الآية

﴿ وَيَسْأَلُونَكَ عَنِ الرُّوحِ قُلِ الرُّوحُ مِنْ أَمْرِ وَيَسْأَلُونَكَ عَنِ الرُّوحِ قُلِ الرُّوحُ مِنْ أَمْرِ رَبِّي وَمَا أُوتِيثُم مِّن الْعِلْمِ إِلاَّ قَلِيلاً ﴾ رَبِّي وَمَا أُوتِيثُم مِّن الْعِلْمِ إِلاَّ قَلِيلاً ﴾

الإسراء (85)

DEDICATION

TO

My Dearest Parents who are the part of my soul and whose love, affection and confidence enabled me to achieve this goal.

TO

My Friends who have encouraged me to complete this work.

To anyone who have supported me with good ideas throughout the project.

ACKNOWLEDGEMENT

To the **Almighty God** who have granted me all these graces to fulfill this work and who blessed and supported me by this power in all my life. Without this guidance I would have never reached this position where I am writing this page. To him I extend my heartfelt thanks.

I would like to present my greatest appreciation to my honorable supervisor **Dr.**Giddani Osman Adlan, He is not only a great professor with deep vision but also very kind person. I sincerely thank for his exemplary guidance and encouragement. Without his encouragement and guidance, this project would not have materialized.

I wish to thank all my friends for their support, specially my colleagues Eng. Mahmud Alsir, Eng. Al Tayb Ali, Eng. Omer M. Alhag, Eng. Aisha Mustafa, Eng. Wael M. Hassan, Eng. Abdalelah Dfaallah, Eng. Mohammed Al Shaikh, for his help and encouragement me during all the period of research. I would also thank him for his valuable suggestions and discussions.

A special thanks to my M.Sc. fellows at SUST, NLDC engineers, SETC engineers, STPGC engineers, Bachelor classmates, SUST students, MU students. I enjoyed every moment working together in the academic and occupational period.

It is impossible to find the right words to thank my beloved parents, uncles, brothers and sisters for their love and encouragement. Without it, this thesis would not be completed.

ABSTRACT

Due to the ever increasing demand for power, economic and environmental constraints that limit the expansion and restructuring transmission networks, the transmission lines are prone to be operated under heavily stress conditions, and power systems to operate near critical limits.

This thesis investigates different scenarios to improve the power transfer capability of (Atbara-Portsudan) transmission line as one of the national grid problems. This line was selected depending on line indices such as Fast Voltage Stability Index (FVSI), Line Stability Index (L_{mn}). Simulation was carried out using NEPLAN software, based on data given from National Load Dispatch Center (NLDC) in Sudan. National grid was studied in peak and off-peak cases, to clearly represent the problem. All the results presented in comparison form to find the best scenario. Power transfer capability of (Atbara-Portsudan) could be enhancing up to 150% of existing load by using TCSC beside SVC installed in Portsudan. However the ultimate solution is double-circuit transmission line beside local generation station.

المستخلص

أصبح تشغيل نظم القدرة الكهربائية أكثر صعوبة مع الزيادة المستمرة للطلب على الطاقة الكهربائية ، والقيود البيئية والإقتصادية التي تحد من التوسع في إنشاء أو إعادة هيكلة شبكة نقل الكهرباء ، مما أجبر شبكة نقل الكهرباء للعمل تحت ظروف واجهادات كبيرة ، و أن تعمل بالقرب من الحدود الحرجة لها.

هذه الأطروحة عرضت سيناريوهات مختلفة لزيادة القدرة المنقولة خلال خط النقل (عطبرة – بورتسودان) باعتباره واحد من مشاكل الشبكة القومية. وقد تم اختيار هذا الخط إعتماداً على مؤشرات الخطوط مثل مؤشر الاستقرار السريع للجهد (FVSI) و مؤشر استقرارية الخطوط (Lmn). وقد أجريت المحاكاة باستخدام برنامج NEPLAN ، إستناداً إلى البيانات الواردة من مركز التحكم القومي في السودان. وتمت دراسة الشبكة القومية في حالات الذروة العليا والدنيا، لتمثيل المشكلة بوضوح. كل النتائج المتحصل عليها وضعت في جداول مقارنة لإيجاد أفضل سيناريو للحل .

لزيادة القدرة المنقولة خلال خط النقل (عطبرة – بورتسودان) يمكن أن تعزز حتى 150% من الحمولة الحالية باستخدام TCSC بجانب SVC الموجود في بورتسودان. ولكن الحل النهائي يكمن في استخدام خط مزدوج بجانب محطة توليد محلية.

CONTENTS

الآيــــة		i
DEDICATION		ii
ACKNOWLEDGEMENT		iii
ABSTRACT		iv
المستخلص		V
LIST OF FIGURES vi		viii
LIST OF TABLES i		ix
ABBE	REVIATIONS	xi
	CHAPTER ONE	
	Introduction	
1-1	Background	1
1-2	Problem Statement	2
1-3	Objectives	2
1-4	Methodology	3
1-5	Thesis Layout	3
	CHAPTER TWO	
	Technical Construction and Operation of Electric Grids	
2-1	Introduction	5
2-2	General Benefits of Grid Interconnections	6
2-3	Technical Objectives of Interconnected Systems	8
2-4	Transmission Line Conductors	8
2-5	Communications, Monitoring, and Control Systems	12
2-6	General Requirements for AC Interconnection	12
2-7	Transmission Issues	12
2-8	Power Flow	14
	CHAPTER THREE	
Technical Solutions and Options for Transmission Line Enhancement		
3-1	Problem Formulation	15
3-2	Power-Voltage (PV) Characteristic for Radial Line	16
3-3	System Studied Description	18
3-4	Arranging of 220kV Transmission Line	19
3-5	Identification of Weakest Bus and Transmission Line	21

	3-5-1: Fast voltage stability index (FVSI)	21
	3-5-2: Line stability Index Lmn	23
3-6	Enhancing Long Transmission Line Load-ability	24
	3-6-1: Line reconfiguration	24
	3-6-2: FACT's controllers	25
	3-6-3: Distribution of generation	29
	CHAPTER FOUR	
Reinforcement of Atbara – Portsudan Transmission Scenarios		
4-1	Introduction	33
4-2	Operational Problems During Off-peak	33
4-3	Operational Problems During Peak Case	35
4-4	Proposals and Solutions	38
4-5	Effect of Building New Generating Unit in Portsudan	38
4-6	Energize SVC at Portsudan 110kV Bus	40
4-7	Install TCSC at ATB-POR T.L. Besides SVC	42
4-8	Install SVC at Sinkat Besides Portsudan SVC	44
4-9	Change of Configuration to Double-circuit Line	45
4-10	Change of Configuration to Double-circuit Bundled Line	46
4-11	Scenarios of Increasing Portsudan Load to 150%	48
4-12	Comparisons of Different Scenarios	50
CHAPTER FIVE		
	Conclusion and Recommendations	
5.1	Conclusion	56
5.2	Recommendations	57
Refer	ences	58
Appendix (A) - System Data		60
Appendix (B) - FACT's Parameter		78
Appendix (C) - Control Circuits		79

LIST OF FIGURES

Figure No.	Title	Page No.
2.1	Transmission-line modeling	11
2.2	Thermal and stability limits	13
3.1	A small power system	15
3.2	Representation of relation between Z _{ratio} and amount of	16
J.2	power transfer and receiving end voltage.	10
	(a) PV characteristic for ATB220kV-POR220kV radial line	
3.3	(Po=128MW), (b) PV characteristic sample lossless radial	18
	line with a different power factor ($V_S = 1 \text{ pu}$)	
3.4	Part of Sudan National Grid	19
3.5	Model of simple branch for voltage stability research	22
3.6	220kV transmission line ranked according to FVSI	23
3.7	220kV transmission line ranked according to Lmn	24
3.8	A schematic diagram of SVC	26
3.9	A schematic diagram of TCSC device.	28
3.10	Regions of TCSC operation	29
4.1	Comparison of total area loss	50
4.2	Comparison of transmission loss and loading of ATB-POR.	50
4.3	Comparison of No. of violated buses	51
4.4	Comparison voltage profiles of ATB & POR	52
4.5	Comparison the line loading, ATB-POR transmission loss,	53
4.3	total system loss in case of 150% load in Portsudan.	33
4.6	Comparison the voltage profiles of ATB220 & POR220 in	54
7.0	case of 150% load in Portsudan.	J -1

LIST OF TABLES

Table No.	Title	Page No.
2.1	Sample of transmission line data	11
3.1	220kV transmission lines ranked according to line reactance.	19
3.2	220kV transmission lines ranked according to line losses.	20
3.3	Matrix of distributed generation benefits and services.	31
4.1	Generation at off-peak.	32
4.2	General results (off peak case).	33
4.3	Atbara-Portsudan portion results (off peak case).	33
4.4	Voltage profile (off peak case).	33
4.5	Generation at peak	34
4.6	General results (peak case).	35
4.7	Atbara-Portsudan portion results (peak case).	35
4.8	Voltage profile (peak case).	35
4.9	General results (new generating unit case).	37
4.10	Atbara-Portsudan portion results (new generating unit case).	37
4.11	Voltage profile (new generating unit case).	38
4.12	General results (SVC at Portsudan case).	39
4.13	Atbara-Portsudan portion results (SVC at Portsudan case).	39
4.14	Voltage profile (SVC at Portsudan case).	40
4.15	General results (TCSC case).	41
4.16	Atbara-Portsudan portion results (TCSC case).	41
4.17	Voltage profile (TCSC case).	42
4.18	General results (SVC at Sinkat case).	43
4.19	Atbara-Portsudan portion results (SVC at Sinkat case).	44
4.20	Voltage profile and violation (SVC at Sinkat case).	44
4.21	General results (double-circuit case).	44
4.22	Atbara-Portsudan portion results (double-circuit case).	45
4.23	Voltage profile and violation (double-circuit case).	45
4.24	General results (double-circuit bundled line case).	46
4.25	Atbara-Portsudan portion results (double-circuit bundle line	46

	case).	
4.26	Voltage profile and violation (double-circuit bundle line case).	46
4.27	Atbara-Portsudan portion results (TCSC at 150% load case).	47
4.28	Voltage profile and violation (TCSC at 150% load case).	47
4.29	Atbara-Portsudan portion results (Sinkat SVC at 150% load case).	48
4.30	Voltage profile and violation (Sinkat SVC at 150% load case).	48
4.31	Atbara-Portsudan portion results (double-circuit bundle line at 150% load case).	48
4.32	Voltage profile and violation (double-circuit bundle line at 150% load case).	
4.33	Atbara-Portsudan portion results (new generating unit at 150% load case).	49
4.34	Voltage profile and violation (new generating unit at 150% load case).	49

ABBREVIATIONS

AC	Alternating current.
DC	Direct current.
FACTs	Flexible AC Transmission Systems.
SVC	Static VAR compensators.
TCSC	Thyristor Control Series Compensator
STATCOM	Static Synchronous Compensator.
SSSC	Static Synchronous Series Compensator.
UPFC	Unified Power Flow Controller.
IPFC	Interline Power Flow Controller.
TCR	Thyristor Controlled Reactor.
FC	Fixed Capacitor.
V_{S}	Sending end voltage.
V_R	Receiving end voltage.
FVSI	Fast Voltage Stability Index
L _{mn}	Line stability index.
B_{TSC}	Susceptance of thyristor switched capacitor.
B_{TCR}	Susceptance of thyristor controlled reactor.
X _{TCSC}	Total TCSC reactance.
ATB	Atbara
POR	Portsudan
NLDC	National Load Dispatch Centre