Dedication

To: Mother.

and Father.

and my, beloved

family.

TO:

the pure spirit of the teacher: Khaled Abdel-Aziz.

We will not forget and to live in us forever.

To those who shared my way

my friends.

Acknowledgments

Grapple with the characters and overcome feelings of words and their tongues to provide thanks and recognition to all who helped me to complete this research and humble thanks to the beginning and backwards to praise the owner of my entire Lord in glory

And then to set an example of science and perseverance, my mentor:

Dr. Farouk Idris Habbani

And the Ministry of Energy and Mining represented by:

Mr. Bilal Suleiman Ganim

Mr. Abd albaset Mohammed El-faki

And to the National Electricity Corporation represented by:

Mr. Abas Abd alrasoul

Sudan Atomic Energy Commission, represented by the General Director:

Prof. Mohammed Ahmed Hassan Altaib

And to the staff

At my University:

For providing me a place to study

To all of you many thanks and deep gratitude

Abstract

Energy is the prime mover in all development processes required by the States, and ways to provide and access is a concern for the whole world, whether it was in the major industrialized countries or developing countries.

The process of sustainable development requires proper planning of energy supply from various sources optimally, which take into account the efficiency of energy production and distribution and rational use in different aspects, taking into account the conservation of the environment in particular.

This includes research on sex chapters. In the first chapter we review the role of nuclear energy in sustainable development in an attempt to clarify the importance played by it environmentally and economically, as we review the number of countries that fought in this area in an attempt to describe the extent of benefit which can be accessed from the various aspects of development. This raises the level of individuals, who work to build a new generation of development and keep working to solve the existing problems such as environmental pollution, which works to reduce the level to live in a healthy environment.

In chapter two, the essence of nuclear energy and ways to get it was explained, by with a focus on nuclear fission, and the best ways to get it and benefit from it. As the computer plays a key role in the conceptualization of the amount of gain and loss, operating and maintaining nuclear facilities so some of the basics used in modeling computing was addressed, with an explanation of the relations of the physical underpinnings, and some of the ways of computing used in reactors, such as calculating the cross sections of the interactions and determining the amount of energy obtained with an indication of the concepts of physics that underlie the computer

operations, Also types of nuclear reactors were given from several different areas, with an emphasis on research reactors and power reactors.

The thesis explains the various types of nuclear power reactors that are available. Those reactors widely vary in their technical design, performance, and safety features, fuel used and site conditions. In addition to that the financing requirements vary from one vendor to the other. Further, the licensing requirements of the vendor's country vary from one country to the other. These variations make it necessary to survey the market properly to find out the best nuclear power plant type that is suitable for Sudan. The work will be carried out by the NEPIO, the implementing organization, with the aid of appropriate consultants.

In Chapter Three a background about Sudan, is given with an explanation of the development efforts in the country, and a statement about its quest for its first nuclear power reactor to produce electricity.

Chapter four talks about the software in the plans of electricity generation followed by the National Electricity Corporation of Sudan.

Chapter five talks about the results and discussion.

In Chapter Six a conclusion and recommendations are given.

ملخص البحث

تعتبر الطاقة المحرك الاساسي في كل عمليات التنمية التي تحتاجها الدول، وطرق توفيرها والحصول عليها يعتبر هاجس للعالم ككل سواء إذا كان في الدول الصناعية الكبري او الدول النامية.حيث إن عملية التنمية المستدامة تتطلب التخطيط السليم لإمداد الطاقة من مصادرها المختلفة بالصورة المثلي التي تراعي كفاءة إنتاج وتوزيع الطاقة وترشيد استخدامها في الأوجه المختلفة مع الأخذ في الإعتبار المحافظة علي البيئة بصفة خاصة. يشتمل هذا البحث علي ستة أبواب،في الباب الأول نستعرض دور الطاقة النووية في التنمية المستدامة

يشنمل هذا البحث علي سنة ابواب، في الباب الأول نستغرص دور الطاقة النووية في النمية المستدامة في محاولة لتوضيح الأهمية التي تلعبها بيئياً و إقتصادياً ،كما نستعرض عدد الدول التي خاضت في هذا المجال في محاولة لبيان مدي الإستفادة التي من الممكن الوصول إليها من نواحي تنموية وثقافية ترفع من مستوي الأفراد مما يعمل علي بناء جيل جديد يواكب التطور ويعمل علي حل المشاكل القائمة مثل التلوث البيئي الذي يعمل علي تقليل نسب العيش بصورة صحية سليمة.

في الباب الثاني، توضيح لماهية الطاقة النووية وطرق الحصول عليها مع التركيز علي الإنشطار النووي وأفضل السبل للحصول عليه والإستفادة منه. وبما أن الحاسوب يلعب دوراً أساسياً في وضع تصور لمقدار الكسب والخسارة و التشغيل والمحافظة علي المنشأت النووية لذلك قمت بتوضيح بعض الأساسيات المتبعة في وضع النماذج الحوسبية مع توضيح للعلاقات الفيزيائية التي تقوم عليها، مع توضيح لبعض الطرق الحوسبية المتبعة في المفاعلات بحساب مقطع التفاعل وقياس كمية الطاقة المتحصل عليها مع بيان للمفاهيم الفيزيائية التي تقوم عليها العمليات الحاسوبية. كما يوضح انواع المفاعلات النووية من عدة نواحي مختلفة، مع التركيز علي المفاعلات البحثية ومفاعلات الطاقة.

ويوضح البحث ان مفاعلات الطاقة النووية المتوفرة تختلف اختلافاً كبيراً في تصميمها التقني- والادائي ومزايا السلامة، وانواع الوقود المستخدم وظروف الموقع. بالإضافة ألي إختلاف إحتباجات التمويل وشروط الترخيص حيث تختلف من بلد إلي آخر. هذه الإختلافات تجعل من الضروري دراسة السوق بتمعن لمعرفة أفضل محطة للطاقة النووية تصلح لتوليد الطاقة الكهربائية في السودان.

الباب الثالث يتحدث عن السودان وتاريخه التنموي مع توضيح للجهود السودانية وبيان لسعيها للحصول علي أول مفاعل نووي لإنتاج الكهرباء من حيث معدلات الانتاج للكهرباء حاليا ونموذج للمقدار المتوقع الحصول عليه من المفاعل.

الباب الرابع يتحدث عن البرامج الحوسبية في خطط التوليد الكهربائي التي تتبعها الهيئة القومية للكهرباء السودانية.

الباب الخامس يتحدث عن النتائج المستخلصة من البحث والمناقشة.

الباب السادس عبارة عن عرض وتحليل وتوصيات لما سبق ذكره.

CONTENTS

		Page Number
i		Dedication
		Acknowledgments
ii		Abstract / English
iii		Abstract /Arabic
iv		Contents
vi		
xii		List of Figures
xix		List of Tables
xxi		List of Abbreviations
1	CHAPTER ONE	
2		Introduction

6	1.1 Preventing Catastrophic Climate Cl	nange
6	1.2 Sustainable development pri	nciple
7	1.3 The concept of sustainable develop	oment
7	1.4 Developing Energy Stra	tegies
,	CHAPTER TWO	
9	Nuclear	Power
10	2. Introd	uction
10	2.1 Classifications of Nuclear real	actors
	2.2 Nuclear Research Reactors	12
	2.2.1 Types of research reactors	13
	2.3 Nuclear Power Reactors	16
	2.4 Nuclear Fission	18
	2.5 Fission Fragments	19
	2.6 Nuclear Fuel Cycle 19	
	2.6.1 Fuel elements 22	
	2.6.2 Different secure scenarios are of the fuel supply 22	

2.6.3 Other options for sourcing nuclear fuel	22	
2.7 Uranium-235 as a reactor fuel		26
2.8 The IAEA offers a set of computer models	5	
and a methodology	26	
2.9 Evaluating Options for Long Term Energy		
Planning and Development	27	
2.10 Assessing Nuclear Energy Systems	33	
2.11 Neutronic Calculations	35	
2.12 Neutron (and Photon) Transport for Nucl	lear	
Reactors	36	
2.13 Characteristics of the Physical Data	41	
2.14 Three Typical Calculations	41	
2.15 Neutronic calculation line description	43	
2.16 Global Core Calculations	44	
2.17 Core Calculations	45	
2.17.1 WIMS-D4 Code and Cell Calculation	45	
2.17.1.1 Cell Calculations	45	
2.17.1.2 Unit Cell Geometry		47
2.18 Core calculation procedure	47	
2.19 General Neutronic Core Design Criteria	50	

2.20 Strategies in Reactor Core Analysis and				
Calculation of FEW-GROUP Constants	50			
2.21 Discretization of Energy (Multi group)	52			
2.22 Current Status of Monte Carlo	53			
2.22.1 Current research topics include		53		
2.22.2 Obtaining Pin-Cell Cross Sections	54			
2.22.3 Cell calc	55			
2.23 Six factor formula	56			
2.23.1 Heterogeneous cell	56			
2.23.2 Thermal utilization factor	57			
2.24 Obtaining the FEW-GROUP Constants From	n			
Assembly-LEVEL Calculations	57			
2.24.1 Assembly calc	57			
2.25 Full core calculation	62			
2.25.1 Core calc	64			
2.25.2 TR-2 Full core	66			
2.25.3 GT-MHR	68			
2.26 Few-group Constants for Full Core Calcula	tion	72		

2.27 Flux weighted cross sections	72		
2.28 Full Reactor Core Calculations	73		
2.29 Advanced Computational Capability for React	or	73	
2.30 Multiplication factor, optimum of moderation,			
main kinds of fission reactors	77		
2.31 Uranium Enrichment Technologies	78		
2.32 Types of Nuclear Reactors	79		
2.33 Generation Nuclear Plant TYPES		84	
2.33.1 Generation Nuclear I Plant TYPES			
I. 1950's to 1960's. 90			
2.33.2 Generation Nuclear II Plant TYPES	92		
II. 1970's to 1990's	92		
2.33.3 Generation Nuclear Plant TYPES			
III. IN Current Operation & Development	94		
2.33.4 Generation Nuclear Plant TYPES 100			
IV. For Deployment from 2030 Onwards	100		
2.34 Trends in Nuclear Power Technology Developn	nent	107	

CHAPTER THREE

Sudan Preparations for the Introduction of

Nuclear Power for Electricity Generatio	n 108	
3. Introduction	109	
3.2 System of Governance		110
3.3 Geography, General Topography and Clim	nate	
Of Sudan	112	
3.3.1 Climate	112	
3.3.2 Hydrology	114	
3.4 Geology, Tectonics and Seismology	115	
3.4.1 Background of Regional Geology and Te	ectonic	115
3.4.2 Regional Seismicity	116	
3.4.3 Tectonic and Structural Framework	117	
3.4.4 Lower-middle Proterozoic (2000-1200Ma	a)	
Structural Framework	118	
3.4.5 Late Proterozoic Structural Developmen	ıt	118
3.5 Industrial Facilities	120	
3.6 Economic Development of Sudan	121	
3.6.1 Economic Development of Sudan	121	
3.6.2 Country Development plants	122	
3.6.3 Macroeconomic Situation	122	
3.7 Electricity Related Facilities		124

3.7.1 Generation		124	
3.7.2 Grid	125		
3.7.3 Mechanisms for Local Fina	ncing		125
3.7.4 Review of Existing Utility Financia	al System 125		
3.7.4.1 Electricity market composition	in Sudan	125	
3.7.4.2 Electricity Tariff System	125		
3.7.4.3 Capabilities of Generation	Cost Collection	126	
3.7.4.4 Accounting System of National	Electricity		
Corporation	126		
3.8 Energy Profile	127		
3.8.1Sudan Indigenous Energy Resource			
3.8.2 Primary Energy Resource Consun	nption by		
Type of fuel	130		
3.9 The Power sector	130		
3.9.1 Existing Generation Plans	130		
3.9.2 Isolated off-grid system	130		
3.9.3 Demand Forecast	130		
3.9.4 Electricity Rate	132		
3.10 Demography and Land-use	132		
3.10.1 Demography	132		

3.10.2 Land-use 133				
3.11 Biodiversity	133			
3.12 General Environmental effects		134		
3.13 Economic Situation	134			
3.14 The main points in the Sudan strategy of NPP		136		
3.14.1 Introduction	136			
3.14.2 Energy Plan		137		
3.14.3 Electric Grid		138		
3.15 Targets Pitching		142		
3.16 Demand Forecast Driver		143		
3.17 Electrification Rate	146			
3.17.1 Generation Capacity expansion		147		
3.17.2 Implementation of planned electrification				
rate and generation expansion	149			
3.18 Nuclear Fuel Cycle	150			
3.19 Nuclear Power Plant Ownership				
3.20 Site Selection and Supporting Facilities				
3.21 Legislative Framework		152		
3.22 Regulatory Framework 153				
3.23 Human Resources Development				

	3.24 Public Consultation	156	
	3.25 Radioactive Waste	157	
	3.26 Emergency Planning	159	
	3.27 Stakeholders Involvement	160	
	3.28 Security and Physical Protection	160	
	3.29 Time line of activities	161	
	3.29.1 Activities	161	
	3.29.2 Time line of activities	162	
CHA	APTER FOUR		
	Generation Planning Modeling	164	
	4. Introduction	165	
	4.1 Approach to modeling - the ASPLAN model		165
	4.2 Demand forecast	165	
	4.3 Cost production simulation		165
	4.4 Generation plan optimization	166	
	4.5 Data requirements for simulation	166	
	4.6 Screening Curve Analysis	167	
	4.7 Relative economics of thermal candidate options		170
	4.8 Relative economics of hydroelectric plant	172	
	4.9 Hydroelectric sequencing	173	

CHAPTER FIVE

	Results and Discussion		175
	5.1 Results		176
	5.2 Discussion		177
CH	APTER SIX		
	Conclusion and Recommendations		178
	6.1 Conclusions	179	
	6.2 Recommendations		180
	References		192

List of Figures

LIST OF FIGURES

1.1 Shows Greenhouse Gas Emissions from Electricity Production 3	
1.2 Shows world nuclear reactors map	5
1.3 Shows nuclear electricity generations in various countries	
1.4 Shows Concepts of Sustainable Development	7
1.5 Shows IAEA energy planning tools	8
2.1 Shows the basic principle of nuclear reactor12	
2.2 Shows the main components of a nuclear power reactor16	
2.3 Shows a typical nuclear power plant layout18	
2.4 Shows the Chine reaction	18
2.5a Shows the fission process	19
2.5b Shows the fission process	19
2.6 Shows location for storage of spent nuclear fuel in the USA20	
2.7 Shows the nuclear fuel cycle	2:
2.8 Shows nuclear power fuel cycle	23

2.9 Sho	ws advan	ced LWR n	uclear f	uel cycles				23	
2.10 Sh	ows steps	to U fuel						24	
2.11 Sh	ows the fr	ront end of	f the nuc	clear fuel o	cycle				24
2.12 Sh	ows spen	t nuclear f	uel					25	
2.13 Sh	ows spen	t nuclear f	uel repr	ocessing				2	!5
2.14 Sh	ows the n	nain inputs	and ou	tputs of M	AED				28
2.15 Sh	ows the n	nain inputs	and ou	tputs of M	ESSGE				29
2.16 Sh	ows the n	nain inputs	and ou	tputs of W	/ASP				30
2.17 Sh	ows the n	nain inputs	and ou	tputs of FI	NPLAN			3	1
2.18 32	Shows	the	main	inputs	and	outpu	its of	f SIM	IPACTS
2.19 34		Shov	VS		INPRO			metho	dology
2.20 35	Shows	the	arch	itecture	of	the	enerç	gy s	system
2.21 a 38	Shows	typical m	nicrosco	pic cross	sections	for a	a heavy	nuclei	(U ²³⁵)
2.21 b	Shows Do _l	ppler – Bro	adening	of cross s	section				38
2.22 Sh	ows well-i	isolated re	sonance	es				39	
2.23 Sh	ows typic	al cross se	ction fo	r a light nu	ucleus (¹H)	ı			39
2.24 Sh	ows captu	ure and sca	attering	cross sect	ion data fo	or U ²³⁵ a	and U ²³⁸		40
2 25a S	hows low	F- elastic	scatterir	าต				40	

2.25b Shows low E- elastic scattering	41	
2.26 Shows assembly calculations II.	42	
2.27 Shows single neutron history	43	
2.28 Shows assemble calculation	43	
2.29 Shows The cross sections input	44	
2.30 a Shows configuration of ETRR-2 core	46	
2.30 b Shows Configuration of ET-RR-2 Core	46	
2.31 Shows Unit Cell Geometry		47
2.32 Shows standard fuel element models	47	
2.33 Shows guide plate border model		48
2.34 Shows chimney zone and beryllium /aluminum reflector model		48
2.35 Shows cobalt irradiation device	49	
2.36 Shows cell, explicit, homogeneous core model	49	
2.37 Shows calculation line scheme	51	
2.38 Shows equivalent cell	54	
2.39 Shows schermatic of cross section and parameters of the pin cell 54		
2.40 Shows radial cross section of assembly		55
2.41 Shows a heterogeneous cell 56		
2.42 Shows hetro and homo-assemblies 57		
2.43 Shows MTR slab geometry model 58		

2.44 Shows MTR multiple slab 58 2.45 Shows one dimensional slab 59 2.46 Shows TRIGA LEU 20-30 fuel in square lattice 59 2.47 Shows multi-cell lattice 60 2.48 Shows hexagonal geometry 60 2.49 Shows multi-cell 5×5 array with Aluminum shroud 61 2.50 Shows super-cell model for H2O cross sections 61 2.51 Shows Super-cell model for ORNL's advanced neutron source design 2.52 Shows super-cell model of LEU involute plate core design 62 2.53 Shows flow chart of Keno-Origen coupling 64 2.54 Shows computational tools to accurately model neutronic behavior 64 xiv 2.55 Shows the computational model of the GT-MHR 65 2.56 Shows full core Keno output image 66 2.57a Shows 1st stage of calculation models of stepwise investigation of GT-MHR reactor 69

2.57b Shows 2st

stage of calculation of stepwise investigation of GT-MHR reactor 69
2.58a Shows Standard PWR core model with fresh, once- and twice-burned
fuel 70
2.58b Shows Location of MoX fuel assemblies with respect to original layout, 32%
MOX loading 70
2.59 Shows MCNP plot of MONJU core 71
2.60 Shows Buildup/depletion chain for elements 90-94 71
2.61 Shows homogenized cross sections 72
2.62 Shows the proposed GT-SCALE package is shown on the following flow
chart 75
2.63 Shows fission spectrum of U235
76
2.64 Shows fission spectrum Pu239
76
2.65 Shows mass yield curve for the thermal neutron fission of U235
77
2.66 Shows the world Uranium resource 78
2.67 Shows World nuclear power generation by reactor type 79
2.67 Shows several reactor designs 82
2.68 a Shows various Types Generation I reactors 86

2.68 b Shows	various Types	87				
2.68 c Shows	88					
2.68 d Shows various Types Generation I reactors				89		
2.68 e 90	Shows	various	Types	Generation	I	reactors
2.68 f Shows	91					
2.68 g Shows various Types Generation I reactors				92		
2.69 a Shows various Types Generation III reactors				97		
2.69 b Shows various Types Generation III reactors				98		
2.69 c Shows various Types Generation III reactors				99		
2.69 d Shows various Types Generation III reactors				100		
2.70 a shows some type of Generation IV reactors				10	2	
XV						

2.70 b shows some type of Generation IV reactors	103
2.70 c shows some type of Generation IV reactors	104
2.70 d shows some type of Generation IV reactors	105
2.70 e shows some type of Generation IV reactors	106
2.71 Shows nuclear power plant evolutions 107	
3.1 Shows map of Sudan 111	

- 3.2 Shows ecological zones in Sudan 113
- 3.3 Shows Gross domestic product by sector (M US \$) (2000-2006) 121
- 3.4 Shows Sectoral Share in GDP (2000-2006) 121
- 3.5 Shows the existing and projected national grid transmission system 139
- 3.6 Shows Annual load duration curves for years 2002 and 2005 142
- 3.7 Shows aggregated GDP annual growth rate in the year 1992 and 2005. 143
- 3.8 Shows Aggregated GDP Annual Growth Rates 144
- 3.9 Shows GDP forecast for the key sectors 144
- 3.10 Shows Forecast Number of Households (in thousands) 145
- 3.11 Shows Peak demand forecasts from 2006 up to 2030 146
- 3.12 Shows Planned electrification rate for Sudan up to the year 2030 146
- 3.13 Shows Base case scenario without the nuclear option 147
- 3.13 Shows Base case scenario without the nuclear option 148
- 3.15 Shows Base case scenario with the nuclear option 148
- 3.16 Shows High case scenario with the nuclear option 149
- 3.17 Shows the generation expansion and the estimated time for the implementation149
- 4.1 Shows Screening curves for candidate steam plant 169
- 4.2 Shows Screening curves for candidate CCGT plant 169
- 4.3 Shows Screening curves for candidate GT plant 170

- 4.4 Shows Comparative screening curves for candidate thermal plant options 171
- 4.5 Shows Comparative screening curves for candidate thermal plant options 171
- 4.6 Shows Comparative screening curves for thermal and hydroelectric plant 172

xvi

List of Tables

LIST OF TABLES

- 2.1 Table 1 Research reactor with High-enriched Uranium (HEU) 15
- 2.2 Table 2 Nuclear power plants in commercial operation 17
- 2.3 Table 3 The distribution of the energy released in fission of U235 30
- 2.4 Table 4 Density of zirconium clad moderator 55
- 2.5 Table 5 Nuclear Power Reactor Types: Typical Characteristics 82

2.6 Table 6 Nuclear Power and Reactors worldwide 84 3.1 Table 7 Sudan GDP by Sector at 1981/82 Constant Price (MSDG) 3.2 Table 8 Share of Economic Sector in the Gross Domestic Product (%) 125 3.3 Table 9 Electricity current market share in Sudan 126 3.4Table 10 the Current Tariff by Each Sector in Sudan 127 3.5 Table 11 Characterization of Sudanese Oil Fields 128 3.6 Table 12 Technical Hydropower Potential from River Nile and Tributaries 129 3.7 Table 13 Structure of the Installed/Available Electricity Generation System in Sudan 129 3.8 Table 14 Primary energy resource consumption by energy form (1990-2006)131 3.9 Table 15 Electrification rate, peak demand and installed capacities in the years 2006 and 2009. 132 3.10 Table 16 Area in square kilometers of major Sudan's ecosystems 3.11 Table 17 Sudan GDP by Economic Sector at 1981/82 Constant Prices (M SDG) 136 3.12 Table 18 The Share of Economic Sector in the Gross Domestic Product (%) 136 3.13 Table 19 Rated and available capacities of existing on-grid power plants 141 3.14 Table 20 On- grid generation configuration by the end of 2009 142

142

3.15 Table 21 Isolated power systems in Sudan (2006)

- 3.16 Table 22 the electrification rate, peak demand and installed capacities 143
 3.17 Table 23 the programmed additions in electrification rates and generation
 capacities 144
 3.18 Table 24 Estimated population forecast for selected years 149
 3.19 Table 25 Time Line of activities 164
- 3.19 Table 25 Time Line of activities 164 xvii
- 4.1 Table 26 Earliest commissioning dates for thermal power plants in Sudan 169
- 4.2 Table 27 Earliest commissioning dates for hydroelectric power plants in Sudan 175

xviii

List of Abbreviations

List of Abbreviations

International Atomic Energy Agency IAEA

International Energy Agency IEA

Organization for Economic Cooperation and development OECD

Nuclear energy System NES

International Thermonuclear Experimental Reactor IIER

Low – enriched Uranium LEU

High - enriched Uranium HEU

Nuclear Bower NB

Pressurized Water Reactor PWR

Veda-Vodyanoi Energetichesky Reactor VVER

Boiling Water Reactor BWR

Pressurized Heavy Water Reactor PHWR

Canadian Deuterium Uranium CANDU

Fast Neutron Reactor FNR

Gas Cooled Reactors GCRs

Advanced Gas Cooled Reactors AGR

Light Water Graphite Reactor LWGR

Fast Breeder Reactor FBR

Global Nuclear Energy Partnership GNEP

High Temperature gas cooled Reactors HTGRs

Steam Generating Heavy Water Moderated Reactor SGHWR

Heavy Water Moderated Boiling Light Water Cooled Reactor HWLWR

High Temperature Gas Cooled Graphite Moderated Reactor HTGR

Heavy Water Moderated Gas Cooled Reactor HWGCR

Liquid Metal Fast Breeder Reactor LMFBR

Pebble Bed Modular Reactor PBMR

Gas Turbine Modular Helium Reactor GT-MHR

Economic and Simplified Boiling Water Reactor ESBWR

Atomic Energy of Canada LTD AECL

Supercritical Water Cooled Reactor SWCR

xix

Molten Salt Breeder Reactor MSBR or MSR

Gas Cooled Fast Reactor GCFR

Lead Cooled Fast Reactor LCFR or LFR

Sodium Cooled Fast Reactor SCFR or SFR

Very High Temperature Gas Cooled Reactor VHTR

Geological Research Association of Sudan GRAS

Sudan Atomic Energy Commission SAEC

Nuclear Power Programme NPP

Nuclear Regulatory Body NRB

Nuclear Energy System Assessment NESA

Model for Analysis of Energy Demand MAED

Model of Energy Supply Strategy Alternative and Their General

Environmental Impacts MESSAGE

Wien Automatic Systematic System Planning Package WASP

Financial Analysis of Electric Sector Expansion plans FINPLAN

Simplified Approach for Estimating Impacts of Electricity

Generation SIMPACTS

Indicators for sustainable Energy Development ISED

International Project on Innovative Nuclear Reactors and Fuel

cycle. INPRO

Generation IV International Forum GIF

Monte Carlo MC

Burnable poison BP

Burnable poison Compact BPC

Gross Domestic Product GDP

Comprehensive Peace Agreement CPA

Multiplate Slab Geometry MTR

Oak Ridge National Laboratory ORNL

Millennium Development Goals MDGs

Atomic Vapor Laser Isotope Separation AVLIS or SILVA

Molecular Laser Isotope Separation MLIS or MOLIS

Electromagnetic Isotope Separation EMIS

Chemical Reactor by Isotope Selective Laser Activation CRISLA

XX

High level waste HLW

Low and intermediate level waste LILW

Very low level waste VLLW

Exempted waste EW

Low and Intermediate Level and short-lived waste LILW-SL

Radioactive waste management RWM

Design basis threat DBT