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Abstract 

This study is an applied analytical one that helps in solving problems of the 

limit cycle and critical points for Planar systems. 

We introduced the classification of stable and unstable critical points of 

linear and nonlinear systems. The study found that the linear systems do 

not have a limit cycle. The study dealt with isolated limit cycle with its 

different patterns in an analytical and applied manner in the differential 

Planar systems of the second degree. The study investigated the problems 

related to the system limit cycle from Liénard type, and the researcher cited 

many examples and applications in this field.  

We discussed the problems of the limit cycle from the system other than 

Liénard and the method of converting it into the system from type of 

Liénard by applying some different techniques such as some nonlinear 

integrations, methods of comparison and some conversion techniques, and 

we supported this field with appropriate examples and applications. 

 From these we concluded the application of some functions, equations and 

theories such as Dulac, Vander pol and Poincare, respectively. And that 

some of the systems do not have limit cycle, some of them have a single 

and stable limit cycle (Liénard), and some of them have many limit points. 
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Chapter one 

Introduction 

Since 1940s, many mathematical models from physics, engineering, chemistry, 

biology, economics, etc., have been displayed as autonomous planar systems. 

 A wide class of autonomous planar systems can be transformed into Liénard-type 

systems. concerning the maximum number of limit cycles of all quadratic differential 

systems (the second part of Hilbert's 16th problem), the study of the qualitative 

behavior of the solutions of autonomous planar systems of Liénard-type has become 

more and more important and has attracted the attention of many pure and 

applied mathematicians. 

The purpose of this thesis is to develop the qualitative theory of autonomous 

planar systems of Liénard-type. More explicitly, we give conditions for global 

asymptotic stability, existence of local centers and global centers, existence of 

oscillatory solutions, existence and nonexistence of periodic solutions, and also 

existence and uniqueness of limit cycles for some autonomous planar systems of 

generalized Liénard-type. Moreover, in case of having uniqueness of limit cycles, 

the hyperbolicity of the limit cycle is relevant. 

We apply different techniques for different types of systems. The main tools used are 

some nonlinear integral inequalities, methods of comparison and some transformation 

techniques .  

Furthermore, some powerful methods for Liénard systems . 

We apply the criteria for existence, uniqueness and hyperbolicity of limit cycles, 

existence of centers, existence of oscillatory solutions, and global asymptotic stability 

of an uniqueness positive equilibrium systems found in the literature.  

So conjectured that the number of limit cycles is at most two for these systems. 

We show the number of periodic orbits are construct an example with at least two 

limit cycles.  
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the nontrivial periodic coexistence does happen even invasion from either of the other 

species in this case, new amenable conditions are given on the coefficients under 

which the system has no nontrivial periodic coexistence. 

 These conditions imply that the positive equilibrium, if it exists, is 

globally asymptotically stable.  

Have found that orbits cannot cross, can be attracted to (fixed points), etc. One other 

possibility is limit cycle. 

ODE is 'well behaved' i.e. all derivatives exist and are continuous – 

Therefore, all orbits smoothly follow neighbours in phase space. 

One other possibility only: 

limit cycle  

we have defined the stability of limit cycles for a system of equations 

𝑑𝑥

𝑑𝑡
= 𝑝(𝑥, 𝑦),       

𝑑𝑦

𝑑𝑡
=  𝑄(𝑥, 𝑦)       (1.1) 

In applications only a stable limit cycle has practical significance, since every 

spiral sufficiently close to a limit cycle can approximately represent an oscillation 

of constant amplitude independent of initial conditions; and an unstable limit cycle 

similar to an unstable equilibrium position in mechanics, which in reality does not 

exist; hence, how to distinguish stability of limit cycles becomes a very important 

problem. 

First of all, if the existence of a limit cycle is determined from the fixed point of a 

point transformation, then no matter whether P and Q on the right sides of (1.1) are 

continuous or not, we can, under suitable conditions, distinguish whether the limit 

cycle is stable, provided that the point transformation is continuous. 

 This is the often-used Konigs theorem in the theory of nonlinear oscillations. 

1.1:Definition . Let  𝑠 = 𝑓(𝑠) be a continuous point transformation which 

carries some line. segment l into itself, and let s* be a fixed point of this 

transformation, i.e., 𝑠∗ = f(s∗). 

 If there exists a small neighborhood of 𝑠∗ 

(on l) such that for any point s inside it the sequence of points 



3 

 

𝑠1 = 𝑓(𝑠),    𝑠2 = 𝑓(𝑠1), … , = 𝑠𝑛+1 = 𝑓(𝑠𝑛), … 

always converges to 𝑠∗, then 𝑠∗ is stable under this point transformation. 

Conversely, if in any small neighborhood of 𝑠∗ we can find a point 8 such 

that the above sequence of points do not converge to 𝑠∗, then 𝑠∗ is called 

unstable.  

1.2:linear and nonlinear system: 

This study deals with linear and nonlinear system of ordinary differential equations. 

Many physical quantities, such as a vehicle’s velocity, or electrical signals, have an 

upper bound. 

When that upper bound is reached, linearity is lost . 

The differential equations. 

 Governing some systems, such as some thermal, fluidic, or biological systems, are 

nonlinear in nature. 

 It is therefore advantageous to consider the nonlinearities directly 

while analyzing and designing controllers for such systems. Mechanical systems may 

be designed with backlash – this is so a very small signal will produce no output (for 

example , in gearboxes). In addition, many mechanical systems are subject to 

nonlinear friction.  

Relays, which are part of many practical control systems, are inherently nonlinear.  

Linear systems must verify two properties, superposition and homogeneity. 

The principle of superposition states that for two different inputs, x and y, in the 

domain of the function f, 

                                                     f(x + y) = f(x) + f(y)    . 

The property of homogeneity states that for a given input, x, in the domain of the 

function f, and for any real number k, 

                                                                        f (kx) = kf(x) 

Any function that does not satisfy superposition and homogeneity is nonlinear. It is 

worth noting that there is no unifying characteristic of nonlinear systems, except for 

not satisfying the two above-mentioned properties. 
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1.3: The dynamical system: 

a dynamical system has a state determined by a collection of real numbers, or more  

generally by a set of points in an appropriate state space. 

 Small changes in the state of the system correspond to small changes in the numbers. 

The evolution rule of the dynamical system is a fixed rule that describes what future 

states follow from the current state.  

The rule is deterministic for a given time interval only one future state follows from 

the current state. 

 The mathematical models used to describe the swinging of a clock pendulum, the 

flow of water in a pipe, or the number of fish each spring in a take are examples of 

dynamical systems. 

 1.3.1:Definition: Autonomous System.  [2] 

 An autonomous differential equation is a system of ordinary differential 

equations which does not depend on the independent variable it is of the form: 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐹(𝑥(𝑡))                (1.2) 

X(t) = F(x(t)),      

where x takes values in n-dimensional Euclidean space and t is usually time. 

It is distinguished from systems of differential equations of the form 

𝑑

𝑑𝑡
  x(t) = G(x(t), t),          (1.3) 

in which the law governing the rate of motion of a particle depends not only on the 

particle’s location, but also on time; such systems are not autonomous. 

Autonomous systems are closely related to dynamical systems. 
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 Any autonomous system can be transformed into a dynamical system and, using very 

weak assumptions, a dynamical system can be transformed into an autonomous 

systems. 

1.3.2:In the following we consider the general linear system  [2], 

 𝑥̇      = Ax                                              (1.4) 

Where x  ∈ 𝑅𝑛, A is an n x n matrix and  𝑥̇  =
𝑑𝑥

𝑑𝑡
 

It is shown that the solution of the linear system (2) together with the 

initial condition 𝑥(0) = 𝑥0 is given by 

x(t) = 𝑒𝐴𝑡𝑥0 

where 𝑒𝐴𝑡 is an n x n matrix function defined by its Taylor series.  

A good portion of this chapter is concerned with the computation of the matrix 𝑒𝐴𝑡 in 

terms of the eigenvalues and eigenvectors of the square matrix A. 
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Chapter two 

The Theory of stability and Classification of singular points 

2.1.1: stability 

If we find a fixed point, or more generally an invariant set, of a dynamical system we 

want to know what happens to the system under small perturbations away from the 

invariant set. 

 We also want to know which invariant sets will be approached at large times.  

If in some sense the solution stays “nearby”, or the set is approached after long times, 

then we call the set stable . [21], 

There are several differing definitions of stability. We will consider stability of whole 

invariant sets (and not just of points in those sets).  

This shortens the discussion. 

Consider an invariant set A in a general (autonomous) dynamical system described 

by a flow ∅𝑡. (This could be a fixed point, periodic orbit, torus etc.)  

We need a definition of points near the set A. 

2.1.2: Definition  (Neighbourhood of a set A). 

 For 𝛿 > 0 the neighbourhood  𝑁𝛿(𝐴 ) = {x : ∃ y ∈  A s.t. |x − y| < δ} 

We also need to define the concept of a flow trajectory ’tending to’ A. 

2.1.3: Definition (flow tending to A): 

The flow ∅𝑡(𝑥)  → A iff min y∈  A, |∅𝑡(𝑥) −y| → 0 as t → ∞ 

2.1.4: Definition (Lyapunov stability): 

  The set A is Lyapunov stable if ∀ ∈> 0 , ∃ 𝛿 > 0 s.t. x ∈ 𝑁𝛿(𝐴 ) ⇒∅𝑡 (x) ∈ 𝑁𝛿(𝐴 ) 

∀ t ≥ 0. (“start near, stay near”). 

2.1.5:Definition (Quasi-asymptotic stability): 

 The set A is quasi-asymptotically stable if ∃ δ > 0 s.t.x ∈ 𝑁𝛿 (A) ⇒  ∅𝑡(𝑥)→ A 

 as t → ∞. (“get arbitrarily close eventually”). 

2.1.6: Definition (Asymptotic stability): 

    The set A is asymptotically stable if it is both Lyapunov stable and 

quasi-asymptotically stable. 
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We discuss the stability of the equilibrium point of the non linear system 

𝑥′ = 𝑓(𝑥),                (2.1) 

The stability of any hyperbolic equilibrium point  𝑥0 𝑜𝑓 (2.1) is determined by the 

signs of the real part of the eigenvalues of the matrix 𝐷𝑓(𝑥).  

Ahyperbolic equilibrium point  𝑥0 is asymptotically stable iff 

𝐷𝑒(𝜆𝑗) < 0 𝑓𝑜𝑟  𝑗 = 1, … , 𝑛  𝑖𝑓𝑓 𝑥0 

is a sink and hyperbolic equilibrium point  𝑥0 is saddle. The stability of non-

hyperbolic equilibrium point is typically more difficult to determine. 

 2.1.7: Definition: 

let ∅𝑡 denoted the flow of the differential equation(2.1) defined for all t∈R . 

 An equilibrium point  𝑥0 of (2.1) is stable if for all 𝜀 > 0 there exists a 𝛿 > 0 such 

that for all 𝑥 ∈ 𝑁𝛿(𝑥0) and 𝑡 ≥ 0 we have 

∅𝑡𝑥 ∈ 𝑁𝜀(𝑥0),              (2.2) 

The equilibrium point  𝑥0 is unstable if it is not stable.  

And equilibrium point  𝑥0 is asymptotically stable if it is stable and if there exists 

𝑎 𝛿 > 0 such that for all 𝑥 ∈ 𝜆𝛿(𝑥0) we have  

lim
𝑡→∞

∅𝑡(𝑥) = 𝑥0,            (2.3) 

Not that the above limit being satisfied for all 𝑥  in some neighborhood of 𝑥0 does not 

imply that 𝑥0 is stable. 

2.1.8:Theorem: 

If 𝑥0 is a sink of the nonlinear system (2.1) 

and 𝑅𝑒(𝜆𝑗) < −𝛼 < 0 for all of the eigenvalues 𝜆𝑗 of the matrix 𝐷𝑓(𝑥0) then given 

𝜀 > 0 there exists 𝑎 𝛿 > 0 such that for all 𝑥 ∈ 𝑁𝛿(𝑥0) the flow ∅(𝑡)(𝑥) of (2.1)  

satisfies  

|∅𝑡(𝑥) − 𝑥0| ≤ 𝜀𝑒−𝛼𝑡 ,                (2.4) 

For all  𝑡 ≥ 0 

Since hyperbolic equilibrium point are either as asymptotically stable or unstable the 

only time that an asymptotically equilibrium point  𝑥0 of (2.1) can be stable but not 
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asymptotically stable is when 𝐷𝑓(𝑥0) has a zero eigen value or a pair of complex – 

conjugate. 

Pure imaginary eigenvalues 𝜆 = ±𝑖𝑏. 

Follows from the next theorem, proved, that other eigenvalues 𝜆𝑗𝑜𝑓 𝐷𝑓(𝑥0)must 

satisfy 𝑅𝑒(𝜆𝑗) ≤ 0 if 𝑥0 stable.  

2.1.9: Theorem 

If 𝑥0 is a stable equilibrium point  𝑥0 of (2.1) an eigenvalue of  𝐷𝑓(𝑥0) has positive 

real part. 

We see that stable equilibrium points which are not asymptotically stable can only 

occur at non hyperbolic equilibrium points.  

But the question as to where anon hyperbolic equilibrium point is stable – 

asymptotically    unstable is a delicate question. 

 2.1.10: Definition: 

If 𝑓𝜖𝑐1(𝐸), 𝑣𝜖𝑐1(𝐸) and ∅𝑡 is the flow of the differential equation of (2.4) them for 

𝑥 ∈ 𝐸 the derivative of the function 𝑣(𝑥) along the solution ∅𝑡(𝑥). 

𝑣′(𝑥)
𝑑

𝑑𝑡
𝑣[∅𝑡(𝑥)]]

𝑡=0
= 𝐷𝑣(𝑥)𝑓(𝑥),                    (2.5) 

The last equality follows from the chain rule if  𝑣′(𝑥) is negative in E then 𝑉(𝑥) 

decreases along the solution ∅(𝑡)(𝑥0) througt 𝑥0𝜖𝐸 𝑎𝑡 𝑡 = 0 furthermore, in 

𝑅2 𝑖𝑓 𝑣′(𝑥) ≤ 0 with equality only at 𝑥 = 0 then for small positive c the family of 

curves 𝑢(𝑥) = 𝑐 constitutes a family of closed curves enclosing the origin  and the 

trajectories of (2.1)  

Cross these curves from their exterior to their interior with increasing t, the origin of 

(2.1) is asymptotically stable. A function 𝑉: 𝑅𝑛 → 𝑅 satisfying the hypothese of the 

next theorem is called a Liapunov function. 
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2.1.11: Theorem: 

Let E be an open subset of 𝑅𝑛 containing (𝑥0) suppose that 𝑓 ∈ 𝑐1(𝐸) and that 

𝑓(𝑥0) = 0. Suppose further that there exists areal valued 𝑣 ∈ 𝑐1(𝐸) satisfying 

𝑣(𝑥0) = 0 and 𝑣(𝑥) > 0  𝑖𝑓 𝑥 ≠ 𝑥0. Then: 

a. 𝑖𝑓 𝑣′(𝑥) ≤ 0 for all 𝑥 ∈ 𝐸, 𝑥0 is stable; 

b. 𝑖𝑓 𝑣′(𝑥) < 0 for all 𝑥 ∈ 𝐸 ~{𝑥0}, 𝑥0 is asymptotically stable ; 

c. 𝑖𝑓 𝑣′(𝑥) > 0 for all 𝑥 ∈ 𝐸 ~{𝑥0}, 𝑥0 is unstable; 

Proof: without loss of generality we shall assume that the equilibrium point 𝑥0 = 0 

Choose 𝜀 > 0 sufficiently small that the 𝑁𝜀(0) ⊂ 𝐸 and let 𝑀𝜀𝑏𝑒 the minimum of the 

continuous function 𝑉(𝑥) on the compact set 

𝑆𝜀{{𝑥𝜖𝑅𝑛||𝑥| = 𝜀}} 

2.1.12: Lyapunov functions: 

We can prove much about stability of a fixed point (which, for convenience, will 

be taken to be at the origin) if we can find a suitable positive function V of the 

independent variables that is zero at the origin and decreases monotonically under the 

flow ∅𝑡. Then under certain reasonable conditions we can show that V → 0 so that 

the appropriately defined distance from the origin of the solution similarly tends to 

zero. 

 This is a Lyapunov function, [26],  defined precisely by: 

2.1.13: Definition  (Lyapunov function): 

 Let E be a closed connected region of  containing the origin.  

A function V : Rn → R which is continuously differentiable except perhaps at 

the origin is a Lyapunov function for a flow ∅  if  

(i) V(0) = 0, 

(ii) V is positive definite (V(x) > 0 when 𝑥 ≠ 0), and if also 

(iii)  V(∅𝑡 (x)) ≤ V(x) ∀ x ∈  E (or equivalently if ˙V ≤ 0 on trajectories). 

Then we have the following theorems 

Theorem (Lyapunov’s first theorem) . 

Suppose that a dynamical system 𝑥̇ = f (x) has a fixed point at the origin. 
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 If a Lyapunov function exists, as defined above, then the origin is Lyapunov stable. 

[26], 

2.2: Equilibrium points: 

Equilibrium point of dynamical system generated by an autonomous system of 

ordinary differential equation is solution that does not change with time for example, 

each motion less pendulum position corresponds to at equilibrium of the 

corresponding equation of motion one is stable the other one is not, geometrically 

equilibrium are point systems phase space. 

More precisely the 𝑥′ = 𝑓(𝑥) has an equilibrium solution 𝑥(𝑡) = 𝑥 equilibrium are 

sometime called fixed points or steady states. 

Most mathematicians refer to equilibria as time independent solution of (O. D. Es) 

and to fixed point as time independent solution iterated maps. 

 𝑥(𝑡 + 1) = 𝑓[𝑥(𝑡)],               (2.6) 

The qualitative behavior of anon linear system new an equilibrium point can take one 

of the patterns we have seen with linear systems correspondingly the equilibrium 

points are classified as stable node, unstable node saddle, stable focus, unstable focus, 

center. 

 2.3:The fundamental existence – uniqueness theorem:  

We establish the fundamental existence – uniqueness theorem for nonlinear 

autonomous system of ordinary differential equations in system (2.1).  

Under the hypothesis that  
1

f C E  when E is an opens subset of 
nR . 

Picard's classical method of successive approximations is used to prove this theorem. 

The more modern approach based on the contraction mapping principle is relegated 

to the problems. [24],   

The method of successive  approximations not only allows us to establish the 

existence and uniqueness of the solution of the initial value problem associated with 

(2.1). 

But it also allows us to establish the continuity and differentiability of the solution 

with respect to initial  conditions and parameters.  
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2.3.1: Definition: 

Suppose that  f C E  there E is an open subset of 
nR  then ( )x t  is a solution of the 

differential equation (2.1) of an interval I if ( )x t is differential on I and if for all t I , 

( )x t E  and     
.

x t f x t and given  ,ox E x t is a solution of the initial value 

problem.  

𝑥̇ = 𝑓(𝑡) 

 o ox t x  

 an interval  I if  ,o ot I x t  is a solution of the differential equation (2.8) on the 

interval .  

In order to apply the method of successive approximations to establish the existence 

of a solution of (2.1) we need to define the concept of Lipchitz condition.  

2.3.2: Lipschtiz condition:  

Let 0m   be a constant and f the function define in domain D of the x y  plane a 

Lipschtiz condition is the inequality.  

   1 2 1 2, ,  f x y f x y m y y
,           (2.8)

 

assume hold for all  1,x y and  2,x y  in D the most common way to satisfy this 

conditions is to require the partial derivative  2,yf x y to be continuous. 

 2.3.3: Definition:  

Let E be an open subset of 
nR . A function : nf E R  is said to satisfy  a Lipschtiz 

condition E if there is appositive constant K such that for all ,x y E . 

   f x f y K x y  
,             (2.9)

 

The function f  is said to be locally Lipschtiz on E if  for each point ox E  there is 

an neighborhood of  , N o ox x E and a constant 0oK   such that for all 

 , ox y N x . 

    of x f y K x y    
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By an Neighborhood of a point n

ox R , we mean an open ball of positive radius 

. 

       n

o oN x x R x x
             (2.10) 

  2.3.4: Lemma: 

Let E be an open subset of 
nR  and let : nf E R . Then if  

1

,f C E f  is locally 

Lipschtiz on E.  

Proof : 

Since E is an open subset of 
nR , given 

ox E  there is an 0   such that   oN x E , 

let  
2

max
ox x

K Df x


 

 . 

The maximum of continuous function  Df x on the compact set 
2

ox x


  . Let 
oN

denote the 
2


-neighborhood of  

2

, o ox N x  then for ,  ox y N , set u y x  . 

It follows that   ox su N  for 0 1S  since 
oN  is a convex set. 

Define the functions  : 0,1 nf R  by    f x f x su  then by the chain rule.  

   F S Df x su u    

And therefore 

       1 0f y f x F F    

   
1 1

0 0

F s d s D f x su u d y     

From known:  

     
1

0

  f y f x D f x su ud s  

 
1

0

D f x su u d s   

K u K y x    
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And this proves the lemma. 

2.4: Picard's method of successive approximation: [36],   

 Is based on the fact that  x t is a solution of the initial value problem.  

  

   , , ,o o

d y
f t y y t y

d t
 

    (2.11)

 

Any solution to equation (1.5) also to be solution to 

      
0

, , 2.12

t

ot y f s t ds     

The successive approximations a real based on the integral equation (2.12) as 

follows.  

  , (2.13)ot y   

1, ,...o k   converges to some function  t that satisfies equation(2.12). 

2.4.1: Definition: 

A flow in 
2R  is a mapping 2 2:R R   such that:  

•   is continuous.  

•  ,0x x   for all 2x R . 

•     1 2 1 2, , ,   x t t x t t  

 2.4.2: Definition: 

Suppose that 
xI  is the max interval existence the trajectory (or orbit) through x is 

define as     , : xy x x t t I  , the positive semi orbit is defined as 

    , : 0   x x t t  the negative semi orbit is defined as     , : 0  x x t t . 

2.4.3: Definition: The positive limit set of point x  

is defined as     :thereexistsasequence such that ,nA x y t x t y    . 

The negative limit set of point x  is defined as  

    : ,nA x y t s x y    . 

In the phase plane, trajectory tend to critical a closed orbit, or infinity. 
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2.4.4:Theorem  [24], Let  𝛿= det A and 𝜏  = trace A and consider the linear system 

𝑥̇ = 𝐴𝑥                                  

i. If 𝛿 < 0 then (1.3) has a saddle at the origin. 

ii. If 𝛿 > 0 𝑎𝑛𝑑 𝜏2 − 4𝛿 ≥ 0 then (1.13) has a node at the origin; it is stable if  

𝜏< 0 and unstable if 𝜏> 0. 

iii. If 𝛿 > 0, 𝜏2 − 4𝛿 < 0𝑎𝑛𝑑 𝜏 ≠ 0 then (1.13) has a focus at the origin; it is 

stable if  𝜏 < 0 and unstable if 𝜏 > 0. 

iv. If 𝛿 > 0 𝑎𝑛𝑑 𝜏 = 0 then (1.13)has a center at the origin. 

Proof: The eigenvalues of the matrix A are given by 

𝜆 =
𝜏±√𝜏2−4𝛿

2
.  

Thus i. if 𝛿 < 0 there are two real eigenvalues of opposite sign. 

ii. If 𝛿 > 0 𝑎𝑛𝑑 𝜏2 − 4𝛿 ≥ 0 then there are two real eigenvalues of the 

same sign as 𝜏 ; 

iii. If 𝛿 > 0, 𝜏2 − 4𝛿 < 0𝑎𝑛𝑑 𝜏 ≠ 0 then there are two complex conjugate 

eigenvalues  𝜆 = a ± ib. 

iv. If   𝛿 > 0 𝑎𝑛𝑑 𝜏 = 0 then there are two pure imaginary complex 

conjugate eigenvalues.  

2.4.5:Definition[24], 

 A stable node or focus (i) is called a sink of the linear system and an unstable node 

or focus(i) is called a source of the linear system. 

We describe the phase plane of linear system, besides allowing us to visually observe 

the motion patters of linear system, this will also help the development of nonlinear 

system analysis in the next section, be case a nonlinear system behaves similarly to a 

linear system avowed each equilibrium point, the general form of a linear system 

(second-order) is:  

 

1 1 2

2 1 2(2.2)

x a x b x

x cx dx

 

   
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Leads to  

   1 1 1x a d x cb ad x     

Therefore we will simply consider the second-order linear system  

described by  

 

0 (2.14)x a x bx    

To obtain the phase portrait of this linear system, we first solve for the time history. 

 

 

1 2

1 2

1 2 1 2

1 2 1 2

r (2.15)

for (2.16)

h

h

hx t K k fo

hx t K k

e e

e e

 

 

  

  
 

 Where the constants 
1  and 

2  are the solution of the characteristic equation.  

  2

1 2 0S as b S S        

The roots 
1  and 

2 can be explicitly represented as  

 2

1 4 / 2a a b      

 2

2

4

2

a a b


  
  

For linear system described by 0x a x bx    

There is only one singular point  0b  namely the origin. However, the trajectories 

in the vicinity of this singularity point can display quite-different characteristics 

depending on the values off hand. The following cases can occur.  

1. 
1  and 

2  are both real and have the same sing.  

2. 
1  and 

2  are both real and have the opposite signs 

3. 
1  and 

2 are complex conjugates with real part 

4. 1  and 2 are complex conjugates with non zero real part.  

We discuss each of the above four cases.  

2.4.6: Stable or unstable Node [24], 

The first case corresponds to anode.  
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Anode can be stable or uunstable .If the eigenvalues are negative the singular point is 

called a stable order because both  x t  and  x t  converge to zero.  

If both eigenvalues are positive the singular point is called an unstable node because 

both  x t  and  x t diverge from zero exponentially. 

Since the eigenvalues are real there is no oscillation in the trajectories.  

2.4.7:Saddle point [24], 

The second case say (
1 0   and 

2 0  ) corresponds to a saddle point  the phase 

protract of the system has the interesting saddle. Because of the unstable pole 
2

almost all of the system trajectories diverge to infinity. The diverging line 

corresponds to inline conditions which make 2K  equal  zero. The converging straight 

line corresponds to initial condition which make 
1K  equal zero.  

2.4.8:Stable and unstable focus:[24], 

The third case corresponds to a focus a stable focus occurs when the real part of the 

Eigenvalues negative which implies that  x t  and  x t  both converge to zero. The 

system trajectories encircle the origin one or move times before converging to it 

unlike the situation for stable node. If the real part of the eigenvalues is positive then 

 x t  and  x t  both diverge to infinite, and the singular point is called an unstable 

focus.   

The trajectories corresponding to an unstable focus.  

2.4.9:Center point: [24], 

 The last case corresponds to a center point .  

The name comes from the fact that all trajectories are ellipses and the singularity 

point it the center of these ellipses. The phase portrait of the undammed mass-spring 

system be longs to this category.  

2.5: Classification of singular points of linear systems:[46], 

Recall that a point 𝑥0 is called ordinary if p (x) and Q(x) from the equation 

 𝑌" + 𝑃(𝑥)𝑦 ′ + 𝑄(𝑥)𝑦 = 0 are both analytic at 𝑥0. Apoint 𝑥0 which is not ordinary is 

called singular point. 
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In this portion we discuss the various phase portraits that are possible for the linear 

system. 

𝑥̇ = 𝐴𝑥                       

When  𝑥 ∈ 𝑅2 and 𝐴 𝑖𝑠 2 × 2 matrix  𝐴 = (
𝑎 𝑏
𝑐 𝑑

) 

𝑇 = 𝑎 + 𝑑  ,    𝐷 = 𝑎𝑑 − 𝑏𝑐  , 𝑃(𝜆) = 𝜆2 − 𝑇𝜆 + 𝐷 

Case A  

𝑇2 − 4𝐷 > 0                 

There are sub cases of case A 

1. 𝑖𝑓 𝐷 < 0, saddle solely  

2. 𝐷 > 0 there are four cases 

i. 𝑇 > 0 source 

ii. 𝑇 < 0 sink 

iii. 𝑇2 > 4𝐷 node 

iv. 𝑇2 < 4𝐷 spiral (focus) 

Border line case 

i. 𝑖𝑓 𝑇 = 0 𝑎𝑛𝑑 𝐷 > 0   center. 

ii. 𝑖𝑓 𝑇 ≠ 0 𝑎𝑛𝑑 𝑇2 > 4𝐷  saddle – node 

iii. 𝑖𝑓 𝑇 > 0 unstable  

iv. 𝑖𝑓 𝑇 <0 stable 

 

 



18 

 

2.5.1: Examples: 

 Determine the linear system 𝐴𝑥 = 𝑥 ′ has saddle – node, center at the origin and 

determine the stability of each node or focus. 

𝐴 = (
8 5

−10 −7
) , 𝐷 = −6 < 0  the system is saddle at the origin. 

𝐴 = (
−2 0
1 −1

) , 𝐷 = 2 > 0 , 𝑇 = −3 < 0 the system is node sink at the origin 

𝐴 = (
−10 −25

5 10
) , 𝐷 = 25 > 0 , 𝑇 = 0 

Center and counter clock wise direction of rotation. 

𝐴 = (
3 1
1 3

) , 𝐷 = 8 > 0 , 𝑇 = 6 > 0 

The system unstable node at the origin. 

Case A 

𝑇2 − 4𝐷 > 0 . gives the real distinct eigenvalues   

𝜆1  and  𝜆2 =  
𝑇±√𝑇2−4𝐷

2
 

Subcases of case A  

𝜆1 > 0 > 𝜆2, saddle𝜆1 ≥ 𝜆2 > 0 node Soule𝜆1 ≤ 𝜆2 < 0 𝑠𝑖𝑛𝑘 

Half line trajectories  half line trajectories half line trajectories 
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2.5.2: Examples: 

Solve the following linear system and draw the phase portrait 

1. 𝐴 = (
1 4
2 −1

) ,
, 𝜆1 = 3, 𝑣1 =

λ2 = −3 , 𝑣2 =

(
2
1

)

(
−1
1

)
 

𝐴 =

(
3 1
1 3

)
, 𝜆1 = 4 , 𝑣1 =
, 𝜆2 = 2, 𝑣2 =

(
1
1

)

(
−1
1

)
 

The system nodal – source 
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Case B 

𝑇2 − 4𝐷 < 0 , 𝜆 = 𝛼 + 𝛽𝑖 , 𝛼 =
𝑇

2
 

𝛽 =
√4𝐷 − 𝑇2

2
 

𝜆 complex number , eigenvector𝑣 = 𝑢 + 𝑖𝑤 complex and general solution 

𝑥(𝑡) = 𝑒𝛼𝑡[𝑐1(𝑢𝑐𝑜𝑠𝛽𝑡 − 𝑤𝑠𝑖𝑛𝛽𝑡) + (𝑢𝑐𝑜𝑠𝛽𝑡 + 𝑤𝑠𝑖𝑛𝛽𝑡)] 

Sub cases of B 

i. 𝛼 = 0, center, 𝑥(𝑡) periodic trajectories are closed curves 
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ii. 𝛼 > 0, spiral source, growing oscillations trajectories are spiral  

the direction of rotation, counter clockwise 

 

 

iii. 𝛼 < 0, spiral sink, decaying oscillations trajectories are ingoing spirals 

The direction of rotation clockwise 

 

 

 

 

 

 

 

2.5.3: Examples 

 Solve the initial value problem for 
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1.     𝐴 = (
4 −10
2 −4

) , 𝜆 = 2𝑖, 𝑣 = (
2 + 𝑖

1
) 

The matrix A has the complex eigenvalues and his center. 

 

2.     𝐴 = (
0.2 1
−1 0.2

) , 𝛼 = 0.2 > 0 spiral source  

𝜆 = 0.2 + 𝑖 ↔ 𝑣 = (
1
𝑖

) 

2.   𝐴 = (
0.2 1
−1 −0.2

) , 𝛼 = −0.2 < 0 spiral sink 

And 𝜆 = −0.2 + 𝑖 , 𝑣 = (
1
𝑖

) 
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Border ling case spiral-Node  

𝑇2 − 4𝐷 = 0,single eigenvalue 𝜆 =
𝑇

2
 

Generic case(𝐴 − 𝜆𝐼) ≠ 0, single eigenvector v 

(𝐴 − 𝜆𝐼)𝑤 = 𝑣,  

general solution 𝑥(𝑡) = 𝑐1𝑒𝜆𝑡 + 𝑐2𝑒𝜆𝑡(𝑤 + 𝑡𝑣) 

only two half line solutions on straight line generated by v 

𝑇 > 0 nodal - source 

Border line case [
𝑛𝑜𝑑𝑎𝑙 
𝑠𝑝𝑖𝑟𝑎𝑙

− 𝑠𝑜𝑢𝑟𝑐𝑒 
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𝑇 < 0 node border line case [
𝑛𝑜𝑑𝑖 

𝑠𝑝𝑖𝑟𝑎𝑙
𝑠𝑖𝑛𝑘 

 

 

 

 

Border line case saddle - node  

𝐷 = 0 , 𝑇 ≠ 0, eigenvalue  𝜆1 = 0 , 𝜆2 =  𝑇,let 𝑣1 , 𝑣2 be the eigenvectors 

general solution 𝑥(𝑡) = 𝑐1𝑣1 + 𝑐2𝑒𝜆2𝑣2 

Line of equilibrium points generated by 𝑣1infinitely many half line solution on 

straight lines parallel to line generated by 𝑣2 

𝑇 > 0 unstable saddle - node  
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border line case  [
𝑛𝑜𝑑𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒

𝑠𝑎𝑑𝑑𝑙𝑒
t  

 

 

𝑇 < 0  stable saddle - node  

border line case  [
𝑛𝑜𝑑𝑒𝑠𝑖𝑛𝑘 

𝑠𝑎𝑑𝑑𝑙𝑒
 

 

2.5.4: By using the theorem lets consider the following  linear system: 

𝑥̇ = 𝐴𝑥 

has a saddle, node, focus or center at the origin and determine 

the stability of each node or focus: 

i.                                        𝐴 = ⌊  
1 2
3 4

⌋
 

  , 𝑇 > 0   ,       𝐷 < 0   

the system is saddle at the origin. 

ii.                     𝐴 = ⌊
3 0
0 3

⌋
 

             ,      𝑇2 − 4𝐷 = 0 

The system single eigenvalue spiral ـــ  node and general solution 

𝑥(𝑡) = 𝑐1𝑒3𝑡 + 𝑐2𝑒3𝑡(𝑤 + 𝑡𝑣) 
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iii.                    𝐴 = ⌊
1 −1
2 3

⌋
 

    ,      𝑇2 − 4𝐷 < 0    , 𝛼 > 0     

the system focus (spiral source), 

𝜆 = 3 + 2𝑖 

general solution = 𝑥(𝑡) = 𝑒3𝑡[𝑐1(𝑢𝑐𝑜𝑠2𝑡 − 𝑤𝑠𝑖𝑛2𝑡) + (𝑢𝑐𝑜𝑠2𝑡 + 𝑤𝑠𝑖𝑛2𝑡)] 

2.6: Singular Points of nonlinear Systems [2], 

Consider a nonlinear system of differential equations: 

𝑥̇ = 𝐹(𝑥, 𝑦)                           

ẏ = G(x, y)                 (2.17) 

Where F and G are functions of two variables: x = x(t) and y = y(t); and such that F 

and G are not both linear functions of x and y. 

Unlike a linear system, a nonlinear system could have none, one, two, three, or any 

number of critical points. Like a linear system, however, the critical points are found 

by setting x′ = y′ = 0, and solve the resulting system 

𝐹(𝑥, 𝑦)   = 0                       

 (2.18)               𝐺(𝑥, 𝑦)  = 0             

Any and every solution of this system of algebraic equations is a critical 

point of the given system of differential equations. 

Since there might be multiple critical points present on the phase portrait, 

each trajectory could be influenced byrdr more than one critical point. 

 This results in a much more chaotic appearance of the phase portrait consequently, 

the type and stability of each critical point need to be determined locally (in a small 

neighborhood on the phase plane around the critical point in question) on a case-by-

case basis. Without detailed calculation, we could estimate (meaning, the result is not 

necessarily 100% accurate) the type and stability by a little bit of multi-variable 

calculus. 

We will approximate the behavior of the nearby trajectories using the linearization 

(i.e. the tangent approximations) of F and G about each critical point. 

 This converts the nonlinear system into a linear system whose phase 

portrait approximates the local behavior of the original nonlinear system 
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near the critical point. To start with the linearization of F and G (recall that such a 

linearization is just the three lowest order terms in the Taylor series expansion of 

each function) about the critical point (x, y) = (α, β) 

ẋ = F(x, y) = F(α, β) + Fx(α, β)(x − α)+Fy (α, β)(y − β) 

 ẏ = G(x, y) = G(α, β) + Gx(α, β)(x − α)+Gy (α, β)(y − β) 

 But since (α, β) is a critical point, so F(α, β) = 0 = G(α, β), the above 

Linearization become  

ẋ = Fx(α, β)(x − α)+Fy (α, β)(y − β) 

ẏ = Gx(α, β)(x − α)+Gy (α, β)(y − β) 

As before, the critical point could be translated to (0, 0) and still retains it 

type and stability, using the substitutions 𝜒 = (x − α) and 𝛾 = (y − β). After the 

translation, the approximated system becomes 

ẋ = Fx(α, β)χ+Fy (α, β)γ                 (2.19) 

ẏ = Gx(α, β)χ+Gy (α, β)γ, 

It is now a homogeneous linear system with a coefficient matrix 

A = [
𝐹𝑥(𝛼, 𝛽) 𝐹𝑦(𝛼, 𝛽)

𝐺𝑥(𝛼, 𝛽) 𝐺𝑦(α, β)
] 

That is, it is a matrix calculate by plugging in x = α and y = β into the matrix of first 

partial derivative 

J=[
𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦
] 

 

This matrix of first partial derivatives, J, is often called the Jacobian matrix. 

It just needs to be calculated once for each nonlinear system. For each 

critical point of the system, all we need to do is to compute the coefficient 

matrix of the linearized system about the given critical point 

(𝑥, 𝑦) = (α, β), 

and then use its eigenvalues to determine the (approximated) type and stability 
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2.6.1:Examples:  

             x′ = x − y 

y′ =x2 + y2 − 2,                       (2.20) 

The critical points are at (1, 1) and (−1, −1). The Jacobian matrix is 

J = [
1 −1

2𝑥 2𝑦
] 

At (1, 1), the linearized system has coefficient matrix: 

 

A=  [
1 −1
2 2

] 

The eigenvalues are 

 

𝑟 =
3 ± √7𝑖

2
 

 

 The critical point is an unstable spiral point. 

 

At (−1, −1), the linearized system has coefficient matrix 

A=  [
1 −1

−2 −2
] 

The eigenvalues are 

r = 
−1±√17

2
. 

The critical point is an unstable saddle point. 

The phase portrait is shown on the next . 

x′ = x – xy                                  

y′ = y + 2 xy ,                   (2.21) 

The critical points are at (0, 0) and (−1/2, 1). The Jacobian matrix is 

 

J = [
1 − 𝑦 −𝑥

2𝑦 1 + 2𝑥
] 
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At (0, 0), the linearized system has coefficient matrix: 

A = [
1 0
0 1

] 

There is a repeated eigenvalue r = 1. 

A linear system would normally have an unstable proper node (star point) here. 

 But as a nonlinear system it actually has an unstable node. (Didn’t I say that this 

approximation using linearization is not always 100% accurate?) 

At (−1/2, 1), the linearized system has coefficient matrix: 

A = [
0

1

2

2 0
] 

The eigenvalues are r = 1 and −1. Thus, the critical point is an 

unstable saddle point. 

The phase portrait is shown on the next . 

2.6.2: Find all the Singular points of nonlinear system and stability of each 

Singular point. 

1. x′ = xy + 3y                             

y′ = xy − 3x,                      (2.22) 

solution 

Critical points are (0, 0) and (−3, 3). (0, 0) is a stable center, and (−3, 3) 

is an unstable saddle point. 

2. x′ = 𝑥2 + 𝑦2 – 13                       

y′ = xy − 2x − 2y + 4,              (2.23) 

solution 

Critical points are (2, 3), (2, −3), (3, 2), and (−3, 2). (2, 3) is an unstable 

saddle point, (2, −3) is an unstable saddle point, (3, 2) is an unstable node, 

and (−3, 2) is an asymptotically stable node. 

 

5. x′ =𝑥2𝑦  + 3xy – 10y                                                             

y′ =  x y − 4x,                           (2.24)    
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solution 

Critical points are (0, 0), (2, 4), and (−5, 4). (0, 0) is an unstable saddle 

point, (2, 4) is an unstable node, and (−5, 4) is an asymptotically stable node. 
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Chapter Three 

Limit Cycles Problems 

We investigate a limit cycle:   

3.1:Limit Cycles [10], 

A limit cycle is an isolated periodic solution limit cycles in planar differential 

systems commonly occur when modeling both the technological and natural sciences. 

Most of the early history in the theory of limit cycles in the plane was stimulated by 

practical problems.  

For example the differential equation derived by Rayleigh, related to the oscillation 

of a violin string, is given by:  

.. . .
21

(x) 1 (x) x 0
3

x
 

    
                  (3.1)

 

Where   
2..

2

d x
x

d t
  and 

. dx
x

dt
  

Let 
.

x y  then this differential equation can be written as a system of first order 

autonomous differential initial equations in the plane.  

2. .

, 1 (3.2)
3

y
x y x x y

 
    

 
 

Periodic behavior in the Rayleigh system (3.2) when 1 following the invention of 

the triode vacuum tube, which was able to produce following differential equation to 

describe this phenomena 

𝑥̈ = 𝜀(𝑥2 − 1)𝑥̇ + 𝑥 = 0                  (3.3) 

Which can be written as planar system of the form (3.2) periodic behavior for system 

(3.3) when 5  

Class of differential equation that generalize (3.3) are those first investigated Lienard 

equation  

 
.. .

( ) 0,  x f x x g x  or in the phase plane 
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   
. .

, (3.4)x y y g x f x y    

This system can be used to model mechanical system, where  f x  is known as the 

damping term and  g x is called the restoring force or stiffness equation (3.4) is also 

used to model resistor inductor. 

 Capacitor circuits with nonlinear circuit elements, limit cycle of Lienard systems 

possible physical interpretations for the limit cycle behavior of certain dynamical 

systems limit cycles are common solution for all types times it becomes necessary to 

prove the existence and uniqueness.  

3.2: Limit cycles  in Phase plane nonlinear system[2 ] 

Nonlinear systems can display much more complicated patterns in the phase plane 

such as multiple equilibrium points and limit cycles, we now discuss these points in 

more detail.  

In the phase plane of non linear system Vander pol equation, observes that the system 

has an unstable node at the origin. Furthermore there is a closed curve in the phase 

portrait trajectories inside the curve and those outside the curve all tend to this curve, 

while a motion started on this  curve will stay on it forever circling periodically 

around the origin. 

 This curve is an instance of the so-called limit cycle phenomenon limit cycle are 

unique features of nonlinear system.  

In the phase plane a limit cycle is defined as isolated closed curve the trajectory has 

to be both closed indicating the periodic nature of the motion, and isolated, in 

dictating the limiting cycle. While there many closed curves in the plane portraits 

depending on the motion patterns of the trajectory in the vicinity of the limit cycle 

one can distorting wish three kinds of limit cycle one can distinguish three kinds of 

limit cycles. 

1. Stable limit cycles all trajectories in the vicinity of the limit cycle converge to 

it as t  . 
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2. Unstable limit cycles. All trajectories vicinity of the limit cycle converge to it 

as t    

3. Semi – stable limit cycles : some of the trajectories in the vicinity converge to 

it while the others diverge from it as t  .  

The limit cycle of the Vander pol equation is clearly stable.  

Let us consider some additional examples of stable unstable, and semi-stable limit 

cycles.  

 3.2.1:Examples: 

Consider the following nonlinear systems 

a.    2 2 2 2

1 2 1 1 2 2 1 2 1 21 , 1x x x x x x x x x x         . 

b.    2 2 2 2

1 2 1 1 2 2 1 2 1 21 , 1x x x x x x x x x x         . 

c.    
2

2 2 2 2

1 2 1 1 2 2 1 2 1 21 , 1x x x x x x x x x x         . 

3.2.2 :Existence of limit cycles[9 ] 

We state three simple classical the ovens to that effect. These the ovens are easy to 

understand and apply the first the oven to be presented reveals a simple relationship 

between the existence of limit cycle and the number of singular points it encloses. In 

the statement of the theorem, we use N to represent the number of nodes, sinters and 

foci enclosed by a limit cycle, and to represent the number of enclosed saddle points.  

Theorem (Poincare): if a limit cycle exists in the second-order autonomous system. 

Then 1N s  . 

This theorem is sometimes called the index theorem. Its proof is mathematically 

involved one simple inference from this theorem is that a limit cycle must enclose at 

least one equilibrium point, the theorem's result can be verified easily.  

The second theorem is concerned with the asymptotic properties of the trajectories of 

second-order systems.  

 3.2.3: Theorem If trajectory of the second-order autonomous system remains in a 

finite region   then one of the following is true.  

a. The trajectory goes to a equilibrium point. 
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b. The trajectory tends to an asymptotically stable limit cycle.  

c. The trajectory is itself a limit cycle.    

The third theorem provides a sufficient condition for non-existence of limit cycles . 

 3.2.4: theorem for the nonlinear system.  

𝑥1̇ = 𝑓1(𝑥1, 𝑥2) 

𝑥2̇ = 𝑓1(𝑥1, 𝑥2)                                (3.5) 

No limit cycle can exist in a region   of the phase plane in which of 

1 1 2 2/ /f dx f dx    dose not finished and  does not change sign proof. Let us prove 

this theorem by contradiction first note that the equation 
2 1 1 2 0f dx f dx   is satisfied 

for any system trajectories including a limit cycle.  

Thus a long the closed curve  of a limit cycle we have  

 1 2 2 1 0
L

f dx f dx   

  Using stokes theorem in calculus we have  

  1 2
1 2 2 1 1 2

1 2

0
L

f f
f dx f dx dx dx

x x

  
    

  
   

Where the integratial the right – hand side is carried out on the area enclosed by 

equation.  

 

 

The left – hand side must equal zero this however contradicts the fact that the right 

hand side  cannot equal (zero because by hypothesis 1 2

1 2

f f

x x

 


 
 doesn't vanish and 

does not change sing let us illustrate the result on an example.  

3.2.5: Example consider the nonlinear system          

   2 2

1 2 1 2 2 1 1 24 , 4x g x x x x h x x x     since  2 21 2
1 2

1 2

4
f f

x x
x x

 
  

 
. 

Which is always positive the system does not have any limit cycles any where in the 

phase plane. 

 1 2 2 1 0 
L

f dx f dx



35 

 

3.3:Existence and uniqueness of limit cycles in the plane [ 2], [25 ] 

To understand the existence and uniqueness theorem it is necessary to define some 

features of phase portraits assume that the existence and uniqueness theorem holds 

for all solutions considered there 

Periodic orbits in the plane are special in that they divide the plane in to a region in 

side the orbit and a region outside it this makes it possible to obtain criteria for 

detecting the presence or absence of periodic orbits for second order systems, which 

have no generalizations to higher order systems theorem  (Poincare – Bendixson 

criterion). 

consider the system: 

𝑥̇ = 𝑓(𝑥) 

and let M be a closed bounded subset of the plane such that M contains an 

equilibrium points, or contains only one equilibrium point such  that Jacobean matrix 

 /f x   at this points has eigenvalues with positive real parts. Every trajectory 

starting in M remains in M for all future time. Then M contains a periodic orbit of  

𝑥̇ = 𝑓(𝑥) 

3.3.1: Theorem (Negative Poincare – Bendixson)  

If on simply connected region D of the plane, the expression 
1 1 2 2/ /f x f dx    is not 

identically zero and dose not change sigh then the system.  

𝑥̇ = 𝑓(𝑥) 

has no periodic orbits lying entirely in D. 

Proof.  

 On any orbit 
.

( ) fx , we have 1 2 2 1/ /dx dx f f  I therefore on any closed orbit   , 

we have  

   2 1 2 1 1 1 2 2, , 0


  f x x dx f x x dx  

 This implies, by Green's theorem that  

1 2
1 2

1 2

0
s

f f
x x

x x

  
    

  
  
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Where is the interior of y . if 1 2

1 2

0
f f

x x

 
 

 
 or  0  on D then we can not find a 

region S⊂D such that the last equality holds hence there can be no closed orbits 

entirely in D.  

3.3.2: Definition 

A limit cycle, say  is 

1. A stable limit cycle if  A x   for all x in some neighborhood this implies 

that nearby trajectories are attracted to the limit cycle.  

2. An unstable limit cycle    if A x  for all x  some neighborhood this implies 

that nearby trajectories are repelled away from the limit cycle.  

3. A semi stable limit cycle if it is attracting on one side and repelling on the other.  

The stability of limit cycle can also be deduced analytically using the each of 

definition before and one below  

3.3.3: Definition 

The periodic say T of a limit cycle is given by    x t x t T  when T is the minimum 

period the period can be found for example be low.  

3.3.4: Example 

Describe some of the features for the following set of polar differential equation.  

   . 1 2 3 , 1 (3.6)r r r r r       

Solution 

There is a unique critical point at the origin since 
. is nonzero.  

They are three limit cycle that may be determined from the equation 
.

0r  they are 

the circles of radii one, two and three, all centered at the origin.  

Let i
denote the limit cycle of radius r i . There is one critical point at the origin. If 

trajectory stated at this point.  

It remain there forever. A trajectory starting at (1,0) will reach the point  (-1,0) when 

it   
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        And the motion is clockwise. Continuing on this path for another time 

interval𝑡2 = 𝜋the orbit returns to (1,0).Using definition(3.3.1)part(3)  

One can write     21,0 , 1,0),2   t  since the time limit cycles is of period 2𝜋. 

On the limit cycle 
1 ,both the  positive and negative semi orbits lie on 

1 . 

Suppose that 
1

,0
2

P
 
 
 

 and  4,0Q  are two points in the plane.  

The limit sets  are given by        1 3, 0,0 , ,A P A P A Q      and  A Q   

the annulus  2

1 : 0 1   A r R r  is positively  

, and the annulus  2

2 :1 2  A r R r is negatively invariant. 

If 0 1 r  then 0 r  and the vertical point at the origin is unstable. 

If 1 2 r  then 0r 1  is stable limit.  

If 2 3r   then 0r   and 
2  is an unstable limit cycle. Finally if 3r then 0r and  

3 is a stable limit cycle.  

Integral both sides of 
.

1   with the respect to time to show that the period of all of 

the limit cycles are 2 .  

 3.3.5: Theorem   

Suppose that  
 is contained in a bounded region in which there are finitely many 

critical points.  

Then ( )A  is either.  

• A single critical point.  

• A single closed orbit.  

• A graphic. critical points joined by heteroclinic orbit.  

Corollary 

 Let D be abounded closed set containing critical points and suppose that D is 

positively in variant. Then there exists.  

A limit cycle contained in D . 
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3.3.6: Example: 

By considering the flow across the rectangle with corners at (-1,2) , (1,2) ,(1,-2) , (-1, 

-2) 

Proof 

That the flowing system has one limit   

𝑥̇ = 𝑦 − 8𝑥3   , 𝑦̇ = 2𝑦 − 4𝑥 − 2𝑦3                 (3.7) 

Solution 

The critical points are found by solving the equation    

𝑦 . = 𝑥 . = 0  , let   𝑦 = 8𝑥3 

Then 𝑦 . = 0 if 𝑥(1 − 4𝑥2 + 256𝑥8)  = 0  

The graph of the function  

y = 1- 4𝑥2 + 256𝑥8 . 

Linearze  at the origin in the usual way it is not difficult to show that the origin is  an 

unstable focus, consider the flow on the sides of the given rectangle on  

𝑦 = 2   ,             |𝑥| ≤ 1       , 𝑦 . = −4𝑥 − 12 < 0 

𝑦 = −2   ,       |𝑥|  ≤ 1            , 𝑦 . = −4𝑥 + 12 >0 

𝑥 = 1       ,        |𝑦|  ≤ 2      ,    𝑥 . = 𝑦 − 8 < 0 

𝑥 = −1      ,     |𝑦|  ≤ −2    , 𝑥 .  = 𝑦 + 8 > 0   

The rectangle is positive and there are no critical points outer than the origin ,which 

is unstable consider a small deleted  neighborhood , say 𝑁𝜀 around this critical point . 

3.4: Limit cycles and Bifurcation[ 10] 

Oscillation are one of the most important phenomena that occur in dynamical systems 

.A system oscillation when it has a nontrivial periodic solution. 

   , 0   x t T x t t  
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For some 0T  . In a phase portrait an oscillation or periodic solution, like a closed 

curve.  

  3.4.1: Example 

Vander pol oscillator.  

𝑥1̇ = 𝑥2 

       n

o oN x x R x x  

In the case 0 we have a continuum of periodic solutions, while in the second case 

0  there is only one.  

An isolated periodic orbit is called a limit cycle. 

3.5: Limit cycle in Bounded quadratic systems[2 ], [ 17] 

are trajectories remain bounded for 0t . 

The research work in this area began with Dickson and perko, who studied 

autonomous quadratic bounded differential systems in dimensional space. 

Then turned to deep and detailed study of plane quadratic systems. 

   10 01 2 10 01 2, , , (3.8)
dx dy

p x p y x x y q x q y y x y
dt dt

       

Where 
10 01 10 01, , ,qP P q  are constants and    2 2, , ,X x y Y x y  are Homogeneous 

quadratic polynomials.  

We study the bounded  of the quadratic system (3.8) which the properties of the 

corresponding homogeneous quadratic system.  

 2 2, , (x,y)(3.9)
dx dy

X x y Y
dt dt

   

 Have a definite relationship. Changing - (3.9) into polar coordinates, we get  

     2

2 2cos ,sin cos cos sin sin (3.10)
dr

r X Y rG
dt

          

 Let 𝜃 = o be a root of G ( )  = 0 

And   0 of  

since ( ) 0  oG , we may as well assume ( ) 0 oF . 
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 Then the solution of (3.10) which satisfies the initial conditions  0 0r t r  and 

 0 0 t  is  

 
     0

0 0 0 0

1 1
, (3.11)

1/ r
r t

F t F t
 

 
  


 

It is a ray in the  ,x y  - plane, and  r t   as 
 0

0 0

1


 t t

r F
 

 3.5.1: Definition 

Suppose  r r t  is a solution of the system  (3.8) such that approaches a finite value 

as v . Then  v t  is a solution possessing finite escape time for (3.10)  if there 

exists a 
0  such that  0 0 G  and  0 0 F ,(3.11) is a solution possessing finites 

cape time then (3.11) is called ray solution.  

3.5.2: Theorem 

  If (3.9) has are solution, then (3.8) has an unbounded solution possessing finite a 

scape time.  

Proof  

Apply the transformation , sin , /   x rcos y r dr dt r .  

Then (3.8) become  

 2 2

10 01 10 01cos cos sin sin      
dr

p p q q
dr

 

     1    r F P r F  

   2 2

10 01 10 01

1
cos cos sin sin


           

d
q q P P G

dr r
 

     1

1
3.12G

r
    

From the hypothesis, we know there exists a 0   such that  0 0 G  and  0 0 F  

We may assume  0 0.  F  let 1 r  then (2=3.12)  become. 

       
.

2 .

1 ,           F P G G  which has a singular point 

 00,     and the first equation has a negative characteristic root  . Hence from 
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the Classical  theorem of  Lyapunov we know that the system of equation has a 

trajectory approaching to  00,    , corves ploddingly system (3.12) has 

trajectory       0, ,  r r x .  

Applying the formulary of variation of constants to the first equation of (3.12)  we 

see that as  r r  we must have r   . finally, form  

0 ( )


r ds
t

r s
 

We can see that as T   we have T   the proof is complete.  

From the necessary an sufficient condition for a quadratic system to be bounded.  

3.5.3: Theorem[2 ] 

All the trajectories of quadratic system (3.12) are bounded when 0T  if and only if 

there exists a linear transformation which changes (3.12) into one of the following 

types.  

(A)  

2 2

11 12 21 22,x a x a y y y a x a y x y c y        

 Where 2c  and the other coefficients satisfy one of the following groups of 

condition.  

(i) 
11 0a   

(ii) 
11 21 0a a   

(iii) 11 21 12 21 220, 0, 0;    a a a a a  

11 21 22,x a x y a x a y xy     

Where 
11 0a   and 

22 0a   

 

 

(B) 

2

11 21 22,x a x a y y y a y     

Where 11 0a   and 22 0a   , 11 22 0a a   

(C) 
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11 220 , 0a a   and 
22 112 0a a  . 

3.5.4:Remark.  

It is clean that under that condition(𝑖𝑖) . B and C we can write the equation of the 

family of the trajectories of (A) and using this we can prove it is bounded system and 

does not have a limit cycle.  

Hence we are only interested in the case when (A) satisfies (i) or (iii).  

Our familiar form of equation of class(𝑖𝑖𝑖)without loss of generality we can assume 

(0,0) is an elementary singular point of (A) of index +1, hence 
11 22 21 12 0a a a a   

now in (A) we apply the change of variables 
11 21 ,v a x a y u x    or 

 11 21/ ,y a u v a x u    then we get.  

    2

11 22 11 21/     u v a a u u a u v a cu              (3.13) 

     11 22 21 12 11 11 21 11 21/v u a a a a a a u v a ca a u         

Again let  

 
1 11
2 22

11 22 21 12 , ,a a a a u u T t y v      

Then the above system of equation is hanged to  

   
1 1

2 12 2
11 22 21 21 11 21/ /

d x
y a a x x y a ca a x a

d r

          

 
3

2 2 12
21 11 21 11 21 11 21/ /

d x
x a ca a a x a a x y a

d t



          

It already possesses the form: 

 2 2 , 1 1
d x d y

y x L x m x y n y x x b y
d t d t

          ,           (3.14)                   

here we have  

   
1

12
11 22 21 11 21, /a a L ca a a



       

 
3

1 2 2
21 21 11 21 11 21/ , 0 , /m a n a a ca a a a



          

1

11 21/b a a   
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No le now that  

   
3

2 2 2 22
11 214 , /ma b L c mt a a



        

Hence condition (i) of theorem 3.5.3:  and the inequality 2c   can be rewritten as  

 
2

0 , 4 0 , 0 ,n b L ma mb      

And condition (ii) and 2c   log ether can be rewritten as:  

 
2

0 , 4 0 , 0n b L ma b m a        

  0m L m   

In the above two conditions we have 0n . Hence we may rewrite (3.14) as 

 
     0

0 0 0 0

1 1
, (3.15)

1/ r
r t

F t F t
 

 
  


 

3.6:two limit cycles[27 ] 

 We first look at simpler case suppose that in equations: 

 2 2 , 1 (3.16)
d x d y

y x L x m x y ny x a x
d t d t

        

Two of the coefficients of the terms of second degree on the right side of the system 

(3.16) are zero. 

 Then we have: 

 2 , 1 ; (3.17)
d x d y

y x n y x a x
d t at

      

 , 1 ; (3.18)
d x d y

y x m x y x a x
d t at

      

 2 , 1 ;(3.19)
d x d y

y x L x x a x
d t at

      

It is easy to see that equations (3.17) and (3.18) can be integrate when 0   and they 

take  0,0  as their center; and when 0   they have no limit cycles.  
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Because the divergence of (3.17) is a constant  , and (3.18) can be proved to have no 

limit cycles by the Dulac function  
1

1 m x


  for (3.19), the situation is not the same. 

We may as well assume 0L  and 0a ; and it is not difficult to use the well – 

known method to prove that when 0   or  
L

a
, (3.19) dose not have a limit cycles, 

but when 0al  and   lies in some interval  *0, , (3.19) has a unique limit cycle. 

In the following we study mainly the case where the coefficients of the quadratic 

terms on the right side of the first equation have only one zero.  

0L . In this case we have system  

 2 , 1 (3.20)
d x d y

y x m x y y x a x
d t d t

       

 First we prove a useful theorem for nonexistence of a closed trajectory and singular 

closed trajectory.  

Theorem system (3.20) cannot have a closed trajectory or singular closed trajectory 

passing a saddle point in either of the following cases  

1) 0, 0m m     

2)   0, 0m m       

 Proof  

When the first group of conditions holds, it is easy to see that any closed trajectory or 

any singular closed trajectory. 

Passing a saddle point of (3.20) cannot intersect the line 1 0m x                      

  Now we take the Dulack function to be  𝐵 =
1

1−𝑚𝑥
 ; then we have  

   
 

2

2
1

  
 

  

m y
B p BQ

x y m x
 

The right side of this formula always keep a constant sign on any side of the line 

1 0mx  ; hence the theorem is proved.  

Now we suppose the second group of conditions holds.  
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We translate the x-ax is to the line /y m  (the case of 0m   has been in (3.17) 

hence we may as well assume 0m  ) and keep the y-axis unchanged. Then (3.20) 

becomes 

 22
1 1 , 1 (3.21)

d x d y
y m x y y x a x

d t m m m d t

     
          

   
 

The system of equation whose vector field is symmetric to that of (3.21) with respect 

to the new x-axis is 

22
1 1 ,

d x
y m x y y

d t m m m

     
        

   
 

 1 (3.22)
d y

x a x
d t

   

The locus of points of contact of the trajectories of these two systems is easily seen to 

be  

0 ,1 0x a x    and                    

21 0(3.23)y
m m

  
   

 
 

 since the divergence of (3.21) is only zero one the x a xis  , and closed or singular 

closed trajectory   must intersect the x a xis .  

We know that if  appears in the vicinity of (0,0) then it cannot meet 1 0a x  .  

More over, for   0m   the last equation of (3.23) does not have a real locus, and 

for   0m   its locus it the x a xis . 

From this we can see that the curve symmetric to   (the part of   above the 

x a xis ) with respect to the x a xis , and   (the part of   below the x a xis , do 

not have a common point except on the x a xis , that is, the curve symmetric.  

To   lies entirely above (or below)   thus, for any closed or singular closed 

trajectory of (6) we must have  

int int

0
p Q

d xd y m y d xd y
x y

 

  
   

  
   
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This contradiction shows that   does not  exist. Similarly, we know that the vicinity 

of one there singular point with index +1 on 1 0ax  cannot contain a closed or 

singular closed trajectory. 

The theorem is completely proved.  

The following transformation of coordinates in useful for our later discussion.  

Note the two singular points on the line 1 0ax   are 

2

4
1

1 1
, 1
2




  
    

      
  
      

a

m

m a
R

a a

.

 , of index + 1  

2
1 1 4

, 1 1
2 1

m m
N

a a a


  

         
   

  

, of index – 1    

Moving the origin to R we get  

  3

2 21 2
d x m

m y x y y m x y y
d t a


 

       
 

 

2 , (3.24)
d y

x a x
d t

   

Where
2y represents the ordinate of R.  

Now we apply the transformation  

3 1
2 24 24 4

1 , 1
m m

x x y y
a a a a

       
            

         

 

     1

1
3.25G

r
    

To(3.24)and get  

 2 , 1 (3.26)
d x d y

y x m x y y x a x
d t d t


 

              
 

 

Where 

 2m y    
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 
3

2 4
2

1
2 4

4
, 1

4
1

m y m
a a

a a
m

a a

 




   
      

     
   

   

 

1
2 44

1 (3.27)
m

m m
a m

  
    

   

 

According to theorem (3.6.3) it is only possible for system (3.16) to have limit cycles 

near the two singular points of index+1 then  

0m  but (3.28)m   

In the following we want to explain whether limit cycles can coexist near both 

singular points of index + 1. 

This problem is closely related to the order between m and a.  

1. 0m a  . For 0,0   is stable R is unstable,  m and n are saddle points, let   

increase from zero, Then origin becomes unstable. 

 On the other hand, the two singular points on the line 1 0a x  , move for apart. 

Now we prove that the stability of R is different from R , since hear R  there also 

appears a unique unstable cycle hence we note that for 0m a   and   

sufficiently small,             

2

2 1 1 4
2

m m m
m y

a a a


 

 
 

        
  
 

 

1.  2

2

2
1 1 1

2
1

2


 

  
  

               
   

   

m m m
O

a a m
a

 

 2 0,


  


a
o

a m
 

Where 2y  is the ordinate of R - Hence form (3.26) and (3.27) we know that R  is a 

stable focus of (3.24). 
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Hence when 0m a  and 0 1   limit cycles coexist near the singular points 

origin and  R , but their stability is different.  

When  continuously increases, it is not certain whether these limit cycles disappear 

simultaneously.  

Now suppose near origin the limit cycle, it exists, is always unique, and at     it 

expands and becomes.  

A separatrix cycle passing through m forms a family of generalized rotated vector 

fields on each side of the line1 0a x  , hence when 𝛿 increases, thus   should 

clearly be a function  ,f m a    of m and a , hence from (3.26) we know that the 

value 
1   of 

1  which makes the limit cycle near Rexpend and become a sepratrix 

cycle through N   must be the same function of M and a ; that is,  1 ,f m a  

whether this function f  can be determined is a problem worthy of our consideration 

of course, the uniqueness of a limit cycle in the vicinity of every singular point has to 

be proved.  

2. O m a   first we examine the case then O m a  . When 0  , 
1

( ,0)


N
a

 is a 

saddle point and 
 1

,
 

  
 

a m
R

a a
 below N is a focus. If   increases from 0, when 

N and Rmove for a part. Since for 0   

2 1 0,
m

m y m
a


 

    
 

 

Initially R rernais unstable.  

Now we ask = does the stability of R  change as   continuously increases?  

When does happen? Clearly we can see that a necessary condition for R to change its 

stability is 0   , that is,  

2

2

4
1 1 0

2

m m m
my

a a a


 

 
 

         
  
 

 

 Solving this equation, we get m  and  
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Hence when  increases from,    decreases from O , that is R  as a singular point of 

(3.26).

2

2

3 3
2 2 2

3 4
3

2 2 2
1

0 (3.29)

11 4

1

m

m

m m m
a

a a

mm
a

aa a

m

a
















 
  

      
   

    
                  

 

 
 

 
 

Change from stable to unstable, and so as the singular point of the original L system 

(3.20), it melts change  stable to unstable, however, according to theorem (3.6.3)  we 

know that for m   there is no closed trajectory in the vicinity of R . 

(i) It is generated from a separatist cycle passing through m and N   surrounding R .  

(ii) It is generated from a aspartic cycle passing through m and N   surrounding R . 

(iii) It is generated by splitting a semi stable cycle which suddenly  appears in the 

vicinity of R . 

Which case it belongs to depends on the order relation between m and 
1

a
a
 , the 

order relation between m and 1 a . In fact, when 1m a     the coordinates of R  

are
1

, 1
a

 
  
 

, and at this time the coefficients in (3.26) are 

 

3

21 1 1 1
1 ,

    
      

 
m m a a a

a a a a
.  

From this we can see that 
1

m a
a

  


 that is, in this case MN  has become an integral 

line, and when m  , from 
1

m a
a

  


 we can deduce that 1m a  , and from 

.1
  


m a

a
 we can deduce that 1m a  .  



50 

 

For 0 m a  , which correspond to 1 , 1m a m a        and 1m a    

respectively.  

3.7: Classification of quadratic systems limit cycle [2 ], [42 ] 

𝑑𝑥

𝑑𝑡
= 𝑃2(𝑥, 𝑦)        ,     

𝑑𝑦

𝑑𝑡
= 𝑄2(𝑥, 𝑦)________(3.30) 

Where 𝑃2  𝑎𝑛𝑑  𝑄2 are general quadratic polynomials.  

Hence we now first introduce a method of classification, that is we apply some 

simple trans formations to system (3.30). 

Which may have a  limit cycle, to bring it into one of three. 

 We may assume 𝑃2(𝑥, 𝑦), 𝑄2(𝑥, 𝑦) do not have a common factor for otherwise (3.30) 

can be simplified to a linear system, which obviously does not have a limit cycle. 

From the theory of quadratic curves, we know there exists at least one real 𝜆 making 

the equation. 

𝜆𝑃2(𝑥, 𝑦) + 𝑄2(𝑥, 𝑦) = 0                 (3.31) 

Into a degenerate quadratic curve when this a degenerate curve represents a point or 

does not have a real locus, the system obtained from (3.30) by the transformation  

𝑦′ = 𝜆𝑥 + 𝑦  , 𝑥′ = 𝑥   is 

𝑑𝑦′

𝑑𝑡
= 𝜆𝑃2 + 𝑄2 = 𝑄2′(𝑥′, 𝑦′) 

𝑑𝑥′

𝑑𝑡
= 𝑝̇2(𝑥̇, 𝑦̇)              ( 3.32) 

Hence we nay as well assume that  

𝜆𝑃2 + 𝑄2 = 𝑅1𝑅2  , 𝑤ℎ𝑒𝑟𝑒  𝑅𝑖(𝑖 = 1,2) 

Is a real polynomial with degrees of x and y not higher then one, one of them is not a 

constant. 

If  𝑖 = 1,2 the determinant of the transformation 

𝑦′ = 𝜆𝑥 + 𝑦  , 𝑥′ = 𝑅𝑖                  (3.33) 

Hence we only have to discuss the case when the determinant of transformation 

(3.11) in not zero for 𝑖 = 1 𝑜𝑟 2  . in this case the system (3.30) under this 

transformation becomes 
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𝑑𝑥′

𝑑𝑡
= 𝑃2

′(𝑥′,𝑦′)
   ,

𝑑𝑦′

𝑑𝑡
= 𝑥′(𝑎𝑥 +̇𝑏𝑦̇ + 𝑐)                     (3.34) 

We still write 𝑥′, 𝑦′  𝑎𝑠  𝑥, 𝑦 and depending on the value of a, b, and c , we can divide 

the system (2.12) into three classes  

i.𝑎 = 𝑏 = 0  , 𝑐 ≠ 0 

𝑑𝑥

𝑑𝑡
= 𝐾 + 𝛿𝑥 + 𝑒𝑦 + 𝑙𝑥2 + 𝑚𝑥𝑦 + 𝑛𝑦2 

𝑑𝑦

𝑑𝑡
= 𝑐𝑥              (3.35) 

ii. 𝑎 ≠ 0    , 𝑏 = 0  , 𝑐 ≠ 0 

𝑑𝑥

𝑑𝑡
= 𝐾 + 𝛿𝑥 + 𝑒𝑦 + 𝑙𝑥2 + 𝑚𝑥𝑦 + 𝑛𝑦2 

𝑑𝑦

𝑑𝑡
= 𝑥(𝑎𝑥 + 𝑐)         (3.36) 

iii. 𝑏 ≠ 0, 

𝑑𝑥

𝑑𝑡
= 𝐾 + 𝛿𝑥 + 𝑒𝑦 + 𝑙𝑥2 + 𝑚𝑥𝑦 + 𝑛𝑦2 

𝑑𝑦

𝑑𝑡
= 𝑥(𝑎𝑥 + 𝑏𝑦 + 𝑐)           (3.37) 

If system (3.35 – 3.37) has a closed trajectory, then its interior must contain a unique 

focus or center with index + 1. 

Then apply a suitable transformation 

𝑥 = 𝜇𝑥′   ,   𝑦 = 𝑣𝑦′  , 𝑡 = 𝜆𝑡′ to change (3.35 – 3.37) 

Into 

i.   
𝑑𝑥

𝑑𝑡
= −𝑦 + 𝛿𝑥 + 𝑒𝑦 + 𝑙𝑥2 + 𝑚𝑥𝑦 + 𝑛𝑦2 

𝑑𝑦

𝑑𝑡
= 𝑥 

ii.   
𝑑𝑥

𝑑𝑡
= −𝑦 + 𝛿𝑥 + 𝑒𝑦 + 𝑙𝑥2 + 𝑚𝑥𝑦 + 𝑛𝑦2 

𝑑𝑦

𝑑𝑡
= 𝑥(1 + 𝑎𝑥) , 𝑎 ≠ 0 

iii.   
𝑑𝑥

𝑑𝑡
= −𝑦 + 𝛿𝑥 + 𝑒𝑦 + 𝑙𝑥2 + 𝑚𝑥𝑦 + 𝑛𝑦2 
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𝑑𝑦

𝑑𝑡
= 𝑥(1 + 𝑎𝑥 + 𝑏𝑦) , 𝑏 ≠ 0 

Divided the system (2.30) into two classes  

𝐴 [

𝑑𝑥

𝑑𝑡
= 𝑏00 + 𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 = 𝑄2(𝑥, 𝑦)

 

𝐵 [
𝑑𝑥

𝑑𝑡
= 𝑏20𝑥2 + 𝑦    ,    

𝑑𝑦

𝑑𝑡
= 𝑄2(𝑥, 𝑦) 

For system of classes ii and iii , under certain conditions cycle. 

Changing the system into (A) or (B) the formula for the coefficients of (iii)  

 3.7.1: Examples :  

 As follows: 

1.    𝑛 ≠ 0 let K  denote anon zero root of the equation. 

𝑎 + (𝑏 − 𝑙)𝑘 − 𝑚𝑘2 − 𝑛𝑘3 = 0,   (3.38) 

Where 𝛼 = 𝑘3 − 𝛿𝑘2 + 𝑘 and 𝛽 = 𝑘𝑙 − 𝑎 − 𝑛𝑘3 

When 𝛽 = 0 𝑎𝑛𝑑 ∝= 0 (iii) can be changed to 𝐵, 

Where 

𝑎00 = 0, 𝑎10 = −𝑘𝛼 + 𝑘2 − 𝛿𝑘3 = −𝑘4, 

𝑎20 = −
𝑎𝛼

𝑛𝑘3
−

𝛿𝑘2 − 𝑘

𝑛𝑘3
[2𝑎 + 𝑏𝑘 − 𝑛𝑘3 +

1

𝛼
(𝑎 + 𝑏𝑘)(𝛿𝑘2 − 𝑘)], 

𝑎01 = 𝛿𝑘2, 𝑎0=11 =
1

𝑛𝑘3
[2𝑎 + 𝑏𝑘 +

2

𝛼
(𝑎 + 𝑏𝑘)(𝛿𝑘2 − 𝑘)], 

𝑎02 = −
1

𝑛𝑘3𝛼
[𝑎 + 𝑏𝑘], 

When 𝛽 ≠ 0 , (iii) can be changed to (A), where  

𝑏00 = 𝛼 [
𝛼

𝛽
− (𝑎 − 𝑘𝑙) + 𝑘 − 𝛿𝑘2], 

𝑎00 =
1

𝛽
[𝑘𝛼𝛽 + 𝑎𝛼2 − 𝑏10(𝑘𝛽 + 𝛼(2𝑎 + 𝑏𝑘)) + 𝑏2

10
 
(𝑎 + 𝑏𝑘) + 𝑏00(𝑎 − 𝑘𝑙)], 

𝑎10 =
1

𝛽
[−(𝑘𝛽 + 2𝑎𝛼) − 𝑏20(𝑘𝛽 + 𝛼(2𝑎 + 𝑏𝑘)) + 𝑏10

 (2𝑎 + 𝑏𝑘) + 2𝑏10𝑏20(𝑎

+ 𝑏𝑘)], 
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𝑎20 =
1

𝛽
[𝑎 + 𝑏20(2𝑎 + 𝑏𝑘) + (𝑎 + 𝑏𝑘))𝑏2

20
 
] 

𝑎01 =
1

𝛽
[𝑘𝛽 + 𝛼(2𝑎 + 𝑏𝑘) − 2𝑏10(𝑎 + 𝑏𝑘)], 

𝑎11 =
−1

𝛽
[𝑎 + 𝑘𝑙 + 𝑏𝑘 + 2(𝑎 + 𝑏𝑘)𝑏20], 

𝑎02 =
1

𝛽
[(𝑎 + 𝑏𝑘)]   in which 

𝑏10 =
[𝛿𝑘2 − 𝑘 − 2𝛼(𝑎 − 𝑘𝑙)]

𝛽⁄ and  

𝑏20 =
 1

𝛽
[(𝑎 − 𝑘𝑙)] 

Since for this case (iii) cannot have a limit cycle. 

(2)  𝑛 = 0  when  𝑚 ≠ 0 we can prove that (iii) can be changed to (A)where  𝑏00 =

𝐿 + 𝑚𝛿   , 𝑎00 = 𝑚2 + 𝑚𝑎 − 𝑏(2𝐿 + 𝑚𝛿) + 𝐿(𝐿 + 𝑚𝛿),  

𝑎10 = 𝑚2 + 2𝑚𝑎 − 𝑏(3𝐿 + 𝑚𝛿)   ,    𝑎01 = 𝑏, 

𝑎20 = 𝑚𝑎 − 𝑏𝐿  ,    𝑎11 = 𝑏 + 𝐿   ,    
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Chapter Four 

Limit Cycle Problems for a Liénard systems:  

We provide a new contribution to this subject which can be also 

applied to Li´enard differential systems with some kind of discontinuities. 

We consider for x ∈  [a, b], where −∞ < a < 0 < b < ∞, the Li´enard 

differential equation 

x′′ − f(x)x′ + g(x) = 0,                                  (4.1) 

f(x) = {
𝑓1(x)   if     x <  0,           

𝑓2( (x)   if    x >  0,         
       

𝑔1(x)   if     x <  0,           

𝑔2( (x)   if    x >  0,         
   (4.2) 

being   𝑓1,   𝑔1  continuously differentiable in [a, 0], and 𝑓2  ,  𝑔2  continuously 

differentiable in [0, b].  

Note that the functions f and g are not defined at  x = 0 so that, if we eventually 

define f(0) and g(0), they are allowed to have a jump discontinuity at the origin. 

By using the classical  Li´enard plane we can obtain the equivalent differential 

system 

x′ = F(x) − y,       y′ = g(x),    where      F(x) = ∫ 𝑓(𝑠)𝑑𝑠
𝑥

0
,    (4.3 ) 

and it is understood that F(0) = 0, while g(0) is not defined by now. 

This system has associated the vector field 

X(x) = {
𝑋1(x)     if     x <  0,        

𝑋2 (x)       if    x >  0,
 where  𝑋𝑖(x) {

𝐹 (x) − y,         

𝑔𝑖  (x)    ,
(4.4) 

with 𝑥 = (𝑥, 𝑦)𝑡 and standing i = 1 for x ≤ 0, and i = 2 for x ≥ 0. 

 The ambiguity in the definition of X(x) on x = 0 will be clarified later on. 

Since the system can be discontinuous we must adopt some criterion in order to 

define solutions starting at or passing through the allowed discontinuity line x = 0. 

Typically this is done by using the so called Filippov approach, see for instance [10]. 

However here only the vertical component of the vector field (4.4) could be 

discontinuous at the y-axis, while its horizontal component turns out to be 

continuous. 

 In fact, we have x′ = −y on x = 0. 
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Thus if we consider for instance orbits starting at points with x < 0, then 

these orbits are well defined whenever they do not touch the y-axis but they 

can arrive at this straight line (obviously only at points (0, y) with y ≤ 0) 

by extending g(x) as if g(0) were equal to 𝑔1(0). 

 Now starting from the point (0, y) with y < 0 we assume that g(0) = 𝑔2 (0) and we 

continue the orbit inside x > 0 using system (4.3). 

From the above paragraph and using the standard terminology of planar 

Filippov systems [10], the crossing set of the discontinuity line of system 

(4.4) includes the negative y-axis. Similar arguments for x > 0 imply that 

the crossing set is the y-axis without the origin. 

 In [10] the origin is then called a singular isolated sliding point. 

In short, except orbits arriving at the origin and assuming that the system 

is actually discontinuous, it is natural to allow concatenation of solutions in 

an obvious way so that the system has no sliding (Filippov) solutions. 

 The only possible singular point may be the origin, where each vector field can 

 

Figure 1.  

The three main cases for the local phase plane at the origin when it is not a boundary 

equilibrium point,  regular point, pseudo-saddle and pseudo-focus. 

Either vanish or have a tangency with the y-axis.  

If at least one vector field vanishes at the origin we say that it is a boundary 

equilibrium point.  

If both vector fields are not zero at the origin we still can have a pseudo-equilibrium 

point when both vector fields are anti-collinear (i.e. 𝑔1 (0) 𝑔2 (0) < 0).  

Then it behaves as an equilibrium point that may be reached in finite time.  



56 

 

Its stability and local phase portrait will be determined by studying its nearby orbits, 

see Figure 1. 

 4.1: Propositions 

Proposition4.1 1: For system (4.3) the following statements hold. 

(a) If 𝑔1 (0) 𝑔2 (0) > 0 then the origin can be thought of a regular point. 

(b) If 𝑔1 (0) 𝑔2 (0) = 0 then the origin is a boundary equilibrium point. 

(c) If 𝑔1 (0) 𝑔2 (0) < 0 then the origin is a pseudo-equilibrium point, being of saddle 

type if 𝑔1 (0) > 0 and 𝑔2 (0) < 0, and of focus type if 𝑔1 (0) < 0 and 𝑔2(0) > 0. 

4.1 2: Proposition  

From the point of view of practical engineering problems the most interesting 

case corresponds to the existence of a pseudo-equilibrium point or a proper 

equilibrium point of focus type at the origin, because then it is possible 

that the system behaves locally or even globally as an oscillator.  

Thus we will be mainly interested in possible periodic orbits.  

to assure that there is no more singular points the following hypothesis is 

assumed. 

(H1) The function g satisfy  xg(x) > 0 for 𝑥 ≠ 0. 

We will require that the divergence of the vector field does not change its sign in 

each side of the discontinuity line, i.e. 

(H2) The function f  satisfy  xf(x) > 0 for 𝑥 ≠ 0. 

Under the last hypothesis we have positive divergence for x > 0 and negative 

divergence for x < 0. 

 Then in order to have some periodic orbit surrounding the origin, there must be some 

balance between the x-positive and x-negative parts of the interior of the bounded 

region limited by the periodic orbit.  

This idea will be precisely stated below in the same spirit of comparing the x-positive 

and x-negative half-planes and following [1], it will be useful to introduce some 

auxiliary functions as follows. 

Under Hypothesis H2 and recalling the definition of  F in (4.3), we define a variable 
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p = p(x) = F(x). 

 As p′(x) = f(x), then p(x) ≥ 0 for all x, and sgn(p′(x)) = sgn(x) for 𝑥 ≠ 0 

 We deduce that the function p(x) has inverse functions both for x ≤ 0 and for x ≥ 0, 

namely the non-positive decreasing function 

𝐹1: [0, F(a)] → [a, 0],such that F(𝑥1 (p)) = p,     (4.5) 

 and the non-negative increasing function   

𝑥2 : [0, F(b)] → [0, b], such that F(𝑥2 (p)) = p.   (4.6) 

Hence for 𝑥 ≠ 0 we have that both systems (3.3) and (3.4) are equivalent to the two 

differential equations 

𝑑𝑦 (
𝑥𝑖(𝑝)

𝑑𝑝
) −

1

𝑦𝑓(𝑥𝑖(𝑝))
=

1

𝑝−𝑦
 

𝑔(𝑥𝑖(𝑝))

𝑦𝑓(𝑥𝑖(𝑝))
 ,        (4.7) 

where i = 1, 2, according to x < 0 or x > 0 respectively, and these new differential 

equations are both meaningful only for p > 0. 

 Now by considering the functions 

ℎ𝑖(𝑝) =  
𝑔(𝑥𝑖(𝑝))

𝑓(𝑥𝑖(𝑝))
 ,        (4.8) 

equations (4.7) can be written in the more compact form 

𝑑𝑦 (
𝑥𝑖(𝑝)

𝑑𝑝
) =  𝑅)                        

Note that hi(p) > 0 for p > 0 and i = 1, 2, and that the effect of considering 

equations (4.9) instead of the original systems (4.3.) or (4.4) can be thought of as 

if the plane (x, y) had been folded into the half-plane (p, y) with p > 0. 

When ℎ1(p) = ℎ2(p) for p sufficiently small and the origin is a topological focus it is 

not difficult to show that we have indeed a center, see for instance. 

4.1.3: Theorem in [8].  

We add a third hypothesis precluding such possibility. 

It is written in a dual way to facilitate the checking of its validity in the applications. 

(H3) Assume that there exist the two limits. 

lim
𝑥→0−

𝑔(𝑥)

𝑓(𝑥)
=  lim

𝑝→0+
ℎ1(𝑝) =  𝑙1 ,           lim

𝑥→0+

𝑔(𝑥)

𝑓(𝑥)
=  lim

𝑝→0+
ℎ2(𝑝) =  𝑙2,      

satisfying 
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0 ≤ 𝑙2 ≤ 𝑙1 ≤ ∞, 

and if  𝑙2 =  𝑙1  then ℎ2(𝑝) < ℎ1(𝑝)  for p > 0 and sufficiently small 

(when  𝑙2 <  𝑙1  this last requirement is always fulfilled). 

It is worth mentioning that this hypothesis implies that the origin is topologically an 

unstable focus when 𝑙2 > 0 

Next result states a necessary condition for the existence of periodic orbits under the 

above hypotheses. 

4.1. 4:Theorem. Let f and g be the functions defined in (4.2) such that 𝑓𝑖 and 

𝑔𝑖are of class 𝐶1 in [a, 0] and [0, b] for i = 1, 2, respectively, where −∞ < 

a < 0 < b < ∞. 

Let F and ℎ𝑖 be the functions defined in (4.3) and (4.8) and 

assume that hypotheses 𝐻2-𝐻3 are fulfilled.  

If system (3.3) has a periodic orbit contained in the band a < x < b, then the system 

( F(𝑥1) = F(𝑥2)    ,     
g(𝑥1)  

f(𝑥1)  
,    

g(𝑥2)  

f(𝑥2)  
,                 (4.10) 

has at least one solution (𝑥1 , 𝑥2) = (𝑠1, 𝑠2) with  a < 𝑠1)  < 0 < 𝑠2)  < b, or 

equivalently there exists at least one solution ˆp ∈  (0, F(a))∩(0, F(b)) for the 

equation ℎ1) (p) = ℎ2) (p). 

Now we give a result on uniqueness of limit cycles for Li´enard equations 

where discontinuities are allowed at x = 0. 

4.1.5:Theorem . Under the same conditions of Theorem 4.1 2, assume that system 

(4.10) has exactly one solution (𝑥1 , 𝑥2) = (𝑠1, 𝑠2)  with a <𝑠1  < 𝑠1 < 0 < b, 

or equivalently there exists exactly one solution ˆp ∈  (0, F(a)) ∩ (0, F(b)) for 

the equation ℎ1 (p) =ℎ1(p). 

The following statement holds. 

If the positive function 

𝛼(𝑥) =
𝑔(𝑥)

𝑓(𝑥)𝐹(𝑥)
,         (4.11) 

is increasing for x ∈  (a, 0), or equivalently the positive function 

ℎ1(𝑝)

𝑝
,                          (4.12) 
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is decreasing for p ∈  (0, F(a)), then system (4.3) has at most one periodic orbit 

contained in the band a < x < b, and if it exists has a negative characteristic 

exponent. 

Although our main motivation is the case of discontinuous systems, it should be 

noted that the above results can be useful also for continuous differential equations. 

For instance we can state the following result. 

4.1.6: Proposition 

 The following Li´enard system 

𝑥̇ = 𝛼𝑥2 + 𝛽𝑥2 + 𝑥4 − 𝑦,
 𝑦̇ = 𝑥 

          (4.13)
̇

 

where 𝛽 > 0  and 9𝛽2 − 32𝛼 < 0 has no limit cycles in the plane. 

4.1.7:  Proposition 

We finish by considering an application of the above results to discontinuous 

piecewise linear differential systems. 

This class is increasingly used in engineering and applied sciences to model a large 

variety of technological devices and physical systems [2, 15]. 

Similar differential systems had been considered before in [6] but under the 

assumption of continuity for the corresponding vector field. 

4.1. 8:Theorem. Consider the Li´enard piecewise linear differential system 

{
𝑥̇ = 𝑡1 − 𝑦,

𝑦̇ = 𝑑1 + 𝑎1,
     𝑖𝑓    𝑥 < 0 ,     {

𝑥̇ = 𝑡2 − 𝑦,
𝑦̇ = 𝑑2 + 𝑎2,

     𝑖𝑓    𝑥  ≥ 0,       (3.14) 

where it is assumed 

𝑡1 < 0 , 𝑑1 < 0, 𝑎1 < 0, 𝑡2 > 0 , 𝑑2 > 0 , 𝑎2 > 0 . 

Then the following statements hold. 

(a) If   
𝑎2

𝑡2
 <  

𝑎1

𝑡1
  then a necessary condition for the existence of  periodic orbits is 

𝑑2

𝑡2
2

 

 >  
𝑑1

𝑡2
1
 . 

If the system has periodic orbits,  then it has a unique periodic orbit which is a stable 

limit cycle. 
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(b) If  
𝑎1

𝑡1
<    

𝑎2

𝑡2
  then a necessary condition for the existence of periodic orbits is  

𝑑1

𝑡2
1

>  
𝑑2

𝑡2
2

 

 . 

If the system has periodic orbits, then it has a unique periodic orbit which is an 

unstable limit cycle. 

(c) If   
𝑎2

𝑡2
=  

𝑎1

𝑡1
 then either the system has no periodic orbits when  is 

𝑑1

𝑡2
1

 ≠  
𝑑2

𝑡2
2

 

 , 

or it has a center at the origin when 

𝑑1

𝑡2
1

 =  
𝑑2

𝑡2
2

 

, . 

Observe that statement (c) of Theorem 5 when 

  0 <
𝑎2

𝑡2
=

𝑎1

𝑡1
,  and  

𝑑1

𝑡2
1

 =  
𝑑2

𝑡2
2

 

 . 

says that the origin is a center even when the dynamics of the linear differential 

system in each half–plane could be of node type. 

This situation happens when 

𝑑𝑖

𝑡2
𝑖
 ≤

1

4
     for i = 1, 2. 

When both dynamics are of focus type and we are under the 

assumptions of statements (a) and (b) of Theorem 4.1.8 the necessary condition 

for the existence of limit cycles is also sufficient, as stated in our last main 

result. 

4.2: generalized Li´enard system: 

dx

dt
=

1

a(x)
[h(y) − F(x)], 

dy

dt
= −a(x)g(x),                            (4.15) 

where F(x), g(x), a(x) and h(y) are continuous real functions defined on R 

satisfying: 

(𝐴0) F(0) = 0, a(x) > 0 for x ∈  R, xg(x) > 0 for x ≠0; 
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(𝐴1)y h(y) > 0 for y ≠  0, h(y) is strictly increasing and h(±∞) = ±∞. 

These assumptions guarantee that the origin is the only critical point of (4.15). 

We also assume that the initial value problem always has a unique solution. 

We call the curve h(y) = F(x) the characteristic curve of system (4.15). 

We write γ+(P) (resp., γ−(P)) the positive (resp., negative) semi orbit of  (4.15) 

starting at a point  P ∈  𝑅2
 . For the sake of convenience, we denote 

D1 = {(x, y) : x ≥ 0, h(y) > F(x)}, C 

D2 = {(x, y) : x > 0, h(y) ≤ F(x)}, 

D3 = {(x, y) : x ≤ 0, h(y) < F(x)}, 

D4 = {(x, y) : x < 0, h(y) ≥ F(x)}. 

𝐹+ (x) = max{0, F(x)}, 𝐹− (x) = max{0, −F(x)}, 

Γ+ (x) =∫ 𝑎2𝑥

0
(𝑠)𝑔(𝑠)  (1 + 𝐹+(𝑠))−1𝑑𝑠  , Γ− = ∫ a2x

0
(s)g(s)  (1 + 𝐹−(𝑠))−1𝑑𝑠 . 

Y + = {(0, y) : y > 0}, Y− = {(0, y) : y < 0}, 

C+ = {(x, y) : x > 0, h(y) = F(x)}, G(x) =∫ a2x

0
(s)g(s)𝑑𝑠. 

Then by (𝐴0), G(x) is strictly increasing, and therefore, the inverse function 

(𝐺)−1 (w) of w = G(x) exists. 

 Throughout this Section we shall suppose that the following conditions 

Hold. 

(𝐴2)  ∫ a2∞

0
(s)g(s)𝑑𝑠 =  ∫ a2−∞

0
(s)g(s)𝑑𝑠. 

(𝐴3)  𝐹(𝐺)−1 (-w))  = F (𝐺)−1 (w))  for 0 < w <M, 

where M = min{G(∞), G(−∞)} (M may be ∞). 

If F(x) and a2 (x)g(x) are even and odd functions, respectively, then it is obvious that 

(A2) and (A3) are satisfied and that all the orbits of (4.15) 

have mirror symmetry about the y-axis in the phase space. 

 Moreover, for example, if F(x) = 3x, a(x) = 1 and g(x) = 2x for x ≥ 0, and 

 F(x) =−3√2x   , a(x) = 1 and g(x) = 4x for x ≤ 0, then (A2) and (A3) are also satisfied. 

Firstly, employing an argument similar to that in [9, 22], we show that 

under the conditions (A2) and (A3), the orbits of (3) have deformed mirror symmetry 

about the y-axis. 
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4.2.1:Lemma. Suppose that the conditions (A2) and (A3) are satisfied. 

 If an orbit of (4.15) starting from a point A(0, yA) with yA > 0 passes through a 

point  B(0, yB) with yB < 0, then it reaches the point A again. 

proof. Consider an orbit of (4. 15) which starts from a point A(0, yA) with 

yA > 0 and passes through a point B(0, yB) with yB < 0. 

 We denote this orbit by T(x, y) and write 𝑇1 (x, y) = {(x, y) ∈  T : x ≥ 0} and 

 𝑇2 (x, y) = {(x, y) ∈  T : x < 0}.  

Let K = ∫ a2∞

0
(x)g(x)𝑑𝑥 (K may be ∞) and let the mapping ϕ  : (x, y) → (u, v) 

defined by 

𝑢 = {
√2𝐺(𝑥)𝑓𝑜𝑟  𝑥 ≥ 0,

−√2𝐺(𝑥)   𝑓𝑜𝑟 𝑥 < 0,
 

v = y. 

 Then we can see that the image ϕ𝑇1(u, v) of 𝑇1(x, y) is an orbit of the system 

𝑢´ = h(v) −𝐹∗(𝑢), 

𝑣´ = −u, 

 defined on (−√2K, √2K) × R, where 

𝐹∗(𝑢 = {
𝐹 ((𝐺)−1(

1

2
𝑢2))      𝑓𝑜𝑟   0 ≤ 𝑢 < √2𝐾

𝐹 ((𝐺)−1(−
1

2
𝑢2))     𝑓𝑜𝑟 − √2𝐾 < 𝑢 < 0.

 

In fact, for any point (u, v) ∈  ϕ  𝑇1,  

𝑑𝑢

𝑑𝑣
=

𝑎2(x)g(x)

√2𝐺(𝑥) 
.
ℎ(𝑦) − 𝐹(𝑥)

−𝑎2(x)g(x)
=

ℎ(𝑣) − F∗(u)

−𝑢
. 

Note that the curve ϕT1(u, v) contains the points A and B. 

 It follows from  (A2) and (A3) thatF∗(u) is an even function on (−√2K, √2K). Hence, 

the curve ϕT1(−u, v) is also an orbit of (4.15) which contains the points A and B. 

 Let 𝑇3 (x, y) be the inverse image of ϕ𝑇1 (−u, v) under the mapping ϕ . 

Then for any point (x, y) ∈  𝑇3,  

𝑑𝑥

𝑑𝑦
=

√−2𝐺(𝑥)

𝑎2(x)g(x)
 .

ℎ(𝑦) − 𝐹 (𝐺−1 (
𝑢2

2
))

−𝑢
=

ℎ(𝑣) − F (x)

−𝑎2(x)g(x)
 . 



63 

 

Thus, 𝑇3(x, y) is an orbit of (4.15)which starts from the point B and arrives at the 

point A. 

 Since the solutions of (4.15) are unique, 𝑇2(x, y) and T3 (x, y) coincide, and hence the 

orbit T(x, y) reaches the point A again. 

 This completes the proof. 

4.2.2Remark 1. If the condition (A3) holds for w > 0 sufficiently small, then all the 

orbits of (4.15) near the origin have deformed mirror symmetry with 

respect to the y-axis. 

4.2. 3: Lemma. Consider the functions f and g defined as in (4.2). 

 If system (4.3)  has a periodic orbit Γ and the interior of the bounded region limited 

by includes the origin and it is denoted by Δ , then Γ crosses the y-axis in two points 

different from the origin, and the function f satisfies the condition  

∬ 𝑓(𝑥)𝑑𝑥𝑑𝑦
 

Δ
  = 0, 

Proof. Since x′ = −y on x = 0 and the origin is in Δ, it follows that Γ intersects the y-

axis in two points M = (0, yM) and N = (0, yN) with yM < 0 < yN. 

We define Δ1, Γ1  , and Δ2 , Γ2 to be the parts of Δ  and Γ contained in x < 0 and x > 

0 respectively.  

We denote by A the oriented segment on 

the y-axis from the point M to the point N while the same segment with 

the opposite orientation is denoted by −A.  

Then by applying the Green’s Theorem w 

∬ 𝑓(𝑥)𝑑𝑥𝑑𝑦
 

Δ
  = ∬ 𝑓(𝑥)𝑑𝑥𝑑𝑦

 

Δ1
    +  ∬ 𝑓(𝑥)𝑑𝑥𝑑𝑦

 

Δ2
  =  ∫ [𝐹(𝑥) − 𝑦]

 

Γ1
𝑑𝑦 −

𝑔(𝑥)𝑑𝑥 + ∫ [𝐹(𝑥) − 𝑦]
 

A 
𝑑𝑦 − 𝑔(𝑥)𝑑𝑥 + ∫ [𝐹(𝑥) − 𝑦]

 

Γ2
𝑑𝑦 − 𝑔(𝑥)𝑑𝑥 +

∫ [𝐹(𝑥) − 𝑦]
 

−A 
𝑑𝑦 − 𝑔(𝑥)𝑑𝑥 = 0 + ∫ (−𝑦)𝑑𝑦 +

𝑦𝑁

𝑦𝑀
0 + ∫ (−𝑦)𝑑𝑦 = 0

𝑦𝑀

𝑦𝑁
 

and the conclusion follows. 

4.2.4: Theorem. Assume 𝑓 and 𝑔 are smooth functions such that 𝑔(𝑥) > 0 for 𝑥 > 0 

and such that 𝑓 has exactly three zeros (0,a,-a) with 𝑓′(0) < 0 and 𝑓′(𝑥) ≥ 0 for 𝑥 >
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𝑎 and 𝑓(𝑥) → ∞  for 𝑥 then the corresponding lienard system has exactly one limit 

cycle and this cycle is stable  

proof. 

Drawing 𝑥𝑦 – plane the graph of the function 𝑥 → 𝑓(𝑥). On his graph the vector field 

is vertical it is called a null cline is for 𝑥 > 0 we have 
𝑑𝑦

𝑑𝑥
< 0 

The y – axes the vector field is horizontal because 𝑔(0) = 0 

The y–axes the also a nullcline consider an orbit which starts at (0 , 𝑦0) on the 

positive y-axes. It goes to the right be cause 𝑔(𝑥) > 0 for 𝑥 ≥ 0 because 𝑔(𝑥) > 0  

the orbit also moves down. 

It has to hit the graph off. 

It intersects that nullcline at appoint (𝑥1 , 0) with positive vertical velocity and enters 

the vegan. 

Where 
𝑑𝑦

𝑑𝑥
< 0it must then go the left and hit again some where the y- axes horizon 

tally in some point (0 , 𝑦0) = [0, −𝑆(𝑦0)] we can analyze the fate of the orbit on the 

left half plane in the some way as on the right plane. 

Limit cycle  if the map 𝑦0 → 𝑆(𝑦0) was affixed point. 

Alternatively we can express this that the energy. 

𝐻(𝑥, 𝑦) =
𝑦2

2
+ 𝐺(𝑥)Is the same at(0 , 𝑦0) and (0 , 𝑦1).  

The idea of the proof is to determine the energy gain along the orbit and to see that 

only for one single orbit, the energy is conserved compute. 

𝑑

𝑑𝑡
𝐻(𝑥, 𝑦) = 𝑦

𝑑𝑦

𝑑𝑡
+ 𝑔(𝑥)

𝑑𝑥

𝑑𝑡
= −𝐹(𝑥)𝑔(𝑥)                  (4.16) 

If 𝐹[𝑥 ∙(𝑡)] were positive on the inter trajectory from (0 , 𝑦0) to (0 , 𝑦1) then 𝐻(0 , 𝑦1) 

- 𝐻(0 , 𝑦0) is positive.  

It must there fore cross the graph of 𝑓 at a point , where 𝑓(𝑥) > 0. 

The theorem is proven if we can show the following statement a but the energy 

difference. 

∆(𝑦0) = 𝐻(0 , 𝑆 𝑦0) - 𝐻(0 , 𝑦0). 

Depending on the intersection point 𝑥1, 𝑓(𝑥1) with the null cline. 



65 

 

𝑖𝑓 𝑥1 < 𝑎 , 𝑡ℎ𝑎𝑛 ∆(𝑦0) > 0. 𝑓𝑜𝑟 𝑦0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥1 > 𝑎  

∆(𝑦0) is a monotonically decreasing function for 𝑦0 and ∆(𝑦0) → −∞ 𝑓𝑜𝑟   𝑦0 → ∞ 

As consequence, there exist then exactly one point 𝑦0  belongs to a limit cycle. 

The vest of the proof is devoted to the verification of the above claim. 

(i) ∆(𝑦) > 0  𝑖𝑓 𝑦0is such that 𝑥1 ≤ 𝑎. 

That 𝑓(𝑥) is negative in the interval [0, 𝑎] 

If  𝑥1 ≤ 𝑎 then  𝑥(𝑡) ≤ 𝑎 until we hit the y- axes again. But since then 𝐹(𝑥(𝑡)) < 𝑎 

and 𝑔(𝑥) > 0 for 𝑥 > 0 we have 
𝑑

𝑑𝑡
𝐻(𝑥, 𝑦) = −𝐹(𝑥)𝑔(𝑥) > 0 the energy gain is 

positive. 

(ii) The monotonic claim for 𝑥1 ≥ 𝑎 let 𝐴(𝑦0)𝑏𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ [𝑥(0), 𝑦(0)] =

(0, 𝑦0) And  

[𝑥(𝑇), 𝑦(𝑇)] = (0, 𝑦0) from 
𝑑

𝑑𝑡
𝐻(𝑥, 𝑦) = −𝐹(𝑥)𝑔(𝑥) we obtain. 

∆(𝐻)(𝑦0) =  ∫ −(𝐹(𝑥(𝑡))𝑔(𝑥(𝑡))𝑑𝑡 = ∫ 𝐹(𝑥(𝑦))𝑑𝑦 = ∫
−𝐹(𝑥)𝑔(𝑥)

𝑦 − 𝐹(𝑥)

 

𝐴

 

𝐴

 

𝐴

. 

Split the path a in to a path 𝐴1 from (0 , 𝑦0) to 𝑥(𝑡) = 𝑎 , 𝑎 𝑝𝑎𝑡ℎ 𝐴2 which is the 

continuation un til 𝑥(𝑡) = 𝑎 again and into a path 𝐴3 we can  parameterize the curve 

by x instead of t, along 𝐴2we can use the parameter y. 

We see that increasing 𝑦0 increases 𝑦(𝑡) and so decreases integral  

∆1(𝐻)(𝑦0) = ∫
−𝐹(𝑥)𝑔(𝑥)

𝑦−𝐹(𝑥)

𝑎

0
𝑑𝑥, along 𝐴1. 

On 𝐴3 increases 𝑦0 decreases𝑦(𝑡) which decreases the integral 

∆3(𝐻)(𝑦0) = ∫
−𝐹(𝑥)𝑔(𝑥)

𝑦−𝐹(𝑥)

𝑎

0
𝑑𝑥 along 𝐴3. 

Along 𝐴2 , usey as variable. 

Increasing  𝑦0 pushes the path  𝐴2to the right so that 𝐹(𝑥(𝑡)) is increasing and the 

integral  

∆2(H)(y0) =  − ∫ F(x(y))dy,
y3

y2
 is decreasing. 

The sum ∆(H)(y0) = ∆1(y0) + ∆2(y0) + ∆3(y0) is decreasing in y0 

(iii) The limit y0 → ∞ 
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To see that ∆(y0) goes to → ∞ for y0 → ∞ we split an orbit in to paths B1 , B2 , B3in 

the same way as A1 , A2 , A3 but that the value of a has been replaced by (a+1). 

The integrals along B1and B2 are bounded by aconstant independent of y0. 

While the integral along B2 is bigger or equal to F(a+1) times they differences of the 

two points, where x(t) = a + 1. 

This differences goes to → ∞ for y0 → ∞ so the energy gain along the sum of the 

paths B1 , B2 , B3 goes to → ∞ for y0 → ∞. 

In the previous we so that the Poincare Bendixson theorem could be used to establish 

the existence of limit cycles for certain planar systems. 

It is afar more Delieale equation[2], [3]  to determine the exact number of limit cycle 

of a certain system or class of systems depending on parameters. 

In this study we present a proof of a classical result on the uniqueness of the limit 

cycle for systems of the form. 

x′ = y − 𝑓(𝑥)

y′ = 𝑔(𝑥)
                             (4.17) 

Under certain conditions on the functions 𝑓 and 𝑔.  

This result was first established by the French physicist a Liénard and the system is 

referred to as a Liénard system. 

Liénard studied this system in the different but equivalent from. 

x′′ + 𝑓(𝑥)x′ + 𝑔(𝑥) = 0 

Where F(x) = 𝑓′(𝑥) in on sustained oscillations this second order differential 

equation includes the famous  Vander pol equation. 

x′′ + μ(𝑥2 − 1)x′ + 𝑥 = 0 ,                 (4.18) 

 

Of vacuum tube circuit theory as a special case we present serval other interesting 

resolution the number of the limit cycle of Liénard systems and polynomial systems. 

In the proof of  Liénard's theorem and in the statements of some of the other theorems 

in this section it will be useful to define the functions 𝑓.  
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𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠

𝑥

0

     𝑎𝑛𝑑     𝑔(𝑥) = ∫ 𝑔(𝑠)𝑑𝑠,

𝑥

0

 

And the energy function 

u(x , y) =
𝑦2

2
+ 𝐺(𝑥),                (4.19) 

3.2.5: Theorem[24], 

under the assumptions that , 𝑓 , 𝑔 𝜖 𝐶′(𝑅)𝑓 and 𝑔 odd functions of 𝑥 , 𝑥𝑔(𝑥) > 0  for  

𝑥 ≠ 0  , 𝑓(0) = 0, 

𝑓′(0) < 0  , 𝑓 has single positive zero at 𝑥 = 𝑎 and 𝑓 increase monotonically to 

infinity for 𝑥 ≥ 𝑎 as 𝑥 → ∞ , it follows that the Lienard system. Has exactly one limit 

cycle and it is stable. 

The proof of this theorem makes use of the diagram below where the points 
j

p  have 

coordinates (𝑥𝑗  , 𝑦𝑗)for j= 0,1,2,3,4 and  is a trajectory of the Liénard system (4.17)  

The function 𝑓(𝑥) which satisfy the hypotheses of theorem 3.2.5. 

Before presenting the proof of this theorem we first of all make same simple 

observations under the assumptions the above theorem. The origin is the only critical 

point . The flow on the positive y – axis is horizontal and to the right and the flow on 

the negative y – axis is horizontal and to the left the flow of the curve 𝑦 = 𝑓(𝑥) is 

vertical downward for 𝑥 > 0 and upward for 𝑥 < 0 the system (4.17). 

 is invariant under (𝑥, 𝑦) → (−𝑥, −𝑦) and therefore if (𝑥(𝑡), 𝑦(𝑡))describes a 

trajectory of (4.11).  . So dose (−𝑥(𝑡), −𝑦(𝑡)) is follows. 
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Figure    1 

 

That if   is closed trajectory of (4.17) . a periodic orbit of (4.17).  

Then   is symmetric with respect to the origin. 

Proof. 

 Due to the nature of the flow on the y – axis and on the curve 𝑦 = 𝑓(𝑥)  any 

trajectory   starting at appoint 𝑝0on the positive y – axis crosses the curve 𝑦 = 𝑓(𝑥) 

vertically at point p2 and they it crosses the negative y – axis crosses horizon tally at 

the point p4. 

Due to the symmetry of the equation. If follows that    is a closed trajectory.  

If and only if y4= - y0 and for 

𝑢(𝑥, 𝑦) =
𝑦2

2
+ 𝐺(𝑥),                     (4.20) 

This is equivalent to 𝑢(0, 𝑦4) = 𝑢(0, 𝑦0) 

Now let A be the arc 𝑝0𝑝4̅̅ ̅̅ ̅̅  of that trajectory  and consider the function ∅(𝛼) define 

by the line integral  

∅(𝛼) = ∫ 𝑑𝑢 = 𝑢(0, 𝑦4) − 𝑢(0, 𝑦0),

 

𝐴
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Where 𝛼 = 𝑥2 , the abscissa of the point p2 it follows that   is a closed trajectory of 

(4.17), if and only if ∅(𝛼) = 0.  

We shall show that the function ∅(𝛼) has exactly one zero 𝛼 = 𝛼0 and that 𝛼0 > 𝑎. 

First of all, note that along the trajectory  

𝑑𝑢 = 𝑔(𝑥)𝑑𝑥 + 𝑦𝑑𝑦 = 𝑓(𝑥)𝑑𝑦, 

And if 𝛼 ≤ 𝑎 then both 𝑓(𝑥) < 0 and  

𝑑𝑦 = −𝑔(𝑥)𝑑𝑡 < 0 

There fore ∅(𝛼) > 0, 𝑢(0, 𝑦4) > 𝑢(0, 𝑦0) 

Hence any trajectory   which crosses the curve 𝑦 = 𝑓(𝑥) at the point p2 with 0 <

𝑥2 = 𝛼 ≤ 𝑎   is not closed. 

4.2.6: Lemma[20],  for  𝛼 ≥ 𝑎, ∅(𝛼) is a monotone decreasing function which 

decreases from the positive value ∅(𝛼)𝑡𝑜 → 𝛼 as 𝛼 increasing in the interval (𝑎, 𝛼). 

For 𝛼 > 𝑎, as in fig1 we split the arc Ain to three parts 𝐴1 = 𝑝0𝑝 ̅̅ ̅̅ ̅𝐴2 =

𝑝1𝑝3 ̅̅ ̅̅ ̅̅ ̅and 𝐴3 = 𝑝3𝑝4̅̅ ̅̅ ̅̅  define the functions  

∅1(𝛼) = ∫ 𝑑𝑢1
 

𝐴
, ∅2(𝛼) = ∫ 𝑑𝑢 𝑎𝑛𝑑 ∅3(𝛼)

 

𝐴2
= ∫ 𝑑𝑢

 

𝐴3
t 

If follows that ∅(𝛼) = ∅1(𝛼) + ∅2(𝛼) + ∅3(𝛼) 

Along we have 

𝑑𝑢 = [𝑔(𝑥) + 𝑦
𝑑𝑦

𝑑𝑥
] 𝑑𝑥 = [𝑔(𝑥) −

𝑦𝑔(𝑥)

𝑦 − 𝑓(𝑥)
] 𝑑𝑥 =

−𝑓(𝑥)𝑔(𝑥)

𝑦 − 𝑓(𝑥)
𝑑𝑥 

Along the arc, A1 and A3 we have  

𝑓(𝑥) < 0, 𝑔(𝑥) > 0 𝑎𝑛𝑑 𝑑𝑥
𝑦 − 𝑓(𝑥)⁄ = 𝑑𝑡 > 0 

There fore ∅2(𝛼) < 0 since trajectories. 

 do not cross.  

It follows that increasing 𝛼 raises the arc A1and lowers the arc A3. 

Along the x limits of integration remain fixed at = 𝑥0 = 0 𝑎𝑛𝑑 𝑥 = 𝑥1 = 𝑎 , and for 

each fixed x in (0,a). increasing 𝛼 raises A1 which increasing which in turn 

decreasing the above integrand and therefore decreases ∅1(𝛼). Along A3, the x limits 

of integration remain fixed at 𝑥3 = 𝑎 and 𝑥4 = 0; and for each fixed 𝑥 ∈ [0, 𝑎] , 
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increasing 𝛼 lowers A3 which decreases y which in turn decreases the magnitude of 

the above integrand and therefore decreases ∅3(𝛼) since 

∅2(𝛼) = ∫
−𝑓(𝑥)𝑔(𝑥)

𝑦 − 𝑓(𝑥)

0

𝑎

𝑑𝑥 = ∫ |
𝑓(𝑥)𝑔(𝑥)

𝑦 − 𝑓(𝑥)
 |

𝑎

0

𝑑𝑥 

Long the arc A2 of   we can write 𝑑𝑢 = 𝑓(𝑥)𝑑𝑦 and since trajectory of. Do not 

cross , it follows that increasing 𝛼 causes the arc A2 to move to the right. Along A2 

the y – limits of integration remain fixed at 𝑦 = 𝑦1𝑎𝑛𝑑 𝑦 = 𝑦3; and for each fixed 

𝑦 ∈ (𝑦3, 𝑦1) increasing x increases 𝑓(𝑥) and since.  

∅3(𝑥) = − ∫ 𝑓(𝑥)𝑑𝑦

𝑦1

𝑦3

 

This in turn decreases ∅2(𝑥). Hence for 𝛼 ≥ 𝑎 anontone decreasing function of 𝛼.  

It remains to show that 

∅(𝛼) → −∞ 𝑎𝑠 𝛼 → ∞ 

If suffices to show that  

∅2(𝑥) → −∞ 𝑎𝑠 𝛼 → ∞ 

But along A2. 

𝑑𝑢 = 𝑓(𝑥)𝑑𝑦 = −𝑓(𝑥)𝑔(𝑥)𝑑𝑡 < 0 

And therefore any sufficiently small  𝜀 > 0 

|∅2(𝛼) | = − ∫ 𝑓(𝑥)

𝑦3

𝑦1

𝑑𝑦 = 

∫ 𝑓(𝑥)

𝑦1

𝑦3

𝑑𝑦 > ∫ 𝑓(𝑥)

𝑦1−𝜀

𝑦3+𝜀

𝑑𝑦 > 𝑓(𝜀) ∫ 𝑑𝑦

𝑦1−𝜀

𝑦3+𝜀

 

= 𝑓(𝜀)[𝑦1 − 𝑦3 − 2𝜀] > 𝑓(𝜀)[𝑦1 − 2𝜀] 

But 𝑦1 > 𝑦2 𝑎𝑛𝑑 𝑦2 → ∞ 𝑎𝑠 𝑥2 =∝→ ∞  

Therefore |∅2(𝛼)| → ∞ 𝑎𝑠 ∝→ ∞ , ∅2(𝛼) → −∞ 𝑎𝑠 ∝→ ∞  

Finally, since the continuous function ∅(∝) decreases monotonically from the 

positive value ∅(𝑎) = 0 at exactly one value of ∝ say ∝=∝0 in (𝑎, ∝).  
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Thus (4.17) has exactly on closed trajectory 𝛤0 which goes through the point. 

(∝0) = 𝑓(∝0) furthermore, since ∅(∝) < 0 for ∝>∝0 , it follows from the 

symmetry of the system  (4.17). That for ∝ ≠ ∝0 successive points of inter section of 

trajectory 𝛤  through the point (∝, 𝑓(∝)) with the y – axis approach 𝛤0, 𝛤0 is stable 

limit cycle of (4.17). this completes the proof of Lienard theorem. 

4.2.7:Corollary: 

For 𝜇 > 0 Vander pol's equation has a unique limit cycle and it is stable 

 

 

Figure2The limit cycle for the Vander pol equation for 𝜇 = 1 𝑎𝑛𝑑 𝜇 = −1 

Figure (2) shows the limit cycle for the Vander pol equation (4.18) with 𝜇 =

1 𝑎𝑛𝑑 𝜇 = 0.1 it can be shown that the limit cycle of (4.18) is asymptotic to the circle 

of radius (4.18) centered at the origin as 𝜇 → 0 

4.2.8: Example The function 

𝑓(𝑥) =
(𝑥3−𝑥)

(𝑥2+1)    
𝑎𝑛𝑑 𝑔(𝑥) = 𝑥       (4.21) 

Satisfy the hypotheses of Liénard theorem it therefore follows that the system (4.17) 

with these functions has exactly one limit cycle which is stable. 

 These limit cycle is shown in figure (3) 

ZhandZhifer the Chinese mathematical who proved the following useful result . 

Which complements Lienard's theorem.   
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 4.2.9: Theorem . 

Under the assumptions that 𝑎 < 0 < 𝑏 , 𝑓, 𝑔𝜖𝐶′(𝑎, 𝑏), 𝑥𝑔(𝑥) > 0 𝑓𝑜𝑟 𝑥 ≠ 0 

𝐺(𝑥) → ∞ 𝑎𝑠 𝑥 → 𝑎 𝑖𝑓 𝑎 = −∞ 

𝑎𝑛𝑑  𝐺(𝑥) → ∞ 𝑎𝑠 𝑥 → 𝑏 𝑖𝑓 𝑏 = ∞ , 𝑓(𝑥)𝑔(𝑥) 

Is monotone increasing on (𝑎, 0) ∩ (0, 𝑏) and is not constant in any neighborhood 

of 𝑥 = 0 , it follows that the system (3.17) has at most one limit in the regain 

 𝑎 < 𝑥 < 𝑏 and if it exists it is stable                              

 

 

The limit cycle for the Liénard system in example2 

 

 

figure4 

The limit cycle for the Liénard system in the example with ∝= 0.02 

 



73 

 

 

4.2.10: Example: 

We used this theorem to show that for ∝∈ (0.1) the quadratic system. 

𝑥′ = −𝑦(1 + 𝑥)+∝ 𝑥 + (∝ +1)𝑥2 

𝑦′ = 𝑥(1 + 𝑥)    ,              (4.22) 

Has exactly one limit cycle and it is stable. It is easy to see that the follow is 

horizontal and to the right on the line = −1 , therefore any closed trajectory lies in 

the region 𝑥 > −1 

If we define anew independent variable 𝑇 by 𝑑𝑇 = −(1 + 𝑥)𝑑𝑡 along trajectories 

𝑥 = 𝑥(𝑡) of this system it then takes the form a Liénard system  

𝑑𝑥

𝑑𝑡
= 𝑦 −

∝ 𝑥 + (∝ +1)𝑥2

1 + 𝑥
 

𝑑𝑦

𝑑𝑡
= −𝑥 

Even though the hypotheses of the Liénard theorem are not satisfied it can be shown 

that the hypotheses of Zhang's theorem are satisfied. 

Therefore this system as exactly one limit cycle and it is stable. 

The limit cycle for this system with ∝= 0.02  is shown in figure (4). 

And her interesting theorem concerning the number of limit proved by Zhang[43] 

,[24] ,[44]  of the Liénard system  

 3.2.11: Theorem 

Under the assumptions that  

𝑔(𝑥) = 𝑥 , 𝑓 ∈ 𝐶′(𝑅) 

𝑓(𝑥) is an even function with exactly tow positive zero  

𝑎1 < 𝑎2 𝑤𝑖𝑡ℎ 𝑓(𝑎1) > 0  𝑎𝑛𝑑 𝑓(𝑎2) < 0  𝑎𝑛𝑑 𝑓(𝑥)  is monotone increasing. 

3.3 : Generalized Liénard equation. [24], [27] [29], 

In this section consider the following equation: 

𝑥" + 𝑓(𝑥)𝑥′ + 𝑔(𝑥) = 𝑒(𝑡) ,                         (4.23) 

We assume the following condition . 

(i) F and G are continuous function for all real 𝑥 
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(ii) e is a section continuous function for real 𝑡 , 𝑒(𝑡) ≠ 𝑧𝑒𝑟𝑜  almost every there, e is 

periodic with smallest positive periodic 𝑡 and 

∫ 𝑒(𝑡)𝑑𝑡 = 𝑜, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑎𝑙 𝑐

𝑐+𝑡

𝑐

 

(iii) 𝑓(𝑥) > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

(iv) 𝑥𝑔(𝑥) > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≠ 0 

We shall determine necessary and sufficient conditions for bounded of solution, for 

existences of periodic solutions and for oscillation of solutions. 

We define the functions F,G and Ec by 

𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠

𝑥

0

 , 𝐺(𝑥) = ∫ 𝑔(𝑠)𝑑𝑠

0

0

  ,   𝐸𝐶(𝑡) = ∫ 𝑒(𝑠)𝑑𝑠.

𝑡

𝑐

 

Several systems of equations equivalent to (3.23) will be consider 

One such system is defined as follows 

Let   𝑥′ = 𝑦 − 𝑓(𝑥) + 𝐸𝑐(𝑡)  then 

𝑥" = 𝑦′ − 𝑓(𝑥)𝑥′ + 𝑒(𝑡) 𝑜𝑟  𝑦′ = −𝑔(𝑥). 

We thus  have the system 

𝑥′ = 𝑦 − 𝑓(𝑥) + 𝐸𝐶(𝑡)  (c real) 

𝑦′ = −𝑔(𝑥),                     (4.24) 

We note that a solution 𝑥(𝑡) of (1) is bounded if and only if the x – component of a 

corresponding solution [𝑥(𝑡) , 𝑦(𝑡)] of (4.24) is bounded, likewise a 

solution 𝑥(𝑡)𝑜𝑓 (4.23) 𝑎𝑛𝑑 𝑖𝑡 𝑖𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑙𝑖𝑣𝑒 𝑥 .(𝑡)   is bounded if and only if the 

corresponding solution[𝑥(𝑡) , 𝑦(𝑡)] of (4.24) is bounded . 

A solution [𝑥(𝑡) , 𝑦(𝑡)] of (4.24) is periodic if and only of 𝑥(𝑡) is a periodic solution 

of (4.23). 

Conditions (i-iv) imply that for any real 𝑥0 , 𝑦0and to there exists a solution 

[𝑥(𝑡0) , 𝑦(𝑡0)] = (𝑥0, 𝑦0) further the solution [𝑥(𝑡) , 𝑦(𝑡)] is defined for all > 𝑡0 𝑥. 
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4.4:Uniqueness of limit cycles for a class of Liénard system:[ 22], 

We shall given three criteria for the uniqueness of limit cycles of system of Liénard 

type. 

       x y y F x  

 y g x
,                (4.25)

 

Where the functions  in (4.25) are assumed to be continuous such that uniqueness of 

solution for initial value problems in guaranteed. If we define as usual 

   
0 0

, ( ) ( )  
yx

G x g x ds A y r dr  

 Then we assume that the following conditions hold. 

i.    0 0, y  is strictly increasing and   ;    . 

ii.   0x g x   when 0x  and  G   . 

iii.   0y   for y R  is decreasing function.  

iv. There exist constant 
1 2,x x  with 

1 20x x   such that      1 20 0F x F F x    

and   0x F x   for  1 2, /{0}x x x . 

v. Where exist constant 
1 00,m k k  with 

1K k , such that  F x k  for x m  and

  0F x k for x M . 

vi. One of the following. 

1.    1 2G x G x  or 

2.    G x G x   for 0x . 

Furthermore, we assume that first equation (3.25) define implicitly a function  

 y h x  such that  : ,h m m R   and 

• 0m . 

•  0 0h  . 

•          0, , ,h x h x F x x m m      

• Sgn h   x sng F x when 0x . 
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4.4.1:Lemma if there exist some positive constants N and M such that: 

  , F x N x R  and
  y M y R    . 

Then  h x  is bounded and m  considering    
 

0

h x

W x y dy  , where h is the 

above function, we have 

1. If 
2 1x x  then       

2

1
0
max

x x
G x w x G x

 
  . 

2. If 
1 20 x x   then       

1

2
0

max
x x

G x w x G x
 

  . 

The system(1) is the classical Lienard differential equation  

  0x f x x x     when        , 1,y y y f x f x      and  g x x . 

The following facts are we know 

a. Condition  ( ) (1 )i v imply that system – (4.25) has a unique singularity, 

which will be an unstable focus or node. [1].   

b. If v. holds then there exists a closed curve  such that every trajectory 

interesting it crosses it in the exterior-to-interior direction, hence implying the 

existences of at least one stable limit cycle, by he Poincare.  

c. Bendixon theorem [3], [4] ,[5]. 

d. Condition vi. Assures that all closed trajectory of system (4.25) have 

intersecting both 
1x x  and 

2x x  [24] , [25]. 

e. We proved that under conditions (i-iv) all solution of  (4.25) are containable.  

Some attempts [46] have been made to find sufficient conditions for existence and 

uniqueness of limit cycles of some particular cases of system (4.25)  under the 

condition  f   . 

In this study we obtain sufficient condition for uniqueness of limit cycles. 

of (4.25)  without make use of above condition.     

These criteria are refinements of early results so we consider that the following 

condition is added:  

 F x
 
is no decreasing for    1 2, , ,x x x         (4.26)     
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If (i-vi) and (4.26) do hold we will give a short proof that system (4.25) has exactly 

one limit cycle, not by using a comparison method but  estimating the divergence of 

system (4.25)  integrated a long a limit cycle.  

By this we can show that the limit cycle is hyperbolic.  

A limit cycle is hyperbolic or simple.  

If for any arbitrarily small analytic perturbation of the system there is not other limit 

cycle in a sufficiently small neighbor of the limit cycle. 

 Let X be vectorial field plane and  a closed trajectory of X  with period T .  

The number 𝐶(𝛾) = ∫ 𝑑𝑖𝑣𝑥(𝛾)𝑑𝑡
𝑇

0
 

    Is called "characteristic exponent of    . 

4.4.2:We consider the Lienard system : 

𝑥 . = 𝑦 − 𝑓(𝑥) ,   𝑦 . = −𝑔(𝑥) ,                                 (4.27) 

 The above system equivalent form: 

𝑥 : + 𝑓(𝑥)𝑥 . + 𝑔(𝑥) = 0,                                           

Where 𝑓(𝑥)      𝑎𝑛𝑑    𝑔(𝑥),  are continuous functions . 

This second order if equation includes the famous Van der Pol,s equation  

𝑥̈ + 𝜇(𝑥2 − 1)𝑥 . + 𝑥 = 0                                           (4.28) 

defined  the functions  

𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠   𝑎𝑛𝑑      𝐺(𝑥) = ∫ 𝑔(𝑠)𝑑𝑠
𝑥

0

𝑥

0
 , 

 

4.4.3:Theorem  Assume 𝑓(𝑥) 𝑒𝑣𝑒𝑛 ,    𝑔(𝑥) 𝑜𝑑𝑑, 𝑎𝑛𝑑 𝑥𝑔(𝑥) > 0, 𝑓𝑜𝑟 𝑥 ≠ 0, 𝐼𝑓 

i.      f(0) = 0, 𝐹.(0) < 0, 𝐹 ℎ𝑎𝑠 single positive zero at 𝑥 = 0 = 𝑎 

ii. 𝐹 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑓𝑜𝑟 𝑥 ≥ 𝑎  ,    𝑎𝑠 𝑥 → ∞, 

iii. 𝐺(𝑥) = 𝐹(+∞) = +∞. 

Then the system (3.21) has exactly one limit cycle and it is stable. 

4.5: We consider the following Lienard system: 

𝑥̇ = 𝑦           ,   𝑦̇ = −𝑥 − (𝑎𝑥2 − 𝑐)𝑦,                            ( 4.29)                            

And apply the theorem 4.4.3: to prove the existence and uniqueness of limit cycles  
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In this portion we discuss the various plane portraits that are possible for the linear 

system  𝑥̇ = 𝐴𝑥,   𝑤ℎ𝑒𝑟𝑒  𝑥 ∈ 𝑅2  , A is a 2 × 2 matrix and    A=[
𝑐 1

−1 0
] 

 If we let D=det(A)  ,T   = trac(A)   , we get  𝑇2 < 4𝐷 → 𝑇2 − 4𝐷 = 𝐶2 − 4 , the 

result from , the linear system in the origin has focus . 

 If 𝑇2 − 4𝐷 = 𝑐2 − 4 < 0 , also has spiral focus see [46] limit cycle can appear only 

around focus . 

 Thus we solely need 𝑐2 − 4 < 0 ,and we consider the case  0 < 𝑐 < 2, othrwise no limit 

cycle . 

The three vocal values are , 

𝑊1 = 𝑐   ,     𝑊2 =
1

3
𝑎  ,      𝑊3 = 0. 

If 𝑐 = 0 the origin is a center weak , and for 𝑎 < 0 the origin is stable  focus ,when 𝑐 

increasing from zero has one limit cycle appear .We apply  

Theorem4.4 3,to the system (4.23) in system  (4.23) we see 𝑓(𝑥)𝑎𝑛𝑑𝑔(𝑥)  are even and odd 

respectively . 

 Its possible we test that 𝑥𝑔(𝑥) = 𝑥2 > 0 , 𝑠𝑖𝑛𝑐𝑒  

0 < 𝑐 < 2  , 𝑤ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 (𝑥2 − 4) > 0 ,  

and we deduced that 𝑥𝑔(𝑥) > 0, 𝑓𝑜𝑟 𝑥 ≠ 0  𝑤𝑒  𝑙𝑒𝑡 𝐹(𝑥) =
1

3
𝑥3 + 𝑐𝑥, 𝑎𝑛𝑑 𝑓(𝑥) < 0, 

𝑥 = ±√
𝑐

𝑎
. Thus for 𝑥0 = √

𝑐

𝑎
> 0, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝐹(𝑥) < 0, 𝑖𝑛 (0, √

𝑐

𝑎
) , 𝑖𝑛 𝐹(𝑥) > 0 

 , 𝑖𝑛𝑐𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 (√
𝑐

𝑎
, +∞), 

Thus two condition holds , also we can check that 𝐹(+∞) = +∞, 𝑠𝑖𝑛𝑐𝑒  𝑥𝑔(𝑥) >

0, 𝑓𝑜𝑟 𝑥 ≠ 0, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑐𝑎𝑛 ℎ𝑜𝑙𝑑𝑠 𝑡ℎ𝑎𝑡 

 𝐺(+∞) = +∞, 𝑡ℎ𝑢𝑠 

Condition( iii) satisfies. 

 Hence theorem 4.4.3 has been with satisfy , and system (4.29) 

 has exactly one limit cycle  .  
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4.5.1:Remark   for  𝜇 > 0, Van der Pol's equation (4.28) has a unique limit cycle and 

it is stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

Chapter Five  

Limit Cycle Problems for a non-Liénard Systems 

This chapter is devoted to the investigation of the qualitative behavior of the solutions 

of the autonomous system of two differential equations  

˙x = p2(y)q2 (x)y, ˙y = p3 (y) q3 (x)x + p4 (y) q4 (x)y,     (5.1) 

where 𝑝𝑖 (y) and 𝑞𝑖 (x) (i = 2, 3, 4) are continuous real functions defined on  

R = (−∞, +∞). 

Krechetov [8] studied the global asymptotic behavior of solutions of system (5.1), 

described the configurations of the domains of stability (when there is no global 

asymptotic stability) and constructed estimates of the boundaries of these domains. 

 In the study of stability for (5.1), the most important condition given by 

 Krechetov [17] is 

q2 (x) q4 (x) >0 for all x ∈ R,   (5.2) 

by using the Lyapunov function method, he gave necessary and sufficient conditions 

for the zero solution of (5.1) to be globally asymptotically stable under some 

additional assumptions. 

Recently, Yan and Jiang [34] first introduced the transformation techniques to 

investigate the global asymptotic stability of the following system (5.3),  

˙x = p2 (y) q2 (x)y, ˙y = p3 (y) q3 (x)x + p4 (y) q4 (x)y,           (5.3) 

With out the assumption (5.2). 

 Under the following conditions p2 (y) > 0, p3 (y) >0 for all y, 

q2 (x) > 0, q3 (x) <0 for all x, (5.4) 

they transformed system (4.3) into the following  generalized Liénard system 

𝑥̇ = ∅(𝑧 − 𝐹(𝑥)),         𝑧̇ = −𝑔(𝑥),              (5.5) 

and obtained necessary and sufficient conditions for the zero solution of (5.3) 

(respectively  (5.5)) to be globally asymptotically stable. 

Such system (5.5) with φ(u) ≡ u arises in several different settings, modelling 

phenomena appearing in the study of physical, as well as biological, chemical, and 
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economical systems, it naturally has been studied by a number of authors [1, 18, 

22,41 ,43,46].  

The main problem connected to the study of such models consists of giving a 

complete description of the behavior of solutions as t →+∞. 

 In general, this is not possible, due to the complexity of the equations and the 

phenomena involved. 

The aim of the qualitative theory is to give an approximate description of the 

behavior of the system, by identifying suitable regions of the phase space, where the 

solutions behave in a similar way. 

 We shall investigate the qualitative behavior of system (5.1) without the assumption 

(5.2). 

 Especially, we shall pay our attention to the oscillation, center, existence and 

uniqueness of nontrivial periodic solutions of system (5.1) (respectively (5.5)). 

 no restriction on the sign of q4 (x) is required, we only assume that  

(y) > 0, p3 (y) > 0, p4 (y) >0 for all y , 

q2 (x) < 0, q3 (x) > 0 (or q2 (x) > 0 , q3 (x)< 0) for all x , 

ρ(y) ∈ C1
 (R), 𝜌̇ (y) > 0 for all  y, ρ (± ∞ ) = ± ∞, 

where                                  ρ(y) = 
𝑦𝑝4(𝑦)

𝑝3(𝑦)
,                    (5.6) 

. 

If p3 (y) ≡ p4 (y), one case of assumption (5.6) reduces to (5.4).  

Under assumption (5.6), we shall prove that system (5.1) is equivalent to a form of 

system (5.5) which is a Liénard like system, the investigation of the qualitative 

behavior of solutions of system (5.5) has independent interest and value.  

For example, applying the results , the following system and equation have a unique 

nontrivial periodic solution, 

{
ẋ = x3 − 3x5 + 3x7 − x9 + 3(x6 − 2x4 + x2)y + 3(− + x3)yy2 + y3,

𝑦 = −𝑥̇  ,                                                                                                          (5.7)
 

And 

𝑥̈ + 3(𝑥2 − 1)𝑥̇5 3⁄ + 3𝑥𝑥̇2 3⁄ = 0.                            (5.8)  
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Transformation [1]), and the methods for Liénard systems, especially those 

developed by Villari and Zanolin [18], Hara and Sugie [40] 

 We introduce suitable transformations which change (5.1) into the form of (5.5), 

present assumptions and some auxiliary lemmas which will be essential to our proofs. 

  We give the necessary and sufficient conditions for all solutions of 5.5) to be 

oscillatory and for the origin to be a global center. 

 We give the theorems of existence and uniqueness of nontrivial periodic 

solutions of (5.5).  

5.1:Transformation for the system (5.1) and auxiliary lemmas : 

We first transform system (5.1) into a Liénard-like system, and then state some 

results which will be useful . 

We transform system (5.1), suppose that the assumption (5.6) is satisfied, we only 

discuss 

the case q2 (x) < 0, q3 (x) > 0 for all x, the other case (i.e., q2 (x) > 0, q3 (x) < 0 for 

all x) can be considered in a similar way.  

By using the substitution u = ρ(y), where ρ(y) is given in (5.6), from (5.1), we have 

˙y = p3 (y) q3 (x)x +p3 (y) q4 (x)u, 

𝑑

𝑑𝑢
[ρ−1(u)]𝑢 =̇ p3(𝜌−1(𝑢))q3(x)x+p3(𝜌−1(𝑢))q4(x)u, 

we change system (5.1) into 

𝑥 =̇ [ρ−1(u)]p2[ρ−1(u)]q2(x),        𝑢 =̇ 𝜌´[ρ−1(u)]p3[ρ−1(u)]q3(x)x +

 𝜌´[ρ−1(u)]p3[ρ−1(u)]q4(x)u ,                                           (5.9) 

by assumption (5.6), ρ−1(u)p2(ρ−1(u))q2(x)     and – u have the same sign, it is 

easy to see that the qualitative behavior of (5.9) is identical to that of the system 

𝑥 =̇− 𝑢,       𝑢̇ =
𝜌´[ρ−1(u)]p3[ρ−1(u)]q3(x)

ρ1(u)p2(ρ−1(u))q2(x)
𝑥 −

𝜌´[ρ−1(u)]p3[ρ−1(u)]q4(x)

ρ1(u)p2(ρ−1(u))q2(x)
     (5.10) 

where ρ1(u) =
ρ−1 (u)

u
 for u ≠ 0,         ρ1(0) = lim

𝑢→0

ρ−1 (u)

u
 . 

 From (5.10), we get 
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𝑥̈ + 𝜌´(𝜌−1(−𝑥̇))𝑝3 (𝜌−1𝛽(−𝑥̇)) 𝑞4(𝑥)

𝜌1(−𝑥̇)𝑝2(𝜌−1)(𝜌−1(−𝑥̇))𝑞2(𝑥)
 𝑥 −

𝑥̈ + 𝜌´(𝜌−1(−𝑥̇))𝑝3(𝜌−1(−𝑥̇))𝑞3(𝑥)

𝜌1(−𝑥̇)𝑝2(𝜌−1)(𝜌−1(−𝑥̇))𝑞2(𝑥)

̇
  

= 0         (5.11) 

It follows from (5.11) that 

𝑑

𝑑𝑡
 [∫

𝑞4(𝑠)

𝑞2(𝑠)

𝑥

0
𝑑𝑠 − ∫

𝜌1(𝑠)𝑝
2(𝜌−1(𝑠))

𝜌´(𝜌−1(𝑠))𝑝3(𝜌−1(𝑠))𝑞3
𝑑𝑠

−𝑥̇

0
] −

q3(x)

q2(x)
x  = 0. 

Letting 

𝜓(𝑦) = ∫
𝜌1(𝑠)𝑝

2(𝜌−1(𝑠))

𝜌´(𝜌−1(𝑠))𝑝3(𝜌−1(𝑠))𝑞3

𝑑𝑠
𝑦

0

 

and introducing the substitution 

𝑧 = −𝜓(−𝑥̇) + ∫
𝑞4(𝑠)

𝑞2(𝑠)

𝑥

0

𝑑𝑠 

We change system (5.11) into 

𝑥̇ = −𝜓−1 (∫
𝑞4(𝑠)

𝑞2(𝑠)

𝑥

0

𝑑𝑠 − 𝑧),              𝑧̇ =
𝑞3(𝑥)

𝑞2(𝑥)
𝑥 ,              (5.12) 

If we let 𝜙 denote 𝜓−1 and replace x and z by −x and −z, respectively, then we obtain 

𝑥̇ = 𝜙(𝑧 − 𝐹(𝑥)),          𝑧̇ = −𝑔(𝑥),           (5.13) 

where 

𝐹(𝑥) = − ∫
𝑞4(𝑠)

𝑞2(𝑠)

−𝑥

0

𝑑𝑠,         𝑔(𝑥) = −
𝑞3(−𝑥)

𝑞2 − (𝑥)
𝑥 . 

5.1.1:Lemma  

Under the assumption (5.6), the qualitative behavior of (5.1) is the same as 

that of (5.13). 

In the following, we shall present the basic assumptions and auxiliary lemmas. 

We assume that 

(C1) F(x)and g(x) are continuous on R with F(0) = 0 and  xg(x) > 0 for 𝑥 ≠ 0 and 

∅(𝑢) is continuous differentiable and strictly increasing with 

∅(0) = 0  and   ∅(±∞) =, ±∞ . 

(C2) For any fixed number k > 0, there exists M(k) > 0 with M(k) ≡ k for 0 < k ≤1 
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such that ∅(ku)  M(k) 

ǀ∅(𝑢𝑘)ǀ ≤ 𝑀(𝑘)∅(ǀ𝑢ǀ) for all u. 

Sometimes, we only need the condition 

(𝐶2
´) For any fixed k ∈  (0, 1] and u ∈  R, 

ǀ∅(𝑢𝑘)ǀ ≤ (𝑘)∅(ǀ𝑢ǀ). 

5.1.2:Lemma (see [ Proposition 1]). 

If (C1) is satisfied, then for any initial point p(x0, z0), (5.13) has a unique orbit 

passing through p. 

We call the curve L: z = F(x) the characteristic curve of (5.13), we denote 

𝐿+ = {𝑥, 𝐹(𝑥): > 0}  and  𝐿− = {𝑥, 𝐹(𝑥): < 0} 

Let G(x) = ∫ 𝑔(𝑠)𝑑𝑠.
𝑥

0
 

If x >0, then we set u = 𝑢1(x) = G(x), u ∈ (0, 𝐺(±∞)),            (5.14) 

the inverse function of which is denoted by  x = 𝑥1 (u). 

Replacing ( x> 0) in F(x) by x 

𝑥1 (u), we have 

𝐹1 (u) = F (𝑥1(𝑢)), (0, 𝐺(+∞)).           (5.15) 

Similarly, if x <0, then we write 

u = 𝑢2(x) = G(x), u ∈ (0, 𝐺(−∞)),         (5.16) 

whos inverse function is given by x = 𝑥2(u).  

Thus, substituting x = 𝑥2(u) in F(x) if x <0, we obtain 

𝐹2(u) = F(𝑥2, 𝑢), u∈ (0,G(−∞))                                                  (5.17) 

Therefore, Eqs. (5.13) in the cases x > 0 and x < 0 are equivalent to the following two 

equations, respectively: 

𝑑𝑢

𝑑𝑧
= −∅(𝑧 − 𝐹1(𝑢)), u∈ (0,G(+∞)),             (5.18) 

𝑑𝑢

𝑑𝑧
= −∅(𝑧 − 𝐹2(𝑢)), u∈ (0,G(- ∞)).             (5.19) 

Now we introduce the condition (C3).  

The system (5.13) is called to satisfy the condition (C3) if the following  condition 

hold. 
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F1(u) ≡ F2(u) for u ∈( 0, min {G(+∞),G(−∞)}) , 

where 𝐹1( (u) and 𝐹2( (u) are given in (5.18) and (5.19). 

If the condition (C3) is true, then Eqs. (5.19) and (5.19) are identical in 

(0,min{G(+∞),G(−∞)}), employing an argument similar to that in [20,40], we have 

the following lemma which shows that the orbit of (5.13) have deformed mirror 

symmetry about the z-axis. 

 5.1.3: Lemma  

Suppose that the conditions (C1) and (C3) are satisfied, 

G(+∞) =G(−∞). 

If an orbit of (4.13) starting from A = (0, zA) (zA > 0) passes through a point  

B = (0, zB) (zB < 0), then it reaches the point A again. 

5.2:The oscillation and the global center for system (5.13) 

First, we give the result on the oscillation of all solutions for (5.13). 

 A solution  (x(t), z(t)) of (5.13) is oscillatory if there are two sequences {𝑡𝑛} and 

{𝜏𝑛} tending monotonically 

to +∞ such that  x(𝑡𝑛)  = 0 and z (𝜏𝑛) = 0 for every n ≥ 1. 

 As is usual in the investigation of oscillation properties, by solution, we mean those 

which are defined in the future. Some attempts have been made to find necessary as 

well as sufficient conditions on F, φ and g for solutions of (5.13) to be continued in 

the future [25]. 

The system (5.13) is said to satisfy (C4
+) if one of the following conditions holds: 

(C4
+)1 there exists a positive decreasing sequence {xn} such that  xn → 0 as n→ +∞ 

and F(xn)  >  0 for each n;  (C4
+) 2 there exist constants a >0 and β > 

1

4
 such that 

F(x)>0 for  0<x ≤ a and 

∫
𝑔(𝑥)

∅(𝐹(𝑠))
𝑑𝑠 ≥ 𝛽𝐹(𝑥)

𝑥

0

 𝑓𝑜𝑟 0 < 𝑥 ≤ 𝑎. 

The system (5.13) is said to satisfy (C4 ) if both ;  (C4
+)  and ;  (C4

−) hold 
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Comparing with the most results of limit cycle problems are related to the Liédnard 

type systems, it is interesting to study the non-Liénard type system in the following 

form: 

5.3:  the  non Liénard perturbation system:        

𝑥̇ = −𝑎𝑥 + 𝑦  ,   𝑦̇ =
𝑥

1+𝑐𝑥2
− 𝑏𝑥2𝑦̇

          (5.20) 

Where 𝑐 ∈ 𝑅 , 𝑎 , 𝑏 are positive real numbers. 

 System (5.20) has a unique equilibrium point , and the uniqueness of solutions of 

initial value problems for the system is guaranteed.  

The system (5.20) it has been given the unique equilibrium point for the case 

a = 0, is a global attractor but  unstable . 

the result that system (5.20)  has the special orbit called “a Homoclinic” has been 

announced by the method of non standard. 

 Our aim is to classify the orbits of system (5.20)  completely by the values of the 

parameters.  

5.3.1:Theorem :  

The unique equilibrium point (0, 0) for system ( is globally asymptotic stable if and 

only if one of the following is satisfied. 

a < 0 , 𝑎 = 0, 𝑜𝑟  𝑎 ≥ 0 

We shall see that System (5.23)  is transformed to a usual Liénard system (see 

System (5.25)) with the unique equilibrium point at the origin.  

The existence of the homoclinic orbit of the system will be discussed by using the 

method in [3]. 

 In virtue of this result, the interesting fact that both the limit cycle and 

the homoclinic orbit of the system cannot coexist is given. 

If a > 0,  are sufficiently small, it has been well-known by E. Benoît (13]) that 

System has the orbit changes to the homoclinic orbit for the system  

as a = 0. 

 So the orbit has Homoclinic” ([31]). 
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The fact that the system has at most one limit cycle will be proved by using the 

method of [5]. 

 When 0 < 𝑎 < 1 , the orbit has spirals to a unique limit cycle of the system. 

 We call the orbit  Limit Cycl. 

Finally, a phase portrait of System  with respect to Theorem 5.4.1 will be presented . 

5.3.2: Lemma:  

If there exists a constant  𝑚 ≥ 0such that 𝐹̇(𝑥)𝐺(𝑥) − mF(x)g(x) ≥ 0𝑓𝑜𝑟 𝑥 ≠ 0  , 

the system has at most one limit cycle. 

5.4: Transformation to a Liénard System 

changed the system (5.23 ) to the following  Liénard system  

By using the transformation: 

 𝑥̇ → 𝑧 = −𝑎𝑥 + 𝑦  ,     𝑦 = 𝑧 + 𝑎𝑥    (5.21 ) 

 𝑧̇ →  −𝑎 𝑥̇ +  𝑦̇  →  −𝑎𝑧 +
𝑥

1+𝑐𝑥2
− 𝑏𝑥2𝑦    (5.22) 

 𝑧̇ = −𝑎𝑧 +
𝑥

1+𝑐𝑥2
− 𝑏𝑥2𝑧 − 𝑎𝑏𝑥3                (5.23) 

Then let  𝑐 = 0 

the System (5.23) is transformed to the system the (5.24)  

 𝑧̇ = −𝑎𝑧 + 𝑥 − 𝑏𝑥2𝑧 − 𝑎𝑏𝑥3                (5.24) 

 𝑧̇ = −(𝑎 + 𝑏𝑥2)𝑧 − (𝑎𝑏𝑥3 − 𝑥)            (5.25) 

The system (5.25) has a unique equilibrium point (0, 0) and the uniqueness of 

solutions of initial value problems is also guaranteed. 

The main form of the Liénard System it is: 

 𝑥̇ = 𝑦 − 𝐹(𝑥)  ,  𝑦̇ = −𝑔(𝑥)                   (5.26) 

𝑓(𝑥) = 𝑎 + 𝑏𝑥2    →   𝐹(𝑥) = 𝑎𝑥 +
1

3
bx3       (5.27) 

−𝑔(𝑥) = −(𝑎𝑏𝑥3 − 𝑥) 

𝑔(𝑥) = (𝑎𝑏𝑥3 − 𝑥) → 𝐺(𝑥) =
1

4
𝑎𝑏𝑥4 −

1

2
𝑥2 

  The vocal values of the system (5.27) are  

 

𝑊1 = a   ,      𝑊2 = 0     , 𝑊3 =  −𝑏    
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5.4.1:Theorem : 

We shall assume the conditions 

i.  𝑎 = 0 

Then we can easily check that System (5.25) has at least one limit cycle.  

In facts, the unique equilibrium point, O(0, 0) is a unstable weak focus of order one 

by 𝑓(𝑥) < 0,   and the all orbits are uniformly ultimately bounded (for the details see 

[20]). 

Thus, by the well-known Poincaré-Bendixson theorem, the system has a limit cycle 

(for instance see [32]). 

The following is a useful method ([45]) in order to guarantee that a Liénard system 

has at most one limit cycle. 

ii.  W3 > 0 ,   that means, in this case origin O (0,0) is stable and as decreasing 

from zero became unstable so unique limit cycle  appear for Hop Bifurcation  

 5.4.2: Proof of Lemma The system (5.25) has at most one limit cycle. 

We have  

𝐹̇(𝑥)𝐺(𝑥) − mF(x)g(x) ≥ 0 

𝑓(𝑥) = 𝑎 + 𝑏𝑥2      

𝐹(𝑥) = 𝑎𝑥 +
1

3
bx3 

𝑔(𝑥) = (𝑎𝑏𝑥3 − 𝑥) 

𝐺(𝑥) =
1

4
𝑎𝑏𝑥4 −

1

2
𝑥2 

𝑓(𝑥) 𝐺(𝑥) = ( 𝑎 + 𝑏𝑥2) (
1

4
𝑎𝑏𝑥4 −

1

2
𝑥2) 

m𝐹(𝑥)𝑔(𝑥) = 𝑚 [(𝑎𝑥 +
1

3
bx3)(𝑎𝑏𝑥3 − 𝑥)] 

𝐹̇(𝑥)𝐺(𝑥) − mF(x)g(x) ≥ 0𝑓𝑜𝑟 𝑥 ≠ 0  ,  

( 𝑎 + 𝑏𝑥2) (
1

4
𝑎𝑏𝑥4 −

1

2
𝑥2) − 𝑚 [(𝑎𝑥 +

1

3
bx3)(𝑎𝑏𝑥3 − 𝑥)] ≥ 0 

∅ = (𝑥, 𝑚, 𝑎, 𝑏) = ( 𝑎 + bx2) (
1

4
𝑎𝑏𝑥4 −

1

2
𝑥2) − 𝑚 [(𝑎𝑥 +

1

3
bx3)(𝑎𝑏𝑥3 − 𝑥)] 
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𝑙𝑒𝑡 𝑎 = 0 , 𝑚 = 3 , 𝑎𝑛𝑑 𝑏 = −1 ,    𝑖𝑛 ∅ = (𝑥, 𝑚, 𝑎, 𝑏). 

Then we have  

∅(𝑥, 𝑎, 𝑚, 𝑏) =
1

2
𝑥4 − 𝑥4 > 0 , 𝑥 ≠ 0 

−
1

2
𝑥4 > 0   , 𝑥4 > 0 → 𝑥 ≥ 0  ,       

Thus, we see from Lemma 5.4.2: that System (5.25) has at most one limit cycle.  

So we conclude that System (5.25) has a unique limit cycle. 

Conversely, suppose that System (5.20) has a limit cycle. 

Then if System (5.25) doesn’t satisfy the condition –1 < α < 0, this contradicts to the 

existence of the limit cycle by Theorem: 5.4.1. 

5.4.3:Remark.  If there exists a constant  𝑚 ≥ 0 such that: 

                        𝐹̇(𝑥)𝐺(𝑥) − mF(x)g(x) ≥ 0 

the system has mast one limit cycle. 

 Thus, a unique equilibrium point of  System (5.20) unstable weak focus.   

5.4.4:Conclusion 

We have transformed the non Liénard system to a Liénard system by using method of 

non standard and theorems, Lemma . 
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