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Abstract 

Lorentz transformation is one of the cornerstone of special 

relativity. It is concerned only with inertial frames within the 

framework of special relativity, but doing nothing for non-inertial 

frames. Attempts were made to account for this effect by using 

space-time language, without any link with electromagnetic 

theory.  

The aim of this work is to cure this defect. The research 

methodology is based on the mathematical analytical framework 

of electromagnetic Lorentz force. Then the result obtained is 

compared with previous studies and observations. The Lorentz 

electromagnetic expression for the force, beside Maxwell relation 

between electric and magnetic field intensity are used to find 

Lorentz force in terms of velocity and electric field intensity. This 

relation of magnetic and electric field intensity was found by 

using two approaches, in one of them the relation between the 

curl of electric intensity with the time variation of the magnetic 

one was used, in the second approach the relation between curl of 

magnetic intensity with the displacement current was used also. 

The velocity in accelerated frame and curved space-time is 

incorporated in this expression to make Lorentz sensitive to 

field’s potentials. The field potential was incorporated first by 

replacing the acceleration with the potential in Newton’s 

equations of motion, then replacing the average velocity with 
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final velocity and potential. In another approach, the expression 

for the interval was also used to relate the average velocity to the 

final velocity and potential. A third approach used the interval in 

a curved space to incorporate the potential through space-time 

Lorentz transformation. Fortunately, this transformations reduces 

to that of SR in the absence of fields, thus share with it all its 

success and compatibility with observations. It also conforms 

with generalized special relativity, thus shares with it also all its 

successes. More importantly it link electromagnetic theory with 

generalized Lorentz transformations.  
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 المستخلص

تعتبر تحويلات لورنس واحدة من أحد الركائز الأساسية للنسبية الخاصة. وهي تختص بمحاور 

الإسناد القصورية في إطار النسبية الخاصة ولكن لا شأن لها بالمحاور اللاقصورية، وقد جرت 

ية رلتلافي هذا القصور باستخدام لغة الزمكان ولكن بدون أي حلقة وصل بالنظعديدة محاولات 

 الكهرمغنطيسية. 

يهدف هذا البحث لمعالجة هذا الخلل ويعتمد منهج البحث على الإطار التحليلي الرياضي لقوة 

لورنتز. ثم مقارنة النتائج المتحصل عليها مع الدراسات السابقة والمشاهدات. وقد استخدمت صيغة 

لمجال الكهربي لورنس الكهرومغنطيسية للقوة، بالإضافة لعلاقات ماكسويل بين شدتي ا

وقد تم إيجاد علاقة شدتي  .والمغنطيسي لإيجاد صيغة لورنس بدلالة السرعة وشدة المجال الكهربي

المجال الكهربي والمغناطيس بطريقتين، في إحداهما تم استخدام علاقة التواء شدة المجال الكهربي 

يسي قة التواء المجال المغناطبتغير شدة المجال المغناطيسي مع الزمن، وفي الثانية تم استخدام علا

. وقد ضمنت صيغة السرعة في الإسناد المعجل والزمكان المنحني لجعل مع تيار الإزاحة أيضا

. وقد ضمن الجهد أولا باستبدال العجلة بالجهد في معادلات تحويل لورنس حساسا لجهود المجالات

والجهد. وفي طريقة أخرى تيوتن للحركة، ثم استبدال السرعة المتوسطة بالسرعة النهائية 

استخدمت صيغة الفاصل أيضا لإيجاد علاقة السرعة المتوسطة بالسرعة النهائية والجهد. وفي 

طريقة ثالثة استخدمت صيغة الفاصل في الفراغ المحدب لتضمين الجهد عبر تحويلات لورنتس 

شاركه الات، لذا فهي تلنسبية الخاصة في غياب المجليؤول . ولحسن الحظ أن هذا التحويل الزمكانية

في كل نجاحاته وتوافقه مع المشاهدات. كما أنها اتسقت مع النسبية الخاصة المعممة، وبالتالي 

شاركته كل نجاحاته. والأهم من ذلك هو أنها أصبحت حلقة وصل بين النظرية الكهرمغنطيسية 

 وتحويلات لورنس المعممة. 
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Chapter One 

Introduction 

1.1 Electromagnetic Theory  

Atoms are the building blocks of matter. They consist of negatively 

charged electrons and positively charged protons. These charges generat 

electric field. When  they  move  they  generate  magnetic field(1,2,3).Later  

on  it  was  discovered that the time  changing magnetic field  can  generate 

electric  field  and  vice versa. This  fact  is formulated  mathematically  by  

Maxwell, and  know  as Maxwells  equations. Maxwell's equations can 

successfully describe a wide variety of physical phenomena. For  instance  

it  can  describe  the generation of  electromagnetic waves, beside the  

description of the electric and  magnetic properties of matter (4,5,6).These 

equations  were  widely used  in telecommunications, computers, and  

electronic  devices (7,8,9).    

Maxwell’s equations not can fit with experimental data of charges and 

currents, by considering the charges and currents produced in materials. 

They are used to describe the fields produced for example, by all the 

important technologically useful classes of material.  They also include a 

prohibition on the creation of net charge that is consistent with 

experimentation to date.  However this prohibition does open the question 

of how the scientific community would consider Maxwell’s equations if an 

experiment created net charge. Recently Maxwell’s equations are  

generalized  such  that allow processes such as net charge creation. This is  

done  if  one  

consider the conditions under which laws, that in their original form 

contain no time-dependence, are used to derive time-dependent differential 



  

2 

 

equations. One can then extend Coulomb’s law and the BiotSavart law to 

the temporal domain under relevant time-varying conditions (10, 11, 12) 

1-2 Special Relativity Theory(𝑺𝑹) 

     The theory of relativity resulted from an analysis of the physical 

consequences implied by the absence of a universal frame of reference. 

The special theory of relativity developed by Albert Einstein in 1905, treats 

problems involving inertial frames of reference, which are frames of 

reference moving at constant velocity with respect to one another (13, 14, 

15). The general theory of relativity, proposed by Einstein a decade later, 

treats problems involving frames of reference accelerated with respect to 

one another. An observer in an isolated laboratory can detect accelerations. 

Anybody who has been in an elevator or on a merry-ground can verify this 

statement from his own experience. The special theory has had a profound 

influence on all physics, and we shall concentrate on it with only a brief 

glance at the general theory (16, 17, 18).  

The special theory of relativity is based upon two postulates. The first states 

that the laws of physics may be expressed in equations having the same 

form in all frames of reference moving at constant velocity with respect to 

one another (19,20,21) This postulate expresses the absence of a universal 

frame of reference. If the laws of physics had different forms for different 

observers in relative motion, it could be determined from this difference 

which objects are “stationary” in space and which are “moving”. But 

because there is no universal frame of reference, this distinction does no 

iexist in nature, hence the above postulate. 

The second postulate of special relativity states that the speed of light in 

free space has the same value for all observers, regardless of their state of 

motion. 
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This postulate follows directly from the results of the Michelson-Morley 

experiment and many others (22,23,24,25) 

1.3 Research Problems 

Special  relativity (SR)  study  the effect of  velocity  on  space,  time  and 

mass.  Unfortunately  SR  does  not  account  for the effect of fields on 

them.The research problem is related to the need  of using simple  

transformation  to account for the effect of fields  on electric and magnetic 

fields 

1.4 Literature Review 

Different attempts were made to account for the effect of fields (26,27,28, 

29, 30). In some  of  them the effect of fields  is embedded through the 

mean average velocity(31,32,33),while  in  others  the  curvature  of  space  

is used (34,35,36) .This  model  is  known as  generalized  special  relativity 

(GSR). It  successfully  explains  awide  variety of  physical  phenomena,  

like  effective  mass of  electrons in  Crystals, time  dilation  and  photon  

gravitational  red  shift (37,38,39,40). 

1.5 Aim of the Work 

The aim of this work is to get a new transformation that accounts for the 

effect of fields  on magnetic field  and  electric  field  
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1.6 Thesis Layouts 

     The thesis consists of 5 Chapters Chapter 1 is the introduction. 

Electromagnetic theory and special relativity are exhibited in chapters 2 

and 3. Chapters 4 and 5 are devoted for Literature review and contribution. 
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Chapter two 

Special Relativity 

2.1 Introduction 

     Einstein SR is one of the big achievements that change the classical 

concept of absolute space and time coordinate. 

2.2 The Special Theory of Relativity 

     The theory of relativity resulted from an analysis of the physical 

consequences implied by the absence of a universal frame of reference. 

The special theory of relativity developed by Albert Einstein in 1905, treats 

problems involving inertial frames of reference, which are frames of 

reference moving at constant velocity with respect to one another. The 

general theory of relativity, proposed by Einstein a decade later. Treats 

problems involving frames of reference accelerated with respect to one 

another. An observer in an isolated laboratory can detect accelerations. 

Anybody who has been in an elevator or on a merry-ground can verify this 

statement from his own experience. The special theory has had a profound 

influence on all physics, and we shall concentrate on it with only a brief 

glance at the general theory (41, 42).  

The special theory of relativity is based upon two postulates. The first states 

that the laws of physics may be expressed in equations having the same 

form in all frames of reference moving at constant velocity with respect to 

one another. This postulate expresses the absence of a universal frame of 

reference. If the laws of physics had different forms for different observers 

in relative motion, it could be determined from this difference which 

objects are “stationary” in space and which are “moving”. But because 
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there is no universal frame of reference, this distinction does no iexist in 

nature, hence the above postulate. 

The second postulate of special relativity states that the speed of light in 

free space has the same value for all observers, regardless of their state of 

motion. 

This postulate follows directly from the results of the Michelson-Morley 

experiment and many others. (43, 44, 45) 

At first sight these postulates hardly seem radical. Actually they subvert 

almost all the intuitive concepts of time and space we form on the basis of 

our daily experience. A simple example will illustrate this statement. If we 

have two boats A and B once more, with boat A at rest in the water while 

boat B drifts at the constant velocity v. there is a low-lying fog present, and 

so on neither boat does the observer have any idea which is the moving 

one. At the instant that B is abreast of A, a flare is fired. The light from the 

flare travels uniformly in all directions, according to the second postulate 

of special relativity. An observer on either boat must find a sphere of light 

expanding with himself at its center, according to the first postulate of 

special relativity, even though one of them is changing his position with 

respect to the point where the flare went off. The observers cannot detect 

which of them is undergoing such a change in position since the fog 

eliminates any frame of reference other than each boat itself, and so since 

the speed of light is the same for both of them, they must both see the 

identical phenomenon. 

Why the situation is unusual. Let us consider a more familiar analog. The 

boats are at sea on a clear day and somebody on one of them drops a stone 

into the water when they are abreast of each other. A circular pattern of 

ripples spreads out, as at the bottom of fig (1.7), which appears different to 
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observers on each boat. Merely by observing whether or not he is at the 

center of the pattern of ripples, each observer can tell whether he is moving 

relative to the water or not. Water is in itself a frame of reference, and an 

observer on a boat moving through it measures ripple speeds with respect 

to himself that are different in different directions, in contrast to the 

uniform to ripple speed measured by an observer on a stationary boat. It is 

important to recognize that motion and waves in water are entirely different 

from motion and waves in space; water is in itself a frame of reference 

while space is not, and wave speeds in water vary with the observer’s 

motion while wave speeds of light in space do not. 

The only way of interpreting the fact that observers in the two boats in our 

example perceive identical expanding spheres of light is to regard the 

coordinate system of each observer, from the point of view of the other, as 

being affected by their relative motion. When this idea is developed using 

only accepted laws of physics and Einstein’s postulates, we shall see that 

many peculiar effects are predicted. One of the triumphs of modern physics 

is the experimental confirmation of these effects. 

2.3 Time Dilation 

     We shall first use the postulates of special relativity to investigate how 

relative motion affects measurements of time intervals and lengths. 

A clock moving with respect to an observer appears to tick less rapidly than 

it does when at rest with respect to him. That is, if someone in a spacecraft 

finds that the time interval between two events in the spacecraft is 𝑡0, we 

on the ground would find that the same interval has the longer dilation 𝑡0. 

The quantity 𝑡0, which is determined by events that occur at the same place 

in an observer’s frame of reference, is called the proper time of the interval 

between the events. When witnessed from the ground, the events that mark 
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the beginning and end of the time interval occur at different places, and in 

consequence the duration of the interval appears longer than the proper 

time. This effect is called time dilation. 

To see how time dilation comes about, let us examine the operation of the 

particularly simple clock shown in fig (1.8) and inquire how relative 

motion affects what we measure. This clock consists of a stick 𝐿0long with 

a mirror at each end. A pulse of light is reflected up and down between the 

mirrors and an appropriate device is attached to one of the mirrors to give 

a “tick” of some kind each time the pulse of light strikes it. (such a device 

might be a photosensitive surface on the mirror which can be arranged to 

give an electric signal when the light pulse arrives). The proper time 𝑡0 

between ticks is  

𝑡0 =
2𝐿0

𝑐
                                             (2.3.1) 

Now how time elapse between two ticks. Each tick involves light passage 

with speed 𝑐 from the lower mirror to the upper one and back. Which 

means that the pulse of light, as seen from the ground, actually follows a 

zigzag path fig (1.9). on its way from the lower mirror to the upper one in 

the time 
𝑡

2
, the pulse of light travels a horizontal distance  of 

𝑣𝑡

2
 and a total 

distance of 
𝑐𝑡

2
. Since 𝐿0is the vertical distance between the mirrors. 

(
𝑐𝑡

2
)
2

= 𝐿0
2 + (

𝑣𝑡

2
)
2

                                 (2.3.2) 

𝑡2

4
(𝑐2 − 𝑣2) = 𝐿0

2                                  (2.3.3) 

𝑡2 =
4𝐿0

2

𝑐2 − 𝑣2
=

(2𝐿0)
2

𝑐2 (1 −
𝑣2

𝑐2)
                              (2.3.4) 
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And 

𝑡 =

2𝐿0

𝑐

√1 −
𝑣2

𝑐2

                                            (2.3.5) 

But 
2𝐿0

𝑐
 is the time interval 𝑡0 between ticks on the clock on the ground, as 

in equation (1.4) and so 

𝑡 =
𝑡0

√1 −
𝑣2

𝑐2

                                 (2.3.6) 

The moving clock in the spaceship appears to tick at s rate than the 

stationary one the ground, as seen by an observer on the ground. 

Exactly the same analysis holds for measurements of the clock on the 

ground by the pilot of the spaces rip. To him the light pulse of the ground 

clock follows a zigzag path which requires a total time 𝑡 per round trip, 

while his own clock at rest in the spaceship ticks at intervals of 𝑡0. He too 

finds that 

 

𝑡 =
𝑡0

√1 −
𝑣2

𝑐2

                                 (2.3.7) 

So the effect is reciprocal every observer finds that clocks in motion 

relative to him tick more slowly Chan when they are at rest. 

Our discussion has been based on a somewhat unusual clock that employs 

light pulse bouncing back and between two mirrors. Do the same 

conclusions apply to more conventional clocks that use machinery-spring- 

controlled escapements, tuning forks, or whatever-to produce ticks at 

constant time intervals. The answer mast be yes since if a mirror  clock and 
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a conventional clock in the spaceship agree with each other on the ground 

but not when in flight, the disagreement between them could be used to 

determine the speed of the spaceship without reference to any other object 

which contradicts the principle that all motion is relative. Detailed 

calculations of what happens to conventional clocks in motion as see from 

the ground confirm this answer for example, as we shall learn in Sec. 1.10, 

the mass of an object is greater when it is in motion, so that the period of 

an oscillating object must be greater in the moving spaceship. Therefore all 

clocks at rest relative to one another behave the same to all observers, 

regardless of any motion at constant velocity of either the group of clocks 

or the observers. 

The relative character of time has many implications. For example, events 

that seem to take place simu tenuously to one observer may not be 

simultaneous to anther observer in relative motion, and vice versa. Who is 

right the question is, of course meaningless: both observers are “right” 

since each simply measures what he sees. 

Because simultaneity is a relative motion and not an absolute one, physical 

theories which require somral taneity in events at different locations must 

be discarded. The principle of conservation of energy in its elementary 

form states that the total energy content of the universe is constant, but it 

does not rule out a process in which a certain amount of energy ∆𝐸 vanishes 

at one point while an equal amount of energy ∆𝐸 spontaneously comes into 

being somewhere else with no actual transport of energy from one place to 

the other. Because simultaneity is relative, some observers of the process 

will find energy not being conserved. To rescue conservation of energy in 

the light of special relativity, then it is necessary to say that when energy 

disappears somewhere and appears elsewhere, it has actually flowed from 

the first location to the second. (there are many ways in which a flow of 
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energy can occur, of course). Thus energy is conserved loyally in any 

arbitrary region of space at any time, not merely when the universe as 

whole is considered a much stronger statement of this principle. 

Although time is a relative quantity, not all the notions of time formed by 

everyday experience are incorrect. Time dose not run backward to any 

observer for instance a sequence of events that occur somewhere at 

𝑡1, 𝑡2, 𝑡3, …will appear in the same order to all observers 𝑡2 − 𝑡1, 𝑡3 − 𝑡2, … 

between each pair of events. Similarly, on distant observer regardless of 

his state of motion can see an event before it happens more precisely before 

a nearby observer sees it since the speed of light infinite and signals require 

the minimum period of time 𝐿/𝑐 to travel a distance 𝐿. There is no way to 

peer into the future; although temporal (and as we shall see spatial) 

perspectives of past events may appear different to different observers. 

2.4 Length Contraction 

     Measurements of lengths as well as of time intervals are affected by 

relative motion. The length 𝐿 of an object motion with respect to an 

observer always appears to the observer to be shorter than its length 𝐿0 

when it is at rest with respect to him, a phenomenon known as the Lorentz 

Fitz Gerald contraction. This contraction occurs only in the direction of the 

relative motion. The length 𝐿0 of an object in its rest frame is called its 

proper length (46, 47, 48). 

We can use the light clock of the previous section to investigate the Lorentz 

contraction. For this purpose we imagine the clock oriented so that the light 

pulse travel back and forth parallel to the direction in which the clock is 

moving relative to the observer. At 𝑡 = 0 the light pulse starts from the rear 

mirror, and reach the front mirror where from the diagram 

𝑐𝑡1 = 𝐿 + 𝑐𝑡1 
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Hence 

𝑡1 =
𝐿

𝑐 − 𝑣
                                 (2.4.1) 

Where 𝐿 is the distance between the mirrors as measured by the observer 

at rest? 

The pulse is then reflected by the front mirror and returns to the rear mirror 

at 𝑡 after traveling the distance 

𝑐(𝑡 − 𝑡1) = 𝐿 − 𝑐(𝑡 − 𝑡1)                      (2.4.2) 

Hence the entire time interval𝑡, as determined from the ground is 

𝑡 =
𝐿

𝑐 + 𝑣
+ 𝑡1                                 (2.4.3) 

We eliminate 𝑡1with the help of equation (2.4.3) to find that 

𝑡 =
𝐿

𝑐 + 𝑣
+

𝐿

𝑐 − 𝑣
 

=
2𝐿𝑐

(𝑐 + 𝑣)(𝑐 − 𝑣)
 

=
2𝐿𝑐

𝑐2 − 𝑣2
 

=
2𝐿𝑐

1 − 𝑣2/𝑐2
                                 (2.4.4) 

Equation (2.4.4) gives the time interval 𝑡 between ticks of the moving clock 

as measured by an observer on the ground. 

We earlier found another expression for 𝑡. 

𝑡 =
2𝐿0/𝑐

√1 − 𝑣2/𝑐2
                                 (2.4.5) 
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Which is in terms of 𝐿0, the proper distance between the mirrors, instead 

of in terms of 𝐿, the distance as measured by an observer motion. The two 

formulas must be equivalent and hence we have. 

2𝐿/𝑐

1 − 𝑣2/𝑐2
=

2𝐿0/𝑐

√1 − 𝑣2/𝑐2
 

𝐿 = 𝐿0√1 − 𝑣2/𝑐2                                 (2.4.6) 

Because the relative velocity appears only as 𝑣2 in equation (2.4.6), the 

Lorentz contraction is a reciprocal effect. To man in a spacecraft objects 

on the earth appear shorter than they did when he was on the ground by the 

same factor √1 − 𝑣2/𝑐2, that the spacecraft appears shorter to somebody 

at rest. The proper length of an object is the maximum length any observer 

will find. 

The relativistic length contraction is negligible for ordinary speeds but it is 

an important effect at speeds close to the speed of light. A speed of 

1.000mi/s seems enormous to us, and yet it results in a shortening in the 

direction of motion to only 

𝐿

LO
= √1 − 𝑣2/𝑐2 

= √1 −
(1.000𝑚𝑖/𝑠)2

(186.00𝑚𝑖/𝑠)2
 

= 0.999985 

= 99.9985𝑝𝑒𝑟𝑐𝑒𝑛𝑡 

Of the length at rest. On the other hand a body traveling at 0.9 the speed of 

light is shortened to 
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𝐿

LO
= √1 −

(0.9𝑐)2

𝑐2
 

= 0.436 

= 43.6 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 

Of the length at rest a significant change. 

The ratio between 𝐿 and LO in equation (2.4.4) is the same as that in 

equation (2.4.5) when it is applied to the times of travel of the two light 

beams, so that we might be tempted to consider the Michelson-Morley 

result solely as evidence for the contraction of the length of  their apparatus 

in the direction of the earth’s motion. 

This interpretation was tested by Kennedy and ThorndiKe in a similar 

experhnent using an interferometer with arms of unequal length. They also 

found no fringe shift, which means that these experiments must be 

considered evidence for the absence of ether with all this implies and only 

for contractions 𝑐4the apparatus. 

An actual photograph of an object in very rapid relative motion would 

reveal a somewhat different distortion, depending upon the direction from 

which the object is viewed and the ration𝑣/𝑐. The reason for this effect is 

that light reaching the camera (or eye for that matter) from the more distant 

parts of the object was emitted earlier than that coming from the nearer 

parts; the camera “sees’’ a picture that is actually a composite, since the 

object was at different locations when the various elements of the single 

image that reaches the film left it. This effect supplements the Lorentz 

contraction by extending the apparent length of a moving object in the 

direction of motion. As a result a three-dimensional body such as a cube 

may be seen as rotated in orientation as well as changed in shape again 
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depending upon the position of the observer and the value of𝑣/𝑐. This 

result must be distinguished from the Lorentz contraction itself which is a 

physical phenomenon. If there were no Lorentz contraction, the appearance 

of a moving body would be also different from what it is at rest. But in 

another way. 

It is interesting to note that the above approach to the visual appearance of 

rapidly moving object was not made until 1959, 54 years after the 

publication of the special theory of relativity. 

2.5 The Lorentz Transformation 

      Let us suppose that we are in a frame of reference S and find that the 

coordinates of some event that occurs at the time t are , 𝑦, 𝑧 . an observer 

with respect to S at the constant velocity v will find that the same event 

occurs at the time 𝑡′ and has the coordinates 𝑥′, 𝑦′, 𝑧′. (in order to simplify 

our work, e shall assume that v is in the +𝑥 direction, haw are the 

measurements 𝑥, 𝑦, 𝑧, 𝑡 related to 𝑥′, 𝑦′, 𝑧′, 𝑡′. 

If we are unaware of special relativity, the answer seems obvious 

enough. If time in both systems is measured from the instant when the 

origins of 𝑆 and 𝑆′ coincided measurements in the 𝑥 direction made in 𝑆 

will exceed those made in 𝑆′by the amount 𝑣𝑡, which represents the 

distance that 𝑆′ has moved in the 𝑥 direction. That is (49,50,51) 

𝑥′ = 𝑥 − 𝑣𝑡                                                         (2.5.1) 

There is no relative motion in the 𝑦and 𝑧 directions and so 

𝑦′ = 𝑦 

𝑧′ = 𝑧 
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In the absence of any indication to the contrary in our everyday experience 

we further assume that 

𝑡′ = 𝑡 

The set of equation (1.11) to (1.14) is known as the Galilean 

transformation. To convert velocity components measured in the 𝑆 frame 

to their equivalents in the 𝑆′frame according to the Galilean 

transformation, we simply differentiate 𝑥′, 𝑦′and 𝑧′with respect to time: 

𝑣𝑥
′ =

𝑑𝑥′

𝑑𝑡′
= 𝑣𝑥 − 𝑣 

𝑣𝑦
′ =

𝑑𝑦′

𝑑𝑡′
= 𝑣𝑦 

𝑣𝑧
′ =

𝑑𝑧′

𝑑𝑡′
= 𝑣𝑧                                                         (2.5.2) 

While the Galilean transformation and the velocity transformation it leads 

to are both in accord with our intuitive expectations, they violate both of 

the postulates of special relativity. The first postulate calls for identical 

equations of physics in both the 𝑆and 𝑆′frames of reference, but the 

fundamental equations of electricity and magnetism assume very different 

forms when the Galilean transformation is used to convert quantities 

measured in one frame into their equivalents in the other. The second 

postulate calls for the same value of the speed of light 𝑐 whether 

determined in 𝑆 𝑜𝑟 𝑆′. If we measure the speed of light in the 𝑥 direction 

in the 𝑆 system to be 𝑐, however in 𝑆′ system it will be 

𝑐′ = 𝑐 − 𝑣 

According to equation (2.4.5) clearly a different transformation is required 

if the postulates of special relativity are to be satisfied. We would expect 
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both time dilation and length contraction to follow naturally from this new 

transformation. 

A reasonable guess as to the nature of the correct relationship between 𝑥 

and 𝑥′ is 

𝑥′ = 𝑘(𝑥 − 𝑣𝑡)                                          (2.5.3) 

Where 𝑘 is a factor of proportionality that does not depend upon either 

𝑥 𝑜𝑟 𝑡 but may be a function of𝑣. The choice of equation (2.5.3) follows 

from several considerations: 

1- It is linear in 𝑥 and 𝑥′, so that a single event in frame 𝑆 corresponds 

to a single event in frame 𝑆′, as it must. 

2- It is simple, and a simple solution to a problem should always be 

explored first. 

3- It has the possibility of reducing to equation (2.4.6) which we know 

to be correct in ordinary mechanics.  

Because the equations of physics must have the same form in both 𝑆 and 

𝑆′we need only change the sign of 𝑣 (in order take into account the 

difference in the direction of relative motion) to write the corresponding 

equation for 𝑥 and solving for 𝑥, in terms of 𝑥′and 𝑡′: 

𝑥 = 𝑘(𝑥′ + 𝑣𝑡′)                                          (2.5.4) 

The factor k must be the same in both frames of reference since there is no 

difference between S and 𝑆′ other than in the sign of v.  

As in the case of the Galilean transformation, there is nothing to indicate 

that there might be difference between the corresponding coordinates 𝑦, 𝑦′ 

and 𝑧, 𝑧′ which are normal to the direction of v. hence we again take 

𝑦′ = 𝑦 
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𝑧′ = 𝑧 

The time coordinates𝑡 𝑎𝑛𝑑 𝑡′, however are not equal. We can see this 

substituting the value of 𝑥′ given by equation (2.5.3) in to equation (2.4.6). 

We obtain 

𝑥 = 𝑘2(𝑥 − 𝑣𝑡) + 𝑘𝑣𝑡′                                     (2.5.5) 

From which we find that 

𝑡′ = 𝑘𝑡 + (
1 − 𝑘2

𝑘𝑣
)𝑥                                          (2.5.6) 

Equations (2.5.3) and (2.5.6) constitute a coordinate transformation that 

satisfies the first postulate of special relativity.    

The second postulate of relativity enables to evaluate k. at instant 𝑡 = 0 the 

origins of the two frames of reference 𝑆 𝑎𝑛𝑑 𝑆′ are in the same place 

according to our initial conditions, and 𝑡′ = 0 then also. Suppose that a 

flare is set off at the common origin of 𝑆 𝑎𝑛𝑑 𝑆′at 𝑡 = 𝑡′ = 0, and the 

observer in each system proceed to measure the speed with which the light 

from it spreads out. Both observers must find the same speed𝑐, which 

means that in the 𝑆 frame 

𝑥 = 𝑐𝑡                                       (2.5.7) 

While in the 𝑆′ frame 

𝑥′ = 𝑐𝑡′                                                               (2.5.8) 

Substituting for 𝑥′ and 𝑡′ in equation (2.5.7) with the help of equations 

(2.5.4) and (2.5.6) 

𝑘(𝑥 − 𝑣𝑡) = 𝑐𝑘𝑡 + (
1 − 𝑘2

𝑘𝑣
) 𝑐𝑥                                          (2.5.9) 
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And solving for 𝑥  

𝑥 =
𝑐𝑘𝑡 + 𝑣𝑘𝑡

𝑘 − (
1 − 𝑘2

𝑘𝑣
) 𝑐

                                          (2.5.10) 

= 𝑐𝑡 [
𝑘 +

𝑣
𝑐
𝑘

𝑘 − (
1 − 𝑘2

𝑘𝑣
) 𝑐

] 

= 𝑐𝑡 [
1 +

𝑣
𝑐

1 − (
1
𝑘2 − 1)

𝑐
𝑣
 
]                                          (2.5.11) 

This expression for x will be the same as that given by equation (2.5.11), 

namely𝑥 = 𝑐𝑡, provided that quantity in the brackets equals1. Therefore 

1 +
𝑣
𝑐

1 − (
1
𝑘2 − 1)

𝑐
𝑣
 
= 1 

𝑘 =
1

√1 −
𝑣2

𝑐2

 

Inserting the above value of k in equations. (2.5.4) and (2.5.6) we have for 

the complete transformation of measurements of an event made in S to the 

corresponding measurements made in𝑆′, the equations 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

 

𝑦′ = 𝑦 

𝑧′ = 𝑧 
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𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

                                          (2.5.12) 

These equations comprise the Lorentz transformation. They were first 

obtained by the Dutch physicist H.A. Lorentz who showed that the basic 

formulas of electromagnetism are the same in all frames of reference I 

uniform relative motion only when these transformation equations are 

used. It was not until a number of years later that Einstein discovered their 

full significance. it is obvious a that the Lorentz transformation reduces to 

the Galilean transformation when the relative velocity v is small compared 

with the velocity of light c. 

The relativistic length contraction follows directly from the Lorentz 

transformation. Let us consider a rod lying along the  

𝑥′ axis in the moving frame 𝑆′. An observer in this frame determines the 

coordinates of its ends to be 𝑥1
′  and 𝑥2

′  and so the proper length of the rod 

is  

𝐿0 = 𝑥2
′ − 𝑥1

′                                           (2.5.13) 

In order to find 𝐿 = 𝑥2 − 𝑥1 the length of the rod as measured in the 

stationary frame 𝑆 at the time 𝑡, we make use of equation (2.5.11). we have 

𝑥1
′ =

𝑥1 − 𝑣𝑡

√1 −
𝑣2

𝑐2

 

𝑥2
′ =

𝑥2 − 𝑣𝑡

√1 −
𝑣2

𝑐2

                                          (2.5.14) 

And so  
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𝐿 = 𝑥2 − 𝑥1 

= 𝑥2
′ − 𝑥1

′√1 −
𝑣2

𝑐2
 

= 𝐿0
√1 −

𝑣2

𝑐2
                                          (2.5.15) 

Which is the same as equation (2.4.6) 

So to him the duration of the interval t is  

As we found earlier with the help of a light-pulse clock 

2.6 velocity addition  

     One of the postulates of special relativity states that the speed of light c 

in free space has the same value for all observer, regardless of their relative 

motion but “common sense” tells us that if we throw a ball forward at 50ft/s 

from car moving at  80ft/s, the ball’s speed relative to the ground is 130ft/s 

the similarly sum of the two speeds. Hence we would expect that a ray of 

light emitted in a frame of reference 𝑆′ in the direction of its motion at 

velocity v relative to another frame 𝑆 will have a speed of 𝑐 + 𝑣 as 

measured in 𝑆, contradicting the above postulate. “common sense” is no 

more reliable as a guide as a guide in science that it is elsewhere, and we 

must turn to the Lorentz transformation equations for the correct scheme 

of velocity addition. 

Let us consider something moving relative to both 𝑆 and 𝑆′. An observer 

in 𝑆 measures its three velocity components to be 

𝑉𝑥 =
𝑑𝑥

𝑑𝑡
    𝑉𝑦 =

𝑑𝑦

𝑑𝑡
    𝑉𝑧 =

𝑑𝑧

𝑑𝑡
                                              (2.6.1) 
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While to an observer in 𝑆′ they are 

𝑉𝑥
′ =

𝑑𝑥′

𝑑𝑡
    𝑉𝑦

′ =
𝑑𝑦′

𝑑𝑡
     𝑉𝑧

′ =
𝑑𝑧′

𝑑𝑡
                                          (2.6.2) 

By differentiating the inverse Lorentz transformation equation for 𝑥, 𝑦, 𝑧 

and 𝑡 we obtain 

𝑑𝑥 =
𝑑𝑥′ + 𝑣𝑑𝑡′

√1 −
𝑣2

𝑐2

                                          (2.6.3) 

𝑑𝑦 = 𝑑𝑦′ 

𝑑𝑧 = 𝑑𝑧′ 

𝑑𝑡′ =
𝑑𝑡′ +

𝑣𝑑𝑡′

𝑐2

√1 −
𝑣2

𝑐2

                                          (2.6.4) 

𝑉𝑥 =
𝑑𝑥

𝑑𝑡
 

=
𝑑𝑥′ + 𝑣𝑑𝑡′

𝑑𝑡′ +
𝑣𝑑𝑥′

𝑐2

 

𝑑𝑥′

𝑑𝑡′ + 𝑣

1 +
𝑣
𝑐2

𝑑𝑥′

𝑑𝑡′

 

𝑉𝑥
′ + 𝑣

1 +
𝑣𝑉𝑥

′

𝑐′

 

𝑉𝑦 =
𝑉𝑦

′√1 −
𝑣2

𝑐2

1 +
𝑣𝑉𝑥

′

𝑐′

                                          (2.6.5) 



  

23 

 

𝑉𝑧 =
𝑉𝑧

′√1 −
𝑣2

𝑐2

1 +
𝑣𝑉𝑥

′

𝑐′

                                          (2.6.6) 

If 𝑉𝑥
′ = 𝑐, that is if a ray of light is emitted in the moving reference frame 

𝑆′ its direction of motion relative to 𝑆. An observer in frame 𝑆 will measure 

the velocity 

𝑉𝑥
′ + 𝑣

1 +
𝑣𝑉𝑥

′

𝑐′

                                          (2.6.7) 

=
𝑐 + 𝑣

1 +
𝑣𝑐
𝑐2

 

=
𝑐(𝑐 + 𝑣)

𝑐 + 𝑣
 

= 𝑐 

Both observer determine the same value for the speed of light, as they must. 

The relativistic velocity transformation has other peculiar consequences. 

For instance we might imagine wishing to pass a space ship whose speed 

with respect to the earth in 0.9c at a relative speed of 0.5c. according to 

conventional mechanics our required speed relative to the earth would have 

to be 1.4c, more than the velocity of light. According to equation 1.34, 

however, with 𝑉𝑥
′ = 0.5𝑐 and 𝑣 = 0.9𝑐, the necessary speed is only 

𝑉𝑥 =
𝑉𝑥

′ + 𝑣

1 +
𝑣𝑉𝑥

′

𝑐2

 

=
0.5𝑐 + 0.9𝑐

1 +
(0.9𝑐)(0.5𝑐)

𝑐2
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= 0.9655𝑐 

Which is less that 𝑐. We need go less than 10 percent faster than a space 

ship traveling at 0.9c in order to pass it a relative speed of 0.5c. 

2.7 The relativity of Mass 

      Until now we have been considering only the purely kinematical 

aspects of special relativity. The dynamical consequences of relativity are 

at least as remarkable, including as they do the variation of mass with 

velocity and the equivalence of mass and energy(52,53,54,55 ) 

We begin by considering an elastic collision (that is a collision in which 

kinetic energy is conserved) between two particles A and B, as witnessed 

by observers in the reference frames S and 𝑆′which are in uniform relative 

motion. The properties of A and B are identical when determined in 

reference frames in which they are at rest. The frames S and 𝑆′ are oriented. 

With 𝑆′ moving in the +𝑥 direction with respect to S at the velocity v. 

Before the collision particle A had been at rest in frame S and particle B in 

frame 𝑆′. Then at the same instant, A was thrown in the +𝑦 direction at the 

speed 𝑉𝐴 while B was thrown  in the – 𝑦 direction at the speed 𝑉𝐵
′  where 

𝑉𝐴 = 𝑉𝐵
′                                           (2.7.1) 

Hence the behavior of A as seen from 𝑆 is exactly the same as the behavior 

of B as seen from 𝑆′. When the two particle collide, A rebounds in the – 𝑦 

direction at the speed 𝑉𝐴, while B rebounds in the +𝑦 direction at the speed 

𝑉𝐵
′ . If particles are thrown from positions 𝛾 apart an observer in S finds that 

the collision occurs at 𝑦 =
1

2
𝛾  and one in 𝑆′ finds that it occurs at 𝑦′ =

1

2
𝛾 

. 

The round-trip time 𝑇0 for A as measured in frame S is therefore 
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𝑇0 =
𝛾

 𝑉𝐴
                                          (2.7.2) 

And it is the same for B in  𝑆′ 

𝑇0 =
𝛾

 𝑉𝐵
′                                           (2.7.3) 

If momentum is conserved in the 𝑆 frame, it must be true be that 

𝑚𝐴𝑉𝐴 = 𝑚𝐵𝑉𝐵                                           (2.7.4) 

Where 𝑚𝐴 and 𝑚𝐵 the masses of A and B, and 𝑉𝐴 and 𝑉𝐵 their velocities 

as measured in the S frame. In S the speed 𝑉𝐵 is found from 

𝑉𝐵 =
𝛾

 𝑇
                                          (2.7.5) 

Where 𝑇 is the time required for B to make its round trip as measured in S. 

in 𝑆′however B is trip requires the time 𝑇0, where 

𝑇 =
𝑇0

√1 −
𝑣2

𝑐2

                                          (2.7.6) 

 According to our previous results. Although observer in both frame see 

the same event, they disagree as to the length of time the particle thrown 

from the other frame requires to make the collision and return. 

Replacing 𝑇 in equation (2.7.5) with is equivalent in terms of 𝑇0 we have 

𝑉𝐵 =
𝛾√1 −

𝑣2

𝑐2

𝑇0
 

From equation (2.7.1) 

 

𝑉𝐴 =
𝛾

 𝑇0
                                          (2.7.7) 
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Inserting these expressions for 𝑉𝐴and 𝑉𝐵 in equation (2.7.5) we see 

momentum is conserved provided that 

𝑚𝐴 = 𝑚𝐵
√1 −

𝑣2

𝑐2
                                          (2.7.8) 

Our original hypothesis was that A and B are identical when at with respect 

to an observer; the difference between 𝑚𝐴 and 𝑚𝐵therefore means that 

measure mints of mass, like those of space and time, depend upon the 

relative speed between an observer and whatever he is observing. 

In the above example both A and B are moving in 𝑆. In order to obtain a 

formula giving the mass 𝑚 of a body measured while in motion terms of 

its mass 𝑚0 when measured at rest, we need only consider a similar 

example in which 𝑉𝐴and 𝑉𝐵
′are very small. In this case an observer in 𝑆 will 

see B approach A with velocity 𝑣, make a glancing collision( since 𝑉𝐵
′ ≪

𝑣). And then continue on. In 𝑆 

𝑚𝐴 = 𝑚0 

𝑚𝐴 = 𝑚 

𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

                                          (2.7.9) 

The mass of a body moving at the speed 𝑣 relative to an observer is larger 

than its mass when at rest relative to the observer by the factor 
1

√1−𝑣2/𝑐2
. 

This mass increase is reciprocal; to an observer in 𝑆′ 

𝑚𝐴 = 𝑚                                          (2.7.10) 

𝑚𝐵 = 𝑚0                                          (2.7.11) 
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Measured from the earth, a rocket ship in fight is shorter than its twin still 

on the ground and its mass is greater. To somebody on the rocket ship in 

flight the ship on the ground also appears shorter and to have a greater 

mass. (the effect is of course unobservable small for actual rocket speeds). 

Equation (2.7.9) is plotted 

Provided that momentum is defined as 

𝑚𝑣 =
𝑚0𝑣

√1 −
𝑣2

𝑐2

 

Conservation of momentum is valid in special relativity just as in classical 

physics. However Newton’s second law of motion is only in the form 

𝐹 =
𝑑

𝑑𝑡
(𝑚𝑣)                                          (2.7.12) 

=
𝑑

𝑑𝑡

[
 
 
 

𝑚0𝑣

√1 −
𝑣2

𝑐2]
 
 
 

 

This is not equivalent to saying that 

𝐹 = 𝑚𝑎 

= 𝑚
𝑑𝑣

𝑑𝑡
 

Even with 𝑚 given by equation (1.43) because 

𝑑

𝑑𝑡
(𝑚𝑣) = 𝑚

𝑑𝑣

𝑑𝑡
+ 𝑣

𝑑𝑚

𝑑𝑡
                                          (2.7.13) 
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And 
𝑑𝑚

𝑑𝑡
 dose not vanish if the speed of the body varies with time. The 

resultant force on a body is always equal to the time rate of change of its 

momentum. 

Relativistic mass increases are increases are significant only at speeds 

approaching that of light. At a speed one-tenth that of light the mass 

increase amounts to only 00.5 percent, but this increase is over 100 percent 

at a speed nine-tenths that of light. Only atomic particles such as electrons, 

protons, mesons and soon have sufficiently high speeds for relativistic 

effects to be measurable, and in dealing with these particles the “ordinary” 

laws of physics cannot be used. Historically the first confirmation of 

equation (2.7.9) was the discovery by Bucherer in 1908 that the ratio 𝑒/𝑚 

of the electron like the others of special relativity has been verified by so 

many experiments that it is now recognized as one of the basic formulas of 

physics. 

 

2.8 Mass and Energy 

     The most famous relationship Einstein obtained from the postulates of 

special relativity concerns mass and energy. This relationship can be 

derived directly from the definition of the kinetic energy 𝑇 of a moving 

body as the work done in bringing it from rest to its state motion. That is 

𝑇 = ∫ 𝐹𝑑𝑠
3

0

                                          (2.8.1) 

Where 𝐹 is the component of the applied force in the direction of the 

displacement 𝑑𝑠 and 𝑠 is the distance over which the force acts. Using the 

relativistic form of the second law of motion 
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𝐹 =
𝑑(𝑚𝑣)

𝑑𝑡
                                          (2.8.2) 

The expression for kinetic energy becomes  

𝑇 = ∫
𝑑(𝑚𝑣)

𝑑𝑡

𝑠

0

𝑑𝑠 

= ∫ 𝑣𝑑(𝑚𝑣)
𝑚𝑣

0

 

= ∫ 𝑣𝑑

(

 
𝑚0𝑣

√1 −
𝑣2

𝑐2)

 
𝑣

0

                                          (2.8.3) 

Integrating by parts(∫𝑥𝑑𝑦 = 𝑥𝑦 − ∫𝑦𝑑𝑥)  

𝑇 =
𝑚0𝑣

√1 −
𝑣2

𝑐2

− 𝑚0 ∫
𝑣𝑑𝑣

√1 −
𝑣2

𝑐2

𝑣

0

                                          (2.8.4) 

=
𝑚0𝑣

2

√1 −
𝑣2

𝑐2

+ 𝑚0𝑐
2√1 −

𝑣2

𝑐2
|

0

𝑣

 

𝑚0𝑣
2

√1 −
𝑣2

𝑐2

− 𝑚0𝑐
2 

𝑚𝑐2 − 𝑚0𝑐
2                                          (2.8.5) 

 Equation (2.8.5) states that the kinetic energy of a body is equal to the 

increase in its mass consequent upon its relative motion multiplied by the 

square of the speed of light. 

𝑚𝑐2 = 𝑇 + 𝑚0𝑐
2                                          (2.8.6) 
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Equation (2.8.5) may be rewritten 

𝑚𝑐2 = 𝑇 + 𝑚0𝑐
2                                          (2.8.7) 

If we interpret 𝑚𝑐2as the total energy 𝐸  of the body, it follows that when 

the body is at rest𝑇 = 0, it nevertheless possesses the energy 𝑚0𝑐
2. 

Accordingly 𝑚0𝑐
2 is called the rest energy 𝐸0 of a body whose mass at rest 

is𝑚0. Equation (2.8.6) therefore becomes 

𝐸 = 𝐸0 + 𝑇                                          (2.8.8) 

Where 

𝐸0 = 𝑚0𝑐
2                                          (2.8.9) 

In addition to its kinetic, potential electromagnetic thermal and other 

familiar guises then energy can manifest as mass. The conversion factor 

between the unit of mass (kg) and the unit of energy (J) is 𝑐2, so 1𝑘𝑔 of 

matter has an energy content of 9 × 102𝐽. Even a minute bit of matter 

represent a vast amount of energy and in fact the conversion of matter into 

energy it the source of the power liberated in all the exothermic reactions 

of physics and chemistry. 

Since mass and energy are not independent entities the separate 

conservation principles of energy and mass are properly a single one the 

principle of conservation of mass energy. Mass can be created or destroyed 

but when the happens an equivalent amount of energy simultaneously 

vanishes or comes into being and vice verse. Mass and enegy are different 

aspects of the same thing. 

When the relative speed 𝑣 is small compared with 𝑐, the formula for kinetic 

energy must reduce to the familiar 
1

2
𝑚0𝑣

2, which has been verified by 

experiment at low speeds. Let us see whether this is true. The binomial 
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theorem of theorem of algebra tells us that if some quantity 𝑥 is much 

smaller than. 

(1 ± 𝑥) ≈ 1 ± 𝑛𝑥                                          (2.8.10) 

The relativistic formula for kinetic energy is 

𝑇 = 𝑚𝑐2 − 𝑚0𝑐
2 

=
𝑚0𝑐

2

√1 −
𝑣2

𝑐2

− 𝑚0𝑐
2 

Expanding the first term of this formula with the help of the binomial 

theorem with 
𝑣2

𝑐2
≪ 1 since 𝑣 is much less than 𝑐. 

𝑇 = (1 +
1

2

𝑣2

𝑐2
)𝑚0 − 𝑚0𝑐

2 

=
1

2
𝑚0𝑣

2                                          (2.8.11) 

Hence at how speeds the relativistic expression for the kinetic energy of a 

moving particle reduces to the classical one. The total energy of such a 

particle is  

𝐸 = 𝑚0𝑐
2 +

1

2
𝑚0𝑣

2                                          (2.8.12) 

In the foregoing calculation relativity has once again met an important test; 

has yielded exactly the same results as those of ordinary mechanics at low 

speeds, where we know by experience that the latter are perfectly valid. It 

is nevertheless important to keep in mind that, so far as is known the correct 

formulation of mechanics has its basis in relativity, with classical 



  

32 

 

mechanics no more than an approximation correct only under certain 

circumstances. 

It is often convenient to express several of the relativistic formulas obtained 

above in forms somewhat different from their original ones. The new 

equations are so easy to derive that we shall simply state them without 

proof: 

𝐸 = √𝑚0
2𝑐4 + 𝑝2𝑐2                                          (2.8.13) 

𝑝 = 𝑚0𝑐
2
√

1

1 −
𝑣2

𝑐2

− 1 

𝑇 = 𝑚0𝑐
2

(

 
1

√1 −
𝑣2

𝑐2

− 1

)

  

𝑣

𝑐
=

√
1 −

1

[1 + (
𝑇

𝑚0𝑐
2)]

2 

1

√1 −
𝑣2

𝑐2

= √1 −
𝑝2

𝑚0
2𝑐2

 

= 1 +
𝑇

𝑚0
2𝑐2

                                          (2.8.14) 

The symbol 𝑝 is used for the magnitude of the linear momentum 𝑚𝑣. 

These formulas are particularly useful in nuclear and elementary-particle 

physics where the kinetic energies of moving particle are customarily 



  

33 

 

specified rather than their velocities. Equation (2.8.14) for instance permits 

us to find 𝑣/𝑐 directly from 𝑇/𝑚0𝑐
2, the ratio between the kinetic and rest 

energies of a particle. 
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Chapter Three 

Maxwell Equation 

3.1 Introduction 

     Maxwell’s equations describe the relation between electric and 

magnetic fields. It also describes how they are generated. This chapter is 

concerned with how they are each other generated and related.  

3.2 Gausses Law and First Maxwell’s Equation 

     The magnetic flux ∅ can be written in farms’ of electric flux density D 

in the form (56,57,58) 

𝜙 = ∫𝐷. 𝑑𝑠                                          (3.2.1) 

Where 𝑑𝑠 is the area element also the change 𝜙 can be expressed in terms 

of charge density 𝜌 according to the relation  

𝜙 = ∫𝜌𝑑𝑣                                          (3.2.2) 

Where 𝑑𝑣 is the volume element but according to vector algebra 

∫𝐷. 𝑑𝑠 = ∫∇. 𝑑𝑣                                           (3.2.3) 

Hence 

𝜙 = ∫∇.𝐷𝑑𝑣                                                        (3.2.4) 

But Gauss Law states that 

𝜙 = 𝑄 
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∫∇.𝐷𝑑𝑣 = ∫𝜌𝑑𝑣                                          (3.2.5) 

Thus 

∇.𝐷 = 𝜌                                          (3.2.6) 

3.3 Amperes Law and Second Maxwell Equation  

     According to amperes Law the work done by unit magnetic (charge) 

due to the effect of magnetic flux density 𝐵 is related to the current density 

according to the relation (59, 60, 61)   

∫B. 𝑑𝐿 = 𝜇 ∫ 𝐽. 𝑑𝑠                                          (3.3.1) 

Where 𝑑𝐿 is the Length element, 𝜇 the magnetic permeability? 

According to vector algebra 𝐵 satisfies  

∫B.𝑑𝐿 = ∫(∇ × 𝐵). 𝑑𝑠                                          (3.3.2) 

Thus inserting (3.3.2) in (3.3.1) yields 

∫(∇ × 𝐵). 𝑑𝑠 = 𝜇 ∫ 𝐽. 𝑑𝑠 

Hence a direct comparison of both sides yields 

∇ × 𝐵 = 𝜇𝐽 

3.4 Faraday Law and Third Maxwell Equation 

     Faraday Law states that the electromotive force or potential 𝑣 is related 

to the magnetic flux 𝜙 entering the electric circuit, where (62,63,64) 

𝑉 = −
𝑑𝜙

𝑑𝑡
                                          (3.4.1) 



  

36 

 

But 𝑉 is related to 𝐸 according to the relation: 

𝑉 = ∫𝐸. 𝑑𝐿                                          (3.4.2) 

Using equations (3.4.1) and (3.4.2) one gets 

∫𝐸. 𝑑𝐿 = −
𝑑

𝑑𝑡
∫𝐵. 𝑑𝑠                                          (3.4.3) 

Where: 

𝜙 = ∫𝐵. 𝑑𝑠                                          (3.4.4) 

Bat from vector algebra 

∫𝐸. 𝑑𝐿 =∫(∇ × 𝐸). 𝑑𝑠                                          (3.4.5) 

Hence (3.4.5) and (3.4.3) yields 

∫(∇⃗⃗ × 𝐵). 𝑑𝑠 = −∫
𝜕𝐵

𝜕𝑡
. 𝑑𝑠                                          (3.4.6) 

There fore  

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
 

3.5 Magnetic Flux and Forth Maxwell Equation 

     The magnetic field is known to form close Loop. Thus the total 

magnetic flux that enters or Leave any closed Loop vanishes. Hence (65) 

𝜙 = ∫𝐵. 𝑑𝑠 = 0                                          (3.5.1) 

But from vector algebra:  
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∫𝐵. 𝑑𝑠 = ∫𝛻.𝐵𝑑𝑣 

 Hence 

∫𝛻. 𝐵𝑑𝑣 = 0 

𝛻. 𝐵 = 0 
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Chapter four 

Literature Review 

4.1 introduction 

The SR theory is one of the biggest achievements in physics. It changes 

our view of space and time coordinates. The  SR theory succeeded  in 

explaining  a wide  variety of physical  phenomena  but  it failed  in  

explaining the situations  in which  the  fields  are  involved. Many attempts 

were made to account for the effect of fields (66).The most popular one is 

known as GSR (67, 68, 69) 

4.2 The Special Relativity in the Presence of Gravitational 

and other Fields  

The gravitational field system properties was discussed in many standard 

texts [70] .n these text the equation of motion of matter in gravitational and 

the matter energy momentum tensor are treated separately. The equation 

of motion of matter is obtained either by expressing the equation of motion 

of straight line in curvilinear coordinate system [4] or by minimizing the 

proper time [2] or even by using Euler-Lagrange equations [3].The energy 

momentum tensor of matter was found by generalizing its special 

relativistic form in a curved space [4]. This situation is not inconformity 

with the classical field theories, where the equation of motion and the 

expression for the energy momentum tensor stem from only one action and 

from the same Lagrangian [70] 

 On the other hand the physical properties of matter; like time, length, and 

mass; in special relativity (SR) are incomplete for not recognizing the 

effect of fields on them [6].  
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Many attempts were made to modify SR to include the effect of gravity and 

other fields [7, 8, 9]. The attempts concentrate on the notion of mass and 

energy without accounting the influence of both fields and motion on time 

and length. Using the ordinary classical Euler-Lagrange equations [5] a full 

expression for the equation of motion of matter in an arbitrary gravitational 

field and the energy momentum tensor are obtained from the same 

Lagrangian in section (2). Stemming from General Relativity (GR) the 

effect of gravitation and other fields on time, length and mass are obtained 

in section (3).  

The Equation of motion and the Energy-Momentum Tensor for Matter:  

 Using the action principle a useful expression for the energy-momentum 

tensor of matter in form of a perfect fluid as well as the equation of motion 

of matter, in particle form, in the gravitational field can be obtained .By 

variation of the matter action the equation of motion and the energy-

momentum tensor can be derived.  

 Taking the field variables to be  and assuming the Lagrangian to depend 

only on  and its first derivate it follows that (71) 

                                              (4.2.1)  

With   

  

Being the four-velocity, and t the proper time.  

 To obtain the energy-momentum tensor of a perfect fluid we choose the 

Lagrangian of matter to have the form:  

                                (4.2.2)  
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Where the parameters A1 and A2 are independent of the metric  and the 

velocity  .  

The energy-momentum tensor of matter is given to be   

  

  

                                      (4.2.3)  

According to formula  

  

Then the Lagrangian becomes  

                                                (4.2.4)  

Using this equation and inserting (4) in equation (3) yields.  

                       (4.2.5)  

If we set  

                            (4.2.6)  

Then  

                               (4.2.7)  

Which is the expression for the energy-momentum tensor of matter in a 

perfect fluid form [1].  

 The equation of motion can be obtained by using Euler-Lagrange equation, 

where  
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                                          (4.2.8)  

Using equations (6) and (2) the various terms in the equation of motion are 

given by,  

  

                                         (4.2.9)  

And   

  

  

We get  

  

Hence   

(4.2.10)  

The equation of motion is then given by substituting equation (4.2.9) and 

(4.2.10) in equation (4.2.8) and by multiplying both sides by  to get  
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When we consider the motion of a point test particle of small mass, the 

pressure p vanishes and the density variation is negligible. Therefore by 

equation (6) we get  

                    (4.2.11)  

The equation of motion of matter in a gravitational field is then given by 

[15, 16, and 17].  

                                   (4.2.12)  

It is very interesting to note that this expression obtained from the matter 

action represents an alternative derivation of the geodesic equation.  

3. Special Relativity in the presence of Gravitation:  

In SR the time, length and mass can be obtained in any moving frame by 

either multiplying or dividing their values in the rest frame by a factor γ  

 

𝛾 = √1 −
𝑣2

𝑐2
 

To see how gravity effect these quantities it is convenient to re express 𝛾 

in terms of the proper time (4) 

𝑐2𝑑𝜏2 − 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣                                          (4.2.13) 

Which is a common language to both SR and GR. We know that in SR 

(4.2.13) reduces to [10] 

𝑐2𝑑𝜏2 = 𝑐2𝑑𝑡2 − 𝑑𝑥𝑖𝑑𝑥𝑖 , 𝑥𝑥0 = 𝑐𝑡 
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𝑑𝜏

𝑑𝑡
= √1 −

1

𝑐2

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑖

𝑑𝑡
= √1 −

𝑣2

𝑐2
= 𝛾              (4.2.14)  

Thus we can easily generalized 𝛾 to include the effect of gravitation by 

using (4.2.13) and adopting the weak field approximation where [11] 

𝑔11 = 𝑔22 = 𝑔33 = −1, 𝑔00 = 1 +
2Φ

𝑐2
                         (4.2.15) 

𝛾 =
𝑑𝜏

𝑑𝑡
= √𝑔00 −

1

𝑐2

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑖

𝑑𝑡
= √𝑔00 −

𝑣2

𝑐2
                      (4.2.16) 

When the effect of motion only is considered, the expression for time in 

SR take the form [4]  

𝑑𝑡 =
𝑑𝑡0

√1 −
𝑣2

𝑐2

                                                            (4.2.17) 

Where the subscript 0 stands for quality measured in a rest frame. While 

if gravity only affect time, its expression is given by [11]. 

𝑑𝑡 =
𝑑𝑡0

√𝑔00

                                       (4.2.18) 

In view of equation (4.2.17), (4.2.18) and (4.2.16) the expression  

𝑑𝑡 =
𝑑𝑡0
𝛾

                                       (4.2.19) 
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𝑑𝑡 =
𝑑𝑡0

√𝑔00 −
𝑣2

𝑐2  

                                         (4.2.20) 

𝑉 = 𝑉0
√1 −

𝑣2

𝑐2
                                         (4.2.21) 

𝑉 = √𝑔𝑉0 = √𝑔00𝑉0                                    (4.2.22) 

The generalization can be done by utilizing (4.2.14) and (4.2.16) to find 

that  

𝑉 = 𝛾𝑉0 = √𝑔00 −
𝑣2

𝑐2
𝑉0                                      (4.2.23) 

To generalized the concept of mass to include the effect of gravitation we 

use the express for the Hmiltonian in GR, i.e. [13]. 

𝐻 = 𝜌𝑐2 = 𝑔00𝑇
00 = 𝑔00𝜌0 (

𝑑𝑥0

𝑑𝑡
)

2

= 𝑔00

𝜌0𝑐
2

𝛾2
 

𝑔00

𝑚0𝑐
2

𝑣0𝛾
2
                                        (4.2.24) 

Using equation (4.2.23) and (4.2.24) yields  

𝜌𝑐2 =
𝑚𝑐2

𝑣
=

𝑔00𝑚0

𝛾𝑣
                                      (4.2.25) 

Therefore  

𝑚 =
𝑔00𝑚0

√𝑔00 −
𝑣2

𝑐2

                                      (4.2.26) 
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Using equations  (4.2.15) and (4.2.26) when the field is weak and the speed 

is small, the energy E is given by 

𝐸 = 𝑚𝑐2 = 𝑚0𝑔00 (𝑔00 −
𝑣2

𝑐2
)

−
1
2

                   (4.2.27) 

In the weak field   

 

𝐸 = 𝑚0𝑐
2 + 𝑇 + 𝑉                                     (4.2.28) 
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𝛾 = √𝑔00 −
𝑔𝛼𝛽

𝑐2
𝑣𝛼𝑣𝛽                                         (4.2.29) 

 

 

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝑙.𝑊𝜇 + 𝑖 (
𝑔

2
)𝑌𝐵𝜇                               (4.2.30) 

Where the factors g, g, I and Y are parameters determining the nature of 

interaction. On the other hand the covariant derivative in GR [1] is given 

by  

                                                 (4.2.31) 

Where   

Γ𝜇𝑣
𝜆 =

1

2
𝑔[𝜕𝜇𝑔𝑘𝑣 + 𝜕𝑣𝑔𝑘𝜇  ]                            (4.2.32)  

The relation between the metric 𝑔𝜇𝑣  and field can be obtained from 

relation (4.2.30) and (4.2.31) with the aid of the relation  

𝜕𝜆𝑔𝜇𝑣 − Γ𝜇𝑣
𝜌

𝑔𝜌𝜇 = 𝑔𝜇𝑣;𝜆                  (4.2.33) 

Where (4.2.30) and (4.2.31) gives: 

Γ𝜇𝑣
𝜆 = −𝑖𝑔𝑙.𝑊𝜇 − 𝑖 (

𝑔

2
) 𝜆𝐵𝜇                         (4.2.34) 

According to these relations the genenralized expression for the time 

volume, mass, and energy is given according to equaions (4.2.29) (4.2.19), 

(4.2.23) with the aid of the relation  
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(4.2.35) 

(4.2.36) 

  

3.4 New Lorentz Field Dependent Lorentz Transformation 

Due to Photon Direction Change   

Lorentz  transformation is one of the  most beautiful  mathematical 

framework  that  changed  radically the  concept of  space  time and mass. 

The SR one is suitable for inertial frames but it doesn’t not account for the 

effect of fields.  To take care of the effect of fields consider the Lorentz 

transformation [72]  

 

                                                         (4.3.1) 

                                                        (4.3.2) 

Consider the two frames (𝑥. 𝑡) and (𝑥̀. 𝑡̀) have their origin coincide at = 

𝑡̀ = 0. If a pulse of light is received from a source  then its position in the 

two frames becomes at 𝑡 and 𝑡 ̀ respectively  

𝑥 =  𝑐𝑡                                                  (4.3.3 ⋅ 𝑎) 

𝑥 =  𝑐𝑡̀                                                   (4.3.3 ∙ 𝑏)  

Substitute (4.3.3. ) & (4.3.3. ) in (4.3.1) yields  

  

𝑐𝑡 = 𝛾 (𝑐𝑡′ + 𝑣𝑡′ −
𝑎𝑡2

2
) = 𝛾 ((𝑐 + 𝑣)𝑡′ −

𝑎𝑡′2

2
) 

𝑡 = 𝛾 ((1 +
𝑣

𝑐
) 𝑡′ −

𝑎𝑡2

2𝑐
) 
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𝑡 = 𝑐1𝑡
′ + 𝐶2𝑡

′2                                  (4.3.4) 

Where  

  

𝐶1 = 𝛾 (1 +
𝑣

𝑐
)                                    (4.3.5 𝑎) 

𝐶2 = −
𝛾𝑎

𝑐
                                         (4.3.5 𝑏) 

In (4.3.2) gives   

2 

𝑡́ = 𝐶3𝑡 + 𝐶4𝑡
2                                          (4.3.6) 

𝐶3 = 𝛾 (1 −
𝑣

𝑐
)                                              (4.3.7. 𝑎) 

𝐶4 =
𝛾𝑎

2𝐶
                                          (4.3.7. 𝑏) 

Substitute (4.3.6) in (4.3.4) to get  

𝑡 = 𝐶1(𝐶3𝑡 + 𝐶4𝑡2) + 𝐶2(𝐶3𝑡 + 𝐶4𝑡2)2                             (4.3.8)  

𝑡 =  𝐶1𝐶2𝑡 + 𝐶1𝐶4𝑡 
2  +  𝐶2𝐶32𝑡 

2  +  2𝐶2𝐶3𝐶4𝑡
3  

+  𝐶2𝐶42𝑡4                                                                                    (4.3.9)  

Comparing the coefficients of 𝑡. 𝑡2. 𝑡3and 𝑡4 on both sides gives  

𝐶1𝐶3 = 1                                                (4.3.10)  

𝐶1𝐶4 = −𝐶2𝐶3
2                                           (4.3.11)  

2𝐶2𝐶3𝐶4 = 0                                                (4.3.12)  

𝐶2𝐶4
2 = 0                                                (4.3.13)  

From (4.3.5. ) and (4.3.7. ), (4.3.10) becomes  
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𝛾2 (1 +
𝑣

𝑐
) (1 −

𝑣

𝑐
) = 1 

∴ 𝛾 =
1

√1 −
𝑣2

𝑐2

                                            (4.3.14) 

  

 

                                           (4.3.15) 

From (4.3.5. ), (4.3.7. ) and (4.3.7.𝑏), 

(4.3.12) becomes  

 −
2𝛾3𝑎2

4𝐶2 (1 −
𝑣

𝑐
)                                            (4.316) 

From (4.3.5.b) and (4.3.7.b), (4.3.13) becomes  

−
𝛾𝑎

8𝑐3
= 0                                                (4.3.17) 

In view of equation (4.3.14) 𝛾 take the same special relativity form. 

However, equations (4.3.15), (4.3.16) and (4.3.17) shows that the Lorentz 

transformation (4.3.1) and (4.3.2) gives consistent results only when (𝑎 = 

0). This requires trying another transformation to take care of effect of 

fields. One can assume that the light is accelerated due to the effect of field 

on photon trajectory. It is well known in mechanics that any particle can 

be accelerated if its magnitude of velocity  is constant when it change its 

direction. This happens for particles having constant speed  and moving 

in a circular orbit, thus changing its direction regularly and possessing an 

acceleration  

𝑎 =
𝑣2

𝑟
                                                           (4.3.18) 

Towards the Centre of a circular orbit. According to general relativity 

(GR) the photon move in a curved trajectory in a gravitational field, 

although the magnitude of photon speed  is constant, but it is accelerated 
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due to the change of photon direction, since the change of photon direction 

decreases its speed in the original direction. For example if the photon 

change its direction by ∆∅ during time interval∆𝑡, its acceleration becomes  

                                (4.3.19) 

This means that SR and GR are not in conflict with each other, this shows 

how beauty is Einstein relativity compared to Newton's laws. The photon 

acceleration can be found by using the relation between work done and 

energy change according to gravity red shift. The change in photon energy 

is given by  

∆𝐸 =  ℎ𝑓̀ −  ℎ𝑓 =  𝑉                                (4.3.20)  

Where  is the field potential. Here one assume that  is potential of any 

field; not gravity field only. The change of energy is equal to the work 

done, again assuming constant mass and constant acceleration, one gets  

𝐹 ∙  𝑥 =  𝑚𝑎𝑥 =  𝑉                                                (4.3.21)  

The photon displacement can be found by using the expression for photon 

interval in a curved space, to get  

0 = 𝑐2𝑑𝜏2 = 𝑔00𝑐2𝑑𝑡2 − 𝑔𝑥𝑥𝑑𝑥2                                                (4.3.22)  

Assuming that the photon obeys static isotropic constraints 𝑔00 = 𝑔𝑥𝑥, one 

gets  

                        (4.3.23) 

Thus integrating both sides yields  

                                          (4.3.24) 

Similar relation can be obtained by finding the photon acceleration by 

assuming𝑥 = 𝑐𝑡 to get   
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𝑎 =
𝑉

𝑚𝑥
=

𝜑

𝑥
=

𝜑

𝑐𝑡
                                               (4.3.25) 

In view of equation (4.3.3.a) and (4.3.25) the position is given by  

𝑥 = 𝑐𝑡 −
𝑎𝑡

2
= 𝑐𝑡 −

𝜑𝑡

2𝑐𝑡
= 𝑐𝑡 −

𝜑

2𝑐
𝑡                                                  (4.3.26) 

Similarly, equation (4.3.3.𝑏) and (4.3.25) gives  

̀                                 (4.3.27) 

Consider the Lorentz transformation  

                                                   (4.3.28) 

Where the average velocity 𝑣𝑚 is given by  

                          (4.3.30) 

Thus  

                             (4.3.31) 

𝑥 = 𝛾(𝑥′ + 𝑣𝑚𝑡′)                                                  (4.3.31) 

Similarly  

𝑥̀ = (𝑥 − 𝑣𝑚𝑡)                                              (4.3.32)  

For static source in a frame  the photon is not accelerated, thus  

𝑥 = 𝑐𝑡                                                                     (4.3.33)  

But the observer in 𝑆̀ sees the source 𝑆 is accelerated and the photon moves 

in curved space, thus (see equation (4.3.14))  

                                                   (4.3.34) 

By substituting (4.3.33) and (4.3.34) in (31) yields  

                                                   (4.3.35) 

Similarly if the source is at rest in frame 𝑆 ̀ the photon position is given by  
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𝑥̀ = 𝑐𝑡̀                                                                (4.3.36)  

Since 𝑆̀ is accelerated with respect to  due to the field effect, therefore the 

photon move in a curved space , thus it is accelerated, hence  

                                                   (4.3.37) 

Substitute (4.3.36), (4.3.37) in (4.3.32) to get  

                                                    (4.3.38) 

From (4.3.34) and (4.3.37)  

𝑡′ =
𝑡′

𝑐
𝛾2 (𝑐 +

𝜑

2𝑐
+ 𝑣𝑚) (𝑐 −

𝜑

2𝑐
− 𝑣𝑚)                         (4.3.39) 

𝛾 =
1

√1 − (
𝜑
2𝑐

+
𝑣𝑚

𝑐 )
2
                               (4.3.40) 

Thus the generalized special relativistic energy is given by  

                                                   (4.3.41) 

Neglect the term consisting of 𝑐2, yields  

𝛾 =
1

√1 −
𝑣𝑚

2

𝑐2

                                                  (4.3.42) 

Where    

𝑣𝑚 = 𝑣 +
𝑣0

2
                                                  (4.3.43) 

But when the particle moves against the field  

𝑣2 = 𝑣0
2 − 2𝑎𝑥 = 𝑣0

2 − 2𝜑 ∴ 𝑣0
2 = 𝑣2 + 2𝜑                                           (4.3.44)  

By Assuming that and 𝑣0 represent the average values that related to 

maximum values 𝑣𝑚𝑎𝑥 and 𝑣0𝑚𝑎𝑥 according to relations  and  

    

                                                   (4.3.45) 
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Then  

  

  

≈
2𝑣𝑚𝑎𝑥

2 + 2𝑣𝑚𝑎𝑥
2 (1 +

2𝑎𝑥
𝑣𝑚𝑎𝑥

2 ) + 4𝑎𝑥

4
             (4.3.46) 

∴ 𝑣𝑚
2 =

4𝑣𝑚𝑎𝑥
2 + 8𝑎𝑥

4
= 𝑣𝑚𝑎𝑥

2 + 2𝑎𝑥 = 𝑣𝑚𝑎𝑥
2 + 2𝜑           (4.3.47) 

But from equation (4.3.38) for  then  

                                            (4.3.48) 

                                          (4.3.49) 

Thus equation (4.3.41) and (4.3.38) gives  

 (4.3.50) 

Thus the generalized special relativity energy relation satisfies the 

Newtonian limit. This is since the energy include kinetic beside potential 

energy term.  

The gravitational red shift of photons can also be explained by using 

GSR. Assuming photon in free space so its potential energy 𝑉 = 0, by using 

(4.3.50) and plank hypothesis, one can get  

ℎ𝑓 = 𝑚0𝑐2 + 𝑇                                                (4.3.51)  

If the photon enters gravitational field its frequency (4.3.51) changes also  

To 𝑓̀. Thus equation (4.3.50) gives  

ℎ𝑓̀ = 𝑚0𝑐2 + 𝑇 + 𝑉 = ℎ𝑓 + 𝑉                                    (4.3.52)  
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Thus fortunately equation (48) explains the gravitational red shift.  

4.4 Lorentz Transformation Einstein Derivation simplified  

 Those who have studied Einstein’s special relativity theory know that 

everything there is the result of his two postulates and of the distant clock 

synchronization procedure that he  

(x, y=0) located at that point reads t. In order to be operational the different 

clocks of that frame, located along the OX axis should display the same 

running time. Einstein satisfied that condition proposing the 

synchronization procedure shown in the figure below [75] 

 Clock C0(0,0) located at the origin O is ticking and when it reads a zero 

time the source of light S(0,0) located in  front of it emits short light signals 

in  the positive and in  the negative directions of the OX axis. Clocks 

C+(0,0) and C-(0,0) are initially stopped and fixed to display a time t=x/c. 

The light signals arriving at the corresponding clocks start them and from 

that very moment the clocks display the same running time. The events 

associated with the synchronization of clocks C0, C+ and C- are E0(0,0,t), 

E+(x,0,t) and E-(-x,0,t) respectively. It is obvious that their space-time 

coordinates are related by  

  𝑥 =  ±𝑐𝑡      (𝑡 >  0)                          (4.4.1)  

Or by  

   𝑥2  − 𝑐2𝑡
2  =  0                                       (4.4.2)  

Special relativity becomes involved when we consider a second inertial 

reference frame K’ (X’O’Y’) in the standard arrangement with the K 

(XOY) reference frame, K’ moving with constant velocity V in the positive 

direction of the overlapped OX (O’X’) axes. The events associated with 

the synchronization of the clocks in K’ are E0′(0,0,t) , E+′(x′,0,t′) and 

E−′(−x′,0,t′) .   
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The clocks C0′(0,0), C+′(x′,0) and C−′(0,0) of that frame are synchronized 

following the same procedure as in K and we have obviously  

    x′2 −c′2t′2 = 0.            (4.4.3)  

 Equating (4.4.2) and (4.4.3) we obtain  

    x2 −c2t2 = x′2 −c2t′2.           (4.4.4)  

Because at the origin of time the origins of K and K’ are located at the same 

point in space we can consider that ∆x=x-0, ∆t=t-0, ∆x’=x’-0 and ∆t’=t’-0 

presenting (4.4.4) as  

    (∆x)2 −c2(∆t)2 = (∆x')2 −c2(∆t′)2                                (4.4.5)  

 Equation (4.4.5) is a starting point in Einstein’s derivation of the Lorentz 

transformations1 which establish a relationship between the space-time 

coordinates of events E(x,0.t) and E’(x’,0,t’).  

 Relativists consider that one event E(x,0,t) detected from the K frame and 

an event E’(x’,0,t’) detected from the K’ frame represent the same event if 

they take place at the same point in  space when the clocks C(x,0) and 

C’(x’,t’) located at that point read t and t’ respectively. The Lorentz 

transformations establish a relationship between the coordinates of events 

E(x,0,t) and E′(x′,0,t) defined above and considered to represent the same 

event. We derive them in two steps. Figure 2 presents the relative position 

of the reference frames K and K’ as detected from the K frame when its 

clocks read t.  

When the clock C0′(0,0) is reading t’ it is located in front of a clock  

C1(x=Vt,0) reading t. The problem is to establish a relationship between ∆t 

and ∆t’. The clock C0′(0,0) being in a state of rest in K’ we have in its case 

∆x’=0. The position of clock C0′(0,0) is defined in K by ∆x=V∆t , the 

change in the reading of clock C1(x=Vt,0) being ∆t . The events involved 

are E(x=Vt,t) in K and (x’=0,t’) in K’. Imposing the condition (4.4.4) that 

relates correctly their space-time coordinates we obtain  
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𝑡 =
𝑡′

√1 −
𝑣2

𝑐2

                                                           (4.4.6) 

Which relates the readings of the two clocks when they are located at the 

same point in space, equation  

∆𝑡 =
∆𝑡′

√1 −
𝑣2

𝑐2

                                                    (4.4.7) 

Relating the changes in theirs readings.2 It is of essential importance to 

make a net distinction between the ways in which the time intervals ∆t and 

∆t’ are measured.  

 The time interval ∆t is measured as a difference between the reading t of 

clock C(x=𝑉𝑡,0) and the reading t=0 for clock C0(0,0) when the moving 

clock C0′(0,0) passes in front of them respectively. Relativists call a time 

interval measured under such conditions coordinate time interval. The 

time interval ∆t’ is measured as a difference between the readings of the 

same clock C0′(0,0) when it passes in front of clock C1(x=𝑉𝑡,0), (t’) and 

when it passes in front of clock C0(0,0) (t’=0). A time interval measured 

under such conditions is called proper time interval. As we see (4.4.7) 

relates a coordinate time interval measured in the reference frame K and a 

proper time interval measured in K. Because ∆t>∆t’ relativists say that a 

time dilation effect takes place. If we consider the same experiment from 

the  inertial reference frame K’ then we see that observers of that reference 

frame measure a coordinate time interval whereas observers from K 

measure a proper time interval related by (4.4.7). Figure 3 presents the 

relative positions of the reference frames K and K’ when all the clocks of 

the first frame read t.   

  

 



  

57 

 

 Encouraged by Galileo’s transformation equations   

 x = x′+Vt′                                                       4.4. (8) 

x′ = x −Vt                                                          (4.4.9) 

t = t′            (4.4.10)  

we guess that in Einstein’s special relativity theory, one of the 

transformation equations should have the shape  

  x = ax′+cbt′               (4.4.11)  

where a and b represent factors which, due to the linear character of a 

transformation equation, could depend on the relative velocity V but not 

on the space-time coordinates of the involved events. In order to find them 

we impose the condition that it should correctly relate the space-time 

coordinates of events E(x=Vt,0,t) and E’(x’=0,0,t’) and  of  events  E’(x’=-

Vt’,0,t’), E(0,0,t) we have defined deriving the formula which accounts for 

the time dilation effect. In the case of the first pair of events (4.4.11) Works 

as  

 𝑉𝑡 = 𝑏𝑐𝑡′ = 𝑏𝑐𝑡√1 −
𝑣2

𝑐2
                   (4.4.12)  

Where from we obtain  

𝑏 =

𝑣
𝑐

√1 −
𝑣2

𝑐2

= 𝛽𝑐−1𝛾(𝑉)                                                    (4.4.13) 

In the case of the second pair of events (4.4.11) works as  

 0 =  −𝑎𝑉𝑡′ +  𝑐𝑏𝑡′                                                           (4.4.14)  

Resulting that  

 𝑎 = 𝛾(𝑉)                                                            (4.4.15) 

(4.4.11) becoming  

 𝑥 = 𝛾(𝑉)(𝑥′ + 𝑉𝑡′) .                                 (4.4.16)  
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Dividing both sides of (4.4.16) by c and taking into account that all the 

involved clocks are synchronized à la Einstein (t=x/c,t’=x’/c) we obtain   

 𝑡 = 𝛾(𝑉)(𝑡′ + 𝛽𝑐−1𝑥′)                                                           (4.4.17)  

Combing (4.4.16) and (4.4.17) we obtain with some algebra  

 𝑥′ = 𝛾(𝑉)(𝑥 − 𝑉𝑡)                                                           (4.4.18)  

 𝑡′ = 𝛾(𝑉)(𝑡 − 𝛽𝑐−1𝑥).                                                           (4.4.19)  

Equations (4.4.16) and (4.4.17) are known as the inverse Lorentz 

transformations whereas equations (4.4.18) and (4.4.19) are known as the 

direct Lorentz transformations.    

 Compared with Einstein’s derivation and with other derivations we found 

in the literature of this subject, our derivation presents the advantage that it 

is shorter, revealing the fact that the Lorentz transformations are a direct 

consequence of the two relativistic postulates and of the clock 

synchronization procedure proposed by Einstein.   

 The Lorentz transformations become more transparent if we present them 

as a function of changes in the space-time coordinates of the same event. 

Equations (4.4.16) and (4.4.17) become  

 ∆𝑥 = 𝛾(𝑉)(∆𝑥′ + 𝑉∆𝑡′)                                (4.4.20)  

And   

 ∆𝑡 = 𝛾(𝑉)(∆𝑡′ + 𝑉𝑐−2∆𝑥′) .                             (4.4.21)  

 The way in which the transformation equations were derived ensures the 

fact that they account for the time dilation effect. They account in a 

transparent way for the addition law of relativistic velocities. Consider a 

particle that starts to move at t=t’=0 from the common origin of K and K’ 

with speed ux relative to K and with speed u′x relative to K’. After a time 

of motion t the particle generates the event E(x=uxt,0,t) as detected from K 
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and E’( x' = u′xt′,0,t') when detected from K’. In accordance with the 

Lorentz transformations we have  

𝑢′𝑥 + 𝑉 

∆𝑥 =
∆𝑡′

√1 −
𝑣2

𝑐2

                                                     (4.4.22) 

 4.5 Evolution of Stars by Kinetic Theory and Quantum 

Physics on the Basis Generalized Special Relativity  

Let us now discuss ideal gases from a purely quantum mechanical 

standpoint. It turns out that this approach is necessary to deal with either 

low temperature or high density gases. Furthermore, it also allows us to 

investigate completely nonclassical“gases”, such as photons. From the 

kinetic theory and quantum physics; we can get an equation of star 

evolution by the pressure force and the force of gravity. For stars one have 

tow forces, pressure force which counter balance the gravity force, thus 

[76]: 

                                                     (4.5.1) 

The number density can be assumed to satisfy Maxwell’s distribution      

𝑛 = 𝑛0𝑒−𝛽                                                                                                 (4.5.2)  

We first consider an ideal gas consisting of a single type of non-relativistic 

particles. The ideal-gas law for the gas contained in a volume  is 

commonly written as  

𝑃 =
1

3

𝑁

𝑉
(3𝐾𝑇) = 𝑛𝐾𝑇                            (4.5.3) 

Where: 𝑛 = 𝑁/𝑉(3𝐾𝑇) is the number of particles per unit 

volume). Thus the pressure force is given by   

𝐹𝑃 = 𝑃𝐴 = (4𝜋𝑟2) = 4𝜋𝑛𝐾𝑇𝑟2 = 𝑐1𝑟2                                             (4.5.4)  

The gravity force is given by  
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For constant density  

  

Thus   

                                                     (4.5.5) 

Equation of hydrostatic equilibrium requires  

𝐹𝑃 = 𝐹                                                                    (4.5.6)  

Thus from equation (4.5.4), (4.5.5) and (4.5.6) one gets  

  

The critical radius is thus given by   

                                                     (4.5.7) 

Expansion takes place     

𝐹𝑃 > 𝐹                                                  (4.5.8)  

While contraction is observed when  

 𝐹𝑃 < 𝐹                                                  (4.5.9)  

But according to the laws of quantum mechanics for particle in box the 

energy is given by   

𝐸 = 𝑐0𝑉−2⁄3                                                      (4.5.10)  

At 𝑇 = 0 all quantum states whose energy is less than the Fermi energy 𝐸𝐹 

are filled. The Fermi energy corresponds to a Fermi momentum 𝑝𝐹 = ℏ𝑘𝐹 

is thus given by  

                                                     (4.5.11) 

The above expression can be rearranged to give  
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Hence   

𝜆𝐹 =
2𝜋

𝐾𝐹
=

2𝜋

(3𝜋2𝑛)1/3
=

2𝜋ℏ

𝐴
(
𝑉

𝑁
)
1/3

 

Which implies that the De-Broglie wavelength 𝜆𝐹 corresponding to the 

Fermi energy is of order the mean separation between particles 

(𝑉⁄𝑁)1⁄3.All quantum states with De-Broglie wavelengths 𝜆 > 𝜆𝐹 are 

occupied at 𝑇 = 0, whereas all those with 𝜆 < 𝜆𝐹 are empty.  

According to equation (4.5.11), the Fermi energy at 𝑇 = 0 takes the form  

 𝐸𝐹 =
ℏ2

2𝑚
(3𝜋2𝑛)2/3 =

𝐴

2𝑚
(
𝑁

𝑉
)
2/3

= 𝐶0𝑉
−

2

3                          (4.5.12) 

𝑑𝐸𝐹

𝑑𝑉
= −

2

3
𝑐0𝑉

−
5
3                                                    (4.5.13) 

But for spherical body 

  

Thus    

           (4.5.14) 

But according to canonical Gibbs’s distribution      

                                                     (4.5.15) 

Hence the pressure takes the form  

                           (4.5.116) 

Thus the pressure force is given by  
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𝐹𝑃 = 𝑐2𝑟
−3                                                    (4.5.17) 

But gravity force is given by  

  

Where we assume that the density is constant within the star. The mass at 

distance  from the star center is  

  

  

Thus   

                           (4.5.18) 

Equation of hydrostatic equilibrium requires   

𝐹𝑃 =  𝑐2𝑟
−3 = 𝑐3𝑟                                                     (4.5.19) 

The critical radius 𝑟𝑐 is thus given by  

                           (4.5.20)  

Expansion takes place  

𝐹𝑃 >                                                     (4.5.21)  

While contraction happens when  

𝐹𝑃 <                                                     (4.5.22)  

The conditions of star evolution can be started by adopting classical limit, 

of generalized special relativity (GSR) energy relation where  

                            (4.5.23) 

Considering Newtonian potential and thermal motion  

𝜑 = −
𝐺

𝑀
,
1

2
𝑚𝑣2 =

3

2
𝐾𝑇 ⇒ 𝑣2 =

3𝐾𝑇

𝑚0
             (4.5.24)  
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   (4.5.25) 

If the gravitational potential and thermal energy are everywhere small, so  

                           (4.5.26) 

Thus (25) reduces to  

               (4.5.27) 

Neglecting higher order terms, yields  

  

Thus the energy  become  

                           (4.5.28) 

Assuming the kinetic energy is due to thermal motion   

                           (4.5.29) 

Assuming also the potential energy of mass 𝑚0 to be  

𝑉 = −
𝐺𝑀𝑚0

𝑅
                            (4.5.30) 

Thus equation (4.5.28) gives  

𝐸 = 𝑚0𝑐2 + 𝐾. 𝐸 + 𝑉  

Thus the expression of energy includes the total kinetic energy of the 

degenerate electrons (the kinetic energy of the ion is negligible), the rest 

energy𝑚0𝑐2 and the gravitational potential energy . Let us assume, for 

the sake of simplicity, that the density of the star is its uniform. The total 

energy of a star is its gravitational potential energy, its internal energy and 

its kinetic energy (due to bulk motions of gas inside the star, not the 

thermal motions of the gas particles).  
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Using the hypothesis of universe expansion, the star explodes and expands 

when the energy  is positive  

                           (4.5.31) 

i.e.  

                          (4.5.32) 

This is quite obvious from the point of view of common sense because 

this equation indicates that expansion happen when thermal and rest mass 

energies exceeds attractive gravity energy. However it collapse and 

contract when the energy  is negative, this requires      

                           (4.5.33) 

Thus collapse takes place when gravity energy exceeds thermal one.  

Can be obtained the critical radius, using the following energy for 

generalized special relativity    

  

Where  

                     (4.5.34) 

Where 

  

The critical radius of the star requires minimizing the total energy  and 

can be found by using the conditions for minimum value, i.e.  
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When temperature is neglected, i.e. 

when  

𝑇 = 0  

One gets  

  

The critical radius is thus given by  

                                                     (4.5.35) 

(This is the black hole radius)  

Using the generalized special relativity energy relation  

                           (4.5.36) 

For star having spherical shape:  

−𝐺𝑀 = −𝐺 (
4𝜋

3
𝜌𝑟3) = −

4𝜋

3
𝐺𝜌𝑟3 = 𝑐3𝑟

3                          (4.5.37) 
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𝐸 = 𝑚0𝑐
2(1 + 𝑐4𝑟

2) (1 + 𝑐4𝑟
2 −

3𝐾𝑇

𝑚0𝑐
2
)                                  (4.5.38) 

Where  

  

The radius of the star  that dimension which reduces the total energy  

and his can be found by using the minimum energy condition that has to 

be less energy as soon as possible, i.e.  

𝑑𝐸

𝑑𝑟
= 0                                                                                (4.5.39) 

  

The minimum radius   
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6𝐾𝑇 > 𝑚0𝑐
2                                                    (4.5.40) 

𝑚0 <
6𝐾𝑇

2
 

Thus the critical mass is given by:  

Hence for equilibrium  

𝑚0 < 𝑚0𝑐  

Using equation (4.5.37)   

  

The critical radius is thus given by  

                                                      (4.5.41) 

When  
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For maximum values  

                   (4.5.42) 
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When temperature is neglected, i.e. when  

  

 

Where  

𝑐4 =
2𝑐3

𝑐2
, 𝑐3 =

4𝜋𝐺𝜌

3
 

𝑐4 =
8𝜋𝐺𝜌

3𝑐2
                                                    (4.5.43) 

𝑟 < 𝑐 (
3

8𝜋𝐺𝜌
)

1/2

 

While contraction takes place when  

                           (4.5.44) 

For minimum values  

                           (4.5.45) 

Thus explosion is expected when  

                           (4.5.46) 

Thus the critical radius is given by  

                           (4.5.47) 
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4.6 Generation of Elementary Particles inside Black Holes at 

Planck Time  

 Generalized special relativistic energy (GSR) expression, beside ordinary 

Newtonian gravity potential are given by (78) 

𝐸 = 𝑚0𝑐
2 (1 +

2𝜑

𝑐2
)(1 +

2𝜑

𝑐2
−

𝑣2

𝑐2
)

−1/2

              (4.6.1) 

Where the Newtonian potential takes the form   

𝜑 = −
𝑀𝐺

𝑅
                                        (4.6.2) 

             (4.6.3) 

Minimizing  w.r.t  yields  

  

Thus   

  

If one consider   

  

This requires  

2𝑀𝐺

𝑅𝑐2
= 1 

2𝑀𝐺 = 𝑅𝑐2                                              (4.6.4) 
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Thus the mass which makes  minimum is  

                   (4.6.5) 

Consider also the generalized special relativity energy  equilibrium 

condition by minimizing with respect to radius 𝑟 from equation (4.6.3), 

when the star particles speed are small compared to speed of light   

  

Thus   

                                  (4.6.6) 

  

Thus the radius which makes  minimum is given by  

  

The critical radius is thus given by  

                       (4.6.7) 

(This is the black hole radius 
𝑟𝑐

)  

But the critical mass is given by equation (4.6.7), i.e.  

𝑀 = 𝑚𝑐 =
𝑐2𝑟𝑐
2𝐺

                            (4.6.8) 

Hence from (4.6.8)    

2𝑚𝑐𝐺 =  𝑟𝑐𝑐
2                           (4.6.9)  

The condition governing the equilibrium of the universe, from (4.6.9) and 

(4.6.4) we get  

                                 (4.6.10) 
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Where 𝑀 and 𝑅 are the mass and radius of the universe respectively. The 

mass of the universe (𝑀 = 2.2 × 1056g) and the radius (𝑅 = 1.6 × 1028cm).   

According to generalized general relativity (GGR) there is a short range 

repulsive gravitational force beside long range attractive gravity force 

given by [1]:  

  

𝜑 =
1

𝑟
[𝑐1𝑒

−
𝑟
𝑟𝑐 − 𝐺𝑀]                           (4.6.13) 

For small radius  or strictly speaking small :  

𝑒
−

𝑟
𝑟𝑐 = 1 −

𝑟

𝑟𝑐
                                (4.6.14) 

Hence  

𝜑 =
1

𝑟
[𝑐1 − 𝑐1

𝑟

𝑟
− 𝐺𝑀]                                  (4.6.15) 

To secure finite self-energy  at small𝑟𝑐, one requires  

𝑐1 = 𝐺𝑀                                                                     (4.6.16)  

Thus the star self-energy is given by  

                                       (4.6.17) 

Since the star is a particle at rest thus the minimization of  requires (see 

equation (4.6.2), (4.6.4) and (4.6.17))  

                             (4.6.18) 

For photon (𝑣 = 𝑐) thus one gets  

                        (4.6.19) 
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From equation (4.6.17) and (4.6.18)    

                             (4.6.20) 

Thus the critical radius is given by  

                              (4.6.21) 

(This is the black hole radius)  

Since 𝑟𝑐 should be small as shown by equation (4.6.14), thus requires  
  

𝑀 <
𝑐2

2𝐺
                                              (4.6.22) 

Thus there is a critical mass   

                                           (4.6.23) 

Above it the particle rest mass energy cannot be formed form potential.  

We see from equation (4) that the present radius of the universe should be  

                         (4.6.24) 

Which conforms to observations.Consider a star as consisting of photons 

gas, such that the critical radius is related to the wave number according to 

the relation   

                                 (4.6.25) 

For oscillating string the energy takes the form   

                                               (4.6.26) 

Hence   

𝑟𝑐 =
ℏ

𝑚0𝑐
                                                 (4.6.27) 
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The photon which obeys quantum laws equations (4.6.19) and (4.6.1) gives  

                                              (4.6.28) 

This conforms to the fact that photons can produce particle pairs.  

Newton’s law of potential gives  

                                     (4.6.29)  

Gravity force is also given by  

                                                   (4.6.30) 

If   

𝑚1 = 𝑚2 = 𝑚𝑐  

Thus (4.6.26) and (4.6.29) given  

                                                    (4.6.31) 

Therefore   

ℏ𝑐 = 𝐺𝑚𝑐
2                                           (4.6.32) 

Hence    

                                               (4.6.33) 

                            (4.6.34) 

 (Equivalent Planck’s mass)  

Which matches the proposed value. The same equation applies to Planck’s 

length, namely  

                            (4.6.35) 

 (Planck’s length)At distances smaller than this scale the gravitational 

interaction should be stronger than the quantum effects [2].Also the critical 

distance 𝑟𝑐 is equal   
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                                    (4.6.36) 

One can calculate the critical density 𝜎𝑐 of the material when the particles 

are considered as a hollow sphere surrounded by thin layer or membrane. 

In this case the surface density is given by    

𝜎 =
𝑚𝑐

𝐴
,    𝑚𝑐 =

ℏ

𝑟𝑐𝑐
,   𝐴 = 4𝜋𝑟𝑐

2                        (4.6.37) 

𝜎 = (
ℏ

𝑟𝑐𝑐
) (

1

4𝜋𝑟𝑐
2
) =

ℏ

4𝜋𝑟𝑐
3                             (4.6.38) 

𝑚𝑐 =
ℏ

𝑟𝑐𝑐
                        (4.6.39) 

 Where  

                          (4.6.40) 

Thus the critical density satisfies  

  

Where    

𝜎𝑐 = 4𝜋𝜎 ~ 8.4 × 1060g. 𝑐𝑚−2                                 (4.6.41)  

According to this model the universe began at a time and specific place, at 

the critical point ( 𝑟𝑐  , 𝑡𝑐), where all fundamental forces are unified into a 

single force.  

The Planck time is thus given by     

             (4.6.42) 

(Equivalent Planck’s time)  

The value speed of light  at the critical point(𝑟𝑐, 𝑡𝑐).  

𝑐 =
𝑟𝑐
𝑡𝑐

∼ 3 × 1010𝑐𝑚. 𝑠−1                        (4.6.43) 
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Began creation of the universe at the critical point (𝑟𝑐  , 𝑡𝑐), and show the 

fundamental constants such as ( , , ) known values, since that time and 

keep as it is without any change, the structure of the our universe is 

sensitive to precise degree to less change in these fundamental constants. 

The status of the universe at different stages is shown to be described in 

terms of the constants ( , , ) only. This masterly organization of the 

universe is the result for precise tuning arbitrator. The acceleration was 

great, which is equal to [3]:  

𝑎𝑐 = 𝑅𝑐 =
𝑐

𝑡𝑐
                                    (4.6.44) 

Where 𝑅𝑐 critical curvature (the maximal acceleration occurred at Planck’s 

time). From a purely dimensional argument one can constant a quantum 

acceleration from the set of fundamental constants ( , , ) to be valid at 

Planck’s time, and according to our hypothesis, an analogous acceleration 

of the form   

              (4.6.45) 

Getting limited value to a larger curvature or maximal acceleration in the 

relation (4.6.43) resolved the problem singular behavior. And the matching 

bending dimensions to pry acceleration are consistent with the principles 

of general relativity. Conform to the critical value of the acceleration 𝑎𝑐 in 

this relation with the researches results [4].This acceleration on 

unwavering  constants, and associated critical point (𝑡𝑐). The existence of 

this greatest acceleration confirms the occurrence of stretch accelerator of 

the universe at the beginning of time [5]. The acceleration declining at 

critical value 𝑎𝑐 generates the force to attract at the beginning of time, when 

the universe takes its way to expansion, and this explains why the presence 

of the cosmic force of the overall attraction.  

The critical force 𝐹𝑐 as follows  
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                         (4.6.46) 

                              (4.6.47) 

4.7 Equilibrium of Stars within the Framework of 

Generalized Special Relativity Theory  

Consider first the Generalized Special Relativity GSR energy  

equilibrium condition by minimizing  w.r.t. [79] 

  

𝐸 = 𝑚0𝑐
2 (1 +

2𝜑

𝑐2
)(1 +

2𝜑

𝑐2
−

𝑣2

𝑐2
)

−1/2

                       (4.7.1) 

𝜑 = −
𝐺𝑀

𝑟
,𝑚0 = 𝑀                               (4.7.2) 

𝑣2

𝑐2
=

𝑚2𝑣2

𝑚2𝑐2
=

𝑝2

𝑚2𝑐2
=

𝑝2

𝑀2𝑐2
                        (4.7.3) 

For simplicity consider the average momentum  is equal to the maximum 

momentum 𝑝, where  

 

Thus  

 

 

Where  

 

  

Therefor, with the aid of equation (4.7.2), (4.7.4), equation (4.7.1) reads 

3𝜋2
1

3ℎ̅
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𝐸 = 𝐸𝑓 = 𝑀𝑐2 (1 −
2𝑀𝐺

𝑟
)(1 −

2𝑀𝐺

𝑟
−

𝑝𝑓
2

𝑀2𝐶2
)

1/2

        (4.7.5) 

The radius  which makes the energy  minimum is given when  

  

 (4.7.6) 

This is satisfied when  

4𝑀𝐺

𝑟
=

𝑝𝑓
2

𝑀2𝐶2
− 1                                   (4.7.7)  

Thus the minimum radius is given by  

𝑟 =
4𝑀3𝐶2𝐺

𝑝𝑓
2 − 𝑀2𝐶2

                                             (4.7.8) 

Where    

𝑝𝑓 = (3𝜋3)1/3 ℏ𝑛1/3 = 𝐴 (
𝑁

𝑉
)
1/3

= (
9𝜋

4
)
1/3 𝑁1/3

𝑟𝑓
ℏ              (4.7.9) 

The equilibrium takes place when  is non negative, i.e when  

𝑝𝐹2 > 𝑀2𝑐2 

𝑝𝐹 > 𝑀𝑐                                           (4.7.10)  

The critical mass is given by  

  

𝑀𝑐 =
𝑝𝑓

𝑐
                                                           (4.7.11) 

Thus for star to be at equilibrium one requires   
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𝑝𝑓

𝑐
> 𝑀 

𝑀𝑐 > 𝑀                                                       (4.7.12) 

𝑀 < 𝑀𝑐 

Thus the maximum mass for stable star is   

𝑀𝑐 =
𝑝𝑓

𝑐
=

(3𝜋2)
1
3ℏ

𝑐
(
𝑁

𝑉
)
1/3 

                                (4.7.13) 

This condition resembles Chandrasekhar limit for stable white dwarf. I.e. 

the star mass need to be less than the critical value in equation (4.7.11).  

The equilibrium condition can also be found by using generalized special 

relativity energy momentum relation   

 

 (4.7.14) 

One can rewrite equation (4.7.14) to be   

𝐸 = (𝑎1 −𝑎2𝑝2)1 2                                  (4.7.15)  

Where  

 (4.7.16) 

Where  

    (4.7.18) 

                 (4.7.19) 

             (4.7.20) 
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𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠2𝜃 − sin2𝜃 = 1 − 2sin2𝜃 

 

 (4.7.21) 

= √𝑎1𝑝𝑓(1 − 𝑎3𝑝𝐹
2)1/2 + cos−1 √

𝑎2

𝑎1
𝑝𝐹 −

𝜋

2
              (4.7.22) 

Where  

 

 

 

 

−
𝜋

2
                                                      (4.7.23) 

It is clear from equation (4.7.23) that stability requires  to be real. This 

can be satisfied when  

 

𝑟𝑐2 >  2𝑀𝐺 
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The critical radius is given by   

𝑟𝑐 =
2𝑀𝐺

𝑐2
                                                           (4.7.24) 

Thus the radius should be greater than the black hole radius. Also  

 

Thus   

  

(1 −
2𝑀𝐺

𝑟𝑐2
) > ±

𝑝𝐹𝑐

𝑚0𝑐
2
 

𝑟𝑐2 − 2𝑀𝐺 > ±(
𝑝𝐹𝑐

𝑚0𝑐
2
) 𝑟𝑐2                              (4.7.25) 

(1 ±
𝑝𝐹𝑐

𝑚0𝑐
2
) 𝑟𝑐2 > 2𝑀𝐺 

𝑟 >
2𝑀𝐺𝑚0

(𝑚0𝑐
2 ± 𝑝𝐹𝑐)

                                           (4.7.26) 

 

 

Thus the critical radius is given by  

 (4.7.27) 

The equilibrium mass also satisfies   

          (4.7.28) 

Hence the critical maximum mass is given by  
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      (4.7.29) 

The equilibrium condition can also be found by minimizing , where    

                     (4.7.30) 

Assuming the mass to be equal to the rest mass, and the potential to be the 

Newtonian, one gets   

            (4.7.31) 

Therefore  

                    (4.7.32) 

For small  and velocity  compared to speed of light , i.e  

 

One gets  

         (4.7.33) 

The mass which make the energy minimum for constant radius is given by  

 (4.7.34) 

Neglecting the kinetic term yields  

                   (4.7.35) 

This requires  
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𝑀 =
1

2

𝑅𝑐2

𝐺
,   

1

3

𝑅𝑐2

𝐺
                                              (4.7.36) 

For stars one have two forces, pressure force which counter balance the 

gravity force, thus  

                  (4.7.37) 

Thus the pressure force is given by  

                   (4.7.38) 

 

The gravity force is given by   

𝐹𝑔 =
𝐺𝑚𝑀

𝑟2
                                                  (4.7.39) 

At equilibrium the two forces counter balances themselves thus  

𝐹𝑝 = 𝐹𝑔 

𝑚𝑣2

𝑟
=

𝐺𝑚𝑀

𝑟  
,         𝑚𝑣2 =

𝐺𝑚𝑀

𝑟  
                           (4.7.40) 

If particles are considered as strings with  representing max speed. Thus 

the average value is given by   
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                                  (4.7.41) 

Thus  

                              (4.7.42) 

One thus gets 
 

                                    (4.7.43) 

Hence   

𝑣2 = 2𝜑                                             (4.7.44) 

Hence   

                   (4.7.45) 

But   

                               (4.7.46) 

For attractive force  

                                 (4.7.47) 

 

 

                        (4.7.48)

                                  (4.7.49) 

                         (4.7.50) 
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In the works  done  by many  authors the incorporation  of the  effect of 

fields on physical  quantities  is  proved to  be in agreement with  many 

experimental observations  that  cannot be explained within  the  frame 

work of special relativity (80,81,82,84,85). These  attempts  ,specially  the  

so called  GSR, reduced to SR in the  absence of  fields, thus  share with 

SR all its  successes  (86,87,88,89,90).Despite  these  remarkable  successes 

, these  models  suffers  from beying weakly  linked  with  the  

electromagnetic  theory  (91,92,93,94,95).This  needs  a transformation  

that accounts for  electromagnetic  theory. This is quite natural as far as the 

fact that the Lorentz transformation   originated from the electromagnetic 

theory.  (96, 97, 98, 99,100) 
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Chapter five  

Lorentz Transformation on the Basis of Maxwell’s 

Equation 

5.1 Introduction: 

     Lorentz transformation (LT) is of the corner stones of SR. usually LT 

is used on space time relations. It ere one tries to return back to ME to 

derive GSR relations.  

5.2 Lorentz Transformation and electromagnetic Filed: 

     The Lorentz force in frame S is given by in the frame  

𝐹 = 𝑒(𝐸 + 𝑣 × 𝐵)                                          (5.2.1) 

In the frame 𝑆′ it is given by 

𝐹′ = 𝑒(𝐸′ + 𝑣 × 𝐵′)                                          (5.2.2) 

Assume that e is constant and the electromagnetic force transforms from 

frame S to frame 𝑆′ as 

𝑒𝐸′ = 𝑒𝛾(𝐸 + 𝑣 × 𝐵)                                          (5.2.3) 

If one assumes that the charge is at rest in frame 𝑆′, thus no magnetic field 

is exerted therefore the force in 𝑆′ is given by (assume the electric field in 

the Z direction) 

𝐸𝑧
′ = 𝛾(𝐸𝑧 + 𝑣𝐵𝑦)                                          (5.2.4) 

If in contrary, the charge is at rest in 𝑆, hence: 

𝐹 = 𝑒𝐸𝑧 
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And  

𝐹′ = 𝑒(𝐸𝑧
′ − 𝑣𝐵𝑦

′ )                                          (5.2.5) 

Using Maxwell’s equations 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
                                                               (5.2.6) 

∇ × 𝐸 = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐸𝑥 𝐸𝑦 𝐸𝑧

|| 

= (
𝜕

𝜕𝑦
𝐸𝑧 −

𝜕

𝜕𝑧
𝐸𝑦) 𝑖̂ − (

𝜕

𝜕𝑥
𝐸𝑧 −

𝜕

𝜕𝑧
𝐸𝑥) 𝑗̂ + (

𝜕

𝜕𝑥
𝐸𝑦 −

𝜕

𝜕𝑦
𝐸𝑥) 𝑘̂ 

= −
𝜕𝐵𝑥

𝜕𝑡
𝑖̂ −

𝜕𝐵𝑦

𝜕𝑡
𝑗̂ −

𝜕𝐵𝑧

𝜕𝑡
𝑘̂                                                               (5.2.7) 

The 𝑗̂ component is given by 

−
𝜕𝐸𝑧

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑥
= −

𝜕𝐵𝑦

𝜕𝑡
                                          (5.2.8) 

Let 

𝐸𝑧 = 𝐸0𝑒
𝑖(𝑘.𝑟−𝜔𝑡) 

𝐵𝑦 = 𝐵0𝑒
𝑖(𝑘.𝑟−𝜔𝑡)                                          (5.2.9) 

𝑘. 𝑟 = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 

𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 𝑘 

𝜕𝐸𝑧

𝜕𝑥
= 𝑖𝑘. 𝐸𝑧                                                               (5.2.10) 
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𝜕𝐵𝑦

𝜕𝑡
= −𝑖𝜔𝐵𝑦                                                               (5.2.11) 

 

Sub (5.2.10) and (5.2.11) in (5.2.8) yields 

−𝑖𝑘𝐸𝑧 = +𝑖𝜔𝐵𝑦 

𝐵𝑦 = −
𝑘

𝜔
𝐸𝑧 = −

2𝜋𝐸𝑧

𝜆(2𝜋𝑓)
= −

𝐸𝑧

𝜆𝑓
= −

𝐸𝑧

𝑐
 

𝐵𝑦 = −
𝐸𝑧

𝑐
 

𝐵𝑦
′ = −

𝐸𝑧
′

𝑐
                                                               (5.2.12) 

Sub (5.2.12) in (5.2.4) and (5.2.5) thus  

𝐸𝑧
′ = 𝛾 (𝐸𝑧 −

𝑣

𝑐
𝐸𝑧) = 𝛾 (1 −

𝑣

𝑐
)𝐸𝑧                                          (5.2.13) 

𝐸𝑧 = 𝛾 (𝐸𝑧
′ +

𝑣

𝑐
𝐸𝑧

′) = 𝛾 (1 +
𝑣

𝑐
)𝐸𝑧

′                                           (5.2.14) 

𝐸𝑧 = 𝛾 (1 +
𝑣

𝑐
)𝐸𝑧

′  

𝛾2 (1 +
𝑣

𝑐
) (1 −

𝑣

𝑐
) = 1 

(1 −
𝑣2

𝑐2
) 𝛾2 = 1 

Therefore 

𝛾 =
1

(1 −
𝑣2

𝑐2)
                                                               (5.2.15) 
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=
1

(1 −
𝑣2

𝑐2)

1
2

 

 

5.3 Generalized special relativity Faraday Electromagnetic 

Lorentz Transformation: 

    Consider a particle moving with acceleration 𝑎, the velocity is thus given 

by  

𝑣 = 𝑣0 + 𝑎𝑡 = 𝑣0

𝑎𝑥𝑡

𝑥
=

𝜙𝑡

𝑥
+ 𝑣0                                          (5.3.1) 

Where 

𝑉 = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐹𝑥 = 𝑚𝑎𝑥 

𝜙 = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠                                          (5.3.2) 

=
𝑉

𝑚
= 𝑎𝑥                                          (5.3.3) 

Sub in (5.2.15) and assuming the relation hold for all physical system 

𝛾 =
1

(1 −
𝑣2

𝑐2)

1
2

                                          (5.3.4) 

𝛾 =
1

(1 − (
𝜙𝑡
𝑥𝑐

+
𝑣0

𝑐 )
2

)

1
2

                                          (5.3.4) 

For photon 

𝑥 = 𝑐𝑡                                                               (5.3.5) 
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𝛾 =
1

(1 − (
𝜙𝑡
𝑐2𝑡

+
𝑣0

𝑐 )
2

)

1
2

                                          (5.3.6) 

𝛾 =
1

(1 − (
𝜙
𝑐2 +

𝑣0

𝑐 )
2

)

1
2

                                          (5.3.7) 

For no potential 

𝜙 = 𝑂 

𝛾 =
1

(1 −
𝑣0

2

𝑐2)

1
2

                                            (5.3.8) 

Which is the ordinary Lorentz transformation coefficient  

Assume again that the relation 

𝛾 = [1 −
𝑣2

𝑐2
]

−
1
2

                                          (5.3.9) 

For particle in a field causing constant acceleration a  

𝑣 = 𝑣0 − 𝑎𝑡                                          (5.3.10) 

𝑥 = 𝑣0𝑡 −
1

2
𝑎𝑡2                                          (5.3.11) 

But 

(
𝑣0 + 𝑣

2
) 𝑡 = 𝑣𝑚𝑡                                          (5.3.12) 

Where 
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𝑣𝑚is the mean velocity which is given by 

𝑣𝑚 =
𝑣0 + 𝑣

2
                                          (5.3.13) 

Replacing 𝑣 by 𝑣𝑚 in (5.3.11) one gets  

𝛾 = [1 −
𝑣𝑚

2

𝑐2
]

−
1
2

                                          (5.3.14) 

Using the relation 

𝑣2 = 𝑣0
2 − 2𝑎𝑥 = 𝑣0

2 − 2𝜙                                          (5.3.15) 

Thus  

𝑣0
2 = 𝑣2 + 2𝜙 

𝑣0 = √𝑣2 + 2𝜙                                          (5.3.16) 

Incorporating (5.3.16) in (5.3.14) and (5.3.15) one gets  

𝛾 = [1 − (
𝑣 + √𝑣2 + 2𝜙

2𝑐2
)

2

]

−
1
2

                                          (5.3.17) 

When no filed exists  

𝜙 = 0 

Thus 

𝛾 = [1 −
𝑣2

𝑐2
]

−
1
2

                                          (5.3.18) 

Which is again the ordinary Lorentz transformation coefficient  

From (5.3.11)  
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𝑣 = 𝑣0 − 𝑎𝑡 = 𝑣0 −
𝑎𝑥

𝑥
𝑡 

𝑣 = 𝑣0 −
𝜙

𝑥
𝑡                                          (5.3.19) 

Thus 

𝑣0 = (𝑣 +
𝜙

𝑥
𝑡)                                          (5.3.20) 

Therefore equation (5.3.16) rends  

𝑣𝑚 =
𝑣0 + 𝑣

2
= 𝑣 +

𝜙

2𝑥
𝑡                                          (5.3.21) 

Using (5.3.21) in equation (5.3.17) given 

𝛾 = [1 − (𝑣 +
𝜙

2𝑥𝑐
𝑡)

2

]

−
1
2

 

Assuming this relation is general. For pulse of light 

𝑥 = 𝑐𝑡 

𝛾 = [1 − (
𝑣 +

𝜙
2𝑐𝑡

𝑡

𝑐  
)

2

]

−
1
2

 

𝛾 = [1 − (
𝑣 +

𝜙
2𝑐

𝑐  
)

2

]

−
1
2
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5.4 Displacement Current Lorentz transformations: 

     Consider the magnetic field generated by displacement current 

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
= 𝜀

𝜕𝐸

𝜕𝑡
                                          (5.4.1) 

But 

𝐵 = 𝜇𝐻                                          (5.4.2)  

1

μ
∇ × 𝐵 = 𝜀

𝜕𝐸

𝜕𝑡
                                          (5.2.3) 

∇ × 𝐵 = 𝜇𝜀
𝜕𝐸

𝜕𝑡
 

||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

|| = 𝜇𝜀
𝜕𝐸

𝜕𝑡
                                          (5.2.4) 

[
𝜕

𝜕𝑥
𝐵𝑦 −

𝜕

𝜕𝑦
𝐵𝑥]𝑘̂ 𝜇𝜀

𝜕𝐸𝑧

𝜕𝑡
𝑘̂ 

𝐵𝑦 − 𝐵0𝑒
𝑖(𝑘.𝑟−𝜔𝑡) 

𝐸𝑧 − 𝐸0𝑒
𝑖(𝑘.𝑟−𝜔𝑡) 

𝜕𝐵𝑦

𝜕𝑥
= 𝑖𝑘𝐵𝑦                                          (5.2.5) 

𝜕𝐸𝑧

𝜕𝑡
− 𝑖𝜔𝐸𝑧 

𝜇𝜀 =
1

𝑐2
 

𝑖𝑘𝐵𝑦 = −𝑖𝜇𝜀𝜔𝐸𝑧                                          (5.2.6) 
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𝐵𝑦 = −𝜇𝜀
𝜔

𝑘
 𝐸𝑧 = −

1

𝑐2
(
2𝜋𝑓𝜆

2𝜋
)                                          (5.2.7) 

= −
1

𝑐2
(𝑓𝜆)𝐸𝑧 = −

𝑐

𝑐2
𝐸𝑧 

𝐵𝑦 = −
𝐸𝑧

𝑐
 

𝐵𝑦
′ = −

𝐸𝑧
′

𝑐
                                          (5.2.8) 

Sub these relations in (5.2.4) and (5.2.5) given 

𝐸𝑧
′ = 𝛾 (𝐸𝑧 −

𝑣

𝑐
𝐸𝑧) = 𝛾 (1 −

𝑣

𝑐
)𝐸𝑧                                          (5.2.9) 

𝐸𝑧 = 𝛾 (𝐸𝑧
′ +

𝑣

𝑐
𝐸𝑧

′) = 𝛾 (1 +
𝑣

𝑐
)𝐸𝑧

′                                            (5.2.10) 

The term 𝛾 can be found by using relations (5.2.10) and (5.2.9) to get   

𝐸𝑧 = 𝛾2 (1 −
𝑣

𝑐
) = 𝛾 (1 +

𝑣

𝑐
)𝐸𝑧 

Hence   

𝛾−2 = (1 −
𝑣2

𝑐2
) 

𝛾 = (1 −
𝑣2

𝑐2
)

−
1
2

                                          (5.4.11) 

Which is the ordinary 𝑆𝑅 transformation coefficient when the space is 

permeated with field the space is deformed [ ]. Thus  

𝑐2𝑑𝜏2 = 𝑐2𝑔00(2)𝑑𝑡2 − 𝑔𝑥𝑥(2)𝑑𝑥2 

= 𝑐2𝑔00(1)𝑑𝑡2 − 𝑔𝑥𝑥(1)𝑑𝑥2 
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Thus  

𝑐2(𝑔00(2) − 𝑔00(1))𝑑𝑡2 = [𝑔𝑥𝑥(2) − 𝑔𝑥𝑥(1)]𝑑𝑥2 

[𝑐2𝑑𝑔00]𝑑𝑡2 = [𝑑𝑔𝑥𝑥]𝑑𝑥2                                          (5.4.12) 

But  

𝑔𝑥𝑥 = −𝑔00
−1 

Thus  

𝑑𝑔𝑥𝑥 = 𝑔00
−2𝑑𝑔00                                          (5.4.13) 

Inserting (5.4.13) in (5.4.12) gives 

𝑐2𝑔00
2 𝑑𝑡2 = 𝑑𝑥2                                          (5.4.14) 

Hence the velocity is gives by 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑐𝑔00 = 𝑐 (1 +

2𝑄

𝑐2
)                                          (5.4.15) 

Consider a particle having initial velocity 𝑣0 initial potential𝜙0, final 

velocity 𝑣 and final potential𝜙1. 

According to equation (5.4.15), one gets 

𝑣0 = 𝑐 (1 +
2𝜙0

𝑐2
) 

𝑣 = 𝑐 (1 +
2𝜙1

𝑐2
)                                          (5.4.16) 

Hence 

𝑣 − 𝑣0 =
2

𝑐
[𝜙1 − 𝜙0] =

2𝜙

𝐶
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𝑣 = 𝑣0 +
2𝜙

𝑐
                                          (5.4.17) 

Thus the average mean velocity is given by 

𝑣𝑚 =
𝑣 + 𝑣0

2
=

𝑣 + 𝑣 −
2𝜙
𝑐

2
  

𝑣𝑚 = 𝑣 −
𝜙

𝑐
                                          (5.4.18) 

Replacing 𝑣 by the mean velocity 𝑣𝑚in equation (5.4.11), one gets 

𝛾 = (1 −
𝑣𝑚

2

𝑐2
)

−
1
2

                                          (5.4.19) 

Inserting equation (5.4.18) in (5.4.19) gives 

𝛾 = [1 −
(𝑣 −

𝜙
𝑐)

2

𝑐2
]

−
1
2

                                          (5.4.20) 

It is very interesting to note that when no field exist equation (5.4.20) 

becomes  

𝛾 = [1 −
𝑣2

𝑐2
]

−
1
2

                                          (5.4.21) 

Which is the ordinary 𝑆𝑅 transformation coefficient. 
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5.5 Lorentz Transformation: 

     In a curved space time according to Einstein hypothesis the space-time 

interval is invariant i.e. 

  

𝑐2𝑑𝜏2 = 𝑐2𝑔00𝑑𝑡2 − 𝑔𝑥𝑥𝑑𝑥2                                          (5.5.1) 

With 

𝑥0 = 𝑖𝑐𝑡      𝑥1 = 𝑥 

In a Newtonian Limit for static isotropic metric, the Schwarzschild solution 

suggests that 

𝑔𝑥𝑥(𝜙) = −𝑔00
−1                                          (5.5.2) 

Consider now two arbitrary points 1 and 2 in 4-dimensional space-time, 

such that  

𝑑𝑡1 = 𝑑𝑡2 = 𝑑𝑡     𝑑𝑥1 = 𝑑𝑥2 = 𝑑𝑥 

Thus according to equation (5.5.1) 

𝑐2[𝑔00(2) − 𝑔00(1)]𝑑𝑡2 = [𝑔𝑥𝑥(2) − 𝑔𝑥𝑥(1)]𝑑𝑥2 

𝑐2(𝑑𝑔00)𝑑𝑡2 = (𝑑𝑔𝑥𝑥)𝑑𝑥2                                          (5.5.3) 

But from equation (5.4.13)  

𝑑𝑔𝑥𝑥 = 𝑔00
−2𝑑𝑔00 

Therefore equation (5.5.3) becomes 

𝑐2𝑔00
2 𝑑𝑡2 = 𝑑𝑥2 

Hence  

𝑑𝑥 = 𝑐𝑔00𝑑𝑡                                          (5.5.4) 
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Thus the velocity is gives by  

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑐𝑔00                                          (5.5.5) 

But from equation (5.5.4) 𝜙 to be independent of 𝑡 

𝑥 = 𝑐𝑔00 ∫𝑑𝑡 =𝑐𝑔00𝑡                                          (5.5.6) 

A direct substitution of (5.5.5) in (5.5.6) gives 

𝑥 = 𝑣𝑡                                          (5.5.7) 

It is well known that in a weak field Limit 

𝑔00 = (1 +
2𝜙

𝐶2
)                                          (5.5.8) 

Thus according to equation (5.5.8) and (5.5.5) 

𝑣2 − 𝑣1 = 𝑐[𝑔00(2) − 𝑔00(1)] 

= 𝑐 [
2𝜙2

𝑐2
−

2𝜙1

𝑐2
]                                          (5.5.9) 

By choosing 𝑣1 to stand for the initial velocity 𝑣0and 𝑣to stand for the final 

velocity𝑣, and defining 

𝜙 = 𝜙2 − 𝜙1                     (5.5.10) 

𝑣 = 𝑣0 +
2𝜙

𝑐
                                          (5.5.11) 

A direct insertion of (5.5.11) in (5.5.7) yields 

𝑥 = (𝑣0 +
2𝜙

𝑐
) 𝑡                                          (5.5.12) 
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Thus for a frame 𝑆′ moving with initial velocity 𝑣0 in a field 𝜙, the 

displacement 𝑙 is given by  

𝐿 = (𝑣0 +
2𝜙

𝑐
) 𝑡                                          (5.5.13) 

When one assumes that the origin of the frames 𝑆 𝑎𝑛𝑑 𝑆′ coincide at 

𝑡 = 𝑡′ = 0 

Thus one gets the following Lorentz transformation 

𝑥 = 𝛾(𝑥′ + 𝐿′) = 𝛾 (𝑥′ + (𝑣0 +
2𝜙

𝑐
) 𝑡′)                                          (5.5.14) 

𝑥′ = 𝛾(𝑥 − 𝐿) = 𝛾 (𝑥 + (𝑣0 +
2𝜙

𝑐
) 𝑡)                                          (5.5.15) 

If a source of light emit a photon at (𝑡 = 𝑡′ = 0) when the two origins of 

𝑆 𝑎𝑛𝑑 𝑆′ coincide. Then after a time 𝑡 in 𝑆 and 𝑡′ in 𝑆′ 

𝑥 = 𝑐𝑡          𝑥′ = 𝑐𝑡′                                          (5.5.16) 

A direct substitution of (5.5.16) in (5.5.14) and (5.5.15) gives 

𝑐𝑡 = 𝛾 [𝑐 + (𝑣0 +
2𝜙

𝑐
)] 𝑡′ 

𝑡 = 𝛾 [1 + (
𝑣0

𝑐
+

2𝜙

𝑐2
)] 𝑡′                                          (5.5.17) 

𝑐𝑡′ = 𝛾 [𝑐 − (𝑣0 +
2𝜙

𝑐2
)] 𝑡 

𝑡′ = 𝛾 [1 − (
𝑣0

𝑐
+

2𝜙

𝑐2
)] 𝑡                                          (5.5.18) 

Inserting (5.5.18) in (5.5.17) yields 
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𝑡 = 𝛾2 [1 + (
𝑣0

𝑐
+

2𝜙

𝑐2
)] [1 − (

𝑣0

𝑐
+

2𝜙

𝑐2
)] 𝑡 

This indicates that 

𝛾 =
1

√(1 − (
𝑣0

𝑐
+

2𝜙
𝑐2 )

2

)

                                          (5.5.19) 

To express 𝛾 in terms of the instantaneous velocity 𝑣, one uses the 

relation 

𝑣2 = 𝑣0
2 + 2𝜙 

Thus  

𝑣0
2 = 𝑣2 − 2𝜙                                          (5.520) 

Therefore 

𝛾 =
1

√1 − (√𝑣2 − 2𝜙
𝑐

+
2𝜙
𝑐2 )

2
                                          (5.5.21) 

When no field exists 

𝛾 =
1

√1 −
𝑣2

𝑐2

 

Which is the ordinary 𝑆𝑅 transformation coefficient. 
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5.6 Discussion: 

     The 𝑆𝑅 Lorentz transformation can be found by using the 

electromagnetic force relation for a charged electron moving in an 

electromagnetic field, as shown by equations (5.2.2), (5.2.3), (5.2.4), and 

(5.2.5). 

Using Maxwell equations, concerning generation of electric field by 

variable magnetic field, one gets a relation between 𝑌component of the 

magnetic field and 𝑍 component of electric field in equation (5.2.12). 

Using all above relations the Einstein 𝑆𝑅 coefficient 𝛾 is shown to be 

typical to that of 𝑆𝑅. 

Coefficient 𝛾 for particles moving in a field is found by using ordinary 

relation between velocity, acceleration and potential per unit mass [see 

equations (5.3.1 to 5.3.8). fortunately this relation reduces to that of 𝑆𝑅 in 

the absence of afield, as equation (5.3.9) indicate replacing the velocity 𝑣 

with the average velocity 𝑣𝑚 in 𝑆𝑅 Einstein coefficient in (5.3.10), one gets 

𝛾 in terms of 𝑣𝑚. Again using the relations between velocity and potential 

per unit mass, one gets two different expressions for 𝛾 depending on the 

time and time free relation of 𝑣 and 𝑣0[see equations (5.3.19), (5.3.26)] . 

fortunately the two expressions reduces to that of 𝑆𝑅, as shown by 

equations (5.3.20) and (5.3.27). 

Section (5.4) deals with another Lorentz transformation based on Maxwell 

equation which shows how time varying electric field generates magnetic 

field as shown by equation (5.4.1). 

According to equations (5.4.5) the electromagnetic wave is a travelling 

wave in the x-direction, with a magnetic field vibrating in the y-direction 

and the electric field is vibrating in the Z-direction. 
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According to this version by and 𝐸𝑧 are related according to equation 

(5.4.7). using the electromagnetic force relations (5.2.4) and (5.2.5), one 

gets relations in equations (5.4.9) and (5.4.10) which relates 𝐸𝑧 to 𝐸𝑧
′ . 

These two relations are used to derive Einstein coefficient𝛾, which is 

strikingly the same as that of 𝑆𝑅. 

To find 𝛾 for any field, one uses the invariance of the interval to get an 

expression which relates the initial velocity 𝑣0 to the final velocity 𝑣[see 

equation (5.4.17)]. This equation is the Einstein counter part of the 

Newton one which is given by  

𝑣 = 𝑣0 − 𝑎𝑡                                          (5.6.1) 

But (5.4.17) which reflects space curvature which is written as 

𝑣 = 𝑣0 −
2𝜙

𝑐
                                          (5.6.2) 

But 

𝑔00 = (1 +
2𝜙

𝑐
) 

Thus the velocity time evolution is described by time metric as 

𝑣 = 𝑣0 + 𝑔00 − 1                                          (5.6.3) 

One can find (5.6.1) a doping an approximation which assumes that  

𝑔𝑥𝑥 = 1          𝑔00 = (1 +
2𝜙

𝑐2
)                                          (5.6.4) 

By assuming 𝑑𝜏to be very small equation (5.5.1) gives  

𝑑𝑥 = 𝑐 (1 +
2𝜙1

𝑐2
) = 𝑐 +

𝜙1

𝑐
                                          (5.6.5) 

When  
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𝑣 = 𝑣0     𝜙 = 𝜙0                                          (5.6.6) 

Thus  

𝑣0 = 𝑐 +
𝜙0

𝑐
                                          (5.6.7) 

Hence 

𝑣 = 𝑣0 + (
𝜙1 − 𝜙0

𝑐
) = 𝑣0 +

𝜙

𝑐
                                          (5.6.8) 

But  

𝜙 = 𝑎𝑥                                          (5.6.9) 

Thus (5.6.8) becomes 

𝑣 = 𝑣0 +
𝑎𝑥

𝑐
                                          (5.6.10) 

For 𝑎 photon 

𝑥 = 𝑐𝑡                                          (5.6.11) 

Thus  

𝑣 = 𝑣0 + 𝑎𝑡                                          (5.6.12) 

Which is the ordinary Newton second Low. 

By replacing 𝑣 by the mean velocity 𝑣𝑚 in (5.6.12). then using equations 

(5.4.18) and (5.4.19), one gets 𝛾 for any field 𝜙. 

To incorporate the effect of the field one can also use a relation between 

field potential per unit mass and the time metric 𝑔00 to derive anew Lorentz 

transformation coefficient𝛾. According to the expression for interval 

(5.5.1) a useful relation for 𝑣 𝑎𝑛𝑑 𝐿 in terms of 𝜙 were found in equations 
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(5.5.11) and (5.5.13). These were used to express 𝑥 in terms of 𝑥′ and vice 

versa [see (5.5.14) and (5.5.15). then a field dependent relation for 𝛾 are 

found in (5.5.21) this expression fortunately reduced to that of 𝑆𝑅 in the 

absence of field. 

5.7 Conclusion: 

     The expression of the electric and magnetic force on the electrons 

beside the expression of the displacement   current is used to derive special 

relativistic and generalized special relativistic Lorentz transformation 

which can successfully describe a wide variety of physical phenomena in 

the presence and absence of fields. 

5.8 outlook: 

This research can be extended to be applied for quantum field theory, it cn 

also be applied to drive new relativistic quantum equations.  

The experimental verification can also be done by analyzing the 

information about the space and astronomical object observed by 

electromagnetic waves or laser beam.   
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