Dedication

To the soul of my father .
To my lovely mother .
To my dear brothers and sisters .

Acknowledgment

My praise and thanks to Allah the most Gracious, the most Merciful, who gave me the strength to conduct such work.

I would like to express my gratitude to my supervisor professor Mohamed Abdel Kharim for his careful supervision, valuable advices and kindness.

Thanks are extended to my cosupervisor, Dr. Dafalla Hag Ali for his tremendous help.

My sincere appreciation is due to my dear sister Bab Elsalam for her encouragement and support. Thanks for my dear Awad Elkharim . for his help.

Thanksare also due to all those who helped and encouragement me to do this work .

Abstract

The flavonoids of the leaves of *PsidiumGuajava*was investigated .Extraction of the leaves with 95% ethanol gave a crude .Phytochemical screening revealed the presence of flavonoids , steroids and the absence of alkaloids . The crude was fractionated over silica gel with acetic acid 30% only a single flavonoid was detected on UV light .The structure of the flavonoid was elucidated on basis of its spectral data and the following tentative structure was proposed .

$$CH_3$$
 OCH_3
 OCH_3

Both of pure flavonoid and the crude extract of theleaves were subjected to antibacterial activity. The crude product was found to be potent aginst: *Echerichia coli*, *Staphylocousaureus*, *Bacillus subtile*, *Sallomenatyphia*, *Aspergillusniger*, *Candidealbacan*. However the pure flavonoid showed weak antibacterial activity.

الخلاصة

لقد درست فلافونيدات أوراق الجوافه وتم الحصول على ناتج خام عند استخلاص الاوراق ب 95% من الايثانول اختبارات الكشف الكيميائي بينت وجود الفلافونيدات وعدم وجود القلويات. عند تنقية الخام بالسيليكاجل التي استخدم فيها 30% من حمض الخليك اتضح وجود فلافونيد واحد تحت الضوء فوق البنفسجي وقد اقترح التركيب التالي بناء على البيانات الطيفية .

$$CH_3$$
 CH_3
 OCH_3
 OCH_3

كل من نقي الفلافونيد والخام المستخلص اخضع لاختبار مقاومة النشاط البكتيري , حيث اظهر الخام المستخلص مقاومه لبعض أنواع البكتريا والفطريات . بينما اظهر نقي الفلافونيد مقاومه ضعيفه للنشاط البكتيري .

Table of Contents

Topics	Pages
Dedication	I
Acknowledgment	II
Abstract	III
الخلاصة	IV
Table of Contents	V
Chapter one	
Introduction	1
General approach	1
Classification of flavonoids	7
Anthocanins	8
Anthocyanidins	8
Flavonols	10
Flavones	11
Glycosylated flavones	12
Isoflavonoids	13
Minor flavonoids	14
Isoflavones	14
Chalcones	16
Aurones	17

Xanthones	17
Neoflavonoids	18
Medicinal uses of flavonoids	19
Methods of extraction and separation	20
extraction	20
Pressurized liquid extraction	21
Supercritical fluid extraction	21
Ultraviolet-assisted extraction	22
Micrwave-assisted extraction	22
Separation	22
Identification	24
Ultraviolet and visible absorption specroscopy	25
Flavones and flavonols	26
Isoflavones, flavanones and dihydroflavonols	27
Chalcones and aurones	28
Anthothyanidins and anthocyanins	29
The structural significance of sodium methoxide – induced shift	30
The structural significance of sodium acetate – induced shft	32
The structural significance of borate- induced shift	33
The structural significance of aluminium chloride- induced shift	33
Infra-red spectroscopy	36
Proton magnetic resonance spectroscopy	37

A- ring protons	38
B – ring protons	39
C- ring protons	39
Psidiumguajava	40
Chemical constituents and properties	41
Aim of this study	43
Chapter two	
Experimental	44
Preparation of plant material	44
Phytochemical screening.	44
Preparation of test reagents	44
Preparation of the plant extract	45
Test for flavonoids .	45
Test for Steroids .	45
Test for Alkaloids .	46
Extraction of Flavonoids from Psidiumguajava	46
Column Chromatography .	46
Thin –layer Chromatography .	46
Preparative Thin –Layer Chromatography .	47
Preparation of shift reagents	47
Anti-microbial activity .	48
Preparation of standard test organisms	48

Testing for antibacterial activity	48	
Chapter three		
Resuls and Discussion	50	
Phytochemical screening .	50	
Extraction of Flavonoids from Psedium guajavia.		
Thin –layer and Column chromatography .	50	
Preparative TLC .	50	
Spectral data of compound I.	51	
Antibacterial activity .	63	
References .	48	
Tables		
Properties of the different classes of flavonoids.	5	
Colour properties of flavonoids in visible and ulteraviolet light	6	
Antibacterial activity of PsidiumGuajavia against standard organisms	63	