks to my supervisor Dr. Humodi Ahmed Saeed for his keen supervision during the course of this study.

My thanks are extended to Dr. Mogahid Mohammed Elhassan for his efforts in the performance of Multiplex PCR.

Thanks are also to my colleagues for their help and comments.

Finally, my thanks to Miss. Suheir Ramadan and Miss. Igbal A. Ahmed for their technical assistance.

Abstract

Extended-spectrum β -lactamases (ESBLs) have become widespread throughout the world and are now found in a significant percentage of *Escherichia coli* and *Klebsiella pneumoniae* strains in certain countries. This study was conducted in

the Research Laboratory in Sudan University of Science and Technology. The study was carried out during the period from December 2009 to May 2010, to detect TEM, SHV and CTX-M genes in ESBLs-producing *E. coli*.

The *E. coli* strains were obtained from the Research Laboratory. All strains were checked for purity by sub-culturing on nutrient agar and examined microscopically. Bacterial DNA was extracted from each isolate using boiling method. Multiplex PCR was adopted to detect the different genes including (SHV, CTX-M). The result revealed presence of *TEM* gene only in six of the isolates. It is concluded that, *TEM* gene is the commonest gene in *E. coli* isolates. Thus, this gene may be the dominant one that responsible for ESBL phenomenon among *E. coli* infection in Sudanese patients. Further studies required for confirmation of presence of these genes in clinical Sudanese isolates.

المستخلص

تعتبر الإنزيمات واسعة الطيف منتشرة في كل العالم وتوجد بنسبة وافية في سلالات الإشريكية¹ القولونية و الكببسيلات الرئوية في دول معينة. هذه الدراسة نفذت في مختبر البحوث في جامعة السودان للعلوم والتكنولوجيا في الفترة من ديسمبر/ 2009 إلى مايو/ 2010، للكشف عن الجينات (*TEM* و *SHV* و *CTX-M*) في الأشرشيكية القولونية المنتجة لإنزيمات بيتا لاكتام واسعة الطيف.

تم الحصول على سلالات الإشريكية¹ القولونية من معمل الابحاث بالجامعة والتأكد من نقاوتها بإعادة تزرعها على الأغار المغذي ومن ثم فحصها مجهريا. تم استخلاص الحمض النووي منقوص الأكسجين للسلالات باستعمال طرقة الغليان. استخدمت طريقة تفاعل البلمرة المتسلسل المتعدد للإرسال للكشف هذه الجينات. اظهرت النتيجة وجود الجين *TEM* في سلالات الست. وخلصت الدراسة إلى أن الجين *TEM* هو الأكثر شيوعا في سلالات الإشريكية¹ القولونية، لذا يعتبر هذا الجين هو المسئول عن هذه الظاهرة في المرضى السودانيين بعدهوى الإشريكية¹ القولونية و ان مزيد من الدراسات مطلوبة للتأكد من وجود هذه الجينات في العزلات الاكلينيكية السودانية.

Table of Contents

1	עמוד	I
2 DEDIC	Dedication	II
3	Acknowledgements	III
4	Abstract	IV
5	Arabic Abstract	V
6	Table of Contents	VI
7	List of Abbreviations	VII
Chapter One: Introduction		
1.1	Introduction	1
1.2	Rationale	2
1.3	Research questions	3
1.4	Objectives	3
Chapter Two: Literature Review		
2.1	The species of <i>E. coli</i>	4
2.1.1	History	4
2.1.2	Classification	4
2.1.3	Natural habitat	4
2.1.4	Pathogenicity	5
2.1.4.1	Urinary tract infection	5
2.1.4.2	Gastrointestinal tract infection (GITI)	5
2.1.4.3	Neonatal meningitis	5
2.1.5	The pathogenesis	6
2.1.5.1	Enterotoxigenic <i>E. coli</i> (ETEC)	6
2.1.5.2	Enteroinvasive <i>E. coli</i> (EIEC)	6
2.1.5.3	Enteropathogenic <i>E. coli</i> (EPEC)	6
2.1.5.4	Enteroaggregative <i>E. coli</i> (EAEC)	7
2.1.5.5	Enterohemorrhagic <i>E. coli</i> (EHEC)	7
2.2	Extended-spectrum beta-lactamase (ESBL)	8
2.2.1	Types of beta-lactamases	9
2.2.1.1	TEM beta-lactamases (class A)	9
2.2.1.2	SHV beta-lactamases (class A)	9
2.2.1.3	CTX-M beta-lactamases (class A)	10
2.2.1.4	OXA beta-lactamases (class D)	10
2.3	Laboratory diagnosis	11
2.3.1	Isolation	11

2.3.2	Identification	11
2.3.3	Molecular diagnostic assays	12
2.3.3.1.	PCR, real-time PCR and RT-PCR	12
2.3.3.2.	Nested PCR	13
2.3.3.3.	Multiplex PCR	13
2.3.4.	Double-disk test	14
2.4	Suitable Antibiotics	14
2.5	Prevention and control	14
Chapter Three: Materials and Methods		
3.1	Study design	15
3.1.1	Type of study	15
3.1.2	Bacterial strains	15
3.1.3	Study area	15
3.1.4	Duration of study	15
3.2	Activation of bacterial strains	15
3.2.1	Purification of bacterial strains	15
3.3	Molecular Methods	16
3.3.1	Preparation of reagents	16
3.3.1.1	Primers	16
3.3.1.2	Preparation of 10x TBE buffer	16
3.3.1.3	Preparation of 1x TBE buffer	17
3.3.1.4	Preparation of Agarose gel	17
3.3.1.5	Preparation of Ethidium bromide	17
3.3.1.6	Preparation of loading dye	17
3.4	DNA extraction	17
3.4.1	Preparation of bacterial strains	17
3.4.2	Extraction procedure	18
3.4.3	Detection of DNA	18
3.4.4	Multiplex Polymerase Chain Reaction Techniques	18
3.4.4.1	Preparation of Master mix	18
3.4.4.2	PCR amplification	19
3.4.4.3	Visualization of PCR products	19
Chpater Four: Results		
4.1	Source of <i>E. coli</i> clinical isolates	20
4.2	Reactivation of bacterial strains	20
4.3	Purification of bacterial strains	20
4.4	Multiplex PCR result	20
Chapter Five: Discussion, Concusion and Recommendations		
5.1	Discussion	23
5.2	Concusion	24
5.3	Recommendations	24
	References	25

List of Abbreviations

BP	Base pair
CTX-M	Cefotaxime
CLED	Cystine Lactose Electrolytes Deficient
DW	Deionized water
DNA	Deoxynucleic acid
dNTPs	Deoxynucleotide pyrimidines
DDD	Double Disc Diffusion
EAEC	Enteroaggregative <i>E. coli</i>
EHEC	Enterohaemorrhagic <i>E. coli</i>
EIEC	Enteroinvasive <i>E. coli</i>
EPEC	Enteropathogenic <i>E. coli</i>
ETEC	Enterotoxigenic <i>E. coli</i>
ELISA	Enzyme Linked Immune Sorbent Assay
EMB	Eosin Methylene Blue
ESBLs	Extended Spectrum Beta Lactamases
GIT	Gastrointestinal Tract
IMViC	Indol Motility Voges proskauer Citrate
KIA	Kligler Iron Agar
M MW	Marker Molecular Weight
MgCL ₂	Magnesium Chloride
NA	Nutrient Agar
PCR	Polymerase Chain Reaction
SHV	Sulphydryl variable

TBE	Tris base Boric acid EDTA
TEM	Temoniera
TSI	Tri Sugar Iron
UTI	Urinary Tract Infection
UPEC	Uropathogenic <i>E. Coli</i>
UV	Ultraviolet Light
XLD	Xylose lactose deoxycholate