1.3 مقدمة:

في هذا البحث اجريت دراسة على انواع طوب البناء ومميزاتها وطريقة صناعتها وتعريف عن الاختبارات التي تجري على طوب البناء وطريقة اجراءها.

وكذلك دراسة الطوب من حيث تاريخه العريق في البناء ومدى تحمله ومقاومته للضغط وذلك من خلال نظام البناء بالحوائط الحاملة.

وتم اجراء اختبارات لبعض انواع الطوب في معمل الهندسة المدنية بجامعة الجزيرة ومن ثم مقارنة كلا من الطوب الاحمر البلدي والبلوكات الخرسانية المفرغة لمعرفة ايهما افضل من حيث الجودة واقلهما تكلفة من حيث السعر ، تمزيارة لاماكن تصنيع الطوب وهي :

- 1. مصنع مراسى للمنتجات الاسمنتية المنطقة الصناعية .
 - 2. مكبس أحمد عبدالوهاب / مدنى / شارع كبري البوليس
- 3. مصنع ليفنت نور الدين اوزبتك / شارع الصناعات / مارنجان
 - 4. اعمال محمد عثمان سليمان / الملكية / مدنى
 - 5. قمائن الطوب الاحمر البلدي / عتره / حبيب الله

2.3 اختبارات الطوب:

1.2.3 الاختبارات على الطوب الاحمر البلدى:

1.قياس الابعاد:

أ.الإجهزة:

مسطره فكية تسمح بقياس اكبر بعد من ابعاد الطوبه

ب.طريقة الاختبار

1.قياس الابعاد:

يقاس كل من الطول والعرض والارتفاع مرتين لكل طوبه ويحسب متوسط كل بعد ويجري اختبار قياس الابعاد لخمس طوبات على الاقل ، تقياس ابعاد كل طوبه على حدة لأقرب مليمتر ، ويذكر في التقرير ابعاد كل طوبه ومتوسط ابعاد الطوب المختبر.

2. تعامد الاوجه:

توضع المسطرة الفكية بحيث تغطي كامل بعد الطوبة ، ويقاس انحراف زاوية تقابل الاوجه من التعامد بقياس المسافة بين الحافة الداخلية لزاوية المسطرة ووجه الطوبة.

3. التقوس والالتواء:

توضع المسطرة الفكية بحيث تغطي كامل بعد الطوبة ، ويقاس الارتفاع من وجه الطوبة الى حافه المسطرة عند المنتصف تقريبا بالنسبة للوجه المقعر ، بالنسبة للوجه المحدب يقاس الارتفاع بين وجه الطوبة وحافة المسطرة عند طرفى الطوبة ويؤخذ متوسط القراءتين.

4. النتائج:

تدون نتائج قياس الابعاد كما هو مبين بالجداول .

2.امتصاص الماء

1. الاجهزة:

- فرن تجفيف مزود بوسيلة للتهوية.
 - میزان دقته 0.01 جم.

2.عينات الاختبار:

تكون عينات الاختبار طوبه كاملة او جزءاً منها (نصفها او ربعها) عندما تكون الوحدات المختبرة كبيرة ويجري الاختبار على خمس قطع (يستحسن ان تكون خمس طوبات كاملة).

3. طريقة الاختبار:

تجفيف قطع الاختبار في فرن التجفيف على درجة حرارة لا تقل عن 105 لمدة 24 ساعة وعندما تبرد توزن كل قطعة وتكرر هذه العملية حتى ثبات الوزن ويكون ثبات الوزن عندما لا يزيد الفرق بين وزنتين متتاليتين على 1% من الوزن.

تغمر قطع الاختبار الجافه غمراً كاملاً في الماء على درجة حرارة الغرفة (2+23)(1+24) ساعة ثم ترفع العينات وتمسح ، ثم توزن.

4. الحسابات:

يقدر الامتصاص كنسبة مئوية للزيادة في كتله القطع الجافة لأقرب 0.1 % كما يلي:

 $\frac{w_1-w_2}{w_1}$ X النسبة المئوية للامتصاص X النسبة المئوية للامتصاص

حيث:

. كتلة القطعة المختبرة الجافة W_1

. كتلة القطعة المختبرة بعد الغمر W_2

ويذكر في التقرير نتيجة كل قطعة على حدة والمتوسط الحسابي للقطع المختبرة.

3.مقاومة الانضغاط:

1. الاجهزة:

ماكينة اختبار ضغط مناسب.

2.طريقة الاختبار:

نعطي اسطح التحميل لضمان توزيع الحمل بانتظام بغطاء جبسي او كبريتي او نحوهما بحيث يكون وجها التحميل بعد التغطية متوازيين وعموديين على المحور الراسي للواحدة والا يزيد سمك الغطاء على 5 مم.

توضع الواحدة التي تم تجهيزها للاختبار بين لوحي التحميل في ماكينة الاختبار بحيث يكون الحمل في الاتجاه الذي سوف تستخدم فيه الوحدة ، يسلط الحمل مع مراعاة عدم صدم العينة وبمعدل مناسب حتى 30 نيوتن/مم مربع في الدقيقة وعندما يصل الحمل الى نصف الحمل الاقصى المتوقع معد الزيادة ليصبح 15نيوتن/مم مربع حتى الكسر وتسجل قيمة الحمل الاقصى.

3. طريقة الحسابات

تحسب مقاومة الضغط لكل وحدة كما يلى:

مقاومة الضغط = ح/س (ن/مم 2

حيث:

ح = الحمل الاقصى الذي تتحمله الطوبة

س = متوسط المساحة الكلية لوجهي الطوبة المعرض للتحمل بالملم

ثم يحسب المتوسط لمقاومة الوحدات المختبرة.

2.2.3 الاختبارات على الطوب الخرساني الاسمنتى:

1. قياس الإبعاد:

تقاس الابعاد الكلية للواحدات المخصصة لقياس الابعاد لاقرب 1 مم باستعمال اداة قياس مناسبة ويحسب المتوسط.

عينات الاختبار:

تكون عينة الاختبار وحدة كاملة ويمكن ان تكون العينات الممثلة اجزاء من الوحدة نصف او ربع الوحدة تقريبا عندما تكون الوحدات المختبرة كبيرة.

الاجهزة:

فرن للتجفيف مزود بوسيلة تهوية.

ميزان دقة 0.01 جم

2. امتصاص الماء:

الطريقة:

1. تجفف عينات الاختبار في فرن التجفيف على درجة حرارة (110-115) لمدة 24 ساعة وعندما تبرد توزن كل عينة وتكرر العملية حتى يثبت وزنها ويكون ثبات الوزن عندما لا يزيد الفرق بين وزنتين بينهما فترة 24 ساعة من الوزن(أ).

2. تغمر كل عينة بعد وزنها في الماء مباشراً لمدة 24 ساعة.

3. ترفع العينة ويزال الماء العالق بمسحها بقطعة قماش ثم توزن كل عينة خلال دقيقتين من رفعها من الماء (ب).

الحسابات:

يقدر الامتصاص بالنسبة المئوية للزيادة في وزن العينات الجافة لأقرب 0.1 % كما يلي:

النسبة المئوية للامتصاص = (ب-أرأ) * 100

حيث:

أ= وزن العينة المجففة

ب= وزن العينة بعد غمرها في ماء

3. اختبار مقاومة الضغط

1. تغمر العينات المفرغة في ماء على درجة حرارة الغرفة لـ 24 ساعة.

2. ترفع العينات وتترك لتجف لمدة 5 دقائق ثم تمسح وتملأ الفجوات بمونة اسمنتية وتجهز من كل خلطة مكعبات على الاقل طول ضلعها حوالي 25 مم وتخزن تحت نفس الظروف.

3. إجراء تخزين الوحدات ذات الفجوات الواحدة بتغطيتها بالجوت الرطب او ايه مادة اخرى مماثلة لمدة 24 ساعة بعد ملأ الفجوات ثم غمرها في الماء لحين موعد اختبارها.

الوحدات ذات الفجوتين او اكثر تملأ على مرحلتين بحيث يملأ تجويف واحد من كل واحدا بمونة الاسمنت وتترك لمدة 4-8 ساعات ثم تملأ باقي الفجوات بمونة مماثلة للأولى وتخزن وهي كغطاء بقطعة من الجوت الرطبة لمدة 24 ساعة اعتباراً من ملأ الفجوات الاخيرة ثم تغمر في الماء لحين موعد اختبارها.

تغطية اسطح التحميل:

لضمان توزيع الحمل على اسطح التحميل يجري غطاء جبسي على وجهي التحميل او توضع وسائد من الابلكاش كما يلي:

أ. الغطاء الجبسى:

يدهن وجها التحميل لكل وحدة طبقة من الجملكة النقية (شيلاك) وتترك لتجف تماماً ويوضع احد سطحي التحميل للعينة فوق طبقة من مونة جبس التشكيل او المصيص مفروشة فوق لوح مستوى غير مسامى كالزجاج او المعدن المصقول فوق طبقة رقيقة من زيت معدنى.

تكرر هذه العملية بالنسبة لسطح التحميل الاخر مع مراعاة ان يكون وجها التحميل و الغطاء الجبسي متوازنين تقريبا وعمودي على المحور الرأسي للعينة ومتساوبين في السمك الذي يجب الا يزيد 3 مم يترك الغطاء الجبسي فوق سطح العينة فترة لا تقل عن 24 ساعة قبل اجراء الاختبار.

ب.وسائد من الخشب:

توضع العينة عند اختبارها بين لوحين من الابلكاش لا تقل تخانة كل منها عن 3.5 مم ولا تزيد على على على على العاد سطح الوحدة الذي يغطيه كما يراعى الا تستعمل الالواح الا مرة واحدة.

2.الجهاز:

ماكينة اختبار ضغط ميكانيكية او هيدروليكية مجهزة بلوحي تحميل يرتكز اللوح العلوي على قاعدة كروية يكون محورها مطابقاً لمركز سطح اللوح الملامس للعينة . اما اللوح السفلي فيكون ثابتاً ، عندما تكون اوجه الواح التحميل غير كافية لتغطية سطح العينة بالكامل يوضع لوح صلب مصقول السطح بمقاس كاف لتغطية العينة.

الطريقة:

توضع العينة المجهزة للاختبار بين لوحي التحميل في ماكينة الاختبار بحيث يكون الحمل في الاتجاه الذي يستخدم في الوحدة.

يسلط الحمل دون حدوث صدم بمعدل مناسب 30 ن/ مم مربع في الدقيقة وعندما يصل الحمل الى نصف الحمل الافقي المتوقع يضبط معدل الزيادة ليصبح 15ن / مم مربع في الدقيقة حتى الكسر ، تسجل قيمة الحمل الاقصى .

الحسابات:

تحسب مقاومة الضغط لكل عينة كما يلي:

م=ح/س

حيث:

م: مقاومة الضغط ن/مم مربع

ح: الحمل الاقصى الذي تحمله العينة بالنيوتن

س:متوسط المساحة الكلية لوجهي التحميل للعينة مم مربع.

ثم يحسب المتوسط الحسابي لمقاومة الانضغاط للعينات المختبرة.

3.3 نتائج اختبارات الطوب الاحمر البلدي:

جدول رقم (1.3.3) يوضح نتائج اختبارات العينة الاولى

Sample	Weight(Dimensions (mm)			Absorption	Compressive
	Kg)	L	W	Н	%	Strength (N/mm ²)
1	1.002	170	80	60	20.35	6.0
2	0.917	165	85	55	17.88	4.1
3	0.916	170	80	60	18.2	7.1
4	0.955	170	85	60	17.1	6.1
5	1.000	183	92	58	20.2	6.3

جدول رقم (2.3.3) يوضح نتائج اختبارات العينة الثانية

Sample	Weight(Dimensions (mm)			Absorption	Compressive
	Kg)	L	W	Н	%	Strength (N/mm ²)
1	0.932	165	85	55	17.8	7.2
2	0.974	165	75	60	19.1	5.0
3	0.952	170	80	60	16.5	4.8
4	0.900	180	83	57	18.3	5.6
5	0.988	182	92	52	20.1	6.0

جدول رقم (3.3.3) يوضح نتائج اختبارات العينة الثالثة	الثالثة	العينة	اختبارات	نتائج	بوضح	(3.3.3)	جدول رقم (
---	---------	--------	----------	-------	------	---------	------------

Sample	Weight(Dimensions (mm)			Absorption	Compressive
	Kg)	L	W	Н	%	Strength (N/mm ²)
1	0.982	180	83	68	15.4	7.3
2	0.920	179	85	60	17.2	6.5
3	0.952	162	78	57	18.8	4.8
4	0.970	180	75	62	19.5	5.2
5	0.977	184	91	60	19.3	7.1

جدول رقم (4.3.3) يوضح نتائج اختبارات العينة الرابعة

Sample	Weight(Dimensions (mm)			Absorption	Compressive
	Kg)	L	W	Н	%	Strength (N/mm ²)
1	0.932	170	83	55	20.22	7.2
2	0.974	165	85	60	18.88	5.0
3	0.952	170	78	60	18.6	4.8
4	0.900	170	75	57	19.1	5.6
5	0.981	183	83	60	19.4	7.0

4.3 نتائج اختبارات البلوكات الخرسانية:

جدول رقم (1.4.3) يوضح نتائج اختبارات العينة الاولى

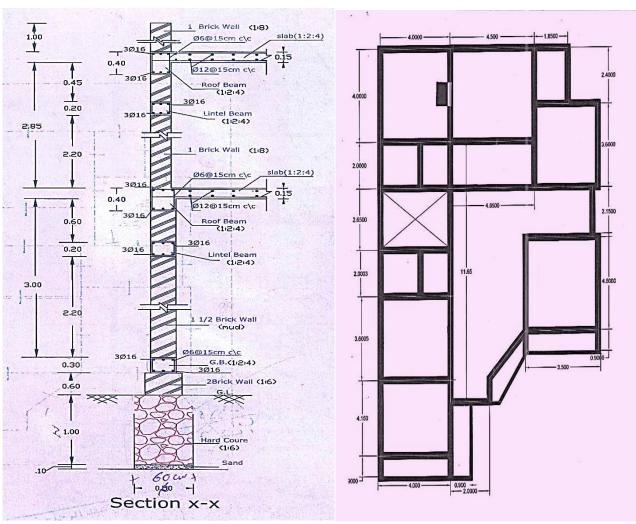
Sample	Weight	Dimensions (mm)			Absorption	Compressive
	(Kg)	L	W	Н	%	Strength (N/mm ²)
1	17.892	391	201	190	5.7	2.5
2	19.12	392	195	196	4.3	2.7
3	18.986	390	195	197	3.7	6.3
4	20.300	394	196	195	3.4	4.6
5	19.11	397	200	196	4.1	4.5

جدول رقم (2.4.3) يوضح نتائج اختبارات العينة الثانية

Sample	Weight	Dimensions (mm)			Absorption	Compressive
	(Kg)	L	W	Н	%	Strength (N/mm ²)
1	16.836	390	200	190	1.7	4.8
2	19.12	395	196	196	2.2	2.6
3	16.122	400	195	195	4.3	2.3
4	20.300	398	194	190	3.4	5.7
5	19.11	390	195	194	4.1	3.5

جدول رقم (3.4.3) يوضح نتائج اختبارات العينة الثالثة

Sample	Weight	Dimensions (mm)			Absorption	Compressive
	(Kg)	L	W	Н	%	Strength (N/mm ²)
1	17.892	392	190	175	3.2	2.8
2	17.785	394	196	185	3.1	4.9
3	18.986	392	188	177	4.4	3.6
4	16.409	394	191	174	3.1	2.3
5	18.099	396	194	190	3.3	3.5


جدول رقم (4.4.3) يوضح نتائج اختبارات العينة الرابعة

Sample	Weight	Dimensions (mm)			Absorption	Compressive
	(Kg)	L	W	Н	%	Strength (N/mm ²)
1	16.836	390	201	175	6.1	5.3
2	19.12	395	195	185	5.3	2.9
3	16.122	400	195	177	3.7	4.5
4	20.300	398	196	174	4.2	2.5
5	18.012	390	199	185	5.1	4.5

5.3 خطوات تصميم المبنى بالحوائط الحاملة:

يتناول هذا البحث مبنى تم تصميمه بنظام الحوائط الحاملة مكون من طابق ارضي ودور اول وهو عبارة عن مبنى سكنى في ولاية الجزيرة مدينة ودمدنى.

وكانت عمليات التحليل والتصميم يدوياً حسب المواصفات البريطانية BS8110 البلاطة المستخدمة في المنشأ احادية الاتجاه وثنائية الاتجاه في بعض الاجزاء منها وكان التدرج في سماكة الحوائط حسب المواصفات البريطانية Bs5628 والاساس المستخدم اساس حجري.

الشكل رقم (1.3) يوضح مسقط افقي للمبنى

1.5.3 خطوات تصميم البلاطة

1. الافتراضات

- سمك البلاطة الخرسانية h=150mm

- الغطاء الخرساني Cover= 25mm

 $\emptyset = 10$ mm عظر الحديد المستخدم

 $f_{cu}=30\ N/mm^2$ مقاومة الخرسانة للضغط –

 $f_y = 460 \mathrm{N/mm^2}$ الحديد –اجهاد خضوع الحديد

 $L.L = 2KN/m^2$ – الحمل الحي

 $KN/m^2F.L = 1.5$ احمال التشطيبات –

2. حساب الوزن الذاتي للبلاطه:

يتم حسابها بمعلومية كثافة الخرسانه والسماكة كالاتي

 $S.W = h * \gamma_c$

3. حساب الحمل الميت الكلى

D.L = F.L + S.W

4. حساب الحمل التصميمي للبلاطة

 $U_L = 1.4 D. L + 1.6 L. L$

5. تحديد نوع البلاطه لمعرفة ما اذا كانت تعمل باتجاه واحد او اتجاهين وذلك بقسمة المجاز

الطويل على المجاز القصير ومن ثم حساب عزوم الانحناء كالاتي:

i. في البلاطات احادية الاتجاه

 $M = \frac{WL^2}{12}$

ii. في البلاطات ثنائية الاتجاه

$$M = \alpha * WL^2$$

$$M = \beta * WL^2$$

6.حساب القص وذلك بالمعادلة

$$V_{SX} = \beta_{SX} * W * LX$$

7. حساب قيمة معامل العمق (K)

من المعادلة

$$K = \frac{M_{max}}{f_{cu} * b * d^2}$$

بدلالة العمق الفعال (d) واقصى عزم ونأخذ عرض واحد متر

8. حساب معامل الحديد المرن (Z)

Z=0.95 d

9. حساب مساحة حديد التسليح

يتم حسابها من المعادلة التالية:

$$A_s req = \frac{M_u}{0.87 * f_y * z}$$

10. مقارنة حديد التسليح الناتج مع التسليح الادنى واستخدام مساحة حديد التسليح الاكبر.

في البلاطة ثنائية الاتجاه

 $A_s min = 0.002 * b * h$

في البلاطه احادية الاتجاه

 $A_s min = 0.0013 * b * h$

11. التحقق من القص والانحراف في البلاطات التي تعمل باتجاهين

$$shear = \frac{V_{vx}}{b*d}$$

$$Defflection = \frac{Span}{efflective depth}$$

2.5.3 خطوات تصميم الحوائط:

1.حساب الاحمال والاوزان على كل حائط

- حساب الاحمال الحية والميتة من السقوفات

- حساب الوزن الذاتي للحائط

$$N_{Wall} = \gamma_{Brick} * t * h$$

- حساب وزن البيم

$$N_{Beam} = \gamma_c * t * h$$

-حساب الوزن التصميمي الكلي وذلك:

$$N_u = 1.4 (D. L) + 1.6 (L. L)$$

2.حساب نسبة النحافة بدلالة الارتفاع الفعال والسمك الفعال

$$S_R = \frac{hef}{tef}$$

(Β3) من جدول (β) من جدول (Β3)

(B2) معامل الامان الجزئي من جدول (γ_{m}) معامل الامان الجزئي

5. حساب مقاومة الضغط التصميميللحائط (F_k)

من معادلة الحمل التصميمي للحائط

$$N = \frac{\beta * f_k * t}{\gamma_m}$$

 f_k بدلالة المستخدمة المباني من جدول (B1) بدلالة 6.

3.5.3 خطوات تصميم السلم:

1. الافتراضات

- نفرض سمك فخذة السلم h=150mm
 - $3KN/m^2$ الحمل الحي –
 - 2KN/m² التشطيبات –
 - 2. حساب الوزن الذاتي للسلم

$$S.W = h * \gamma_c$$

3. حساب الحمل التصميمي للسلم

$$U_L = 1.4 (D.L) + 1.6 (L.L)$$

4. حساب العزم التصميمي للسلم

$$M = \frac{WL^2}{8}$$

5. حساب معامل العمق (k) وكذلك عامل الحديد المرن (Z) كما تم حسابها في البلاطات

لايجاد مساحة حديد التسليح بالنسبة لفخذة السلم.

- 6. تصميم بلاطة السلم على انها عاملة باتجاه واحد
 - 7. حساب العزم التصميمي لبلاطة السلم

$$M = \frac{WL^2}{8}$$

- 8. حساب العمق (k) بدلالة العزم (M) والعمق الفعال (d)
 - 9. حساب عامل الحديد المرن (Z)

Z = 0.95d

مساحة حديد التسليح المستخدمة A_s req وبالمقارنة مع مساحة حديد التسليح A_s min الدنى A_s min