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Abstract

Lorentz transformation is one of the cornerstone of special
relativity. It is concerned only with inertial frames within the
framework of special relativity, but doing nothing for non-inertial
frames. Attempts were made to account for this effect by using
space-time language, without any link with electromagnetic

theory.

The aim of this work is to cure this defect. The research
methodology is based on the mathematical analytical framework
of electromagnetic Lorentz force. Then the result obtained is
compared with previous studies and observations. The Lorentz
electromagnetic expression for the force, beside Maxwell relation
between electric and magnetic field intensity are used to find
Lorentz force in terms of velocity and electric field intensity. This
relation of magnetic and electric field intensity was found by
using two approaches, in one of them the relation between the
curl of electric intensity with the time variation of the magnetic
one was used, in the second approach the relation between curl of
magnetic intensity with the displacement current was used also.
The velocity in accelerated frame and curved space-time is
incorporated in this expression to make Lorentz sensitive to
field’s potentials. The field potential was incorporated first by
replacing the acceleration with the potential in Newton’s

equations of motion, then replacing the average velocity with

v



final velocity and potential. In another approach, the expression
for the interval was also used to relate the average velocity to the
final velocity and potential. A third approach used the interval in
a curved space to incorporate the potential through space-time
Lorentz transformation. Fortunately, this transformations reduces
to that of SR in the absence of fields, thus share with it all its
success and compatibility with observations. It also conforms
with generalized special relativity, thus shares with it also all its
successes. More importantly it link electromagnetic theory with

generalized Lorentz transformations.
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Chapter One

Introduction

1.1 Electromagnetic Theory

Atoms are the building blocks of matter. They consist of negatively
charged electrons and positively charged protons. These charges generat
electric field. When they move they generate magnetic field(1,2,3).Later
on it was discovered that the time changing magnetic field can generate
electric field and vice versa. This fact is formulated mathematically by
Maxwell, and know as Maxwells equations. Maxwell's equations can
successfully describe a wide variety of physical phenomena. For instance
it can describe the generation of electromagnetic waves, beside the
description of the electric and magnetic properties of matter (4,5,6).These
equations were widely used in telecommunications, computers, and

electronic devices (7,8,9).

Maxwell’s equations not can fit with experimental data of charges and
currents, by considering the charges and currents produced in materials.
They are used to describe the fields produced for example, by all the
important technologically useful classes of material. They also include a
prohibition on the creation of net charge that is consistent with
experimentation to date. However this prohibition does open the question
of how the scientific community would consider Maxwell’s equations if an
experiment created net charge. Recently Maxwell’s equations are
generalized such that allow processes such as net charge creation. This is

done if one

consider the conditions under which laws, that in their original form
contain no time-dependence, are used to derive time-dependent differential
1



equations. One can then extend Coulomb’s law and the BiotSavart law to

the temporal domain under relevant time-varying conditions (10, 11, 12)

1-2 Special Relativity Theory(SR)

The theory of relativity resulted from an analysis of the physical
consequences implied by the absence of a universal frame of reference.
The special theory of relativity developed by Albert Einstein in 1905, treats
problems involving inertial frames of reference, which are frames of
reference moving at constant velocity with respect to one another (13, 14,
15). The general theory of relativity, proposed by Einstein a decade later,
treats problems involving frames of reference accelerated with respect to
one another. An observer in an isolated laboratory can detect accelerations.
Anybody who has been in an elevator or on a merry-ground can verify this
statement from his own experience. The special theory has had a profound
influence on all physics, and we shall concentrate on it with only a brief

glance at the general theory (16, 17, 18).

The special theory of relativity is based upon two postulates. The first states
that the laws of physics may be expressed in equations having the same
form in all frames of reference moving at constant velocity with respect to
one another (19,20,21) This postulate expresses the absence of a universal
frame of reference. If the laws of physics had different forms for different
observers in relative motion, it could be determined from this difference
which objects are ‘“‘stationary” in space and which are “moving”. But
because there is no universal frame of reference, this distinction does no

iexist in nature, hence the above postulate.

The second postulate of special relativity states that the speed of light in
free space has the same value for all observers, regardless of their state of

motion.



This postulate follows directly from the results of the Michelson-Morley
experiment and many others (22,23,24,25)

1.3 Research Problems

Special relativity (SR) study the effect of velocity on space, time and
mass. Unfortunately SR does not account for the effect of fields on
them.The research problem is related to the need of using simple
transformation to account for the effect of fields on electric and magnetic
fields

1.4 Literature Review

Different attempts were made to account for the effect of fields (26,27,28,
29, 30). In some of them the effect of fields is embedded through the
mean average velocity(31,32,33),while in others the curvature of space
Is used (34,35,36) .This model is known as generalized special relativity
(GSR). It successfully explains awide variety of physical phenomena,
like effective mass of electrons in Crystals, time dilation and photon
gravitational red shift (37,38,39,40).

1.5 Aim of the Work

The aim of this work is to get a new transformation that accounts for the

effect of fields on magnetic field and electric field



1.6 Thesis Layouts
The thesis consists of 5 Chapters Chapter 1 is the introduction.
Electromagnetic theory and special relativity are exhibited in chapters 2

and 3. Chapters 4 and 5 are devoted for Literature review and contribution.



Chapter two
Special Relativity

2.1 Introduction

Einstein SR is one of the big achievements that change the classical

concept of absolute space and time coordinate.

2.2 The Special Theory of Relativity

The theory of relativity resulted from an analysis of the physical
consequences implied by the absence of a universal frame of reference.
The special theory of relativity developed by Albert Einstein in 1905, treats
problems involving inertial frames of reference, which are frames of
reference moving at constant velocity with respect to one another. The
general theory of relativity, proposed by Einstein a decade later. Treats
problems involving frames of reference accelerated with respect to one
another. An observer in an isolated laboratory can detect accelerations.
Anybody who has been in an elevator or on a merry-ground can verify this
statement from his own experience. The special theory has had a profound
influence on all physics, and we shall concentrate on it with only a brief

glance at the general theory (41, 42).

The special theory of relativity is based upon two postulates. The first states
that the laws of physics may be expressed in equations having the same
form in all frames of reference moving at constant velocity with respect to
one another. This postulate expresses the absence of a universal frame of
reference. If the laws of physics had different forms for different observers
in relative motion, it could be determined from this difference which

objects are “‘stationary” in space and which are “moving”. But because



there is no universal frame of reference, this distinction does no iexist in

nature, hence the above postulate.

The second postulate of special relativity states that the speed of light in
free space has the same value for all observers, regardless of their state of

motion.

This postulate follows directly from the results of the Michelson-Morley

experiment and many others. (43, 44, 45)

At first sight these postulates hardly seem radical. Actually they subvert
almost all the intuitive concepts of time and space we form on the basis of
our daily experience. A simple example will illustrate this statement. If we
have two boats A and B once more, with boat A at rest in the water while
boat B drifts at the constant velocity v. there is a low-lying fog present, and
so on neither boat does the observer have any idea which is the moving
one. At the instant that B is abreast of A, a flare is fired. The light from the
flare travels uniformly in all directions, according to the second postulate
of special relativity. An observer on either boat must find a sphere of light
expanding with himself at its center, according to the first postulate of
special relativity, even though one of them is changing his position with
respect to the point where the flare went off. The observers cannot detect
which of them is undergoing such a change in position since the fog
eliminates any frame of reference other than each boat itself, and so since
the speed of light is the same for both of them, they must both see the

identical phenomenon.

Why the situation is unusual. Let us consider a more familiar analog. The
boats are at sea on a clear day and somebody on one of them drops a stone
into the water when they are abreast of each other. A circular pattern of

ripples spreads out, as at the bottom of fig (1.7), which appears different to

6



observers on each boat. Merely by observing whether or not he is at the
center of the pattern of ripples, each observer can tell whether he is moving
relative to the water or not. Water is in itself a frame of reference, and an
observer on a boat moving through it measures ripple speeds with respect
to himself that are different in different directions, in contrast to the
uniform to ripple speed measured by an observer on a stationary boat. It is
Important to recognize that motion and waves in water are entirely different
from motion and waves in space; water is in itself a frame of reference
while space is not, and wave speeds in water vary with the observer’s

motion while wave speeds of light in space do not.

The only way of interpreting the fact that observers in the two boats in our
example perceive identical expanding spheres of light is to regard the
coordinate system of each observer, from the point of view of the other, as
being affected by their relative motion. When this idea is developed using
only accepted laws of physics and Einstein’s postulates, we shall see that
many peculiar effects are predicted. One of the triumphs of modern physics

is the experimental confirmation of these effects.

2.3 Time Dilation

We shall first use the postulates of special relativity to investigate how

relative motion affects measurements of time intervals and lengths.

A clock moving with respect to an observer appears to tick less rapidly than
it does when at rest with respect to him. That is, if someone in a spacecraft
finds that the time interval between two events in the spacecraft is t,, we
on the ground would find that the same interval has the longer dilation t,,.
The quantity t,, which is determined by events that occur at the same place
in an observer’s frame of reference, is called the proper time of the interval

between the events. When witnessed from the ground, the events that mark



the beginning and end of the time interval occur at different places, and in
consequence the duration of the interval appears longer than the proper

time. This effect is called time dilation.

To see how time dilation comes about, let us examine the operation of the
particularly simple clock shown in fig (1.8) and inquire how relative
motion affects what we measure. This clock consists of a stick Lylong with
a mirror at each end. A pulse of light is reflected up and down between the
mirrors and an appropriate device is attached to one of the mirrors to give
a “tick” of some kind each time the pulse of light strikes it. (such a device
might be a photosensitive surface on the mirror which can be arranged to
give an electric signal when the light pulse arrives). The proper time t,

between ticks is

2L,

ty = (2.3.1)

c

Now how time elapse between two ticks. Each tick involves light passage
with speed ¢ from the lower mirror to the upper one and back. Which
means that the pulse of light, as seen from the ground, actually follows a

zigzag path fig (1.9). on its way from the lower mirror to the upper one in

the time % the pulse of light travels a horizontal distance of U;t and a total

distance of %t Since Lis the vertical distance between the mirrors.

(-0
ety = |2 2.3.3

7 (¢*=v*) =15 (2.3.3)

2= 2o (2Lo) (2.3.4)




And

p=—C (2.3.5)

12
Cz

But % Is the time interval t, between ticks on the clock on the ground, as

in equation (1.4) and so

t=—2 (2.3.6)
7.72

The moving clock in the spaceship appears to tick at s rate than the

stationary one the ground, as seen by an observer on the ground.

Exactly the same analysis holds for measurements of the clock on the
ground by the pilot of the spaces rip. To him the light pulse of the ground
clock follows a zigzag path which requires a total time t per round trip,
while his own clock at rest in the spaceship ticks at intervals of t,. He too
finds that

tO
t=— (2.3.7)

172
-z
So the effect is reciprocal every observer finds that clocks in motion

relative to him tick more slowly Chan when they are at rest.

Our discussion has been based on a somewhat unusual clock that employs
light pulse bouncing back and between two mirrors. Do the same
conclusions apply to more conventional clocks that use machinery-spring-
controlled escapements, tuning forks, or whatever-to produce ticks at

constant time intervals. The answer mast be yes since if a mirror clock and

9



a conventional clock in the spaceship agree with each other on the ground
but not when in flight, the disagreement between them could be used to
determine the speed of the spaceship without reference to any other object
which contradicts the principle that all motion is relative. Detailed
calculations of what happens to conventional clocks in motion as see from
the ground confirm this answer for example, as we shall learn in Sec. 1.10,
the mass of an object is greater when it is in motion, so that the period of
an oscillating object must be greater in the moving spaceship. Therefore all
clocks at rest relative to one another behave the same to all observers,
regardless of any motion at constant velocity of either the group of clocks

or the observers.

The relative character of time has many implications. For example, events
that seem to take place simu tenuously to one observer may not be
simultaneous to anther observer in relative motion, and vice versa. Who is
right the question is, of course meaningless: both observers are “right”

since each simply measures what he sees.

Because simultaneity is a relative motion and not an absolute one, physical
theories which require somral taneity in events at different locations must
be discarded. The principle of conservation of energy in its elementary
form states that the total energy content of the universe is constant, but it
does not rule out a process in which a certain amount of energy AE vanishes
at one point while an equal amount of energy AE spontaneously comes into
being somewhere else with no actual transport of energy from one place to
the other. Because simultaneity is relative, some observers of the process
will find energy not being conserved. To rescue conservation of energy in
the light of special relativity, then it is necessary to say that when energy
disappears somewhere and appears elsewhere, it has actually flowed from

the first location to the second. (there are many ways in which a flow of

10



energy can occur, of course). Thus energy is conserved loyally in any
arbitrary region of space at any time, not merely when the universe as

whole is considered a much stronger statement of this principle.

Although time is a relative quantity, not all the notions of time formed by
everyday experience are incorrect. Time dose not run backward to any
observer for instance a sequence of events that occur somewhere at
ti,t,, t3, ...will appear in the same order to all observers t, — t, t3 — t,, ...
between each pair of events. Similarly, on distant observer regardless of
his state of motion can see an event before it happens more precisely before
a nearby observer sees it since the speed of light infinite and signals require
the minimum period of time L/c to travel a distance L. There is no way to
peer into the future; although temporal (and as we shall see spatial)

perspectives of past events may appear different to different observers.

2.4 Length Contraction

Measurements of lengths as well as of time intervals are affected by
relative motion. The length L of an object motion with respect to an
observer always appears to the observer to be shorter than its length L,
when it is at rest with respect to him, a phenomenon known as the Lorentz
Fitz Gerald contraction. This contraction occurs only in the direction of the
relative motion. The length L, of an object in its rest frame is called its
proper length (46, 47, 48).

We can use the light clock of the previous section to investigate the Lorentz
contraction. For this purpose we imagine the clock oriented so that the light
pulse travel back and forth parallel to the direction in which the clock is
moving relative to the observer. At t = 0 the light pulse starts from the rear

mirror, and reach the front mirror where from the diagram

Ctl == L+Ct1

11



Hence

. L
Vo e—vw

(2.4.1)
Where L is the distance between the mirrors as measured by the observer
at rest?

The pulse is then reflected by the front mirror and returns to the rear mirror

at t after traveling the distance
c(t—t;))=L—c(t—ty) (2.4.2)
Hence the entire time intervalt, as determined from the ground is

L
t = +t 2.4.3
c+v * ( )

We eliminate t, with the help of equation (2.4.3) to find that

L L
= +
c+v cC—7vV

B 2Lc
T (c+v)(c—v)

2Lc
_@_vz

2Lc

Equation (2.4.4) gives the time interval t between ticks of the moving clock

as measured by an observer on the ground.

We earlier found another expression for t.

(o tholc (2.4.5)

J1—1v?/c?

12



Which is in terms of L, the proper distance between the mirrors, instead
of in terms of L, the distance as measured by an observer motion. The two

formulas must be equivalent and hence we have.

2L/c  2Ly/c

1—v2/c? J1—v?%/c?
L =LyJ1—1v?/c? (2.4.6)

Because the relative velocity appears only as v? in equation (2.4.6), the

Lorentz contraction is a reciprocal effect. To man in a spacecraft objects

on the earth appear shorter than they did when he was on the ground by the
same factor /1 — v2 /c?, that the spacecraft appears shorter to somebody

at rest. The proper length of an object is the maximum length any observer

will find.

The relativistic length contraction is negligible for ordinary speeds but it is
an important effect at speeds close to the speed of light. A speed of
1.000mi/s seems enormous to us, and yet it results in a shortening in the

direction of motion to only

iz [1—v2/c?
Lo

_ |y (1.000mi/s)?
|7 (186.00mi/s)?

= 0.999985
= 99.9985percent

Of the length at rest. On the other hand a body traveling at 0.9 the speed of
light is shortened to

13



L " (0.9¢)?
LO C2

= 0.436
= 43.6 percent
Of the length at rest a significant change.

The ratio between L and Lg in equation (2.4.4) is the same as that in
equation (2.4.5) when it is applied to the times of travel of the two light
beams, so that we might be tempted to consider the Michelson-Morley
result solely as evidence for the contraction of the length of their apparatus

in the direction of the earth’s motion.

This interpretation was tested by Kennedy and ThorndiKe in a similar
experhnent using an interferometer with arms of unequal length. They also
found no fringe shift, which means that these experiments must be
considered evidence for the absence of ether with all this implies and only

for contractions c*the apparatus.

An actual photograph of an object in very rapid relative motion would
reveal a somewhat different distortion, depending upon the direction from
which the object is viewed and the rationv/c. The reason for this effect is
that light reaching the camera (or eye for that matter) from the more distant
parts of the object was emitted earlier than that coming from the nearer
parts; the camera “sees’’ a picture that is actually a composite, since the
object was at different locations when the various elements of the single
image that reaches the film left it. This effect supplements the Lorentz
contraction by extending the apparent length of a moving object in the
direction of motion. As a result a three-dimensional body such as a cube

may be seen as rotated in orientation as well as changed in shape again

14



depending upon the position of the observer and the value ofv/c. This
result must be distinguished from the Lorentz contraction itself which is a
physical phenomenon. If there were no Lorentz contraction, the appearance
of a moving body would be also different from what it is at rest. But in

another way.

It is interesting to note that the above approach to the visual appearance of
rapidly moving object was not made until 1959, 54 years after the

publication of the special theory of relativity.

2.5 The Lorentz Transformation

Let us suppose that we are in a frame of reference S and find that the
coordinates of some event that occurs at the time t are ,y, z . an observer
with respect to S at the constant velocity v will find that the same event
occurs at the time t’ and has the coordinates x’, y’, z’. (in order to simplify
our work, e shall assume that v is in the +x direction, haw are the

measurements x, y, z, t related to x’, y', z, t'.

If we are unaware of special relativity, the answer seems obvious
enough. If time in both systems is measured from the instant when the
origins of S and S’ coincided measurements in the x direction made in S
will exceed those made in S’'by the amount vt, which represents the
distance that S’ has moved in the x direction. That is (49,50,51)

x'=x-—vt (2.5.1)

There is no relative motion in the yand z directions and so

15



In the absence of any indication to the contrary in our everyday experience

we further assume that
t' =t

The set of equation (1.11) to (1.14) is known as the Galilean
transformation. To convert velocity components measured in the S frame
to their equivalents in the S’'frame according to the Galilean

transformation, we simply differentiate x’, y'and z'with respect to time:

dx’
%zdﬂzm—v
, _ a4y’
VW= =W
. dz’
V= s = (2.5.2)

While the Galilean transformation and the velocity transformation it leads
to are both in accord with our intuitive expectations, they violate both of
the postulates of special relativity. The first postulate calls for identical
equations of physics in both the Sand S'frames of reference, but the
fundamental equations of electricity and magnetism assume very different
forms when the Galilean transformation is used to convert quantities
measured in one frame into their equivalents in the other. The second
postulate calls for the same value of the speed of light ¢ whether
determined in S or S'. If we measure the speed of light in the x direction

in the S system to be ¢, however in S’ system it will be
c'=c—v

According to equation (2.4.5) clearly a different transformation is required

if the postulates of special relativity are to be satisfied. We would expect

16



both time dilation and length contraction to follow naturally from this new

transformation.

A reasonable guess as to the nature of the correct relationship between x

and x' is
x'=k(x —vt) (2.5.3)

Where k is a factor of proportionality that does not depend upon either
x or t but may be a function ofv. The choice of equation (2.5.3) follows

from several considerations:

1- Itis linear in x and x’, so that a single event in frame S corresponds
to a single event in frame S’, as it must.

2- It is simple, and a simple solution to a problem should always be
explored first.

3- It has the possibility of reducing to equation (2.4.6) which we know

to be correct in ordinary mechanics.

Because the equations of physics must have the same form in both S and
S’'we need only change the sign of v (in order take into account the
difference in the direction of relative motion) to write the corresponding

equation for x and solving for x, in terms of x'and t':
x =k(x' +vth (2.5.4)

The factor k must be the same in both frames of reference since there is no

difference between S and S’ other than in the sign of v.

As in the case of the Galilean transformation, there is nothing to indicate
that there might be difference between the corresponding coordinates y, y’

and z, z’ which are normal to the direction of v. hence we again take

!

y =Y
17



Z =Z

The time coordinatest and t’, however are not equal. We can see this
substituting the value of x’ given by equation (2.5.3) in to equation (2.4.6).
We obtain

x = k?(x — vt) + kvt’ (2.5.5)

From which we find that

t' =kt + Lk (2.5.6)
= kv X .

Equations (2.5.3) and (2.5.6) constitute a coordinate transformation that

satisfies the first postulate of special relativity.

The second postulate of relativity enables to evaluate k. at instant t = 0 the
origins of the two frames of reference S and S’ are in the same place
according to our initial conditions, and t’ = 0 then also. Suppose that a
flare is set off at the common origin of S and S'at t =t' = 0, and the
observer in each system proceed to measure the speed with which the light
from it spreads out. Both observers must find the same speedc, which

means that in the S frame

x =ct (2.5.7)
While in the S’ frame
x'=ct' (2.5.8)

Substituting for x’ and t’ in equation (2.5.7) with the help of equations
(2.5.4) and (2.5.6)

1—k?
k(x —vt) = ckt + vl L (2.5.9)

18



And solving for x

ckt + vkt

X = o (1 — k2> ) (2.5.10)
kv
k+2k
= ct >
. (1 —k )C
kv
142
=ct < (2.5.11)
1— (i -1)<
k2 v

This expression for x will be the same as that given by equation (2.5.11),

namelyx = ct, provided that quantity in the brackets equalsl. Therefore

14 =
1 c=1
1-(z-1)5
1
ko= 2

Inserting the above value of k in equations. (2.5.4) and (2.5.6) we have for
the complete transformation of measurements of an event made in S to the

corresponding measurements made inS’, the equations

x— vt

’UZ

1_c2
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vX
t— =

t = —C (2.5.12)
UZ
-z
These equations comprise the Lorentz transformation. They were first
obtained by the Dutch physicist H.A. Lorentz who showed that the basic
formulas of electromagnetism are the same in all frames of reference |
uniform relative motion only when these transformation equations are
used. It was not until a number of years later that Einstein discovered their
full significance. it is obvious a that the Lorentz transformation reduces to
the Galilean transformation when the relative velocity v is small compared

with the velocity of light c.

The relativistic length contraction follows directly from the Lorentz
transformation. Let wus consider a rod lying along the
x" axis in the moving frame S’. An observer in this frame determines the
coordinates of its ends to be x; and x; and so the proper length of the rod
IS

Ly =x5 —x; (2.5.13)

In order to find L = x, — x; the length of the rod as measured in the

stationary frame S at the time t, we make use of equation (2.5.11). we have
X1 - Ut
172

X, =2 — (2.5.14)

And so
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UZ
=Ly [1-— (2.5.15)

Which is the same as equation (2.4.6)
So to him the duration of the interval t is

As we found earlier with the help of a light-pulse clock

2.6 velocity addition

One of the postulates of special relativity states that the speed of light ¢
in free space has the same value for all observer, regardless of their relative
motion but “common sense” tells us that if we throw a ball forward at 50ft/s
from car moving at 80ft/s, the ball’s speed relative to the ground is 130ft/s
the similarly sum of the two speeds. Hence we would expect that a ray of
light emitted in a frame of reference S’ in the direction of its motion at
velocity v relative to another frame S will have a speed of ¢+ v as
measured in S, contradicting the above postulate. “common sense” is no
more reliable as a guide as a guide in science that it is elsewhere, and we
must turn to the Lorentz transformation equations for the correct scheme

of velocity addition.

Let us consider something moving relative to both S and S’. An observer

In S measures its three velocity components to be

_dx _dy _dz

VvV=— V=—"7"- V,=— 2.6.1
*odt Y dt ¢ dt ( )
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While to an observer in S’ they are

B dx’ , dy' , dz’

V=— V' = V) =—
*oodt Y dt Z 0 dt

(2.6.2)

By differentiating the inverse Lorentz transformation equation for x,y, z

and t we obtain

dx' + vdt’
dx = ———— (2.6.3)

1Y
C2

dy =dy’

dz = dz'

r C2
dt' = ——C— (2.6.4)

V_dx
X dt

dx' + vdt’
vdx'
C2

dt’ +

v, = < (2.6.5)




2
y=——° (2.6.6)

If V, = c, that is if a ray of light is emitted in the moving reference frame
S’ its direction of motion relative to S. An observer in frame S will measure

the velocity

(2.6.7)

Both observer determine the same value for the speed of light, as they must.

The relativistic velocity transformation has other peculiar consequences.
For instance we might imagine wishing to pass a space ship whose speed
with respect to the earth in 0.9c at a relative speed of 0.5c. according to
conventional mechanics our required speed relative to the earth would have
to be 1.4c, more than the velocity of light. According to equation 1.34,
however, with I/ = 0.5c¢ and v = 0.9¢, the necessary speed is only

W+

Vx_ !
1
c

B 0.5¢ + 0.9¢
1+ (0.902g0.5c)
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= 0.9655¢

Which is less that c. We need go less than 10 percent faster than a space

ship traveling at 0.9c in order to pass it a relative speed of 0.5c.

2.7 The relativity of Mass

Until now we have been considering only the purely kinematical
aspects of special relativity. The dynamical consequences of relativity are
at least as remarkable, including as they do the variation of mass with

velocity and the equivalence of mass and energy(52,53,54,55)

We begin by considering an elastic collision (that is a collision in which
Kinetic energy is conserved) between two particles A and B, as witnessed
by observers in the reference frames S and S'which are in uniform relative
motion. The properties of A and B are identical when determined in
reference frames in which they are at rest. The frames S and S’ are oriented.

With S’ moving in the 4+x direction with respect to S at the velocity v.

Before the collision particle A had been at rest in frame S and particle B in
frame S’. Then at the same instant, A was thrown in the +y direction at the

speed 1, while B was thrown in the -y direction at the speed V5 where
Vy = V3 (2.7.1)

Hence the behavior of A as seen from S is exactly the same as the behavior
of B as seen from S’. When the two particle collide, A rebounds in the -y
direction at the speed V,, while B rebounds in the +y direction at the speed

V5. If particles are thrown from positions y apart an observer in S finds that

the collision occursaty = %y and one in S’ finds that it occurs at y’ = iy

The round-trip time T, for A as measured in frame S is therefore

24



T, = — 2.7.2
0= (27.2)
And it is the same forBin S’
14
T, = — 2.7.3

If momentum is conserved in the S frame, it must be true be that

mAVA = mBVB (274‘)
Where m, and mp the masses of A and B, and V, and V5 their velocities
as measured in the S frame. In S the speed V/; is found from

14
Vg =—= 2.7.5
b= (2.7.5)

Where T is the time required for B to make its round trip as measured in S.
in S"however B is trip requires the time T,, where

Ty
T=—2_ (2.7.6)

v
CZ

According to our previous results. Although observer in both frame see
the same event, they disagree as to the length of time the particle thrown

from the other frame requires to make the collision and return.

Replacing T in equation (2.7.5) with is equivalent in terms of T, we have

172
%/1—?

Vo =

From equation (2.7.1)

V, = — (2.7.7)



Inserting these expressions for V,and Vg in equation (2.7.5) we see

momentum is conserved provided that

(2.7.8)

Our original hypothesis was that A and B are identical when at with respect
to an observer; the difference between m, and mgtherefore means that
measure mints of mass, like those of space and time, depend upon the

relative speed between an observer and whatever he is observing.

In the above example both A and B are moving in S. In order to obtain a
formula giving the mass m of a body measured while in motion terms of
its mass m, when measured at rest, we need only consider a similar
example in which V,and Vgare very small. In this case an observer in S will
see B approach A with velocity v, make a glancing collision( since Vg «

v). And then continue on. In S

m=—0_ (2.7.9)
UZ

The mass of a body moving at the speed v relative to an observer is larger

. . 1
than its mass when at rest relative to the observer by the factor T
This mass increase is reciprocal; to an observer in S’
my,=m (2.7.10)
mB == mo (2.7.11)



Measured from the earth, a rocket ship in fight is shorter than its twin still
on the ground and its mass is greater. To somebody on the rocket ship in
flight the ship on the ground also appears shorter and to have a greater
mass. (the effect is of course unobservable small for actual rocket speeds).

Equation (2.7.9) is plotted

Provided that momentum is defined as

myv

mv =
1
CZ

Conservation of momentum is valid in special relativity just as in classical

physics. However Newton’s second law of motion is only in the form

d
F=— (mv) (2.7.12)

B d[ myv ]
- d
-l
This is not equivalent to saying that

F =ma

_ dv
BT

Even with m given by equation (1.43) because

2 () = m 22 4 2 (2.7.13)
dt(mv) mdt vdt o
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And Z—T dose not vanish if the speed of the body varies with time. The

resultant force on a body is always equal to the time rate of change of its

momentum.

Relativistic mass increases are increases are significant only at speeds
approaching that of light. At a speed one-tenth that of light the mass
increase amounts to only 00.5 percent, but this increase is over 100 percent
at a speed nine-tenths that of light. Only atomic particles such as electrons,
protons, mesons and soon have sufficiently high speeds for relativistic
effects to be measurable, and in dealing with these particles the “ordinary”
laws of physics cannot be used. Historically the first confirmation of
equation (2.7.9) was the discovery by Bucherer in 1908 that the ratio e/m
of the electron like the others of special relativity has been verified by so
many experiments that it is now recognized as one of the basic formulas of

physics.

2.8 Mass and Energy

The most famous relationship Einstein obtained from the postulates of
special relativity concerns mass and energy. This relationship can be
derived directly from the definition of the kinetic energy T of a moving

body as the work done in bringing it from rest to its state motion. That is
3
T = J Fds (2.8.1)
0

Where F is the component of the applied force in the direction of the
displacement ds and s is the distance over which the force acts. Using the

relativistic form of the second law of motion
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_d(mv)
C o dt

(2.8.2)

The expression for kinetic energy becomes

_(Fd(mv)
T—j; ds

dt

= f mvvd(mv)

_ jv vd / MoV (2.8.3)
0

\J?—z/

Integrating by parts(f xdy = xy — [ ydx)

myv V' vdv

T = — m, j (2.8.4)
v? 0
c? c

mc? — myc? (2.8.5)

Equation (2.8.5) states that the kinetic energy of a body is equal to the
increase in its mass consequent upon its relative motion multiplied by the

square of the speed of light.

mc? =T + myc? (2.8.6)
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Equation (2.8.5) may be rewritten
mc? =T + myc? (2.8.7)

If we interpret mc?as the total energy E of the body, it follows that when
the body is at restT = 0, it nevertheless possesses the energy mgc?.
Accordingly myc? is called the rest energy E, of a body whose mass at rest

iIsm,. Equation (2.8.6) therefore becomes

E=E,+T (2.8.8)
Where

E, = myc? (2.8.9)

In addition to its Kinetic, potential electromagnetic thermal and other
familiar guises then energy can manifest as mass. The conversion factor
between the unit of mass (kg) and the unit of energy (J) is c¢?, so 1kg of
matter has an energy content of 9 x 10%J. Even a minute bit of matter
represent a vast amount of energy and in fact the conversion of matter into
energy it the source of the power liberated in all the exothermic reactions

of physics and chemistry.

Since mass and energy are not independent entities the separate
conservation principles of energy and mass are properly a single one the
principle of conservation of mass energy. Mass can be created or destroyed
but when the happens an equivalent amount of energy simultaneously
vanishes or comes into being and vice verse. Mass and enegy are different

aspects of the same thing.

When the relative speed v is small compared with c, the formula for kinetic
energy must reduce to the familiar %movz, which has been verified by
experiment at low speeds. Let us see whether this is true. The binomial
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theorem of theorem of algebra tells us that if some quantity x is much

smaller than.
1+x)=1+nx (2.8.10)
The relativistic formula for kinetic energy is
T = mc? —myc?

myc? "
= —————myC

1
C2

Expanding the first term of this formula with the help of the binomial

2
theorem with :—2 <« 1 since v is much less than c.

= —myv? (2.8.11)

Hence at how speeds the relativistic expression for the kinetic energy of a
moving particle reduces to the classical one. The total energy of such a

particle is
1
E =myc? + Emovz (2.8.12)

In the foregoing calculation relativity has once again met an important test;
has yielded exactly the same results as those of ordinary mechanics at low
speeds, where we know by experience that the latter are perfectly valid. It
is nevertheless important to keep in mind that, so far as is known the correct

formulation of mechanics has its basis in relativity, with classical
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mechanics no more than an approximation correct only under certain

circumstances.

It is often convenient to express several of the relativistic formulas obtained
above in forms somewhat different from their original ones. The new
equations are so easy to derive that we shall simply state them without

proof:

(2.8.13)
v 1
c - 2
1+ ()
myC
1 2
1- pz 2
vz mOC
-z
T
=1+ o) (2.8.14)
mgc

The symbol p is used for the magnitude of the linear momentum mu.

These formulas are particularly useful in nuclear and elementary-particle
physics where the kinetic energies of moving particle are customarily
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specified rather than their velocities. Equation (2.8.14) for instance permits
us to find v/c directly from T /mc?, the ratio between the kinetic and rest

energies of a particle.
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Chapter Three

Maxwell Equation

3.1 Introduction
Maxwell’s equations describe the relation between electric and
magnetic fields. It also describes how they are generated. This chapter is

concerned with how they are each other generated and related.

3.2 Gausses Law and First Maxwell’s Equation

The magnetic flux @ can be written in farms’ of electric flux density D
in the form (56,57,58)

¢ = jD.ds (3.2.1)

Where ds is the area element also the change ¢ can be expressed in terms

of charge density p according to the relation

¢ = jpdv (3.2.2)

Where dv is the volume element but according to vector algebra

JD.ds = jV. dv (3.2.3)

Hence

¢ = f V.Ddv (3.2.4)

But Gauss Law states that



fV.de = fpdv (3.2.5)

Thus
V.D=p (3.2.6)

3.3 Amperes Law and Second Maxwell Equation

According to amperes Law the work done by unit magnetic (charge)
due to the effect of magnetic flux density B is related to the current density
according to the relation (59, 60, 61)

jB.dL = uf]. ds (3.3.1)

Where dL is the Length element, u the magnetic permeability?

According to vector algebra B satisfies

jB.dL = j(v x B).ds (3.3.2)

Thus inserting (3.3.2) in (3.3.1) yields

J(VxB).ds=,uj].ds

Hence a direct comparison of both sides yields

VXB=yuf

3.4 Faraday Law and Third Maxwell Equation
Faraday Law states that the electromotive force or potential v is related

to the magnetic flux ¢ entering the electric circuit, where (62,63,64)

V=——t (3.4.1)
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But V is related to E according to the relation:
V= f E.dL (3.4.2)
Using equations (3.4.1) and (3.4.2) one gets

d
JE.dL = —%f B.ds (3.4.3)

Where:

b = j B.ds (3.4.4)

Bat from vector algebra

fE.dL =f(V X E).ds (3.4.5)

Hence (3.4.5) and (3.4.3) yields

ﬁ 0B
j(v X B).ds = — j —.ds (3.4.6)
= dt
There fore
VXE = 9B
ot

3.5 Magnetic Flux and Forth Maxwell Equation
The magnetic field is known to form close Loop. Thus the total

magnetic flux that enters or Leave any closed Loop vanishes. Hence (65)

¢ = JB.ds =0 (3.5.1)

But from vector algebra:
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fB.ds=fl7.de

Hence
f V.Bdv =20

V.B=20
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Chapter four

Literature Review

4.1 introduction

The SR theory is one of the biggest achievements in physics. It changes
our view of space and time coordinates. The SR theory succeeded in
explaining a wide variety of physical phenomena but it failed in
explaining the situations in which the fields are involved. Many attempts
were made to account for the effect of fields (66).The most popular one is
known as GSR (67, 68, 69)

4.2 The Special Relativity in the Presence of Gravitational
and other Fields

The gravitational field system properties was discussed in many standard
texts [70] .n these text the equation of motion of matter in gravitational and
the matter energy momentum tensor are treated separately. The equation
of motion of matter is obtained either by expressing the equation of motion
of straight line in curvilinear coordinate system [4] or by minimizing the
proper time [2] or even by using Euler-Lagrange equations [3].The energy
momentum tensor of matter was found by generalizing its special
relativistic form in a curved space [4]. This situation is not inconformity
with the classical field theories, where the equation of motion and the
expression for the energy momentum tensor stem from only one action and
from the same Lagrangian [70]

On the other hand the physical properties of matter; like time, length, and
mass; in special relativity (SR) are incomplete for not recognizing the
effect of fields on them [6].
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Many attempts were made to modify SR to include the effect of gravity and
other fields [7, 8, 9]. The attempts concentrate on the notion of mass and
energy without accounting the influence of both fields and motion on time
and length. Using the ordinary classical Euler-Lagrange equations [5] a full
expression for the equation of motion of matter in an arbitrary gravitational
field and the energy momentum tensor are obtained from the same
Lagrangian in section (2). Stemming from General Relativity (GR) the
effect of gravitation and other fields on time, length and mass are obtained

in section (3).
The Equation of motion and the Energy-Momentum Tensor for Matter:

Using the action principle a useful expression for the energy-momentum
tensor of matter in form of a perfect fluid as well as the equation of motion
of matter, in particle form, in the gravitational field can be obtained .By
variation of the matter action the equation of motion and the energy-

momentum tensor can be derived.

Taking the field variables to be x* and assuming the Lagrangian to depend

only on x* and its first derivate it follows that (71)
L= L(xk U") (4.2.1)
With

Uk = dx*
- dt
Being the four-velocity, and t the proper time.

To obtain the energy-momentum tensor of a perfect fluid we choose the

Lagrangian of matter to have the form:

L= Ay + Ay, UMUY (4.2.2)
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Where the parameters A; and A; are independent of the metric g,,, and the
velocity U+ .
The energy-momentum tensor of matter is given to be

0L
T

poc — .gpo'L — Yo Wapxk

_ 0L  cuprk

aL
=Gpok — gﬁomUl (4.2.3)
According to formula
g UHUY = —1

Then the Lagrangian becomes

Using this equation and inserting (4) in equation (3) yields.

Too = Gpo(Ay — Az) — 24,U,U, (4.2.5)
If we set

A —A, =p, A, +A,= —p (4.2.6)
Then

Toe = gpop + (p +P)U,U, (4.2.7)

Which is the expression for the energy-momentum tensor of matter in a
perfect fluid form [1].

The equation of motion can be obtained by using Euler-Lagrange equation,

where
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or _ di(a_ﬁ) =0 (4.2.8)

axk t \ouk

Using equations (6) and (2) the various terms in the equation of motion are
given by,
oL 04, d0A 0Guv

= 1 ppv 2272 myyv
dxk 6xk+gwu v 6xk+ AU dxk

_a(A1 2)+ A yrpyv ey ag,u:v
dxk

:ﬁ+A2U“U" 99y (4.2.9)

axk

And
d /0L p
dt (W) =% [Azg“" ur]

dAz dut

= 207U h + 24, g“" UFU + 24,90~

A=>v,A-> puand u -»v

We get

G 9
Sy gy kv

a9y 1
pypgA ZZKR Wuypv
ULy [U U —

dxA 2
Hence
t \auk dxk

d (oL ag a dA
S (o) = AUPUY [P 4 200 4 24y g o+ 2R T (4.2.10)

The equation of motion is then given by substituting equation (4.2.9) and

(4.2.10) in equation (4.2.8) and by multiplying both sides by g** to get

kA
) agku 0Gkv 6g,uv
—2A,U*UY -
2 2 lax" + OxH dxk

dU* dA, dp
A A A —
—24,8) —— - 2g% U,lU,cd—+g" o7 =0
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When we consider the motion of a point test particle of small mass, the
pressure p vanishes and the density variation is negligible. Therefore by

equation (6) we get
P = 0,p = constant ,A; = A, = _TP (4.2.11)

The equation of motion of matter in a gravitational field is then given by
[15, 16, and 17].
7 dxFdx¥ | d?x*

n ~0 (4.2.12)

KV qr  dt dt2

It is very interesting to note that this expression obtained from the matter
action represents an alternative derivation of the geodesic equation.

3. Special Relativity in the presence of Gravitation:

In SR the time, length and mass can be obtained in any moving frame by

either multiplying or dividing their values in the rest frame by a factor y

To see how gravity effect these quantities it is convenient to re express y

in terms of the proper time (4)
c2dt? — g, dxtdx? (4.2.13)

Which is a common language to both SR and GR. We know that in SR
(4.2.13) reduces to [10]

c2dt? = c?dt? — dxtdxt, xx° = ct
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1 dx'dxt 2
24y dt = —C—2=y (4.2.14)

Thus we can easily generalized y to include the effect of gravitation by
using (4.2.13) and adopting the weak field approximation where [11]

20
911 = G922 = 93z = —1,go0 =1 +? (4.2.15)
dr 1 dxtdxt B V2 (42.16)
V=%~ ]9 T2 ar ar 900 T 2 o

When the effect of motion only is considered, the expression for time in

SR take the form [4]
dt
0 (4.2.17)

Where the subscript 0 stands for quality measured in a rest frame. While
if gravity only affect time, its expression is given by [11]

dt,
(4.2.18)

dt =
v 9oo

In view of equation (4.2.17), (4.2.18) and (4.2.16) the expression

dt,
(4.2.19)

Can be generalized to recognize the effect of motion as well as gravity

on time, to get
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dt = (4.2.20)
12
Joo — oz
12

V="V, |[1- s (4.2.21)

V= \/EVO = 900"

(4.2.22)
The generalization can be done by utilizing (4.2.14) and (4.2.16) to find

that
vZ
V - ]/VO ES goo - ?VO (4223)

To generalized the concept of mass to include the effect of gravitation we
use the express for the Hmiltonian in GR, i.e. [13].

2 00 dx®\* poc”
H = pc® = gooT"" = GooPo dat = gooy_z
myc?
Goo 7 2 (4.2.24)
0

Using equation (4.2.23) and (4.2.24) yields

2
5, MC™  GooMyo

= 4.2.25
pc - - ( )
Therefore

m
m = —J%00 (4.2.26)
v2
Joo — oz
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Which is the expression of mass in the presence of gravitation.

Using equations (4.2.15) and (4.2.26) when the field is weak and the speed

is small, the energy E is given by

1

v?\ 2
E =mc? = MopYoo (900 - §>

In the weak field

c? c? c?
26 1v?\ |
~ my(1) (1 —= + EC—Z)C

1
E = myc? + > myv? — my¢

E=myc>+T+V

(4.2.27)

(4.2.28)

Unlike SR which doesn't include the potential energy, equation (28)
shows that the energy is reduced to the classical expressions which

include potential energy.

V= _mo(p

According to general relativity (GR) and standard model (SM) the
effect of the field on physical quantities manifests itself via the space.
The space deformation in our model manifests itself through the ¢
which can be given with the aid of equation (13) and (16) to be.

dT g,y dx* dxV Jooc?dt? 1 o
= —_—= |—— = _— B
¢ dt "cz dt dt J cZz dt? ngan v
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a
Yy = \/goo — gczﬂ vayh (4.2.29)
Wherea = 1,2,3

The effect of the field on gamma is incorporated in the
deformation parameters g,z andggo. According to SM [14] the

presence of the gauge fields W, and B,, deform the space by changing
the ordinary derivative d, to the covariant derivative D,.i.e

D, = 8, +igl.W, +i (%) YB, (4.2.30)

Where the factors g, g, | and Y are parameters determining the nature of

interaction. On the other hand the covariant derivative in GR [1] is given

by
Dy = 0, — Ly (4.2.31)

Where

i 1
L = Eg[aﬂgkv + 0y Gy ] (4.2.32)

The relation between the metric g,,, and field can be obtained from

relation (4.2.30) and (4.2.31) with the aid of the relation

a/lg/w - F;fvgpu = Guv;a (4.2.33)

Where (4.2.30) and (4.2.31) gives:
1 (Y
L, = —igl W, - i(5) 2B, (4.2.34)

According to these relations the genenralized expression for the time
volume, mass, and energy is given according to equaions (4.2.29) (4.2.19),
(4.2.23) with the aid of the relation
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dt e ﬂ (4235)

_ Yoo Moo (4236)

4.3 New Lorentz Field Dependent Lorentz Transformation

Due to Photon Direction Change

Lorentz transformation is one of the most beautiful ~mathematical
framework that changed radically the concept of space time and mass.
The SR one is suitable for inertial frames but it doesn’t not account for the
effect of fields. To take care of the effect of fields consider the Lorentz

transformation [72]

. . at?
x:y(x+vt—7) (431)

‘ L
X=y x—vt+—
4 2 (4.3.2)

Consider the two frames (x. t) and (x. t) have their origin coincide at =
t = 0. If a pulse of light is received from a source S then its position in the
two frames becomes at t and ¢t respectively
x = ct (4.3.3-a)
x =ct (4.3.3-b)
Substitute (4.3.3.a) & (4.3.3.h) in (4.3.1) yields

at? at'?
ct=y ct’+vt’—7 =y|(c+v)t' - >




t =ct' + Cyt'? (4.3.4)
Where

C1=y(1+§)(5-a)
ya

v
C,=v (1 + E) (4.3.5 @)
C, = —? (4.3.5 b)

In (4.3.2) gives

. at
ct=y ct—vt+ >
2
f=y((1—%)t+%)
2
t = C3t + Cyt? (4.3.6)
v
C; =y (1 - Z) (4.3.7.0)
c, =12 (4.3.7.D)
2C
Substitute (4.3.6) in (4.3.4) to get
t = C1(Cat + C4t?) + Co(Cst + C4t?)? (4.3.8)
t = C,Cot + CiCut% + C,C52t% + 2C,C5C,t3
+ C,C,2t* (4.3.9)
Comparing the coefficients of ¢. t2. t3and t* on both sides gives
C1Cs=1 (4.3.10)
C1Cs=—C,C3 (4.3.11)
2C,C5C4=0 (4.3.12)
C2C2=0 (4.3.13)

From (4.3.5.a) and (4.3.7. a), (4.3.10) becomes
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1
Ly = (4.3.14)
1Y
S c?
y2 (1 +E)i =M(1 —E) (4.3.15)
From (4.3.5.p), (4.3.7.a) and (4.3.7.b),
(4.3.12) becomes
2y3a? v
ac? (1 _Z) (4.316)
From (4.3.5.b) and (4.3.7.b), (4.3.13) becomes
ya
—3a =0 (4.3.17)

In view of equation (4.3.14) y take the same special relativity form.
However, equations (4.3.15), (4.3.16) and (4.3.17) shows that the Lorentz
transformation (4.3.1) and (4.3.2) gives consistent results only when (a =
0). This requires trying another transformation to take care of effect of
fields. One can assume that the light is accelerated due to the effect of field
on photon trajectory. It is well known in mechanics that any particle can
be accelerated if its magnitude of velocity v is constant when it change its
direction. This happens for particles having constant speed v and moving
in a circular orbit, thus changing its direction regularly and possessing an

acceleration

a4 =— (4.3.18)
Tr

Towards the Centre of a circular orbit. According to general relativity
(GR) the photon move in a curved trajectory in a gravitational field,

although the magnitude of photon speed ¢ is constant, but it is accelerated
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due to the change of photon direction, since the change of photon direction

decreases its speed in the original direction. For example if the photon

change its direction by A@ during time intervalAt, its acceleration becomes

_ Ac _c- cSinA@ N c(1— A®) (4.3.19)
At At At

This means that SR and GR are not in conflict with each other, this shows

a

how beauty is Einstein relativity compared to Newton's laws. The photon
acceleration can be found by using the relation between work done and
energy change according to gravity red shift. The change in photon energy
IS given by
AE = hf — hf =V (4.3.20)
Where V is the field potential. Here one assume that v is potential of any
field; not gravity field only. The change of energy is equal to the work
done, again assuming constant mass and constant acceleration, one gets
F-x=max =V (4.3.21)
The photon displacement can be found by using the expression for photon
interval in a curved space, to get
0 = ?d1? = gooc®dt? — gxxdx? (4.3.22)
Assuming that the photon obeys static isotropic constraints g,y = gxx, ONe
gets
2@ 2
dx? = g5,c?dt? = (1 +?) c?dt? (4.3.23)
dx = (1 + ZC_czp) cdt
Thus integrating both sides yields
2¢
x = (1 + c_z) ct (4.3.24)

Similar relation can be obtained by finding the photon acceleration by

assumingx = ct to get
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|4
g=—=2-2 (4.3.25)
mx X ct
In view of equation (4.3.3.a) and (4.3.25) the position is given by
_ at _ (pt _ Q
x=ct 7= ct e = ct th (4.3.26)
Similarly, equation (4.3.3.b) and (4.3.25) gives
. s at o (pt o (p : (4327)
x_Ct+T_Ct+ﬁ_Ct+Et
Consider the Lorentz transformation
. at?
xX=y (x + vt — T) (4.3.28)
Where the average velocity v is given by
v+v, v+v-—at at
= = =V —— 4.3.30
Um 2 2 v ( )
Thus
. . (4.3.31)
. ., at? at\ . .
[ =vt _T: U—? tzvmt
x =y + v,t) (4.3.31)
Similarly
X = (X — Unmt) (4.3.32)
For static source in a frame S the photon is not accelerated, thus
xX=ct (4.3.33)

But the observer in S sees the source S is accelerated and the photon moves

in curved space, thus (see equation (4.3.14))

L.,
X =ct+ o t (4.3.34)
By substituting (4.3.33) and (4.3.34) in (31) yields
_ ¢ \
ct=y (c + o + vm) t (4.3.35)

Similarly if the source is at rest in frame S the photon position is given by
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x=ct (4.3.36)
Since S is accelerated with respect to S due to the field effect, therefore the

photon move in a curved space , thus it is accelerated, hence

.
x=ct o t (4.3.37)
Substitute (4.3.36), (4.3.37) in (4.3.32) to get
by (c=2 _
ct=y (c r vm) t (4.3.38)
From (4.3.34) and (4.3.37)
t’ ¢ ¢
r_ .2 T —_—
t' = =Y (c + o + vm) (c o vm) (4.3.39)
1
y = (4.3.40)

_ (L, tm)?

\/1 (Zc T c )

Thus the generalized special relativistic energy is given by
2

5 myC
E =ymyc? = (4.3.41)
1 @ Vnm?
2 ¢
Neglect the term consisting of ¢?, yields
1
Yy = —— (4.3.42)
Vi
2
Where
Vo
Vp =V + > (4.3.43)
But when the particle moves against the field
V2= 2 — 2ax = v> — 2 ~ Vo? = V2 + 2¢ (4.3.44)

By Assuming that vand v, represent the average values that related to

max

. - - v
maximum values vmax and vomax according to relations v = === and

Vomax

V2

VB = Viax T 4ax (4.3.45)

v():
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Then

2 2 2
2 = (vmax * Vomax _ Umax + 2VinaxVomax T Vomax
o= =
2

4
_ Vhax T 2Vmaxy Viax T 40X + Vax + 4ax
4
2 9 4ax
2Vnax T 2Vax |1+ ——+ 4ax
2 vmax
Vi = 1
2 2 2ax
2Vmax T 2Vnax | 1 + oz + 4ax
~ max (4.3.46)
4
4v2 .. + 8ax
nvh = —2 = Vi +2ax = V3, + 20 (4.3.47)

4
But from equation (4.3.38) for Z—% < 1then

Vinax + 20

=1+ —vﬁi =1+
V= 2c¢2 2c2
1 [v?2
o y == 1 + ﬁ( n;ax + qo) (4.3.49)

Thus equation (4.3.41) and (4.3.38) gives

(4.3.48)

1
E =ymyc? = myc? + =moviax + Mo = mgc? + T +V  (4.3.50)

2

Thus the generalized special relativity energy relation satisfies the

Newtonian limit. This is since the energy include kinetic beside potential

energy term.

The gravitational red shift of photons can also be explained by using

GSR. Assuming photon in free space so its potential energy V =0, by using

(4.3.50) and plank hypothesis, one can get

hf =moc®+ T (4.3.51)

If the photon enters gravitational field its frequency (4.3.51) changes also

To f. Thus equation (4.3.50) gives

hf =moc®+T+V=hf+V (4.3.52)
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Thus fortunately equation (48) explains the gravitational red shift.

4.4 Lorentz Transformation Einstein Derivation simplified
Those who have studied Einstein’s special relativity theory know that
everything there is the result of his two postulates and of the distant clock

synchronization procedure that he

(x, y=0) located at that point reads t. In order to be operational the different
clocks of that frame, located along the OX axis should display the same
running time. Einstein satisfied that condition proposing the

synchronization procedure shown in the figure below [75]

Clock Cy(0,0) located at the origin O is ticking and when it reads a zero
time the source of light S(0,0) located in front of it emits short light signals
in the positive and in the negative directions of the OX axis. Clocks
C.(0,0) and C.(0,0) are initially stopped and fixed to display a time t=x/c.
The light signals arriving at the corresponding clocks start them and from
that very moment the clocks display the same running time. The events
associated with the synchronization of clocks Cy, C: and C. are Ey(0,0,t),
E+(x,0,t) and E.(-x,0,t) respectively. It is obvious that their space-time
coordinates are related by

x = xct (t > 0) (4.4.1)
Or by

x2 —ct2 =0 (4.4.2)
Special relativity becomes involved when we consider a second inertial
reference frame K’ (X’0’Y’) in the standard arrangement with the K
(XOY) reference frame, K’ moving with constant velocity V in the positive
direction of the overlapped OX (O’X’) axes. The events associated with
the synchronization of the clocks in K’ are Ey'(0,0,t) , E+'(x’,0,t") and
E'(-x,0,t) .
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The clocks Cy'(0,0), C+'(x',0) and C-'(0,0) of that frame are synchronized

following the same procedure as in K and we have obviously
X2 —c"t"? = (. (4.4.3)
Equating (4.4.2) and (4.4.3) we obtain
X2 —C2t? = X2 —¢?t"2, (4.4.4)
Because at the origin of time the origins of K and K’ are located at the same
point in space we can consider that Ax=x-0, At=t-0, Ax’=x’-0 and At’=t’-0
presenting (4.4.4) as
(AX)? —C2(At)? = (AX')?> —C*(At')? (4.4.5)

Equation (4.4.5) is a starting point in Einstein’s derivation of the Lorentz
transformations! which establish a relationship between the space-time
coordinates of events E(x,0.t) and E’(x’,0,t’).

Relativists consider that one event E(x,0,t) detected from the K frame and
an event E’(x”,0,t”) detected from the K’ frame represent the same event if
they take place at the same point in space when the clocks C(x,0) and
C’(x’,t’) located at that point read t and t’ respectively. The Lorentz
transformations establish a relationship between the coordinates of events
E(x,0,t) and E'(x’,0,t) defined above and considered to represent the same
event. We derive them in two steps. Figure 2 presents the relative position
of the reference frames K and K’ as detected from the K frame when its

clocks read t.
When the clock Cy'(0,0) is reading t’ it is located in front of a clock

C1(x=Vt,0) reading t. The problem is to establish a relationship between At
and At’. The clock Cy'(0,0) being in a state of rest in K’ we have in its case
Ax’=0. The position of clock Cy'(0,0) is defined in K by Ax=VAt , the
change in the reading of clock C;(x=V1,0) being At . The events involved
are E(x=Vt,t) in K and (x’=0,t") in K’. Imposing the condition (4.4.4) that
relates correctly their space-time coordinates we obtain
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t=——— (4.4.6)

Which relates the readings of the two clocks when they are located at the

same point in space, equation

At = —— (4.4.7)

Relating the changes in theirs readings.? It is of essential importance to
make a net distinction between the ways in which the time intervals At and
At’ are measured.

The time interval At is measured as a difference between the reading t of
clock C(x=V,,0) and the reading t=0 for clock Cy(0,0) when the moving
clock Cy’(0,0) passes in front of them respectively. Relativists call a time
interval measured under such conditions coordinate time interval. The
time interval At’ is measured as a difference between the readings of the
same clock Cy'(0,0) when it passes in front of clock C1(x=V,,0), (t’) and
when it passes in front of clock Cy(0,0) (t’=0). A time interval measured
under such conditions is called proper time interval. As we see (4.4.7)
relates a coordinate time interval measured in the reference frame K and a
proper time interval measured in K. Because At>At’ relativists say that a
time dilation effect takes place. If we consider the same experiment from
the inertial reference frame K’ then we see that observers of that reference
frame measure a coordinate time interval whereas observers from K
measure a proper time interval related by (4.4.7). Figure 3 presents the
relative positions of the reference frames K and K’ when all the clocks of

the first frame read t.
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Encouraged by Galileo’s transformation equations

X = X+t 4.4.(8)
X'=x-Vt (4.4.9)
t=t (4.4.10)

we guess that in Einstein’s special relativity theory, one of the
transformation equations should have the shape

X = ax'+cht’ (4.4.11)
where a and b represent factors which, due to the linear character of a
transformation equation, could depend on the relative velocity V but not
on the space-time coordinates of the involved events. In order to find them
we impose the condition that it should correctly relate the space-time
coordinates of events E(x=Vt,0,t) and E’(x’=0,0,t”) and of events E’(x’=-
Vt’,0,t%), E(0,0,t) we have defined deriving the formula which accounts for
the time dilation effect. In the case of the first pair of events (4.4.11) Works

Vt = bct' = bet /1 -% (4.4.12)

as

Where from we obtain

v

b= ;vz = Bcy(V) (4.4.13)
In the case of the second pair of events (4.4.11) works as
0 = —aVt'+ cbt’ (4.4.14)
Resulting that
a =y{l) (4.4.15)
(4.4.11) becoming
x =y +Vt). (4.4.16)
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Dividing both sides of (4.4.16) by c and taking into account that all the
involved clocks are synchronized a la Einstein (t=x/c,t’=x’/c) we obtain

t =y + pc 1x") (4.4.17)
Combing (4.4.16) and (4.4.17) we obtain with some algebra

X' =y(WV)(x —Vt) (4.4.18)

t' =y(V)(t — Bc 1x). (4.4.19)
Equations (4.4.16) and (4.4.17) are known as the inverse Lorentz
transformations whereas equations (4.4.18) and (4.4.19) are known as the
direct Lorentz transformations.
Compared with Einstein’s derivation and with other derivations we found
in the literature of this subject, our derivation presents the advantage that it
Is shorter, revealing the fact that the Lorentz transformations are a direct
consequence of the two relativistic postulates and of the clock
synchronization procedure proposed by Einstein.
The Lorentz transformations become more transparent if we present them

as a function of changes in the space-time coordinates of the same event.
Equations (4.4.16) and (4.4.17) become

Ax =y(V)(Ax + VAt (4.4.20)

And
At =y(V)(At'+ Ve 2Ax"). (4.4.21)
The way in which the transformation equations were derived ensures the
fact that they account for the time dilation effect. They account in a
transparent way for the addition law of relativistic velocities. Consider a
particle that starts to move at t=t’=0 from the common origin of K and K’

with speed uy relative to K and with speed u’x relative to K’. After a time

of motion t the particle generates the event E(x=ut,0,t) as detected from K
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and E’( x' = u\t',0,t') when detected from K’. In accordance with the
Lorentz transformations we have
u'x +V

At’
Ax = —— (4.4.22)

1
CZ

4.5 Evolution of Stars by Kinetic Theory and Quantum

Physics on the Basis Generalized Special Relativity

Let us now discuss ideal gases from a purely quantum mechanical
standpoint. It turns out that this approach is necessary to deal with either
low temperature or high density gases. Furthermore, it also allows us to
investigate completely nonclassical“gases”, such as photons. From the
Kinetic theory and quantum physics; we can get an equation of star
evolution by the pressure force and the force of gravity. For stars one have
tow forces, pressure force which counter balance the gravity force, thus
[76]:

1
P = §n7nv2 , mv? =3KT (4.5.1)

The number density can be assumed to satisfy Maxwell’s distribution
n=nee ¥ (4.5.2)

We first consider an ideal gas consisting of a single type of non-relativistic

particles. The ideal-gas law for the gas contained in a volume V is

commonly written as
1N
P=3y (3KT) = nKT (4.5.3)

Where: n = N/V(3KT) is the number of particles per unit
volume). Thus the pressure force is given by

Fp=PA = (4nr?) = 4nnKTr?= cyr? (4.5.4)
The gravity force is given by
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A1t
F, = f (?prS) (4mr2p) dr

For constant density

,
41)? 1 (4m)?

9773 6 3 °
0
Thus
F = 8 2,.2,.6 _ 6 (455)
g —an pPer® = Cor 5.
Equation of hydrostatic equilibrium requires
Fp=F (4.5.6)
Thus from equation (4.5.4), (4.5.5) and (4.5.6) one gets
c\1/4
c11r? = c,r® = r= (—1)
€2

The critical radius is thus given by

1/4

OnKT
r. = ( anz) (45.7)
Expansion takes place
Fp>F (4.5.8)
While contraction is observed when
Fp<F (4.5.9)

But according to the laws of quantum mechanics for particle in box the
energy is given by

E=cV? (4.5.10)
At T = 0 all guantum states whose energy is less than the Fermi energy Er
are filled. The Fermi energy corresponds to a Fermi momentum pr= Aikr
is thus given by

2 21,2

_ 5_; - hz:: (4.5.11)
The above expression can be rearranged to give

Er
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A (N\3

kr = (3m?n)Y/3 = E(V)

A= (BrH)Y3h
Hence

1/3

Ar

B Z_n _ 2T _ 2mh (K)
K. (3m2n)/3~ A \N
Which implies that the De-Broglie wavelength Ar corresponding to the
Fermi energy is of order the mean separation between particles
(V/N)V.All guantum states with De-Broglie wavelengths 2 > Ar are

occupied at T = 0, whereas all those with A < Ar are empty.

According to equation (4.5.11), the Fermi energy at T = 0 takes the form

h2 A (N\2/3 _2
Ep =-—(3n?n)?/% = %(;) = C,V 73 (4.5.12)
dE; 2 5
W = _§COV 3 (4513)
But for spherical body
41
V = ?T’g
Thus
dE, 2 (Am %3 2 (Am\TP
L A (?r ) _ —g(?) CoT (4.5.14)
But according to canonical Gibbs’s distribution
dEg
pP= n—- (4.5.15)
Hence the pressure takes the form
2 (4m\ "3
P —_ —E(?) nCOT_S = C1T_5 (4'5'116)
Thus the pressure force is given by
Fp = P(4tr?)
2 ram\ /3
Fp = —5(?) ncor > (4mr?) = 4mer~3
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FP = Czr_3

But gravity force is given by

GmM
Fg = 2

(4.5.17)

Where we assume that the density is constant within the star. The mass at

distance r from the star center is

4
M) = ?pr3

Anr3pGm
9= 312
Thus
4
F, = §anmr = C37

Equation of hydrostatic equilibrium requires
FP = c,r =3 =c3r

The critical radius r. is thus given by

4 _ G2
T, = —
C3

(02)1/4 —(4m)~5/3 ney(4m)\ *
r-=1— = |
© \eq 2mpmG (3)~3/3

Expansion takes place
EFp>
While contraction happens when

Fp<

(4.5.18)

(4.5.19)

(4.5.20)

(4.5.21)

(4.5.22)

The conditions of star evolution can be started by adopting classical limit,

of generalized special relativity (GSR) energy relation where

2 20 v\ '?
omeur )22

Considering Newtonian potential and thermal motion
G 1 3 3KT

—mv? ==-KT = v? =—

(VD) 2 —_
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ZGM)( 2GM  3KT

-1/2
— ) (4.5.25)

E=mc:=m cz(l—
0 Rc?  myc?

If the gravitational potential and thermal energy are everywhere small, so

2GM «1 3KT
Rc? ’

Thus (25) reduces to

« 1 (4.5.26)

myc?

E= 2(1 ZGM)( GM+ 3KT) e
=~ Mo€ Rc? Rc?2 * 2myc? (4.527)
Neglecting higher order terms, yields
P 2 (1 + GM N 3KT  2GM 2G*M? 3GMKT
— Mot Rc?  2mgc? Rc? R?c* Rmyc*
Thus the energy E become
, 3 GMm,
E =myc* +=KT — (4.5.28)
2 R
Assuming the Kinetic energy is due to thermal motion
3
K.E =—KT (4.5.29)
Assuming also the potential energy of mass my to be
GMm,
V=- B (4.5.30)

Thus equation (4.5.28) gives
E=myc®+K.E+V

Thus the expression of energy includes the total kinetic energy of the
degenerate electrons (the kinetic energy of the ion is negligible), the rest
energymoc? and the gravitational potential energyV. Let us assume, for
the sake of simplicity, that the density of the star is its uniform. The total
energy of a star is its gravitational potential energy, its internal energy and
its kinetic energy (due to bulk motions of gas inside the star, not the

thermal motions of the gas particles).
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Using the hypothesis of universe expansion, the star explodes and expands

when the energy E is positive
3 GmoM

E = 24 —KT — >0 .5.
myc -I-2 2 (4.5.31)
l.e.

3 GmyM

This is quite obvious from the point of view of common sense because
this equation indicates that expansion happen when thermal and rest mass
energies exceeds attractive gravity energy. However it collapse and

contract when the energy E is negative, this requires
2 4 2 < SN
mgcC 2 R

Thus collapse takes place when gravity energy exceeds thermal one.

(4.5.33)

Can be obtained the critical radius, using the following energy for

generalized special relativity

2GM 2GM  3KT\ /2
E:mocz(l— 2)(1— = — 2)
rc re moC
F ) (1 N 2(:1) (1 N 2¢;  3KT )_1/2
= Mot rc? rc?  mgyc?
Where
Cl = _GM
F = mec?(14 e (1 y o KT )‘1/2 (4.5.34)
= mqC CoT Cor —"
Where
€1
Cy, = ?

The critical radius of the star requires minimizing the total energy £ and

can be found by using the conditions for minimum value, i.e.
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dE —mgyc?c, r? ~mo (1 + car™ 1) (c?cr™?)

dr 3KkT \1/2 3KT \3/2
-1 _ -1 _
(1 TGl mocz) (1 TG mocz)
dE =~ —MoCcyr™? (1 + crt — TZKZ;) + %mo(l + c,r Y (c?cyr™?)
dr _01 3KT \3/2 =0
(1 +crt — m0c2)
3KT 1
—moc?c, r2 (1 +c,r 1t — mocz) + Emo(l + c,r ) (c?c,r™?) =0
3KT
mo(1 + c,r ) (c?c,r72) = 2myc?c, r2 (1 + c,r7t = 2)
mgC
i _, 6KT
1+cr =2+ 2c,r " — mac?
6KT
i -1 _ -1 _ —_
C,T CoT —
_, _ 6KT —mgyc?
Czr = 2
m¢ ¢
When temperature is neglected, i.e.
when
T=0
One gets
c,r =1
2¢c, 2MG
r=—C = —? 2
The critical radius is thus given by
2GM
=3 (4.5.35)
(This is the black hole radius)
Using the generalized special relativity energy relation
| 2GM 2GM  3KT\ Y2
= myc? (1 -— )(1 —— = 2) (4.5.36)
rc rc mgC
For star having spherical shape:
41 4
—GM = -G (?pr3) = —?Gpr3 = 313 (4.5.37)
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g (g, 26T\ (26T’ 3KT e
= Ma€ c? c? myc?

E =myc?(1 + cyr?) (1 + ¢ r? — BKTZ> (4.5.38)
mgyc
Where
. = 2¢C3
4 — CZ

The radius of the star r that dimension which reduces the total energy E
and his can be found by using the minimum energy condition that has to

be less energy as soon as possible, i.e.

dE
) (4.5.39)
dr
N 2 2y (1
dE moc?(2¢,r) moc*(1 + ¢47%) (5) (2cyr) _
dr ~ skT\/2 sk \3/2
2 _ 2 _
(1 + cur mocz) (1 + Cyr mocz)
2mgcic,r (1 + ¢ r? — SKTZ) —moc?c,r(1 4 ¢47?)
mgc —0
, _ 3KT 3/2
(1 + C41 mocz)
2myc?c r(1+c r? — SKT)—m c?e,r(T+c4r?) =0
0C“Cy 4 — 0C“Cy 4
2 ,_ SKT 2 2
2MyCec,r (1 + cyr° — 2) = myccyr(1 4+ c4re)
MoC
2(1+ 2 3KT)—1+ 2
CuT ey CyT
. 6KT ,
2+ 2¢cyr _mocz =1+ cur
. 6KT
C4T = 2 -
myc
, 6KT —myc*  6KT —myc?
T T Tngctc, | 2Zmygcs

The minimum radius
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(6KT — myc?
r =

2mgc;

6KT > myc?
< 6KT
my 5
-, = - - C
Thus the critical mass is given by:
6KT
My, = c2
Hence for equilibrium
my < myC
Using equation (4.5.37)
4 c
€3 =37 0P
The critical radius is thus given by
1/2
6KT — myc?
ro=
‘ 8—ﬁmo(}p

When
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d E 2mMyC Cy 2MmyC Cu1 moc C4(1 4+ 3c4r )

e )T (a2 (e )

moc? 2 Moc?
3moc?cir?(1 + c,r?)

dr?

72
» _ 3KT )5
(1 + cyur ——
2 5 3KT
d’E _ 2moctey (1 T Car” — mocz) _ [2moc?cir? + moc?c,(1 + 3c,12)]
dr? 3KT \3/2 3KkT \3/2
2 _ 2 _
(1 + cyr m0c2) (1 + cyr mUCZ)
1
3mgoc?cir?(1 + c4r?) (1 + ¢,r?% — 3KTZ)
moc
T ,  3kT\3/2
(1 + C4T - mocz)
2..2 2.2..2 2 2 3KT\7!
moc?cy, — 6¢, KT — 3myc?cir? + 3mgc?cir?(1 + c4r?) (1 +oyr? -~ CZ)
—_— 0
- -
» _ 3KT\3
(1 + Cy1 mocZ)
For maximum values
CE (4.5.42)
dr? h

-1
Moc?cy — 6C, KT — 3moc?c2r? + 3myc?c2r?(1 + c41?) (1 +oeur?— 3KT)

mqc?
o 3KkT\3/2
(1 + Cy1r mocz)
<0
3KT\ ™!
moc?cy — 6¢,KT — 3moc?cir? + 3moc?cir? (1 + c4r?) (1 +cqr? - mOCZ)

<0

' 3KT\ ']

3Imec2c212(1 2 (1 2 _ )

_ moc?czr?(1+c4r?) (14 ¢y Moc?
< [6¢4KT + 3mgc?cir? — myc?e,) 1

' 3KT\ ']

3moc?cir?(1 + cyr?) (1 +cyr? — mocz)

) 6KT ) !
< [moc Cy (W + 3c,r° — 1)]
0

) ) ,  3KT\™ 2KT , 1
(14 ¢c,r*) (1 + cyre — mocz) < (mocz + c,r? — 5)

2KT 1 3KT
car?(1+¢4r?) < (m =+ caT? — 5) (1 + cyr? — —~ cz)
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When temperature is neglected, i.e. when

T=0
1
Cur?(1+cyr?) < (C4T2 - 5) (14 ¢47?)
1 1
car? + cirt < cyr? + cirt — 373 a2
1,1
§C4?" + § <0
cr’+1<0
1
r’< ——
Cy
1 1/2
r<(2)
Ca
Where
2¢3 4nG,
“=zr  BTT3
Sy (4.5.43)
C4 - 3C2 o R
<)
r c
8nG,
While contraction takes place when
r < V3 c(8nGp)~1/? (4.5.44)
For minimum values
d°F >0 4.5.45
772 (4.5.45)
Thus explosion is expected when
r >3 c(8nGp)~1/? (4.5.46)
Thus the critical radius is given by
r. = V3 c(8nGp)~1/2 (4.5.47)
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4.6 Generation of Elementary Particles inside Black Holes at
Planck Time

Generalized special relativistic energy (GSR) expression, beside ordinary

Newtonian gravity potential are given by (78)

-1/2
2¢ 20 v\
— 2
E = mycC (1 + C_2> (1 + F — C_2> (461)
Where the Newtonian potential takes the form
MG
= —— 4.6.2
¢ R (4.6.2)
2MG 2MG 2\ Y?
E =myc? (1 ~ oz )( — ez c_z) (4.6.3)
Minimizing E w.r.t M yields
2G 2MG 1 -2G
E_mcz ~ Re? +(1_Rcz)(_z)(1€cz) -0
am — ° | _ZMG _ v 1/2 | _ZMG _ v 3/2 |
( _Rcz_c_z) ( _Rcz_c_z)
Thus
2G 2MG  v? G 2MG
el Gt A G 2)=o
( _2MG v_2)3/2
Rc? c?
If one consider
v? K ¢?
2G 2MG 2 N G ( ZMG) —0
Rc? Rc?2  ¢2 Rc? Rc2 )™
G ( ZMG) _
Rc? Rc2)
This requires
2MG _
Rc?
2MG = Rc? (4.6.4)
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Thus the mass which makes E minimum is
Rc?

=— 4.6.5
M=—= (4.6.5)

Consider also the generalized special relativity energy E equilibrium
condition by minimizing Ewith respect to radius r from equation (4.6.3),

when the star particles speed are small compared to speed of light

172
= <1
Thus
1/2
E = myc ( rcz) (4.6.6)
dE, _ ZMG) 1 ( 2MGy /2
dr (r 2c? (2) rcz)
2MG
dE (rzcz) ( rc? )
ar 2M6\3/2
(1 rc? )
Thus the radius which makes E minimum is given by
2MG _
rcz

The critical radius is thus given by

T, = ZﬂiG (4.6.7)
(This is the black hole radius )
But the critical mass is given bcy equation (4.6.7), i.e.
M =mc = s (4.6.8)
2G
Hence from (4.6.8)
2m.G = r.c? (4.6.9)

The condition governing the equilibrium of the universe, from (4.6.9) and
(4.6.4) we get
m.R
Mr,

=1 (4.6.10)
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Where M and R are the mass and radius of the universe respectively. The
mass of the universe (M = 2.2 x 10°g) and the radius (R = 1.6 x 10%cm).
According to generalized general relativity (GGR) there is a short range

repulsive gravitational force beside long range attractive gravity force

given by [1]:
c, -
Ps = ?e re(11)
GM
YL = _7(12)
G -~ GM
P =9t =7 € TC_T
1 _r
Q== [cle Te — GM] (4.6.13)

. . . r
For small radius r or strictly speaking small-—:
c

_r r
e Te=1—— (4.6.14)
TC
Hence
_1 [ . GM| (4.6.15)
Q= " C1 Clr 6.
To secure finite self-energye at smallr,, one requires
c1=GM (4.6.16)
Thus the star self-energy is given by
Cq GM
p=——=—— (4.6.17)
TC TC‘

Since the star is a particle at rest thus the minimization of E requires (see

equation (4.6.2), (4.6.4) and (4.6.17))

o c?

QY= _T_C = —? (4618)
For photon (v = ¢) thus one gets
C2



From equation (4.6.17) and (4.6.18)

GM c?
Q== T =—5 (4.6.20)
Thus the critical radius is given by
2GM
=3 (4.6.21)

(This is the black hole radius)

Since r. should be small as shown by equation (4.6.14), thus requires

2GM
r.<1l , 5 <1

C2
M<— 4.6.22
2G ( )

Thus there is a critical mass

C2

- 4.6.23

Above it the particle rest mass energy cannot be formed form potential.

We see from equation (4) that the present radius of the universe should be

26M
Ry =~ 2 ~10%8cm (4.6.24)

Which conforms to observations.Consider a star as consisting of photons
gas, such that the critical radius is related to the wave number according to

the relation

p = myc = hk = ,  k=— (4.6.25)

e e

For oscillating string the energy takes the form

hc
E, =myc* =— (4.6.26)
TC
Hence
_ (4.6.27)
T, = — 6.



The photon which obeys quantum laws equations (4.6.19) and (4.6.1) gives
2
E = 2’;10‘31 = 2m,c? (4.6.28)

This conforms to the fact that photons can produce particle pairs.

Newton’s law of potential gives

E, =U(r) = —G 122 (4.6.29)
Gravity force is also given by
F=-g22 T 4.6.30
-t (4.6.30)
If
mp=m;=mc
Thus (4.6.26) and (4.6.29) given
Gm? h
Eo=- e ¢ (4.6.31)
¢ Te T,
Therefore
hc = Gm? (4.6.32)
Hence
m, = (?) (4.6.33)
he (4.6.34)
me = (?) ~22x107°g

(Equivalent Planck’s mass)
Which matches the proposed value. The same equation applies to Planck’s

length, namely
_ GpMp

p=

~107*3cm (4.6.35)

C2
(Planck’s length)At distances smaller than this scale the gravitational
interaction should be stronger than the quantum effects [2].Also the critical

distance r. is equal
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hoo Ghy'?
po=— = (—3) ~1.6 x 10~3cm (4.6.36)
me¢c C
One can calculate the critical density o. of the material when the particles
are considered as a hollow sphere surrounded by thin layer or membrane.

In this case the surface density is given by

m, h )

o= 7, m., = T‘C_C, A= 47'[T'C (4637)
—(h)(l)— i (4.6.38)

o= r.c)\4nr?)  4mr? o
_ (4.6.39)

me = 6.

Where

o= % <67 x105g cm™2 (4.6.40)

2~ . 6.

Thus the critical density satisfies
m, o7 1/2
o =—=\|—
© 2 G3h

oc.=4mo ~ 8.4 x 109, cm ™2 (4.6.41)

According to this model the universe began at a time and specific place, at

Where

the critical point (7., tc), where all fundamental forces are unified into a
single force.
The Planck time is thus given by
fo=te_ (G_h)% (l) _ (G_h)l/z ~ 54X 107 s (4.6.42)
© c3) \c c5 ' e
(Equivalent Planck’s time)

The value speed of light c at the critical point(r,, t,.).

T,
c=—~3x%x10"0m.s1 (4.6.43)

c
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Began creation of the universe at the critical point (r. , tc), and show the
fundamental constants such as (&, ¢, ¢G) known values, since that time and
keep as it is without any change, the structure of the our universe is
sensitive to precise degree to less change in these fundamental constants.
The status of the universe at different stages is shown to be described in
terms of the constants (f, ¢, ¢) only. This masterly organization of the
universe is the result for precise tuning arbitrator. The acceleration was

great, which is equal to [3]:

(o
ac=Rc=— (4.6.44)
C

Where R. critical curvature (the maximal acceleration occurred at Planck’s
time). From a purely dimensional argument one can constant a quantum
acceleration from the set of fundamental constants (f, ¢, ) to be valid at
Planck’s time, and according to our hypothesis, an analogous acceleration
of the form
1/2

a, = % - :_Zz - (2—;) " 5.7 x 1053 cm. 572 (4.6.45)
Getting limited value to a larger curvature or maximal acceleration in the
relation (4.6.43) resolved the problem singular behavior. And the matching
bending dimensions to pry acceleration are consistent with the principles
of general relativity. Conform to the critical value of the acceleration a. in
this relation with the researches results [4].This acceleration on
unwaveringc constants, and associated critical point (t.). The existence of
this greatest acceleration confirms the occurrence of stretch accelerator of
the universe at the beginning of time [5]. The acceleration declining at
critical value a. generates the force to attract at the beginning of time, when
the universe takes its way to expansion, and this explains why the presence
of the cosmic force of the overall attraction.

The critical force F. as follows
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4
c
E. =m.a, = — ~ 1.25 x 10*° dyne (4.6.46)

hc®

E.=m.?= (T) ~ 10 GeV (4.6.47)

4.7 Equilibrium of Stars within the Framework of
Generalized Special Relativity Theory
Consider first the Generalized Special Relativity GSR energy E

equilibrium condition by minimizing E w.r.t. [79]

-1/2
2¢ 29 v?
E = myc? (1 +?) <1 +?—C—2> (4.7.1)
GM
Q= —T,mo =M (472)
vZ m2v2 2 2
_ __P p (4.7.3)

c2 m2c?2 m2c?2 M2c?
For simplicity consider the average momentum p is equal to the maximum

momentum p, where

b= Pr
V2
Thus
1
N\3
P = Pr =A(V) = An,
Where

Therefor, with the aid of equation (4.7.2), (4.7.4), equation (4.7.1) reads

312 i_
3h
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1/2

2MG 2MG  pf
= = 2 - - -
E =E; = Mc (1 . )(1 . MZCZ> (4.7.5)

The radius » which makes the energy E minimum is given when

ar, __ Me(GE)  me(1-75) (-5 GF)
dr - aMG  pp? \1/? + MG ppz \3/2
(1 - _rO B Mzcz) (1 Ty Mzcz)

e (215) (1 24— 22— (a2) (3 )

=0
(1 _2MG _ pg? )3/2
r M c
M?2c?G Lo AMG  pp® \ 0 (4.756)
72 tat r M2c2) o
This is satisfied when
aMG _ Pf
— =1 (4.7.7)
Thus the minimum radius is given by
4M3C%G
Where
= (3n3)1/3 anl/3 = A(—) = (—) h 4.7.9
pr = 313 hin - 7)) T (4.7.9)
The equilibrium takes place when r is non negative, i.e when
pF2 > M2c?2
pr> Mc (4.7.10)
The critical mass is given by
p
M, = 7f (4.7.11)

Thus for star to be at equilibrium one requires
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> M
c

M.>M (4.7.12)
M< M,

Thus the maximum mass for stable star is

1/3

Pr_ (3712)% (N)

M. = —
¢ ¢ C

- (4.7.13)

This condition resembles Chandrasekhar limit for stable white dwarf. 1.e.
the star mass need to be less than the critical value in equation (4.7.11).
The equilibrium condition can also be found by using generalized special

relativity energy momentum relation

Joo E? - PZCZ = m%f—A(goo)z

E? = (goo)'p?c? + goo mc* (4.7.14)
One can rewrite equation (4.7.14) to be
E = (a1—azp?)"/? (4.7.15)
Where
@1 = Goomoc” = (1 - ZTA:ZG) mget , a; = (goo)~'c?
a;p* = a,cos*0 (4.7.16)
E= pF(al — a,c0s%6)'/2dp (17)

a
—dp = /a—l sinfde (4.7.18)
2

’a
_ —cos2ont/2| — | 2L ) g 4.7.19
E 1/a::lf(l cos*0) 2 sin@ de ( )

a
= Ja, —\/a:l fsin28d9 (4.7.20)



c0s20 = cos?0 — sin’0 = 1 — 2sin%0

_ 1
sin?6 = > (1 —cos26)

(4.7.21)
0 Va, a; ( SinZQ)
2 a, 2
. , a,
sin26 = 2sinfBcos@ , cosl = P p
1
a 1/2
sinf = (1 — cos?0)'/? = (1 ——zpz)
a,
a1 az _ a’2 [
E=a /a—z ’a—lpp(l — azp3)** + cos™! a—lPF -3
a T
= Ja;ps(1 — azpf)*/? + cos™* a—ipF —3 (4.7.22)
Where
A> = 2 = gaolcz = 9502
3 a;  goomgc* mgc?
1 1/2
2MG\2 2 c? 4
E= (1  rc? ) pr|l— = 2MG\2 + cos™ - ZMG
m(%c4 (1 R ) m062 (1 T re? )
T
_- (4.7.23)

2
It is clear from equation (4.7.23) that stability requires £ to be real. This

can be satisfied when
2MG
rc?

rc?> 2MG

1—
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r> =2
The critical radius is given by
2MG
Te=— (4.7.24)
c

Thus the radius should be greater than the black hole radius. Also

2 C2
1— Pr ——>0
2.4(1 _
moc (1 rcz)

2MG\?
méc* (1 - ) > p c?

Thus

2MG c
(1 _ ) >+ Pr
rc? myc?

c
rc? —2MG > i( Pr z)rcz (4.7.25)
myc

C
(1 1 br Z)rcz > 2MG
mgC

2MGm,
r>
(moc? + prc)

(4.7.26)

Thus the critical radius is given by
~ 2MmyG
~ (mpc? + PrC)

(4.7.27)

e

The equilibrium mass also satisfies

c
2MG > —rc?+ ( Pr 2) rc?
mMyC
rc? re
M o< 4 Pr
2G n

Hence the critical maximum mass is given by

(4.7.28)
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2

rc DrYC
-+ 4.7.29
Mc 26 — m, ( )
The equilibrium condition can also be found by minimizingE, where
-1/2
2¢ 20 v?
E = mc? = myc? (1 + ?) (1 t == ?) (4.7.30)

Assuming the mass to be equal to the rest mass, and the potential to be the

Newtonian, one gets

GM
me = M , ¢ =—— (4.7.31)
Therefore
£ =Mc2 (1 ZGM) 26M _ ey 4732
- e Rc? Rc? 2 (4.7.32)
For small ¢ and velocity v compared to speed of light c, i.e
M <1 2 <1
R " c?
One gets
£y 2(1 ZGM) 1+GM+1172
- Me Rc? Rc?2 = 2c?
g = (yez _ 26M*\ (L GM  1v2
-\ R Rc? ' 2¢?
E M 2+GM2+1M ) 26M?*  2G*M3® GM?*v?
T TR Y T R T TR2c2 T TRe? (4.7.33)
The mass which make the energy minimum for constant radius is given by
_2GM 5 (-2G 1. 2(4 _ 2GM\ (26
dE (1 2) Mc (Rcz) + 2 Mc (1 Rcz) (Rcz) (4734)
dﬁ4 _26M vz 26M  v? 26M  v2\3/2
s (1)
Rc2 Rc?2 c2 Rc c
Neglecting the kinetic term yields
MG 2MG MG  2M?G?
dE — (C _T)(l B Rcz) +T_ R2¢2
= =0 (4.7.35)
dM oM 1v2\3/2
(15t 35)
Rc 2¢c

This requires
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2MG 4MG 8M?*G* MG ZMZGZ_

2

“ 7R R TRz TR T R
, SMG  6M?G?
c— + =
R R2¢?
66> 56 )
RZCZM —?M‘FC =0
5 —b ++Vb?% — 4ac
ax“+bx+c=0, X =
2a
5G 56\%  24G2c?
_?i\/(?) T T R2c2 _RZC2 5G G?
M= 1262 S22\ R T R?
R2c2
R?%c? /G Rc?
=—(=)G5+1)=—o(5+1
M 1262(}?)( 1) 12(;( t1)
1Rc?> 1Rc?

= ——, —— 4.7.36
M 2 G 3G ( )
For stars one have two forces, pressure force which counter balance the

gravity force, thus

_NKT _1mv? 4737
TV T3V (4.7.37)
Thus the pressure force is given by
2 mv?(4mr?) mup?
Fp=PA=3—/ = (4.7.38)
23 r
3
The gravity force is given by
GmM
=" (4.7.39)
At equilibrium the two forces counter balances themselves thus
E, =F
mv? GmM GmM
= ) mv? = (4.7.40)
r r r

If particles are considered as strings with v representing max speed. Thus

the average value is given by
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U, , _ mu
V, = — , Mmv; =——
a ‘\/E a 2
Thus
mv3 1
mv; = zm = —mv?
One thus gets
1, GmM _
va =—= me
Hence
v2=2¢
Hence
2
Mmyc? (1 +C—(f) , 2¢
E= T2 = MoC (1+—2)
2¢p—v?2 Cc
(1 + c? )
But
. _ GM
Mo =M ="
For attractive force
F= M( ) ZGM)
= C R
dE ) 2GM —2G
(-2 (50 o
aM R R
GM
4C;M _ 2
B Rc?
T AG
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(4.7.43)

(4.7.44)

(4.7.45)

(4.7.46)

(4.7.47)

(4.7.48)

(4.7.49)

(4.7.50)



In the works done by many authors the incorporation of the effect of
fields on physical quantities is proved to be in agreement with many
experimental observations that cannot be explained within the frame
work of special relativity (80,81,82,84,85). These attempts ,specially the
so called GSR, reduced to SR in the absence of fields, thus share with
SRall its successes (86,87,88,89,90).Despite these remarkable successes
, these models suffers from beying weakly linked with the
electromagnetic theory (91,92,93,94,95).This needs a transformation
that accounts for electromagnetic theory. This is quite natural as far as the
fact that the Lorentz transformation originated from the electromagnetic
theory. (96, 97, 98, 99,100)
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Chapter five

Lorentz Transformation on the Basis of Maxwell’s
Equation

5.1 Introduction:

Lorentz transformation (LT) is of the corner stones of SR. usually LT
Is used on space time relations. It ere one tries to return back to ME to

derive GSR relations.

5.2 Lorentz Transformation and electromagnetic Filed:

The Lorentz force in frame S is given by in the frame
F=e(E+vXxB) (5.2.1)
In the frame S’ it is given by
F'=e(E'"+vXxB') (5.2.2)

Assume that e is constant and the electromagnetic force transforms from

frame S to frame S’ as
eE' = ey(E +v XB) (5.2.3)

If one assumes that the charge is at rest in frame S’, thus no magnetic field
is exerted therefore the force in S’ is given by (assume the electric field in
the Z direction)

E, =y(E, +vB)) (5.2.4)
If in contrary, the charge is at rest in S, hence:
F =eE,
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And
F' =e(E, —vB;) (5.2.5)

Using Maxwell’s equations

VXE = 9B (5.2.6)
- at ks
i 7k
d 0d 0
VXE=|— — —
dx Jdy 0z
E. E, E,

=% T T &:27)
The j component is given by
_ aa’;z N aaiz __ aa’iy (5.2.8)
Let
E, = Eyeitkr—w0)
B, = Bye'kr=t) (5.2.9)
k.r=kyx+kyy+k,z
ky=k, =k, =k
0E,
— = ik.E, (5.2.10)
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B ,
7 = —la)By

Sub (5.2.10) and (5.2.11) in (5.2.8) yields

—IkE, = +iwB,
k 2nE E
B,=——E,=— Z = _Z—
W AQ2nf) Af
E,
By == —?
E;

B! =
Y C

Sub (5.2.12) in (5.2.4) and (5.2.5) thus
v v
E; :y(Ez_zEz) :V(l __)Ez

C

Ez=y(E;+§EZ’)=y(1+§)E;

Therefore
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5.3 Generalized special relativity Faraday Electromagnetic
Lorentz Transformation:
Consider a particle moving with acceleration a, the velocity is thus given

by

axt ¢t
vV=vytat =vg—=—

+ v, (5.3.1)
X X

Where

V = potential = Fx = max

¢ = potential per unit mass (5.3.2)
%4

=—=ax (5.3.3)
m

Sub in (5.2.15) and assuming the relation hold for all physical system

1
Y= T (5.3.4)
v2\2
(1-2)
1
Yy = T (5.3.4)
(3t v Y
(1-(&+2)
For photon
x=ct (5.3.5)
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For no potential

vE\2
Cc?
Which is the ordinary Lorentz transformation coefficient

Assume again that the relation

1

2] 2

Vzll—c—z

For particle in a field causing constant acceleration a
V=vy—at
X = vot — —at?
2

But

Where

90

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)

(5.3.12)



v, 1S the mean velocity which is given by

Vo + v
Vn =

Replacing v by v, in (5.3.11) one gets

1

2

vm
V=[1—C—2

Using the relation

v =vi —2ax = v§ — 2¢

Thus
vE = v+ 2¢
Vo =+ V2 +2¢
Incorporating (5.3.16) in (5.3.14) and (5.3.15) one gets
_1
2
_ 4 v+ v?+ 2¢ :
V= 2c?
When no filed exists
¢ =0
Thus
_1
v 2
Yy = [1 )

Which is again the ordinary Lorentz transformation coefficient

From (5.3.11)
91
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(5.3.14)

(5.3.15)

(5.3.16)

(5.3.17)
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ax
v=v0_at:v0__t
X

Thus

Vg = <v+%t)

Therefore equation (5.3.16) rends

Vo + v ¢
v, = =v+—t
m 2 2x

Using (5.3.21) in equation (5.3.17) given

Yy = [1 — <v +%t)2]_§

Assuming this relation is general. For pulse of light

x =ct
2_1
¢ 2
v+ 5=t
2ct
=11 -
4 c
2_1
2
v+2£C
=11
4 C
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(5.3.20)

(5.3.21)



5.4 Displacement Current Lorentz transformations:

Consider the magnetic field generated by displacement current

VxH—aD— ok (5.4.1)
9t St o
But
B =uH (5.4.2)
! VXB = oF (5.2.3)
" =¢ 3 2.
Vx B 0E
X B = ue—
T
i j  k
d d o0 0E
- = | =yps— 52.4
ax oy az| Mot (5.24)
B, B, B,
d d ~  QE, 4
[aBy - an]k ,USE]{
By _ Boei(k.r—a)t)
EZ _ Eoei(k.r—wt)
B,
W = lkBy (525)
J0E,
atz —iwE,
1
HE="2
ikB, = —iucwE, (5.2.6)
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) 1 /2nfA
By = —,USE EZ = C_2<7> (527)
1 c
=-S5 (fDE, = -3k,
E,
By == —?
E,
B, = —— (5.2.8)
c
Sub these relations in (5.2.4) and (5.2.5) given
v v
E, = (EZ - ZEz) =y (1 - E) E, (5.2.9)
v v
E, = (E +ZEZ) =y (1 +E) E; (5.2.10)

The term y can be found by using relations (5.2.10) and (5.2.9) to get
_2(1_-" = v
E,=v2(1 C)—y(1+C)EZ

Hence

v?\ 2
Yy = <1 — ;) (5.4.11)

Which is the ordinary SR transformation coefficient when the space is
permeated with field the space is deformed [ ]. Thus
c*dr® = CZQOO(Z)dtZ - gxx(z)dxz

= c?goo(1)dt? — gy, (1)dx?
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Thus

¢2(900(2) = goo(1))dt? = [gxx(2) — gux (1)]dx?

[c2dgooldt? = [dg,,]dx? (5.4.12)
But
Grx = —Go0
Thus
dgxx = 9os dGoo (5.4.13)

Inserting (5.4.13) in (5.4.12) gives
c?gé,dt? = dx? (5.4.14)
Hence the velocity is gives by

dx 20

V== Cgoo =€ (1 + C—2> (5.4.15)

Consider a particle having initial velocity v, initial potentialg,, final

velocity v and final potentialg; .

According to equation (5.4.15), one gets

vo=c(1+ ZCLZO)
v=c (1 + ZCL}) (5.4.16)
Hence
v = vy = 2 [y — o] =
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Thus the average mean velocity is given by

2
v+ v, 77"‘77_7(]5
)
Uy =V —% (5.4.18)

y = (1 - vl) i (5.4.19)

(5.4.20)

It is very interesting to note that when no field exist equation (5.4.20)

becomes

1

v 2
y=[1-- (5.4.21)

Which is the ordinary SR transformation coefficient.
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5.5 Lorentz Transformation:

In a curved space time according to Einstein hypothesis the space-time

interval is invariant i.e.

c2dt? = c?gyodt? — gy dx? (5.5.1)
With
Xg =1ict x4 =Xx

In a Newtonian Limit for static isotropic metric, the Schwarzschild solution

suggests that

9xx (@) = _.90_01 (5.5.2)

Consider now two arbitrary points 1 and 2 in 4-dimensional space-time,
such that

dt; =dt, =dt dx; =dx, =dx
Thus according to equation (5.5.1)
c?[900(2) = Goo(D]dt? = [gx(2) — Gur(1)]dx?
c?(dgoo)dt? = (dgyy)dx? (5.5.3)

But from equation (5.4.13)

dgxx = 9064900
Therefore equation (5.5.3) becomes

c2gi,dt? = dx?
Hence

dx = cgyodt (5.5.4)
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Thus the velocity is gives by

dx
V= i o0 (5.5.5)

But from equation (5.5.4) ¢ to be independent of ¢

X = CZopo f dt =cgyot (5.5.6)

A direct substitution of (5.5.5) in (5.5.6) gives
x = vt (5.5.7)

It is well known that in a weak field Limit

Joo = <1 + ZC_Z)) (5.5.8)

Thus according to equation (5.5.8) and (5.5.5)

v, — V1 = ¢[go0(2) — goo (D]

2 2
— c[%—% (5.5.9)

By choosing v, to stand for the initial velocity v,and vto stand for the final

velocityv, and defining

$=¢2— (5.5.10)
vV ="v,+ ? (5.5.11)

A direct insertion of (5.5.11) in (5.5.7) yields

X = (vo + ?) t (5.5.12)
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Thus for a frame S’ moving with initial velocity v, in a field ¢, the

displacement [ is given by
2¢
L= (v +22). (5513)

When one assumes that the origin of the frames S and S’ coincide at
t=t'=0

Thus one gets the following Lorentz transformation

x=yx'+L)=y (x’ + (vo + ?) t’) (5.5.14)
x'=y(x—L)=vy (x + (vo + ?) t) (5.5.15)

If a source of light emit a photon at (t =t = 0) when the two origins of

S and S’ coincide. Then afteratimetinSandt’ in S’
x =ct x'=ct’ (5.5.16)

A direct substitution of (5.5.16) in (5.5.14) and (5.5.15) gives

ct=y[c+(vo+?>]t’

t=y [1 + (? + Zc—f)] £ (5.5.17)
ct’ =y[c— (vo +2C—(f)]t
¢ = y[l - (?“ch_f)] ¢ (5.5.18)

Inserting (5.5.18) in (5.5.17) yields
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e (o2

This indicates that
1
(5.5.19)

To express y in terms of the instantaneous velocity v, one uses the

relation
v?: = v+ 2¢
Thus
v: =v?—-2¢ (5.520)
Therefore
! (5.5.21)

Yy = >
v2—2¢  2¢
\/“( T+c—z)

When no field exists

Which is the ordinary SR transformation coefficient.
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5.6 Discussion:

The SR Lorentz transformation can be found by using the
electromagnetic force relation for a charged electron moving in an
electromagnetic field, as shown by equations (5.2.2), (5.2.3), (5.2.4), and
(5.2.5).

Using Maxwell equations, concerning generation of electric field by
variable magnetic field, one gets a relation between Ycomponent of the
magnetic field and Z component of electric field in equation (5.2.12).
Using all above relations the Einstein SR coefficient y is shown to be
typical to that of SR.

Coefficient y for particles moving in a field is found by using ordinary
relation between velocity, acceleration and potential per unit mass [see
equations (5.3.1 to 5.3.8). fortunately this relation reduces to that of SR in
the absence of afield, as equation (5.3.9) indicate replacing the velocity v
with the average velocity v,, in SR Einstein coefficient in (5.3.10), one gets
y in terms of v,,,. Again using the relations between velocity and potential
per unit mass, one gets two different expressions for y depending on the
time and time free relation of v and v,[see equations (5.3.19), (5.3.26)] .
fortunately the two expressions reduces to that of SR, as shown by
equations (5.3.20) and (5.3.27).

Section (5.4) deals with another Lorentz transformation based on Maxwell
equation which shows how time varying electric field generates magnetic

field as shown by equation (5.4.1).

According to equations (5.4.5) the electromagnetic wave is a travelling
wave in the x-direction, with a magnetic field vibrating in the y-direction

and the electric field is vibrating in the Z-direction.
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According to this version by and E, are related according to equation
(5.4.7). using the electromagnetic force relations (5.2.4) and (5.2.5), one
gets relations in equations (5.4.9) and (5.4.10) which relates E, to E,.
These two relations are used to derive Einstein coefficienty, which is

strikingly the same as that of SR.

To find y for any field, one uses the invariance of the interval to get an
expression which relates the initial velocity v, to the final velocity v[see
equation (5.4.17)]. This equation is the Einstein counter part of the

Newton one which is given by
v=vy,—at (5.6.1)

But (5.4.17) which reflects space curvature which is written as

V=vy— ? (5.6.2)
But
2
(142
Thus the velocity time evolution is described by time metric as
V=vy+ goo— 1 (5.6.3)

One can find (5.6.1) a doping an approximation which assumes that

2¢

By assuming dtto be very small equation (5.5.1) gives

2¢1> =c+ ﬂ (5.6.5)

dx=c<1+—2
c c

When
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vV=vy ¢ =0 (5.6.6)

Thus
Vg =cC+ % (5.6.7)
Hence
v =1+ <¢1 _ ¢0> = v, + ¢ (5.6.8)
c c
But
¢ = ax (5.6.9)
Thus (5.6.8) becomes
ax
vV =v,+ = (5.6.10)
For a photon
x =ct (5.6.11)
Thus
v=v,+at (5.6.12)

Which is the ordinary Newton second Low.

By replacing v by the mean velocity v, in (5.6.12). then using equations
(5.4.18) and (5.4.19), one gets y for any field ¢.

To incorporate the effect of the field one can also use a relation between
field potential per unit mass and the time metric g, to derive anew Lorentz
transformation coefficienty. According to the expression for interval

(5.5.1) a useful relation for v and L in terms of ¢p were found in equations
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(5.5.11) and (5.5.13). These were used to express x in terms of x’ and vice
versa [see (5.5.14) and (5.5.15). then a field dependent relation for y are
found in (5.5.21) this expression fortunately reduced to that of SR in the

absence of field.

5.7 Conclusion:

The expression of the electric and magnetic force on the electrons
beside the expression of the displacement current is used to derive special
relativistic and generalized special relativistic Lorentz transformation
which can successfully describe a wide variety of physical phenomena in

the presence and absence of fields.

5.8 outlook:
This research can be extended to be applied for quantum field theory, it cn

also be applied to drive new relativistic quantum equations.

The experimental verification can also be done by analyzing the
information about the space and astronomical object observed by

electromagnetic waves or laser beam.
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