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Abstract 

 

Recent advancement in genomic technologies has opened a new realm for early 

detection of diseases that shows potential to overcome the drawbacks of manual detection 

technologies. Computer based malarial parasite analysis and classification has opened a new 

area for the early malaria detection that showed potential to overcome the drawbacks of manual 

strategies. This thesis presents a method for automatic classification of malarial infected cells. 

Blood cell segmentation and morphological analysis is a challenging due complexity of the 

blood cells. To improve the performance of malaria parasite segmentation and classification, 

we have used different set of features which are forward to the ANFIS classifier for malaria 

classification. the segmentation of clustered partially overlapping objects with a shape initially 

separated using marker controlled watershed segmentation accompanied with and overlapping 

cells concave point segmentation and contours are approximated using an ellipse. whereas 

ANFIS classifier for classification on different set of texture and shape features. This Study 

shows 96.33% and 96.31% recognition rates for both training and testing using ANFIS 

classifier. 
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 المستخلص

لقد اظهر التقدم الأخير في التقنيات الجينومية عالم جديد للكشف المبكر عن الأمراض الذي اظهرالقدرة على التغلب 

في وقت مبكر  هالي طرق جديدة للكشف عنطفيل الملاريا وتصنيف وي. فقد ادي التحليل الالي على عيوب الكشف اليد

تقسيم خلايا الدم ، ذه الرسالة طريقة للتصنيف التلقائي للخلايا المصابة بالملاريااليدوية. تقدم ه الطرقتغلب على عيوب لل

 تملخلايا الدم . ولتحسين عملية التقسيم والتحليل الشكلي للملاريا،  المعقد للشكليمثل تحديا نتيجة  والذي والتحليل الشكلي لها

تمت عملية تقسيم الخلايا  لتصنيف الخلايا. ANFIS المصنف الي ثم اضيفت خلايا الدم مجموعة مختلفة من مااستخد

يليها خوارمية فصل الاشكال المتداخلة  Marker-controlled watershedالمتداخلة جزئيا اولا باستخدام خوارزمية ال 

  ANFIS واخيرا استخدم المصنف.خواريزمية تقدير شكل الخلية باسخدام القطع الناقص  يليهاعن طريق النقاط المقعرة 

 %96.33وهذه الدراسة تظهر دقة مقدارها   لعملية التصنيف بناءا علي  مميزات شكلية  و تركيبية  استخلصت من الخلايا.

 .ANFIS% لعمليتي التدريب والاختبار باستخدام 96.31و 



VI 

 

  

Table of Contents 

 I ..................................................................................................................................... ا ية

Dedications ..................................................................................................................... II 

ACKNOWLEDGEMENTS ......................................................................................... III 

Abstract ......................................................................................................................... IV 

 V ..........................................................................................................................المستخلص

List of Tables ................................................................................................................ IX 

List of Figures ................................................................................................................ X 

Abbreviations .............................................................................................................. XII 

1 Introduction............................................................................................................... 1 

1.1 Global Struggle with Malaria ............................................................................ 1 

1.2 Problem Statement ............................................................................................. 2 

1.3 Objectives .......................................................................................................... 3 

1.3.1 Main objective ............................................................................................. 3 

1.3.2 Specific objectives ...................................................................................... 3 

1.4 Thesis outline ..................................................................................................... 3 

2 Theoretical Fundamentals ......................................................................................... 4 

2.1 The Malaria Parasitic Life Cycle ....................................................................... 4 

2.2 Components of the Blood .................................................................................. 6 

2.2.1 Red blood Cells ........................................................................................... 6 

2.2.2 White Blood Cells ....................................................................................... 7 

2.2.3 Platelets ....................................................................................................... 8 



VII 

 

2.3 Prevention of Malaria ........................................................................................ 8 

2.4 Treatment Methods ............................................................................................ 9 

2.5 Existing Diagnostic Methods and Instrumentation .......................................... 10 

2.5.1 The Gold Standard Malaria Diagnostic Test: Giemsa-Stained Peripheral 

Blood Smears and Microscopy Review........................................................................... 11 

2.5.2 Fluorescent Diagnostic Methods ............................................................... 12 

2.5.3 Rapid Diagnostic Tests ............................................................................. 14 

2.5.4 Polymerase Chain Reaction ...................................................................... 15 

2.5.5 Alternative Diagnostic Methods ............................................................... 16 

2.6 Adaptive neuro-fuzzy inference system (ANFIS) ........................................... 16 

2.6.1 Architecture of ANFIS .............................................................................. 18 

2.6.2 Training Process ........................................................................................ 20 

3 Literature Review ................................................................................................... 21 

4 Methodology ........................................................................................................... 27 

4.1 Image Analysis Module ................................................................................... 27 

4.2 Image Acquisition ............................................................................................ 27 

4.3 Image Preprocessing ........................................................................................ 28 

4.4 Cell Segmentation ............................................................................................ 30 

4.4.1 Otsu's thresholding .................................................................................... 30 

4.4.2 Marker controlled Watershed segmentation ............................................. 31 

4.4.3 Segmentation using concave points .......................................................... 33 

4.5 Feature Extraction ............................................................................................ 39 

4.5.1 Geometrical features ................................................................................. 40 

4.5.2 Texture Features ........................................................................................ 40 



VIII 

 

4.6 Classification of infected cells ......................................................................... 42 

5 Results and discussions .......................................................................................... 44 

5.1 Results .............................................................................................................. 44 

5.2 Discussions ...................................................................................................... 48 

6 Conclusion & recommendations ............................................................................ 49 

6.1 Conclusion ....................................................................................................... 49 

6.2 Recommendations ............................................................................................ 49 

References .................................................................................................................... 50 

Appendix A .................................................................................................................. 54 

Appendix B ................................................................................................................... 63 

 

 

  



IX 

 

List of Tables 

Table No Title Page No 

Table 1 Summary table of literature methods for Malaria Detection 26 

Table 2 Comparison between manual and automated method 47 

Table 3  Detection error analysis 

 

47 

 

  



X 

 

List of Figures 

Figure No Title Page No 

Figure 1 Female Anopheles mosquito taking a blood meal. 1 

Figure 2 Malaria parasite life cycle. 4 

Figure 3 Microscopic image of intraerythrocytic P. falciparum merozoites rupturing 

an RBC membrane to infect additional RBCs and perpetuate the infection 

cascade. 

5 

Figure 4 Giemsa-stained Plasmodium falciparum showing hemozoin (green arrow). 5 

Figure 5 Scanning electron micrograph of a red blood cell, magnification 11397X. 7 

Figure 6 The five types of WBCs. In a normal blood sample, the neutrophil is the 

most common (40-75%), followed by the lymphocyte (20-45%), monocyte 

(3-11%), eosinophil (0-7%), and basophil (0-1%). 

8 

Figure 7 Platelets observed with Wright stain, manifesting as small dark-purple 

fragments. A neutrophil is shown at the center of the image. 
8 

Figure 8 Plasmodium falciparum Giemsa-stained thin film peripheral blood smear. 12 

Figure 9 Interfering substances in peripheral blood smears. A. Platelet superimposed 

on a red blood cell. B. Platelet clump, which can potentially be 

misinterpreted as schizonts. C. Schuffners dots in a P. ovale trophozoite. D. 

Eosinophil, exhibiting red stip. 

12 

Figure 10 QBC Malaria test showing two trophozoites of P. falciparum (arrows). 

Parasitic DNA appears green and the cytoplasm appears yellow-orange. 
13 

Figure 11 AMRAD (Sydney, Australia) rapid diagnostic test showing a positive result 

for P. falciparum (Left) and negative result (Right). 
15 

Figure 12  Six types of fuzzy membership functions: triangular (A), z-shape (B), 

trapezoidal (C), s-shape (D), sigmoid (E) and Gaussian (F). 
17 

Figure 13 Structure of the proposed ANFIS model. 18 

Figure 14 System Architecture. 27 

Figure 15 Sample image obtained by leica DFC 295 camera with resolution of 

300x300. 
28 

Figure 16 Image preprocessing Algorithm Flow Diagram. 29 



XI 

 

Figure 17 Otsu's method: (a) the input image form morphological reconstruction, (b) 

after Appling Otsu's Threshold 
31 

Figure 18 Marker controlled watershed algorithm. 32 

Figure 19 marker controlled watershed segmentation, (a) Otsu image with some 

overlapping cells, (b) the result image after separating overlapping cells 
32 

Figure 20 Concave Point Segmentation Algorithm. 34 

Figure 21 Contour segmentation: (a) Edge map; (b) Corner detection; c) Concavity 

test to extract concave corners (green circle) and removed convex corners 

(pink square); (d) Contour segmentation by concave points  the colors are 

used only for illustrative. 

35 

Figure 22 Segment grouping: (a) Original binary image; (b) Contour segmentation; 

(c) Segment grouping (the thin gray lines are added to illustrate the 

grouping of non-adjacent segments). 

38 

Figure 23 Contour estimation: (a) Original image; (b) Contour evidence extraction; 

(c) Contour estimation. 
39 

Figure 24 one of the test images segmented using concave point and ellipse fitting. 39 

Figure 25 Feature Extraction and Classification workflow 43 

Figure 26 ANFIS classifier Performance 44 

Figure 27 Automatic malaria classification function and its input and output (Green 

normal, red infected malaria cells). 

 

45 

Figure 28 graphical user interface program  46 

 

 

 

     

  



XII 

 

Abbreviations 

ACT Artemisinin Combination Therapies 

ADD average distance deviation 

AMCC Automatic Malaria Cell Classification 

ANFIS Adaptive neuro-fuzzy inference system 

ANN Artificial Neural Network 

AWGN Additive white Gaussian noise 

BCP Benzothiocarboxypurine 

CAD computerized aided automated diagnosis 

CDC Centers for Disease Control 

CSS curvature scale space 

CT Computer Tomography 

DA De-noising auto-encoder 

DAPI 4',6-diamidino-2-phenylindole 

DLFANN Direct linked artificial feed-through ANN 

DNA deoxyribonucleic acid 

FIS fuzzy inference system 

FLANN functional link ANN 

FN False negative 

FP False positive 

GLCM Gray-Level Co-Occurrence Matrix 

GUI graphical user interface 

HNN Hopfield neural network 

HSV Hue, saturation and value color space 

LED Light emitting diode 

MF Membership function 

MFLANN Modified functional linked ANN 

MLP Multilayer perception 



XIII 

 

NCNN noisy chaotic neural network 

NPV Negative prediction value 

PCR Polymerase Chain Reaction 

PLT Platelets 

PPV Positive prediction value 

PSO particle swarm optimization 

RBC Red blood cells 

RDT Rapid diagnostic tests 

SCG scaled conjugate gradient 

SVM Support vector machine 

THG Third Harmonic Generation 

TN True negative 

TP True positive 

WBC White blood cells 

 



1 

 

 

1 Introduction 

1.1 Global Struggle with Malaria 

Malaria is a common but serious protozoan disease caused by peripheral blood, spleen 

or liver parasites of the genus Plasmodium. The World Health Organization estimates 300-500 

million malaria cases and more than 1 million deaths per year [1]. It is caused by any of the 

four-different species of Plasmodium parasite, vivax, ovale, malariae and falciparum. Disease 

is transmitted via the bite of an infected female of the Anopheles mosquito.  

Overtreatment of negative patients accelerates the evolution of antimalarial drug 

resistance, complicates the diagnosis of other acute febrile illnesses, and wastes resources in 

low-wealth regions that have limited supplies of antimalarial treatment options [2]. A prompt 

and accurate diagnosis is, therefore, imperative to the control and management of malaria. 

Delays in diagnosis and treatment are leading causes of malaria-related deaths in several 

endemic countries, and in non-endemic countries, technicians frequently falsely diagnose a 

patient due to lack of experience in examining peripheral blood smears for identification of 

parasitemia [3]. Furthermore, clinicians often doubt microscopy results and continue to treat 

non-infected patients based on clinical suspicion of the presenting symptoms [2, 4]. 

 

Figure 1 Female Anopheles mosquito taking a blood meal. 
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Detection methods for Malaria can for Malaria be classified into two Categories, based 

on their cost and performance. These are the high cost methods and low cost methods. 

Polymerase Chain Reaction (PCR) based techniques that detect specific nucleic acid sequences 

and Third Harmonic Generation (THG) imaging of emission from the Hemozoin using infrared 

ultrafast pulsed laser excitation, belong to the class of high cost methods. Studies have shown 

that these techniques can yield high sensitivity and specificity to malaria diagnosis. However, 

they are rarely used in developing countries where the disease is endemic because of the high 

cost, specialized infrastructure needs and handling difficulties. RDTs are relatively fast in 

malaria diagnosis and can be administered by unskilled personnel. However, their results can 

be unreliable. Besides, commercially available RDT kits are specific to single species of 

plasmodium parasites and in cases where mixed infection is suspected, all the four kits should 

be used to detect deferent Malaria Species. This makes the technique relatively expensive [5]. 

The most widely used technique for determining the development stage of the malaria disease 

is visual microscopical evaluation of Giemsa stained blood smears [6]. The obvious limitation 

of this technique is time consuming. Besides, the results obtained are difficult to reproduce. 

An automated diagnosis system can be designed by understanding the diagnostic expertise and 

representing it by specifically tailored image processing, analysis and pattern recognition 

algorithms. A complete system must be equipped with: image acquisition, preprocessing, 

segmentation (object localization), and classification tasks. In order to perform diagnosis on 

peripheral blood samples, the system must be capable of differentiating between malarial 

parasites, artifacts, and healthy blood components.  

1.2 Problem Statement 

Conventional microscopy is the gold standard method of malaria diagnosis using giemsa 

stained blood smears. however, this is a routine and time consuming procedure and requires a 

trained Technician. Plus, sophisticated techniques for malaria detection are expensive and 

unaffordable in places where malaria is a serious problem.  Parallel to this, less sophisticated 

techniques are affordable but their results always are not reliable.  Besides a recent study on 
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the field shows the agreement rates among the clinical experts for the diagnosis are surprisingly 

low. 

1.3 Objectives 

This Study Has main and Specific objectives as follows. 

1.3.1 Main objective 

The long-term goal of the research is to develop an accurate automatic malaria detection 

and classification system which can reduce the overall testing time. 

1.3.2 Specific objectives    

This research has specific objectives as follows:  

1. Incorporate multiple segmentation methods for better detection of infected RBCs. 

2. Classify each RBC contained within the image as infected or not.  

3. Design a Graphical user interface for ease of use. 

1.4 Thesis outline 

The thesis accumulates six chapters, the first chapter is the introduction to inform other 

researchers about thesis problems and objectives, the second chapter is theatrical fundamentals 

which give readers the required knowledge and tools as walkthrough to the thesis, the third 

chapter discuss the literature of previous studies and their problem’s encountered and how they 

solve it, the whole thesis was based on their studies, the use of image processing techniques to 

segment malaria cells and Machine learning capabilities identify malaria parasite, the fourth 

chapter is the methodology, it’s a specific layout of this thesis and how every contribute to 

final, the fifth chapter is results and discussions which summarizes thesis methodology in 

statistical results and why and how those results are acquired. 

The final chapter is conclusion and recommendations which outline the final outcome 

and the resultant of the thesis, which objectives are accomplished and how thesis method could 

be enhanced and developed further more.      
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2 Theoretical Fundamentals 

2.1 The Malaria Parasitic Life Cycle 

The life cycle of the malaria parasite (Figure 2) requires both a vertebrate host and a 

mosquito for survival. Malaria is spread to humans by an infected female pregnant Anopheles 

mosquito (Figure 1), which releases sporozoites into the vertebrate host during a blood meal. 

Sporozoites are highly motile reproductive organisms that travel through the circulatory system 

and invade the hepatocytes of the liver. An asexual replication process known as schizogony 

occurs, resulting in the production of tens of thousands (per hepatocyte) of haploid forms, 

known as merozoites, until the hepatocyte membrane finally ruptures [7]. 

 

Figure 2 Malaria parasite life cycle. 

Merozoites are then released into the blood stream to invade erythrocytes (Figure 3), 

also known as red blood cells (RBCs), and develop into three morphologically and 

metabolically distinct stages named rings, trophozoites and schizonts. Merozoites invade RBCs 

to escape phagocytosis by leukocytes, commonly known as white blood cells (WBCs), and to 

consume hemoglobin as a protein source for continued replication and survival. Rings are the 

first intraerythrocytic stage, evolving over the course of several hours into the larger 

trophozoite form, which upon initiation of asexual reproduction, begins the schizont stage. 
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Schizonts produce between eight and twenty-four daughter merozoites and ultimately 

rupture the erythrocytic membrane. Each merozoite is then capable of initiating a new cycle of 

intraerythrocytic asexual replication in a new RBC, Schizonts are rarely present in peripheral 

blood of P. falciparum infections, except in severe cases [8]. The repeated cycles of 

development and multiplication within human erythrocytes is responsible for the pathological 

symptoms associated with human malaria. 

 

Figure 3 Microscopic image of intraerythrocytic P. falciparum merozoites rupturing an RBC membrane to infect 

additional RBCs and perpetuate the infection cascade. 

 

Figure 4 Giemsa-stained Plasmodium falciparum showing hemozoin (green arrow). 
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   During the erythrocytic stage, the malaria parasite consumes hemoglobin and 

detoxifies heme by forming an insoluble crystalline brown pigment known as hemozoin. 

Hemozoin is produced in all erythrocytic stages but is only readily detectable in late 

trophozoites and schizonts. 

 A critical step in parasite development, which accounts for the large geographic 

distribution of malaria worldwide and the rapid spread of drug-resistant strains, is the ability 

of a subpopulation of the parasites within human red blood cells to differentiate into precursor 

male and female sexual forms called gametocytes. These forms are transmitted to a female 

Anopheles mosquito during a blood meal. Mating between male and female gametocytes takes 

place within the mosquito stomach and is followed by meisois and a series of asexual divisions 

to produce oocysts, each harboring thousands of new sporozoites. In a process known as 

gliding motility, the sporozoites migrate to the salivary glands of the mosquito to infect another 

vertebrate host during another blood meal [9]. This perpetuates the malaria life cycle.                        

2.2 Components of the Blood 

Considering malaria’s inhabitance within the systemic circulation, the components of 

blood should be discussed in further detail to provide the reader with sufficient background 

knowledge. 

 Blood is an essential fluid for oxygen and nutrient transportation to and metabolic waste 

uptake from the cells of the body. It is comprised of three cell types: RBCs, WBCs, and 

platelets, all of which are suspended in plasma, a clear to yellow liquid comprised mostly of 

water, dissolved proteins, and cell nutrients.  

2.2.1 Red blood Cells 

RBCs provide the critical function of delivering oxygen to tissues and circulate 

throughout the human body for approximately 120 days before being filtered by the kidneys 

when their supporting proteins are no longer viable [10]. RBCs primarily consist of 

hemoglobin, a metalloprotein responsible for oxygen uptake and distribution throughout the 

body. Hemoglobin has four identical sub-units, each with a heme component, globin chain, 
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and an iron atom bound to the heme [10]. Oxygen has a high affinity to loosely and reversibly 

bind with iron, thereby enabling RBCs to efficiently transport oxygen molecules. 

The cellular structure of the RBC is beneficial to its primary functions (Figure 5). The 

plasma membrane provides sufficient structure while maintaining compliance, allowing cells 

to circulate through narrow capillary beds. The biconcave shape optimizes the surface area to 

improve oxygen transfer across the plasma membrane. RBCs also expel their nucleus during 

erythropoiesis to allow for maximal hemoglobin content, but immature cells may consist of 

reticular material for a short period of time while in circulation.   

 

Figure 5 Scanning electron micrograph of a red blood cell, magnification 11397X. 

2.2.2 White Blood Cells 

WBCs, shown pictorially in (Figure 6), are responsible for the immune response to 

infection [10]; they are subdivided into five subpopulations:  neutrophils, lymphocytes, 

monocytes, eosinophils, and basophils.  WBCs are capable of attacking extracellular parasites; 

however, once a parasite has invaded an RBC, it becomes invisible   to most immune responses. 
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Figure 6 The five types of WBCs. In a normal blood sample, the neutrophil is the most common (40-75%), 

followed by the lymphocyte (20-45%), monocyte (3-11%), eosinophil (0-7%), and basophil (0-1%). 

2.2.3 Platelets 

Platelets are cell fragments from megakaryocytes that contribute to hemostasis and blood 

clotting activity [10]. They are shown in (Figure 7) in a Wright stained microscopic image, a 

common laboratory stain for peripheral blood smear analysis. 

 

Figure 7 Platelets observed with Wright stain, manifesting as small dark-purple fragments. A neutrophil is 

shown at the center of the image. 

2.3 Prevention of Malaria 

The use of insecticides, insecticide-treated bed nets, and drug therapies has and will 

continue to decrease the prevalence and mortality rate associated with malaria [11,12]. 

However, many populations throughout the world remain at a significant risk of infection 

because the mosquito resistance to insecticides and artemisinin may contribute to a surge of as 
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many as 26 million new annual cases [13, 14]. There is no malaria vaccine currently approved 

for human use but advancements in medical research and technology may offer capabilities to 

finally eradicate this disease in the future [11]. Accurate diagnostics also contribute to the 

prevention of malaria because, the sooner a patient can be diagnosed with malaria, the sooner 

that patient can be treated with antimalarial to eradicate the parasite, preventing subsequent 

disease transmission. 

2.4 Treatment Methods 

Malaria treatment depends on several factors, including disease severity, the 

Plasmodium species, the clinical status of the patient, pregnancy, and the geographic region in 

which the infection was acquired [15]. Intravenous and oral drugs, such as chloroquine, 

quinine, quinidine, doxycycline, and Artemisinin Combination Therapies (ACT), are generally 

successful at eradicating uncomplicated cases but certain species of malaria exhibit drug 

resistance that render some treatments ineffective. ACTs, for example, have demonstrated a 

95% cure rate in nonresistant uncomplicated falciparum malaria cases [16]; however, recent 

resistance development to artemisinin is concerning and may have severe repercussions. 

Artemisinin was previously capable of clearing malaria parasites from a patient within 24 

hours, but now requires three to four days for a complete treatment [17]. In the near future, 

some patients may not respond to artemisinin at all. Complicating matters further is the 

prevalence of counterfeit anti-malaria drugs, which contributes to inadequate treatment for the 

patient and increases the risk of drug resistance development [18]. 

Treatment based solely on symptoms and without proper diagnosis contributes to 

resource waste, drug resistance development, and the unnecessary exposure of patients without 

clinical malaria to antimicrobial agents [19, 2]. Further complicating matters is the fact that 

many people carry and transmit the disease but are asymptomatic of malaria and are not treated 

[12]. Furthermore, due to the increased cost of newer and more effective drugs, such as 

artemisinin, diagnostic methods have become vitally important to efficient distribution in 

resource poor regions [2]. The interested reader should refer to the Guidelines for Treatment 

of Malaria in the United States published by the Centers for Disease Control and Prevention 
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for additional information on prevention and treatment methods [20]. An accurate laboratory 

diagnosis and knowledge of disease severity, stage progression, and Plasmodium species is 

imperative in formulating a treatment protocol [21]. A screening method such as the one 

proposed in this thesis would permit early diagnosis and treatment of malaria, potentially 

before the onset of symptoms and disease transmission to another individual. This will help 

contribute to vector control and by extension, prevent malaria infection. 

2.5 Existing Diagnostic Methods and Instrumentation 

There are numerous methods available today for the diagnosis of malaria. Each method 

has its own unique set of advantages and disadvantages, but, to date, an optimal method does 

not exist. Socioeconomic factors, durability and stability, and distribution limitations are just 

some of the challenges facing malaria diagnosis. Two of the most important parameters for a 

malaria diagnostic test are sensitivity and specificity, both of which are statistical measures of 

the performance of a binary classification test (i.e., whether or not the patient is infected with 

malaria). Sensitivity is the proportion of correctly identified positives and is given by: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

while specificity is the proportion of correctly identified negatives and is given by: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2) 

Where TP is the occurrence of true positives, TN is the occurrence of true negatives, FP 

is the occurrence of false positives, and FN is the occurrence of false negatives. Two measures 

closely related to sensitivity and specificity are positive predictive value (PPV) and negative 

predictive value (NPV). The PPV is the proportion of positive test results that are correct and 

is given by: 

 𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

Conversely, NPV is the proportion of negative test results that are correct and is given by: 
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 𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (4) 

The PPV and NPV of a particular test can provide a clinician with a level of confidence 

in regards to the accuracy of a given result. Other features such as parasite morphology 

assessment, species differentiation, and parasitemia estimation are available in certain methods 

depending on the diagnostic technology of the test or system. Current diagnostic methods were 

analyzed in a comprehensive literature review to determine the shortcomings of existent 

technology and help formulate new ideas to address these issues. A summary of significant 

findings is described in the following sections. 

2.5.1 The Gold Standard Malaria Diagnostic Test: Giemsa-Stained 

Peripheral Blood Smears and Microscopy Review 

The current gold standard for detection of Plasmodium employs Giemsa staining of thin 

and thick blood smears with conventional light microscopy [22] (Figure 8). Giemsa is specific 

to the phosphate groups of DNA and attaches to regions of high adenine-thymine bonding, 

yielding a high-contrast parasitic visualization. Microscopy review of Giemsa stains is the most 

commonly-performed laboratory diagnostic test due to its simplicity, relatively low cost, 

ability to differentiate parasitemia, and manual determination of parasitemia magnitude [3]. 

Microscopic review of peripheral blood smears suffers from inherent flaws that severely inhibit 

efficacy in diagnosing malaria. Most importantly, the sensitivity of microscopy is typically no 

greater than 75% to 90%, and in some settings, can be as low as 50% [19, 2]. Low parasitemia 

levels further complicate Giemsa staining [23], as the average microscopist can only detect 50 

to 100 parasites per microliter [24]. Reviewing peripheral blood smears is time-consuming (30 

to 60 minutes) and requires a trained observer to interpret parasitemia, thereby limiting its 

capability for high-throughput screening. Inadequate staining and poor microscopy methods 

can degrade the visualization of the parasite making it more difficult for species differentiation. 

Artifacts in blood can often be mistaken for malaria parasites even if proper staining techniques 

are performed (Figure 9) [25]. The most frequent mistake is the misidentification of platelets 

that are superimposed on red blood cells as malaria parasites. Their appearance is similar but 
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platelets can be differentiated based on the absence of chromatin dots and refrainment patterns 

when focusing. Eosinophils can often be confused with P. ovale and P. vivax trophozoites 

because eosinophilic stippling is similar in appearance to Schuffners dots. Dust particles, stain 

deposits, obscuring debris, and blood cell ghosts are other common artifacts that may confuse 

the microscopist. Despite these insufficiencies, it is still the most common method for detecting 

Plasmodium parasites, with over 165 million peripheral smears performed in 2010 [19]. 

 

Figure 8 Plasmodium falciparum Giemsa-stained thin film peripheral blood smear. 

 

Figure 9  Interfering substances in peripheral blood smears. A. Platelet superimposed on a red blood cell. B. 

Platelet clump, which can potentially be misinterpreted as schizonts. C. Schuffners dots in a P. ovale trophozoite. D. 

Eosinophil, exhibiting red stip. 

2.5.2 Fluorescent Diagnostic Methods 

Fluorescent stains such as acridine orange, DAPI, and benzothiocarboxypurine (BCP) 

have demonstrated efficacy in malaria diagnosis when conventional light microscopes are fixed 

with an interference filter. This method offers advantages particularly evident in conditions of 

low parasitemia. The rate of staining and observation is increased and the training level 
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required to achieve consistent and reliable results is decreased. Excessive cost and availability 

of materials are limiting to these methods and a trained observer is still required for 

interpretation of results [26, 27, 6]. The nucleic-acid selective stain, acridine orange, has been 

successfully applied to the Quantitative Buffy Coat [28]. system for rapid diagnosis of malaria 

and other parasitic infections with an eightfold increase in lower detection limits compared to 

Giemsa-stained thick smears [23]. In this method, blood specimen is stained with acridine 

orange in a micro hematocrit tube. After centrifugation, a clear plastic float, with a specific 

gravity equal to that of the buffy coat (WBC layer), settles to the buffy coat layer and expands 

this region up to ten-fold. RBCs infected with malarial parasites are less dense, and therefore 

occupy the space near the buffy coat - RBC interface. Centrifugal stratification concentrates 

the parasites into a discrete region (1 to 2 mm) and retains the parasites close to the tube wall 

so they may be visualized using a fluorescence microscope with an LED illumination 

attachment known as the Para Lens (QBC Diagnostics) (Figure 10) [29, 30]. Since the parasites 

are concentrated from a relatively large volume of blood (50 to 110 mL, compared to 5 mL for 

peripheral smears), the sensitivity is increased and the examination time required to confirm or 

disprove infections is decreased. in [30] demonstrated that, after centrifugation is complete (5 

minutes at 12,000 g), only 7 to 10 minutes are required for review to confirm that the sample 

is negative, and [29] demonstrated that less than one minute is required to confirm a positive 

infection. 

 

Figure 10 QBC Malaria test showing two trophozoites of P. falciparum (arrows). Parasitic DNA appears green 

and the cytoplasm appears yellow-orange. 
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2.5.3 Rapid Diagnostic Tests 

Rapid diagnostic tests (RDTs) offer a simple, prompt, accurate, and cost-effective 

diagnostic test for identifying malaria parasitemia by the detection of three distinct 

Plasmodium antigens. Plasmodium histidine-rich protein II (pHRP-2) is specific to P. 

falciparum and P. Vivax. Plasmodium lactate dehydrogenase (pLDH) is likewise specific to P. 

falciparum and P. vivax, but its isomers can also be used to detect all Plasmodium species (i.e., 

pan specific). Finally, Plasmodium aldolase is also pan specific. The combination of these 

antigens can be used to detect the presence of P. falciparum, P. vivax, or any combination 

thereof [19]. To perform a test, blood specimen is placed on a nitrocellulose strip with 

antibodies dispersed in well-defined lines (Figure 11). The lysed specimen migrates down the 

strip and if it contains Plasmodium parasites, the complex of the antibodies and parasite 

antigens generates visible indicators to demonstrate a positive test result. A labeled goat 

antibody capture provides a control method to indicate that the test is functioning properly [31]. 

Malaria diagnosis by RDTs has been reported as excellent [3], but there are several deficiencies 

with this method. First, non-falciparum infections may be misdiagnosed as negative for malaria 

if the RDT only contains pHRP-2. Multiple immunochromatographic tests must be combined 

when using RDTs to ensure that all species of malaria may be detected. There are also variants 

of P. falciparum in South America that do not produce HRP-2 and therefore cannot be detected 

using an RDT. Cross-reactions have been reported for patients with Schistosoma mekongi 

infection, rheumatoid factor or other auto-antibodies. Additionally, RDTs cannot be used to 

measure parasitemia magnitude, therefore the severity of the disease is not known to the 

clinician unless a peripheral smear is reviewed. Finally, RDTs are inefficient at diagnosing low 

parasitemia, which may lead to a false diagnosis and further symptom development by the 

patient. These limitations generally require the clinician to use RDTs in conjunction with other 

diagnostic methods for confirmation of reported results, characterization of infection, and to 

monitor the progress of patients undergoing anti-malarial treatment [3]. 
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Figure 11 AMRAD (Sydney, Australia) rapid diagnostic test showing a positive result for P. falciparum (Left) 

and negative result (Right). [31] 

 

2.5.4 Polymerase Chain Reaction 

Polymerase Chain Reaction (PCR) is a relatively new malaria diagnostic method that 

has been documented to be one of the most sensitive and specific tests especially in case of 

low parasitemia [3]. It is common practice to utilize PCR as a confirmatory method in advanced 

laboratories due to its superior performance to Giemsa staining [3]. Briefly, PCR is a process 

wherein the DNA of the parasite is amplified to several orders of magnitude greater. A process 

known as thermal cycling repeatedly heats and cools the sample to enable DNA melting and 

the subsequent enzymatic replication of the malaria DNA. PCR has demonstrated an ability to 

detect as little as five parasites per mL, or 0.001 % parasitemia, assuming a 5 x 106. It is 

important to note that the availability of PCR is limited in low wealth endemic regions due to 

its complex methodology, high cost, time-intensive procedure (i.e., >24 hours) and need for 

trained technicians [3, 31]. Quality control and regular maintenance is also a requirement of 

PCR, further limiting its potential for malaria diagnosis in rural areas. It is, therefore, mostly 

reserved for research and, occasionally, diagnostic purposes in large clinics and hospitals. 
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2.5.5 Alternative Diagnostic Methods 

Other diagnostic methods such as serological, Loop-Mediated Isothermal PCR 

(LAMP), microarrays, flow cytometry, automated blood cell counters, and mass 

spectrophotometry are less commonly used. They each offer some distinct advantages but have 

significant limitations that diminish their effectiveness as malarial diagnostic methods. 

2.6 Adaptive neuro-fuzzy inference system (ANFIS) 

The fuzzy set theory developed by (Zadeh, 1965) provides as a mathematical framework 

to deal with vagueness associated with the description of a variable. The commonly used fuzzy 

inference system (FIS) is the actual process of mapping from a given input to output using 

fuzzy logic. Fuzzy logic is particularly useful in the development of expert systems. Expert 

systems are built by capturing the knowledge of humans: however, such knowledge is known 

to be qualitative and inexact. Experts may be only partially knowledgeable about the problem 

domain, or data may not be fully available, but decisions are still expected. In these situations, 

educated guesses need to be made to provide a solution to the problems. This is where fuzzy 

logic can be employed as a tool to deal with imprecision and qualitative aspects that are 

associated with problem solving [32]. A fuzzy set is a set without clear or sharp boundaries or 

without binary membership characteristics. Unlike a conventional set where object either 

belongs or do not belong to the set, partial membership in a fuzzy set is possible. In other 

words, there is a softness associated with the membership of elements in a fuzzy set [32]. A 

fuzzy set may be represented by a membership function. This function gives the grade (degree) 

of membership within the set. The membership function maps the elements of the universe on 

to numerical values in the interval [0, 1]. The membership functions most commonly used in 

control theory are triangular, trapezoidal, Gaussian, sigmoidal membership functions show in 

Figure 12 [33, 34, 35]. 
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Figure 12 Six types of fuzzy membership functions: triangular (A), z-shape (B), trapezoidal (C), s-shape (D), 

sigmoid (E) and Gaussian (F). 

 As mentioned previously, the fuzzy inference system is the process of formulating the 

mapping from a given input to an output using fuzzy logic. The dynamic behavior of an FIS is 

characterized by a set of linguistic description rules based on expert knowledge. The fuzzy 

system and neural networks are complementary technologies. The most important reason for 

combining fuzzy systems with neural networks is to use the learning capability of neural 

network. While the learning capability is an advantage from the view point of a fuzzy system, 

from the viewpoint of a neural network there are additional advantages to a combined system. 

Because a neuro-fuzzy system is based on linguistic rules, we can easily integrate prior 

knowledge in to the system, and this can substantially shorten the learning process. One of the 

popular integrated systems is an ANFIS, which is an integration of a fuzzy inference system 

with a back-propagation algorithm [32, 36]. There are two types of fuzzy inference systems 

that can be implemented: Mamdani-type and Sugeno-type [37, 38]. Because the Sugeno system 

is more compact and computationally more efficient than a Mamdani system, it lends itself to 

the use of adaptive techniques for constructing the fuzzy models. These adaptive techniques 

can be used to customize the membership functions so that the fuzzy system best models the 

data. The fuzzy inference system based on neuro-adaptive learning techniques is termed 

adaptive neuro-fuzzy inference system [39]. In order for an FIS to be mature and well 
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established so that it can work appropriately in prediction mode, its initial structure and 

parameters (linear and non-linear) need to be tuned or adapted through a learning process using 

a sufficient input-output pattern of data. One of the most commonly used learning systems for 

adapting the linear and nonlinear parameters of an FIS, particularly the first order Sugeno fuzzy 

model, is the ANFIS. ANFIS is a class of adaptive networks that are functionally equivalent to 

fuzzy inference systems [32]. 

2.6.1 Architecture of ANFIS 

(Figure 12) shows the architecture of a typical ANFIS with two inputs X1 and X2, two 

rules and one output f, for the first order Sugeno fuzzy model, where each input is assumed to 

have two associated membership functions (MFs). For a first-order Sugeno fuzzy model a 

typical rule set with two fuzzy if–then rules can be expressed as [32]: 

Rule (1): If X1 is A1 and X2 is B1, then f1 = m1 X1 + n1X2 + q1, 

Rule (2): If X1 is A2 and X2 is B2, then f2 = m2 X1 + n2X2 + q2. 

where: m1, n1, q1 and m2, n2, q2 are the parameters of the output function. 

 

Figure 13 Structure of the ANFIS model. 

It contains five layers where the node functions in the same layer are of the same 

function family. Inputs, outputs and implemented mathematical models of the nodes of each 

layer are explained below. 
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Layer 1: This layer performs fuzzification of the inputs,The node function of every 

node i in this layer take the form: 

 𝑄𝑖
1 =  𝜇𝐴𝑖(𝑋) (5) 

where X is the input to node i, μAi is the membership function (which can be triangular, 

trapezoidal, gaussian functions or other shapes) of the linguistic label Ai associated with this 

node and Oi is the degree of match to which the input X satisfies the quantifier Ai. In the current 

study, the Gaussian shaped MFs defined below are utilized. 

  𝜇𝐴𝑖(𝑋) = 𝑒𝑥𝑝 {−
1

2

(𝑋 −  𝐶𝑖)2

𝜎𝑖
2 } (6) 

where {𝐶𝑖 , 𝜎𝑖} are the parameters of the MFs governing the Gaussian functions. The 

parameters in this layer are usually referred to as premise parameters. 

Layer 2: Every node in this layer multiplies the incoming signals from layer 1 and sends the 

product out as follows, 

 𝑤𝑖 =  𝜇𝐴𝑖(𝑋1) ×  𝜇𝐵𝑖(𝑋2), 𝑖 = 1,2 (7) 

where the output of this layer (wi) represents the firing strength of a rule. 

Layer 3: Each neuron in this layer calculates the normalized degree of truth of the fuzzy rule,  

every node i in this layer is a node labeled N, determine the ratio of the i-th rule’s firing strength 

to the sum of all rules’ firing strengths as: 

 𝑣𝑖 =  
𝑤𝑖

𝑤1 + 𝑤2

, 𝑖 = 1,2 (8) 

where the output of this layer represents the normalized firing strengths. 

Layer 4: Every node i in this layer is an adaptive node with a node function of the form: 

 𝑄𝑖
4 =  𝑤𝑖

− 𝑓𝑖 =  𝑤𝑖
−(𝑚𝑖𝑋1 +  𝑛𝑖𝑋2 +  𝑞𝑖), 𝑖 = 1,2 (9) 

where 𝑤𝑖
− is the output to layer 3, and {𝑚𝑖, 𝑛𝑖, 𝑞𝑖} is the parameter set of this node. Parameters 

in this layer are referred to as consequent parameters. 
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Layer 5: There is only a single node in this layer that computes the overall output as the 

weighted average of all incoming signals from layer 4 as: 

 𝑄𝑖
5 =  ∑ 𝑤𝑖

− 𝑓𝑖  

𝑖

=  
∑ 𝑤𝑖  𝑓𝑖  𝑖

∑ 𝑤𝑖  𝑖

, 𝑖 = 1,2 (10) 

2.6.2 Training Process 

As mentioned earlier, both the premise (non-linear) and consequent (linear) parameters 

of the ANFIS should be tuned, utilizing the so-called learning process, to optimally represent 

the factual mathematical relationship between the input space and output space. Normally, as 

a first step, an approximate fuzzy model is initiated by the system and then improved through 

an iterative adaptive learning process. Basically, ANFIS takes the initial fuzzy model and tunes 

it by means of a hybrid technique combining gradient descent backpropagation and mean least-

squares optimization algorithms. At each epoch, an error measure, usually defined as the sum 

of the squared difference between actual and desired output, is reduced. Training stops when 

either the predefined epoch number or error rate is obtained. There are two passes in the hybrid 

learning procedure for ANFIS. In the forward pass of the hybrid learning algorithm, functional 

signals go forward till layer 4 and the consequent parameters are identified by the least squares 

estimate. In the backward pass, the error rates propagate backward and the premise parameters 

are updated by the gradient descent. When the values of the premise parameters are learned, 

the overall output (f) can be expressed as a linear combination of the consequent parameters 

[33]: 

 

𝑓 =  
𝑤1

𝑤1 +  𝑤2

𝑓1 +  
𝑤2

𝑤1 +  𝑤2

 𝑓2 = 𝑤1
− 𝑓1 +  𝑤2

− 𝑓2

=   (𝑤1
−𝑋1)𝑚1 +  (𝑤1

−𝑋2)𝑛1 +  (𝑤1
−)𝑞1 +  (𝑤2

−𝑋2)𝑚2

+  (𝑤2
−𝑋2)𝑛2 +  (𝑤2

−)𝑞2   

(11) 

which is linear in the consequent parameters 𝑚1, 𝑛1, 𝑞1, 𝑚2, 𝑛2 and 𝑞2. 
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3 Literature Review 

A literature survey summarizes all the relevant literature researched during the course 

of this project. It presents certain approaches used by many researchers for classification. It 

also compares the performance of all classifier with other common classifier with same 

parameters. Finally, the best parameters and classifier combination is discussed. Lucy Gitonga, 

et al [40] introduces a technique for identifying the parasites life stages and species using 

microscopic images of thin blood smears stained with Giemsa was developed. The technique 

entailed designing and training Artificial Neural Network (ANN) classifiers to perform the 

classification of infected erythrocytes into their respective stages and species. The system 

recorded 99.9% in recognizing stages and 96.2% in recognizing plasmodium species. Daniel 

Maitethia Memeu, et al [41] proposes an accurate, speedy and affordable system of malaria 

detection using stained thin blood smear images was developed. The method uses Artificial 

Neural Net- work (ANN) to test for the presence of plasmodium parasites in thin blood smear 

images. Images of infected and non-infected erythrocytes were acquired, preprocessed, 

relevant features extracted from them and eventually diagnosis was made based on the features 

extracted from the images. Classification ac- curacy of 95.0% in detection of infected 

erythrocyte was achieved with respect to results obtained by expert microscopist. 

Magudeeswaran Veluchamy, et al [42] describes the method of evaluating the clinical status is 

counting of cell types based on features that it contains. There is a need for a rapid, reproducible 

method, superior to human inspection and for the classification of cells. For solving these 

problems, quantitative digital-image analysis is applied and a novel method for classifications 

of affected blood cells from normal in an image of a microscopic section is presented. These 

blood cell images are acquired from different patient with sickle cell anemia, sickle cell disease 

and normal volunteers. Approach: The segmentation of blood cells is made by morphological 

operations such as thresholding, erosion and dilation to preserve shape and size characteristics. 

In addition, we use back propagation neural network to classify the blood cells more efficiently. 

Dipti D. Patankar, et al [43] presents automatic methods for detection and classification 

of malarial parasites in thin blood smear. For this Artificial Neural Network (ANN) and 



22 

 

Bayesian Network (BN) are used as promising techniques. Morphological features such as 

shape, size are considered to identify infected erythrocytes and possible type of plasmodium. 

ParasChawla, et al [44]. In order to use medical images for the diagnosing process, it must be 

noiseless. However, most of the images are affected by noises and artifacts. In order to achieve 

this de-noising of CT images, an effective CT image de-noising technique is proposed. The 

proposed technique removes the Additive white Gaussian Noise from the CT images and 

improves the quality of images. The proposed work is comprised of three phases; they are 

preprocessing, training and testing. In the preprocessing phase, the CT image which is affected 

by the AWGN noise is transformed using multi wavelet transformation. In the training phase 

the obtained multi-wavelet coefficients are given as input to the Adaptive Neuro-Fuzzy 

Inference System (ANFIS). Sudhansu Kumar Mishra, et al [45] presents an alternate ANN 

structure called functional link ANN (FLANN) for imaged noising. In contrast to a feed 

forward ANN structure i.e.a multilayer perceptron (MLP), the FLANN is basically a single 

layer structure in which non-linearity is introduced by enhancing the input pattern with 

nonlinear function expansion. In this work three different expansions are applied. Yazeed A. 

Al-Sbou, et al [46] describes the image de-noising is a challenging task in the digital image 

processing research and application. This makes it imperative to find a robust method to 

comply that task. In this paper, a detailed performance evaluation of using the neural networks 

as a noise reduction tool is presented. Suchitra Sarangi, et al [47] discusses image restoration 

is an important part of image processing in which it presents a functional link artificial neural 

network based technique for image restoration which has the capacity of reducing the Gaussian 

noise present in an image. Then a comparison has been carried out between the proposed filter 

& the other existing filter. Junyuan Xie,et al,[48] propose a novel approach to low-level vision 

problems that combines sparse coding and deep networks pre-trained with de-noising auto-

encoder (DA).We propose an alternative training scheme that successfully adapts DA, 

originally designed for unsupervised feature learning, to the tasks of image de-noising and 

blinding painting. Snigdha Mohanty, et al [49] describes design the four artificial neural 

networks(ANNs) for de-noising of digital image corrupted with AWGN or salt and pepper 

noise is presented. and then using a Multilayer perceptron(MLP) using the popular back 
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propagation algorithm, Direct Linear Artificial Feed-through Neural Network (DLFANN), 

Functional Link Artificial Neural Network (FLANN) and Modified-Functional Link Artificial 

Neural Network (MFLANN)have been implemented in this regard and extensive computer 

simulation have been carried out for performance comparison among these algorithms. Leipo 

Yan, et al [50] proposes new approach to address image de noising based on a new neural 

network, called noisy chaotic neural network (NCNN). The original Bayesian framework of 

image de-noising is reformulated into a constrained optimization problem using continuous 

relaxation labelling. The NCNN, which combines the simulated annealing technique with the 

Hopfield neural network (HNN), is employed to solve the optimization problem. Sheenum 

Marwaha, et al, [51] provides a brief review of computerized aided automated diagnosis 

techniques which use Digital Image Processing, their benefits and the types of diseases 

diagnosed by these systems. However, CAD system is having many problems, so new methods 

need to be introduced by combining the benefits of other classification techniques with CAD. 

Ms. Deepali Ghate, et al, [52] discusses computerized diagnosis, which will help in immediate 

detection of the disease to some extent, so that the proper treatment can be provided to the 

malaria patient. Also the image processing algorithm is used which will reliably detect the 

presence of malaria parasite from Plasmodium falciparum species in thin smears of Giemsa 

stained peripheral blood sample. S. S. Savkare, et al, [53] presents an automatic technique is 

proposed for Malaria parasites detection from blood images by extracting red blood cells 

(RBCs) from blood image and classifying as normal or parasite infected. Manual counting of 

parasite is tedious and time consuming and need experts. Proposed automatic approach is used 

Otsu thresholding on gray image and green channel of the blood image for cell segmentation, 

watershed transform is used for separation of touching cells, color and statistical features are 

extracted from segmented cells and SVM binary classifier is used for classification of normal 

and parasite infected cells. Pallavi T. Suradkar,et al,[54]reviews image analysis studies aiming 

at automated diagnosis or screening of malaria infection in microscope images of thin blood 

film smears. Malaria is a mosquito-borne infectious disease of humans and other animals 

caused by parasites (a type of microorganism) of the genus Plasmodium. Infection is initiated 

by a bite from an infected female mosquito, which introduces the parasites via its saliva into 
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the circulatory system, and ultimately to the liver where they mature and reproduce. 

Deepa.A.Kurer, et al, [55] presents the image processing algorithm to automate the diagnosis 

of malaria in blood images is developed in this project. The image classification system is 

designed to positively identify malaria parasites present in thin blood smears, and differentiate 

the species of malaria. 

[56] Illustrate a technique for identifying the malaria for blood cell images, which 

involves counting of Blood cell using an adaptive OTSU thresholding technique. Which use to 

segment the image and separate the RBC and WBC. The paper also considers the area of cells 

to declare severity and uses SVM as Classifier for declaring the result of whether the patient is 

affected by Malaria or Not. An approach is proposed to detect red blood cells with consecutive 

classification into parasite infected and normal cells for estimation of parasitemia. The 

extraction of red blood cells achieves a reliable performance and the actual classification of 

infected cells. Sensitivity of system is 93.12%, and Specificity is 93.17%. Shape based and 

statistical features are generated for classification. The features are selected for recognition of 

two classes only. This approach leads to the high specialization of each classifier and results 

in an overall increase in accuracy. Makkapati and Rao [58] explored the segmentation for HSV 

color space. A scheme presented in [57] is based on HSV color space that segments Red Blood 

Cells and parasites by detecting dominant hue range and by calculating optimal saturation 

thresholds. Methods those are less computation-intensive than existing approaches are 

presented to remove artifacts. The scheme is evaluated using images taken from Leishman-

stained blood smears. Sensitivity of the scheme was found to be 83%. The method operates in 

HSV space and is dynamic in the sense that relevant thresholds are determined from the 

statistics of the given image rather than keeping them fixed for all images. Schemes determine 

optimal saturation thresholds to segment RBCs and chromatin dots that are robust with respect 

to the color variability encountered. The work in [57] illustrates the use of color image 

processing techniques. Raviraja et al. [58] introduces a blood image processing for detecting 

and classifying malarial parasites in images of Giemsa stained blood slides, in order to evaluate 

the parasitemia of the blood. To detect the red blood cells that are infected by malarial parasites, 
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statistical based approach is used. To separate automatically the parasites (trophozoites, 

schizonts and gametocytes) from the rest of an infected blood image, color, shape and size 

information are used and later the image is compared with infected images after transformation 

of image by scaling, shaping to reconstruct the image. The images returned are statistically 

analyzed and compare to generate a mathematical base. Also, the evaluation of the size and 

shape of the nuclei of the parasite is also considered. Ruberto et al. [59] introduces 

morphological approach to cell image segmentation more accurate than the normal watershed 

based algorithm. The used non-flat disk-shape structuring element enhanced the roundness and 

compactness to improving the accuracy of normal watershed based algorithm whereas flat 

disk-shape structuring element to separate overlapping cells. These methods make use of 

knowledge of the RBC structure that is not used in existing watershed based algorithm. In [59] 

a scheme based on RGB color space that segments Red Blood Cells and parasites by detecting 

dominant hue range and by calculating optimal saturation thresholds is presented. Methods that 

are less computation intensive than existing approaches are proposed to remove artifacts. The 

scheme is evaluated using images taken from Leishman-stained blood smears. Sensitivity of 

the scheme is found to be 83%. Automated image analysis-based software. Malaria Count. for 

parasitemia determination, i.e. for quantitative evaluation of the level of parasites in the blood, 

has been described in [59]. The presented system is based on the detection of edges 

representing cell and parasite boundaries. The described technique includes a preprocessing 

step, edge detection step, edge linking, clump splitting, and parasite detection. 
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Table 1 Summary table of literature methods for Malaria Detection 

Reference  

Article 

publisher 

Target 

Data 

Preprocessing Segmentation 

Method 

Features Classificatio

n 

Method 

Accuracy 

Lucy Gitonga Parasite  

Life stages 

Digital zooming, 

contrast 

enhancement and 

mean filter 

Using hue and 

saturation optimum 

thresholds 

Statistical 

features 

Artificial 

neural 

network 

99.9% stages 

96.2% parasite 

detection 

Maitethia 

Memeu 

Presence of 

plasmodium 

Digital zooming, 

and mean filter 

thresholding Direct pixel 

values, shape 

based and 

texture based 

Artificial 

neural 

network 

95% accuracy  

Magudeeswa

ran 

Veluchamy 

Counting blood 

cells based on 

its features 

- Morphological 

operation and edge 

detection 

Statistical 

based, shape 

based and 

texture based 

back 

propagation 

ANN  

 

80% accuracy 

Dipti D. 

Patankar 

Detection and 

classification of 

malaria parasite 

Median filter Color based 

segmentation 

Morphologic

al features 

(size, shape) 

ANN and 

Bayesian 

network 

 

S. S.   

Savakare 

Automatic 

malaria 

detection 

Mean filter and 

Green plane 

selection  

Otsu’s threshold 

and watershed 

Color 

statistical 

features 

SVM 83.75%  

accuracy 

Shiff Identifying 

malaria in blood 

images  

Mean filter and 

HSV color space 

conversion 

Otsu’s thresholding  HSV 

statistical 

features 

SVM 93.12 

sensitivity and 

93.17 

Specificity 

Amit Kumar Detection of red 

blood cells and 

infected 

parasites 

Mean filter and 

HSV color space 

conversion 

Optimum 

saturation 

thresholds 

- - 83% accuracy 

Ravirja Detecting and 

classifying 

malarial 

parasites 

Color normalization Morphological 

thresholding 

Statistical 

based and 

shape based 

features 

k-nearest 

neighbor 

classifier 

74% sensitivity, 

98% specificity 

Ruberto Morphological 

cell 

segmentation 

- Watershed and 

non-flat disk shape  

- - - 
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4 Methodology 

4.1 Image Analysis Module 

Due to complexity of the blood sample images, malarial parasite segmentation and 

morphological analysis is a challenging problem. Machine vision based malarial diagnostic 

methods has been widely studied in order to provide early and accurate diagnose of malaria 

parasite. An ideal diagnostic method would be accurate, non-invasive, and inexpensive. The 

key tasks for malarial parasite classification involve segmenting the malaria parasite infected 

cells from the complicated background. The system block diagram is shown in Figure 13. 

                       

Figure 14 Image Analysis Module. 

4.2 Image Acquisition 

A number of thick blood films was prepared using Giemsa staining technique. it is a 

rapid staining method for screening of parasites.  The sensitivity of a thick blood film is 5-10 
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parasites/µl. Thin blood films stained by Giemsa’s is useful for specification of parasites and 

for the stippling of infected red cells and have a sensitivity of 200 parasites/µl. The optimal pH 

of the stain is 7.2. The requirements need for film preparation are Giemsa stain powder, 100% 

Methanol, Bibulous paper, Microscope with x100 oil immersion lens (Olympus CX21). The 

preparation of stain procedure was followed as recommended by Khartoum laboratory 

Administration in the following order: first fixing the slider in 100% methanol for ~30” and 

rinse off in tap water, then Make up a fresh solution of 10% Giemsa stain in distilled water, 

Stain for ~30’ and Rinse off slide in tap water and dry thoroughly using bibulous paper to dab. 

now for screening part View slide under oil immersion with a 100x objective. Images were 

acquired using a camera attached to the microscope which is a Leica DFC 295 camera and 

acquire the 1000x magnified image form the oil immersion lens maintaining a constant image 

size of 300x300 pixels. 

 

Figure 15 Sample image obtained by leica DFC 295 camera with resolution of 300x300. 

4.3 Image Preprocessing 

Blood smear images might be affected by illumination and color distribution of blood 

images due to the varieties of digital camera and staining variability. Most of the microscopes 

provide uniform or relatively uniform illumination images. The aim of preprocessing step is to 

obtain images with low noise, high contrast than original images for the further processing. 
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This particular problem poses difficulties for classification of blood cells since it is hard to deal 

with proper segmentations of objects with quite similar colors. This process contains two 

operations image enhancement and noise reduction. 

Morphological techniques called "opening-by-reconstruction" and "closing-by-

reconstruction" was applied to clean up image noise and eliminate non-uniform background 

illumination, by using disk shaped element with a radius of 2 pixels to apply a morphological 

erosion to the image, the result is Ie. Then the image is reconstructed by Ie with help of matlab 

function "imreconstruct", the result image is Ir. 

Next Appling a morphological dilation to Ir by the same disk shaped structure element 

Ird, then Appling a morphological reconstruction to both Ird and Ir complements, the result is 

Irr. finally obtaining the complement of Irr.  

 

Figure 16 Image preprocessing Algorithm Flow Diagram. 
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4.4 Cell Segmentation 

In the analysis of automatic classification of malarial parasite procedures, the most 

important and difficult part is segmentation of malaria parasite infected blood cells from the 

background and other cells because the blood cells are often overlaid with each other and is 

the basis of quantitative analysis of its deformability and hence its filterability [61]. Cell 

shapes, light variation and noise are the other factors that make segmentation a difficult task. 

Accurate segmentation allows fruitful result in sub-sequent levels. Malarial parasite lies in 

erythrocytes thus we need to segment the erythrocyte form the blood images. 

4.4.1 Otsu's thresholding 

This method was used for background and foreground segmentation; Otsu’s method 

reduces image's gray level to a binary image. The algorithm assumes that the image contains 

two classes of pixels following bi-modal histogram (foreground pixels and background pixels), 

it then calculates the optimum threshold separating the two classes so that their combined 

spread intra-class variance is minimal, or equivalently (because the sum of pairwise squared 

distances is constant and shows that minimizing the intra-class variance is the same as 

maximizing inter-class variance: [62] 

 𝜎𝑏
2 =  𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡)  − 𝜇1(𝑡)]2 (12) 

Where 𝜔0,1 are the probabilities of the two classes separated by a threshold t and 𝜇0,1 are the 

mean of two classes. The green image plane was selected because it contains high contrast 

RBCs version of the image. Then Appling Otsu’s method as shown in figure 16: 
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Figure 17 Otsu's method: (a) the input image form morphological reconstruction, (b) after Appling Otsu's 

Threshold 

4.4.2 Marker controlled Watershed segmentation 

Some images in this study have multiple overlapping cells, and those appear as one cell, 

and that poses a problem later in classification section.  

 Two combination methods were used to separate cells, the first one watershed 

segmentation, this algorithm considers the input image as a topographic surface (where higher 

pixel values mean higher altitude) A watershed is a basin-like landform defined by highpoints 

and ridgelines that descend into lower elevations and stream valleys [63].  

It’s not suitable to use the algorithm directly because it results in over segmentation, is 

a well-known phenomenon in watershed segmentation. Over segmentation occurs because 

every regional minimum, even if tiny and insignificant, forms its own catchment region. One 

solution is to modify the image to remove minima that are too shallow. So, an enhanced 

watershed technique also known as marker controller watershed was used, it relies on a marker 

image to simulates its flooding algorithm. The local minima of the image's pixel distance were 

used as a marker.  

Chessboard distance transform was applied to Otsu’s image to simulate every object in 

the image as valleys, this transform also known as Chebyshev distance is a metric defined on 
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a vector space where the distance between two vectors is the greatest of their differences along 

any coordinate dimension. In two dimensions, i.e. plane geometry, if the points p and q have 

Cartesian coordinates (x1, y1) and (x2, y2), their Chebyshev distance is: 

 𝐷𝑐ℎ𝑒𝑠𝑠 = max(|𝑥2 −  𝑥1|, | 𝑦2 −  𝑦1|) (13) 

The marker controller watershed algorithm is shown in figure 17: 

 

Figure 18 Marker controlled watershed algorithm. 

  

Figure 19 marker controlled watershed segmentation, (a) Otsu image with some overlapping cells, (b) the result 

image after separating overlapping cells 

 

(a) (b) 
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4.4.3 Segmentation using concave points 

Segmentation of overlapping objects aims to address the issue of representation of 

multiple objects with partial views. Overlapping or occluded objects occur in various 

applications, such as morphology analysis of molecular or cellular objects in biomedical and 

industrial imagery where quantitative analysis of individual objects by their size and shape is 

desired [64–66]. In many such applications, the objects can often be assumed to have 

approximately elliptical shape. 

The watershed transform is one of the commonly used approaches in overlapping cell 

segmentation. However, methods based on the watershed transform suffer from a poor or 

inadequate initialization and may experience difficulties with segmentation of highly 

overlapped objects in which a strong gradient is not present. 

In [67] a novel and efficient method is proposed for the segmentation of partially 

overlapping RBCs with a convex shape. The RBCs are assumed to be clearly distinguishable 

from the background of the image and their contours form approximately elliptical shapes. The 

proposed method relies on two sequential steps of contour evidence extraction and contour 

estimation. The contour evidence extraction step is further divided into two sub-steps: contour 

segmentation and segment grouping. In the contour segmentation step, object contours are 

divided into separate contour segments. In the segment grouping step, contour evidences are 

built by joining the contour segments that belong to the same object. Once the contour evidence 

is obtained, contour estimation is performed using numerically stable direct ellipse fitting. 

This method consists of two consecutive main step (Figure 19): contour evidence 

extraction and contour estimation. the segmentation process starts with pre-processing to build 

an image silhouette and the corresponding edge map, the edge map is constructed from output 

of last watershed stage using the Canny edge detector, In the contour evidence extraction steps, 

edge points that belonged to each object are grouped using concave points and properties of 

fitted ellipses. Once the contour evidence has been obtained, contour estimation is carried out 

to infer the missing parts of the overlapping objects. 
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Figure 20 Concave Point segmentation Algorithm. 

4.4.3.1 Contour Evidence Extraction 

The first step is to extract the contour evidence containing the visible parts of the objects 

boundaries that can be used to inference the occluded parts of overlapped objects. The contour 

evidence extraction involves two separate tasks: contour segmentation and segment grouping. 

4.4.3.1.1  Contour Segmentation 

A partial overlap between two or more elliptic-shape objects leads to a concave shape 

with concave edge points that correspond to the intersections of the object boundaries. It is a 

common practice to utilize these concave points to segment the contour of overlapping objects 

[67]. Different methods such as polygonal approximation, curvature, and angle have been 

applied to determine the location of concave points in the image. In this work, after extracting 

the image edge by canny edge detector, the concave points are obtained through the detection 

of corner points followed by the concavity test [67]. The corner points are detected using the 

modified curvature scale space (CSS) method based on curvature analysis [67]. The output of 

the corner detector includes the points with the maximum curvature lying on both concave and 

convex regions of object contours. Since being only interested in the concave points joining 

the contours of overlapping objects, the detected corner points are examined if they lie on 

concave regions. Let us denote a detected corner point by pi, and its two kth adjacent contour 

points by pi−k and pi+k. The corner point pi is qualified as concave if the line connecting pi−k to 

pi+k does not reside inside the object. The obtained concave points are used to split the contours 

into contour segments. Figure 20 shows an example of concave point extraction and contour 

segmentation. 



35 

 

 

Figure 21 Contour segmentation: (a) Edge map; (b) Corner detection ;  c) Concavity test to extract concave corners 

(green circle) and removed convex corners (pink square); (d) Contour segmentation by concave points  the colors are used 

only for illustrative. 

4.4.3.1.2  Segment Grouping 

Due to the overlap between the objects and the irregularities in the object shapes, 

a single object may produce multiple contour segments. Segment grouping is needed to 

merge all the contour segments belonging to the same object. The basic idea behind the 

proposed method for segment grouping is to find a group of contour segments that 

together form an object with elliptical shape. Segment grouping in its naive form, 

iterates over each pair of contour segment, examining if they can be combined. In this 

work, to optimize the grouping process, a limited search space is applied and the contour 

segment under grouping process is only examined with the neighboring segments. Two 

segments are neighbor if the Euclidean distance between their center points is less than 

the predefine threshold value. The contour segment grouping is carried out through the 

process of ellipse fitting. Given a pair of contour segments, si and sj, and a function 

measuring the goodness of ellipse fitting, the segment si is grouped to sj if the goodness 

of ellipse fitted to the joint segments is higher compared to the goodness of ellipses 

fitted to each individual contour segments separately. The goodness of fit is described 

as average distance deviation (ADD) [68] which measures the discrepancy between the 

fitted curve and the candidate contour points. The lower value of ADD indicates higher 



36 

 

goodness of fit and, therefore the joint rule to perform segment grouping in terms of 

ADD is defined as 

 

𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝐴𝐷𝐷𝑆𝑖

, 

 𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝐴𝐷𝐷𝑆𝑗

 

 

(14) 

Where the definition of ADD is as follows: Given the contour segment si consisting of 

n points, 𝑆𝑖 =  {𝑝𝑘(𝑥𝑘 , 𝑦𝑘}𝑘=1
𝑛 ,  and the corresponding fitted ellipse points, 𝑆𝑓,𝑖 =

 {𝑝𝑓,𝑘(𝑥𝑓,𝑘, 𝑦𝑓,𝑘}𝑘=1
𝑛 , 𝐴𝐷𝐷𝑆𝑖

 is defined as: 

 𝐴𝐷𝐷𝑆𝑖
=  

1

𝑛
 ∑ √(𝑥𝑘 −  𝑥𝑓,𝑘)2 + (𝑦𝑘 −  𝑦𝑓,𝑘)2

𝑛

𝑘=1

 (15) 

Within the transformed coordinate system 

 [
𝑥𝑘

′

𝑦𝑘
′ ] =  [

𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅
𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅

] [
𝑥𝑘 −𝑥𝑒𝑜

𝑦𝑘 −𝑦𝑒𝑜
] (16) 

Eq. (2) can be simplified to 

 𝐴𝐷𝐷𝑆𝑖
=  

1

𝑛
 [∑ √𝑥′

𝑘
2 +  𝑦′

𝑘
2(1 −  

1

|𝐷𝑘|
)

𝑛

𝑘=1

   ] (17) 

where Dk is given by 

 𝐷𝑘
2 =  

𝑥′
𝑘
2

𝑎2
+

𝑦′
𝑘

2

𝑏2
 (18) 

And a, b, (xeo, yeo) and θ are the ellipse parameters, the semi-major axis length, the semi-

minor axis length, the ellipse center point, and the ellipse orientation angle with respect to x 

axis, respectively. 

The plain ADD criterion for segment grouping often leads to undesired results if the 

contour points do not strictly fit to the ellipse model. In order to address this issue, additional 

rules are needed. Given a pair of contour segments to be processed for grouping, the segment 

with longer length usually provides a more reliable clue to the object than the shorter one. 
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Based on this assumption, a weighing scheme using the length of contour segments is added 

to the grouping process where the ADD of contour segment with longer length is down-

weighted by the ratio of its length with respect to the total length of contour segments to be 

grouped. Assuming the contour segment si is longer than contour segment sj, Eq. (14) is 

replaced by 

 

𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝜔𝑖𝐴𝐷𝐷𝑆𝑖

, 

 𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝐴𝐷𝐷𝑆𝑗

 

 

(19) 

Where  

 𝜔𝑖 =  
𝑙𝑖

𝑙𝑖 + 𝑙𝑗
 (20) 

and li and lj are the lengths of contour segments si and sj, respectively. The contour segments 

in far proximity are less likely to represent a single object and should not be merged. As the 

result, the two contour segments whose ellipse models are at very far distance from each other 

should not grouped. Either, ellipse fitted to the combined contour segments should not be at 

far distance from the ellipses fitted to each individual contour segments. Following these 

conventions and being interested in grouping of close contour segments, two additional rules 

are applied similarly to [10]. Let us denote the centroids of the fitted ellipse for the contour 

segments si, sj and si∪j by ei, ej and ei∪j, respectively. The contour segments si and sj 

should not be grouped as a single segment provided that, first, the distance from the ellipse 

centroid of the combined contour segments ei∪j to the center of its members, ei and ej, is larger 

than the preset threshold t1: 

 
𝑑(𝑒𝑖 , 𝑒𝑖𝑗) >  𝑡1 

𝑑(𝑒𝑗 , 𝑒𝑖𝑗) >  𝑡1 
(21) 

and second, the distance between their corresponding ellipse centroids is larger than the 

predefined threshold t2 
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 𝑑(𝑒𝑖 , 𝑒𝑗) > 𝑡2 (22) 

Where 𝑑(𝑝1, 𝑝2) is the Euclidean distance between points p1 and p2. 

The value of t1 can be determined using the object properties [69] and is usually close to the 

length of the minor axis of fitted ellipses to the smallest object in the image. The value of t2 

should be set in such way that prevents the grouping of the contour segment belong to different 

objects or as [69] proposed 2.5 to 4 times higher than the threshold t1. Figure 21 shows an 

example of segment grouping. 

 

Figure 22 Segment grouping: (a) Original binary image; (b) Contour segmentation; (c) Segment grouping (the 

thin gray lines are added to illustrate the grouping of non-adjacent segments). 

4.4.3.2 Contour Estimation 

The last step of proposed method is the contour estimation, where, by means of the 

visual information produced from the previous step, the missing parts of the object contours 

are estimated. Ellipse fitting is a very common approach in overlapping object segmentation, 

especially in the medical and industrial applications. The most efficient recent ellipse fitting 

methods based on shape boundary points are generally addressed through the classic least 

square fitting problem. In this work, the contour estimation is addressed through a stable direct 

least square fitting method [70] where the partially observed objects are modeled in the form 

of ellipse-shape objects. Figure 22 shows an example of contour estimation applied to contour 

evidences. 
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Figure 23  Contour estimation: (a) Original image; (b) Contour evidence extraction; (c) Contour estimation. 

 

Figure 24 one of the test images segmented using concave point and ellipse fitting. 

4.5 Feature Extraction 

Recent researches on feature extraction and selection of red blood cell have shown the 

importance of feature extraction phase for red blood cell analysis. Researchers have used 

different features based on their target blood cells/disease. The features which give 

predominant difference between normal cells and infected cells are identified as feature set. 

Textural [71] and color features [72, 73] are very important in order to differentiate form other 

cells and has been widely used for blood cell recognition whereas color features play important 
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role in order to differentiate similar shapes and overlapped cells. a geometrical and intensity 

features along with GLCM based texture features was used. 

4.5.1 Geometrical features 

Geometrical features remain very important for complex shape recognition and lot of 

researchers used geometrical features for blood analysis. extracting geometrical features that 

are invariant under different condition and analogous to those used by hematologist. These 

features include nucleus area, relative area, nucleus parameter, nucleus relative parameter, 

nucleus roundness and nucleus relative roundness, nucleus mean, nucleus variance, cytoplasm 

area, cytoplasm parameter, cytoplasm mean, cytoplasm variance, cytoplasm ratio to nucleus 

and number of object of in nucleus. for leukocyte recognition, area, compactness and form 

factor feature was used. 

 𝐴𝑟𝑒𝑎(𝑅) = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠(𝑅) (23) 

 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑅) =
2√𝜋𝐴𝑟𝑒𝑎(𝑅)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑅)
  (24) 

 𝑓𝑜𝑟𝑚 𝑓𝑎𝑐𝑡𝑜𝑟(𝑅) =  
4𝜋𝐴𝑟𝑒𝑎(𝑅)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 (25) 

4.5.2  Texture Features 

Due to the importance of textural feature for complex object classification, we have 

extracted several texture features, i.e. co-occurrence matrix. The co-occurrence feature matrix 

describes the second order probabilistic features relating to the gray level relationship in the 

pixel neighborhood. GLCM is statistical measure used to characterize the image texture by 

calculating how often pairs of pixel occurrence in special specified relationship. It is a 

symmetric matrix constructed on the basis of image gray levels with distance and angle. The 

disparate co-occurrence feature matrix is created by the divergence of angle and distance. As 

different type of nucleus represents different texture, thus GLCM based texture features are 

taken into account for classification. If an image M consists of N gray levels, the co-occurrence 

matrix dimension is NxN. Let I be the segmented region of the leukocyte nuclei, the GLCM is 
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computed by summing all the texture information in image I including the average spatial 

relationship between neighboring gray tones.  

six texture features were used from co-occurrence matrix alongside statistical features 

to represent mean, skewness, kurtosis, standard deviation, dissimilarity and Inverse Difference 

Moment. Co-occurrence feature matrix is computed as 

 

 

(26) 

Dissimilarity 

 
 

(27) 

Inverse Difference Moment  

 

 

(28) 

Mean 

 

 

(29) 

Skewness 

 

 

(30) 

Kurtosis 

 

 

(31) 

Standard deviation 
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 =
√

 

(32) 

4.6 Classification of infected cells 

Conventional approaches of pattern classification involve clustering training samples 

and associating clusters to given categories. The complexity and limitations of previous 

mechanisms are largely due to the lacking of an effective way of defining the boundaries 

among clusters. This problem becomes more intractable when the number of features used for 

classification increases [74]. 

The neuro-fuzzy approach is better than neural network classifiers in the sense that prior 

knowledge about the training data set can be encoded into the parameters of the neuro-fuzzy 

classifier. This encoded knowledge, usually acquired from human experts or data visualization 

techniques, can almost always allow the learning process to begin from a good initial point not 

far away from the optimal one in the parameter space, thus speeding up the convergence to the 

optimal or a near-optimal point. Moreover, the parameters obtained after the learning process 

can be easily transformed into structure knowledge in the form of fuzzy if-then rules [74].  

Generally, ANFIS is used as classifier. ANFIS is a function approximator program. But, 

the usage of ANFIS for classifications is unfavorable. For example, there are three classes, and 

labeled as 1, 2 and 3. The ANFIS outputs are not integer. For that reason, the ANFIS outputs 

are rounded, and determined the class labels. But, sometimes, ANFIS can give 0 or 4 class 

labels. These situations are not accepted. As a result, ANFIS is not suitable for classification 

problems. 

By using the k-means algorithm to initialize the fuzzy rules. For that reason, a number 

of two clusters were chosen (infected and non-infected). Also, Gaussian membership function 

is only used for fuzzy set descriptions, because of its simple derivative expressions the 

differences are about the rule weights and parameter optimization. The rule weights are adapted 

by the number of rule samples. The scaled conjugate gradient (SCG) algorithm is used to 

determine the optimum values of nonlinear parameters. The SCG is faster than the steepest 
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descent and some second order derivative based methods, then Linguistic hedges are applied 

to the fuzzy sets of rules, and are adapted by SCG algorithm. By this way, some distinctive 

features are emphasized by power values, and some irrelevant features are damped with power 

values. The power effects in any feature are generally different for different classes. The using 

of linguistic hedges increases the recognition rates [75]. 

The database used for training were acquired from the central Disease control CDC 

which include 145 malaria image. 

After segmentation process, every segmented cell was treated individually, resulting in 

2259 training cells.  

The training and testing recognition rates were 96.33% and 96.31%. 

 

Figure 25 Feature Extraction and Classification workflow 

  



44 

 

5 Results and discussions  

5.1 Results 

After training ANFIS classifier, it shows 96.33% and 96.31% recognition rates for both 

training and testing. Figure 25 address the classifier performance with 1500 iteration. 

 

Figure 26 ANFIS classifier Performance 

The main Classification function is AMCC in matlab which accepts three inputs: first 

is the blood smear image (colored), second is the minimum cell radius, third is the maximum 

cell radius. This limits ellipse estimation result to RBCs size range. Finally, the results of 

classification are: first statistical Result, which gives the total count of RBCs, normal RBCs 

count and infected RBCs count. Second, an image which labels infected RBCs with Red color 

and normal RBCs in green color which is shown in Figure 27. 
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Figure 27 Automatic malaria classification function and its input and output (Green normal, red infected malaria 

cells). 

 

Figure 28 shows the graphical user interface which implements AMCC function to a 

user-friendly environment which enables the technician to choose a stored blood image, shows 

its size and color type information, selecting RBCs size range. finally, analyze the image to 

classify RBCs and gives statistical result in the bottom of the window labeled as count, blood 

image diagnosis as positive or negative and last labeling input image with green color for 

normal RBCs and red color for infected RBCs with malaria cells. 
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Figure 28 graphical user interface program. 

 

A number of 27 infected test images acquired from Khartoum laboratory administration, 

Table 2 shows manual (reference) cells count, number of infected cell and normal cells and 

compare it with the proposed method results. 
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Table 2 Comparison between manual and automated method 

 Manual Reference Automatic Method 

Images 

number 

total number 

of cell 

normal 

cells 

malaria 

cells 

total number of 

cell 

normal 

cells 

malaria 

cells 

1 30 24 6 29 21 8 

2 18 17 1 18 17 1 

3 51 44 7 52 45 7 

4 47 38 8 37 29 8 

5 18 16 2 18 16 2 

6 34 28 6 34 28 6 

7 30 28 2 30 28 2 

8 25 17 8 25 21 4 

9 29 24 5 30 25 5 

10 35 32 3 35 32 3 

11 17 15 2 17 16 1 

12 17 15 2 20 18 2 

13 14 13 1 15 14 1 

14 7 4 3 7 4 3 

15 13 12 1 13 12 1 

16 36 35 1 36 34 2 

17 15 14 1 16 14 2 

18 18 16 2 16 14 2 

19 39 37 2 34 30 4 

20 13 12 1 14 13 1 

21 48 46 2 48 46 2 

22 21 17 4 24 20 4 

23 14 13 1 16 15 1 

24 15 12 3 17 15 2 

25 63 60 3 59 56 3 

26 19 17 2 19 17 2 

27 13 11 2 13 11 2 

 

Table 3 Detection error analysis 

Result Type Mean error Stander deviation Error Range 

Total cells mean     

Detection Error 

1.3703 2.203985 

 

+-10 

Normal cells mean error 1.7037 2.267068843 

 

+-7 

Infected cells mean error 0.445 0.933699562 

 

+-4 
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The 27 images have a total of 699 cell, 617 are normal and 81 are infected. The system detects 

a total of 692 cells, 611 are normal and 81 are infected with malaria. 

Mean rate of 98.9% total rate of detection, 99% detection rate of normal cells and 100% 

detection rate for infected cells.  

5.2 Discussions 

The results indicate that image analysis may be used for the automatic classification of 

infected blood cells from patients with malaria cell anemia the pattern classes of normal and 

other infected. Most of the previous methods which were being used for Malaria classification 

are time consuming and expensive. Pathologist's skill has an important role in the results 

accuracy. respect to all of these facts, the several excluded results would have no coordination 

with each other. May be for a same sample, two pathologists give different opinion on 

diagnosis. In the proposed method cells, unique features are used for diagnosis, morphological 

(shape based features) and textural features which allow to get quantitative results. This is so 

useful for the pathologists to authorizes him/her to decide in many aspects. But in many works 

these values were comparative and were not available for pathologist because they were not 

real and numeral data. Finally, this method provides us with fast, quantitative results which are 

not as expensive as the previous ones. 
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6 Conclusion & recommendations 

6.1 Conclusion 

There are different methods for malaria parasite detection. The proposed automated 

algorithm has many advantages compared to other diagnostic techniques. It avoids the 

problems associated with rapid methods, such as being species-specific and having high per-

test costs, while retaining many of the traditional advantages of microscopy, example. species 

differentiation. 

This Thesis addresses the classification of malaria diseases using image processing. 

Although, malaria cell segmentation and morphological analysis is a challenging problem due 

to both the complex cell nature uncertainty in microscopic videos. by effectively analyzing 

various parameter of blood cell image using GLCM matrix as Texture features and Geometrical 

feature. The experimental results indicate that the proposed approach is a valuable approach, 

which can be significantly support an accurate identification of malaria diseases in a little 

computational effort. There can be mistake in counting manually the number of RBC & WBC 

(process of Giemsa) as the boundaries are not clearly defined or visible which lead us to the 

error in wrong decision. So, to solve this problem the developed algorithm can be more helpful 

for other techniques. As this system, can meet the real-time application requirements, so a 

standalone working version of this system can be developed. 

6.2 Recommendations 

The performance of the system can be increased by creating new set of feature which can 

be well optimized with classifier and which gives best, also training ANFIS classifier using 

newly developed particle swarm optimization (PSO) algorithm should increase system's 

detection rate significantly to obtain better results. finally developing new technique instead of 

ellipse fitting method to trace and simulate overlapped cells boundaries.  



50 

 

References 

 

[1]   World Health Organization. What is malaria? Facts Sheet no 94. 

http://www.who.int/mediacentre/factsheets/fs094/en/.  

[2]   Rafael, M. E., Taylor, T., Magill, A., Lim, Y., Girosi, F., Allan, R. (2006). Reducing the burden of 

childhood malaria in Africa: the role of improved diagnostics. Nature. pp. 39-48. 

[3]   Tangpukdee, N., Duangdee, C., Wilairatana, P., Krudsood, S. (2009). Malaria Diagnosis: A Brief 

Review. Korean Journal of Parasitology. pp. 93-102.  

[4]   Reyburn, H., Mbatia, R., Drakeley, C., Carneiro, I., Mwakasungula, E., Mwerinde, O., 

Saganda, K., Shao, J., Kitua, A., Olomi, R., Greenwood, B. M., Whitty, C. J. M. 

(2004). Over diagnosis of malaria in patients with severe febrile illness in Tanzania: 

a prospective study. British Medical Journal. 329(7476). 

[5]   Chandra, U., Bahendwar, Y. (2015). “Detection of Malaria Disease through Soft Computing”, 

IJARCSSE Volume-5, Issue-10,  

[6]   Makler, M., Palmer, C., Alger, A. (1998). A Review of Practical Techniques for the Diagnosis of 

Malaria. Ann Trop Med Parasitol 92(4). pp. 419-433.  

[7]   National Institute of Allergy and Infectious Diseases. (2012). Life Cycle of the Malaria Parasite. 

National Institutes of Health. 

[8]   Centers for Disease Control and Prevention (2010). Diagnostic Findings: Malaria. CDC Center for 

Global Health. 

[9]   Ogunbajo, A. (2011). Migration of Plasmodium Sporozoites through Host Cells. Journal of the 

Student National Medical Association. 

[10]   Guyton, A., Hall, J. (2011). Textbook of Medical Physiology. 12th ed. Philadelphia, PA: 

Elsevier. Print.   

[11]   Jones, C.S., Mayfield, S.P. (2012). Steps toward a globally available malaria vaccine: 

Harnessing the potential of algae for future low cost vaccines. Bioengineered. 4(3) 

[12]   Michalakis, Y., Renaud, F. (2009). Evolution in vector control. Nature. pp. 298-300. 

[13]   Maxmen, A. (2012). Malaria plan under scrutiny. Nature. pp. 13-14 

[14]   Maxmen, A. (2012). Malaria surge feared. Nature. pp.485: 293. 

[15]   Centers for Disease Control and Prevention. (2010). Malaria Treatment (United States). 

Centers for Disease Control. 

[16]   World Health Organization. (2009). “Online Q&A.”  

http://www.who.int/features/qa/26/en/index.html.  

[17]   Williams, I. (2013). Drug-resistant malaria in Thailand threatens deadly global ‘nightmare’. 

NBC News. http://tinyurl.com/aqwug3e. 

[18]   Bill and Melinda Gates Foundation. (2011). Malaria Strategy Overview.  

http://www.gatesfoundation.org/malaria/Documents/malaria-strategy.pdf.  

[19]   Wilson, M. L. (2012). Malaria Rapid Diagnostic Tests. Medical Microbiology. dpp. 1637-1641.  

[20]   Centers for Disease Control and Prevention. (2011a). “Guidelines for Treatment of Malaria in 

the United States.” Centers for Disease Control.  

http://www.cdc.gov/malaria/resources/pdf/treatmenttable.pdf  

[21]   Centers for Disease Control and Prevention. (2011). “Treatment of Malaria (Guidelines for 

Clinicians).” Centers for Disease Control. Available at:  

http://www.cdc.gov/malaria/resources/pdf/clinicalguidance.pdf. 

http://www.cdc.gov/malaria/resources/pdf/clinicalguidance.pdf


51 

 

[22]   Tek, F. B., Dempster, A. G., Kale, I. (2009). Computer Vision for Microscopy Diagnosis of 

Malaria. Malaria Journal. pp. 153. 

[23]   Adeoye, G. O., Nga, I. C. (2007). Comparison of Quantitative Buffy Coat technique (QBC) 

with Giemsa-stained thick film (GTF) for diagnosis of malaria. Parasitology International. pp. 308-

312. 

[24]   Payne, D. (1988). Use and limitations of light microscopy for diagnosing malaria at the primary 

health care level. Bulletin of the World Health Organization. pp. 621-626. 

[25]   Sanofi, A. (2002). Artifacts commonly mistaken for malaria parasites. Available at: 

http://www.impact-malaria.com/web/malaria training/identification species/artefacts 

[26]   Keiser, J., Utzinger, J., Premji, Z., Yamagata, Y., Singer, B. H. (2002). Acridine Orange for 

malaria diagnosis: its diagnostics performance, its promotion and implementation in Tanzania, and 

the implications for malaria control. Annals of Tropical Medicine & Parasitology. pp. 643-654. 

[27]   Kawamoto, F., Billingsley, P. F. (1992). Rapid Diagnosis of Malaria by Fluorescence 

Microscopy. Lancet. pp. 200-202. 

[28]   QBC Diagnostics. (2012). QBC Malaria Test: Frequently Asked Questions (FAQs). QBC 

Diagnostics. Available at:   

http://www.qbcdiagnostics.com/products/fm/malaria/faq.asp#f10 

[29]   Estacio, R. H., Dy, E. E. R., Cresswell, S., Coronel, R. F., Alora, A. T. (1993). The Quantitative 

Buffy Coat Technique (QBC) in Early Diagnosis of Malaria: The Santo Tomas University Hospital 

Experience. Philippine Journal of Microbiology and Infectious Disease. 22(2).  

[30]   Levine, R. A., Wardlaw, S. C., Patton, C. L. (1989). Detection of hematoparasites using 

quantitative buffy coat analysis tubes. Parasitology Today. pp. 132-134. 

[31]   Moody, A. (2002). Rapid Diagnostic Tests for Malaria Parasites. Clinical Microbiology 

Reviews. 15(1): 66-78.  

[32]   Jang S. (1993). Adaptive network-based Fuzzy Inference System. IEEE Journal, Vol.23, No.3, 

PP.665-685, ISSN 0018-9472  

[33]   Jang, S.; Sun T. & Mizutani E. (1997). Neuro-Fuzzy and Soft Computing a Computational 

Approach to Learning and Machine intelligence, Prentice Hall, Inc. ISBN 0132610663 

[34]   Fuzzy Logic Toolbox User’s Guide for Use with MATLAB (2009). 

[35]   Zaho, J. & Bose, B. (2002). Evaluation of membership Functions for Fuzzy Logic Controlled 

Induction Motor Drive. IEEE Journal, Vo.1, No.pp.229-234, ISBN 0-7803-7474-6. S 

[36]   Lin. C. & Lee. C. (1996). Neural Fuzzy Systems-A Neuro Fuzzy Synergism to Intelligent 

Systems. Prentice Hall P T R. Upper Saddle River, N.J., ISBN 0-13-235169-2 

[37]   Mamdani, E. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic 

controller. International Journal of Man Machine Studies, Vol.7, No.1, pp. 1-13, ISSN 00207373 

[38]   Sugeno, M. (1985). Industrial applications of fuzzy control, Elsevier Science Pub, 

ISBN0444878297, NY, USA  

[39]   Hamidian D. & Seyedpoor M. (2010). Shape Optimal Design of Arch Dams Using an Adaptive 

Neuro-Fuzzy Inference System and Improved Particle Swarm Optimization. Jornal of Applied 

Mathematical Modelling. Vol.34, No.6. pp.1574-1585. 

[40]   Memeu D., Kaduki, K., Mjomba, A., Muriuki, N., Gitonga, L. (2013). Detection of plasmodium 

parasites from images of thin blood smears, Open Journal of Clinical Diagnostics. pp.183-194.  

[41]   Gitonga, L., Memeu, D., Kaduki, K., Kale, M., Muriuki, N. (2014). Determination of 

Plasmodium Parasite Life Stages and Species in Images of Thin Blood Smears Using Artificial 

Neural Network, Open Journal of Clinical Diagnostics. pp. 78-88. 

http://www.qbcdiagnostics.com/products/fm/malaria/faq.asp#f10


52 

 

[42]   Veluchamy, M., Perumal, K. and Ponuchamy, T. (2012). Feature Extraction and Classification 

of Blood Cells Using Artificial Neural Network. American Journal of Applied Sciences 98, ISSN 

1546-9239. pp.615-619 

[43]   Dipti D. (2013). Exploring the use of Artificial Neural Network and Bayesian Network for 

Malaria Detection, Sixth IRAJ International Conference. ISBN: 978-93-82702-32- 0, pp.24-27 

[44]   Chawla, P., Mittal, R., Grewal, K. (2012). Hybrid Filtering Technique for Image Denoising 

Using Artificial Neural Network, IJEAT Volume-1, Issue-3.  

[45]   Mishra, S., Panda, G., Meher, G. (2009). Chebyshev Functional Link Artificial Neural 

Networks for Denoising of Image Corrupted by Salt and Pepper Noise. International Journal of 

Recent Trends in Engineering, Vol. 1, No.1.  

[46]   Yazeed A. (2012). Artificial Neural Networks Evaluation as an Image Denoising Tool, IDOSI 

Publications.  

[47]   Sarangi, S., Sarangi, S., Sarangi, S. (2014). Performance Analysis of Filter based on Functional 

Link Artificial Neural Network, IJCA, Volume 93 – No 1.  

[48]   JunyuanXie, LinliXu, Chen, E. (2012) Image Denoising and Inpainting with Deep Neural 

Networks, Advances in Neural Information Processing Systems 25. pp.1-9.  

[49]   Mohanty S. and Paramita P. (2014). Image Denoising Using Adaptive Filter Based on 

Computational Efficient Modified Functional Link Artificial Neural Network. SPC ERA IJSTE 

Vol-1, No-1. 

[50]   Mastake A., Yongjia, C., Masato, K., QinyuZhang, Y. (2007). Additive and multiplicative 

noise reduction by back propagation neural Internationale, Lyon. France. 

[51]   Yan, L., Wang, L., HuiYap K. (2004).  A noisy chaotic neural network approach to image 

denoising” International Conference on Image Processing (ICIP). pp:1229-1232. 

[52]   Marwaha, S., Monga, H., Shelza, (2012). Automatic Diagnosis Systems Using Image 

Processing-A Systematic Study”, International Journal of Computer Science and Information 

Technology & Security (IJCSITS), ISSN: 2249-9555Vol. 2, No.2. pp.388-391.  

[53]   Ms. Deepali Ghate, Mrs.Chaya, C. Dr. N Usha Rani, “automatic detection of malaria parasite 

from blood images”, International journal of advanced computer technology | Volume 4, Number 

1, ISSN:2319-7900, pp.129-132.  

[54]   Savkare S. and Narote S. (2011). Automatic Detection of Malaria Parasites for Estimating 

Parasitemia. International Journal of Computer Science and Security (IJCSS), Volume (5): Issue 

(3). pp. 310-315.  

[55]   Suradkar P. (2013). Detection of Malarial Parasite in Blood Using Image Processing. 

International Journal of Engineering and Innovative Technology (IJEIT)Volume 2, Issue 10. 

pp:124-126. 

[56]   Shiff, C., (2002). Integrated approach for malaria control. Clin. Microbiol. Rev.15, pp.278–

293. 

[57]   Kumar, A., Choudhary A., Tembhare P., Pote C. (2012). Enhanced Identification of Malarial 

Infected Objects using Otsu Algorithm from Thin Smear Digital Images, International Journal of 

Latest Research in Science and Technology Vol.1, Issue 2: Page No159-163. 

[58]   Makkapati, V.,  and Rao, R. (2009) Segmentation of malaria parasites in peripheral blood smear 

images., Proceedings of IEEE International Conference on Acoustics, Speech and Signal 

Processing, ICASSP 2009, pp. 1361-1364. 

[59]   Raviraja, S., Bajpai, G., Sharma, S. (2007). Analysis of Detecting the Malaria Parasite Infected 

Blood Images Using Statistical Based Approach IFMBE Proceedings, 3rd Kuala Lumpur 

International Conference on Biomedical Engineering 2006, vol. 15, part 12, pp. 502-505.  



53 

 

[60]   Ruberto C., Dempster, A., Khan S., Jarra, B. (2000). Segmentation of blood images using 

morphological operators., Proceedings of 15th International Conference on Pattern Recognition 

Barcelona, Spain, vol. 3, pp. 3401. 

[61]   Díaz, G., Gonzalez, F., Romero, E. (2007). Infected cell identification in thin blood images 

based on color pixel classification: Comparison and analysis. Lecture Notes in Computer Science 

4756, 812. 

[62]   Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Sys., 

Man., Cyber. 9 (1): 62–66. doi:10.1109/TSMC.1979.4310076. 

[63]   Najman, L. and Schmitt,M. (1994). Watershed of a continuous function. In Signal Processing 

(Special issue on Mathematical Morphology.), Vol. 38. p. 99–112 

[64]   Park, C., Huang, J.Z., Ji, J.X., Ding, Y. (2013). Segmentation, inference and classification of 

partially overlapping nanoparticles. IEEE Transactions on Pattern Analysis and Machine 

Intelligence 35, pp.669–681  

[65]   Zhang, W.H., Jiang, X., Liu, Y.M. (2012). A method for recognizing overlapping elliptical 

bubbles in bubble image. Pattern Recognition Letters 33, pp.1543 – 1548 

[66]   Kothari, S., Chaudry, Q., Wang, M. (2009). Automated cell counting and cluster segmentation 

using concavity detection and ellipse fitting techniques. In: IEEE International Symposium on 

Biomedical Imaging, pp.795–798 

[67]   Zafari, S., Eerola, T., Sampo, J., Kälviäinen, H., & Haario, H. (2015, December). Segmentation 

of Partially Overlapping Nanoparticles Using Concave Points. In International Symposium on 

Visual Computing (pp. 187-197). Springer International Publishing 

[68]   Zhang, W.H., Jiang, X., Liu, Y.M. (2012). A method for recognizing overlapping elliptical 

bubbles in bubble image. Pattern Recognition Letters 33, pp.1543 – 1548 

[69]   Bai, X., Sun, C., Zhou, F. (2009). Splitting touching cells based on concave points and ellipse 

fitting. Pattern Recognition 42, pp.2434 – 2446 

[70]   Fitzgibbon, A., Pilu, M., Fisher, R.B. (1999). Direct least square fitting of ellipses. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 21, pp.476–480 

[71]   Kumar, A., Choudhary, A., Tembhare, P., Pote, C. (2012). Enhanced identification of malarial 

infected objects using otsu algorithm from thin smear digital images. International Journal of Latest 

Research in Science and Technology ISSN (Online), pp.2278-5299, 1, 159. 

[72]   Chen, T., YongZhang, Wang, C., ZhenshenQu, FeiWang, Mahmood T. (2013). Complex local 

phase based subjective surfaces (CLAPSS) and its application to DIC red blood cell image 

segmentation. Neurocomputing 99, 98. 

[73]   Ahirwar, N., Pattnaik1, S., Acharya, B.(2012). Advanced image analysis based system for 

automatic detection and classification of malarial parasite in blood mages. International Journal of 

Information Technology and Knowledge Management 5, 59. 

[74]   Sun CT, Jang JSR (1993). A neuro-fuzzy classifier and its applications. Proc. of IEEE 

 

  



54 

 

Appendix A 

A.1 Matlab Codes: 

A.1.1 Main function 

function [ out, totCells,normCells, infecCells] = AMCC( inImage, opt ) 

%AMCC a function written by hosam hatim osman to classify and detect malarial 

%parasite 

    % load the method parameters 

    if nargin < 2  

        opt.show = 1; 

        opt.minCellRadius = 220; 

        opt.maxCellRadius = 7000; 

    end 

    load engine2 

    param = readparam(); 

    out.decision = 'normal'; 

    cellsEllipse = mia_particles_segmentation(inImage,param); 

    %     showEllipse(inImage,cellsEllipse); 

    selcCellsEllipse = cellThresh(cellsEllipse,opt.minCellRadius,opt.maxCellRadius); 

    [features,out.outCellsEllipse] = calcCellFeatures(inImage,selcCellsEllipse); 

    out.label = evalfis(features(:,engine2.featureIdx),engine2.fis)'; 

    out.label(out.label > 1.5) = 2; 
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    out.label(out.label < 1.5) = 1; 

    totCells = length(out.label); 

    normCells = length(out.label(out.label == 1)); 

    infecCells = length(out.label(out.label == 2)); 

    if ~isempty(out.label == 2) 

        out.decision = 'infected'; 

    end 

    if opt.show == 1 

        showResult(inImage,out.outCellsEllipse,out.label); 

    end 

end 

 

function [feature,outCellsEllipse] = calcCellFeatures(img, cellsEllipse) 

    if size(img , 3) == 3 

        img = img(:,:,2); 

    end 

%     i1 = rescale(morphRecon(img)); 

%     o_pso = segmentation(i1,2,'pso'); 

%     o_pso_bw = imfill(~im2bw(o_pso,graythresh(o_pso)),'holes'); 

    o_pso_bw = imfill(~im2bw(img,graythresh(img)),'holes'); 
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    sz = size(img); 

    cnt = 0; 

    outCellsEllipse = {}; 

    for i = 1:length(cellsEllipse) 

        x = cellsEllipse{i}(:,1); y = cellsEllipse{i}(:,2); 

        BW = o_pso_bw & imdilate(poly2mask(x,y,sz(1),sz(2)),strel('disk',5)); 

        if ~isempty(find(BW, 1))  

            cnt = cnt + 1 ; 

            outCellsEllipse{cnt} = cellsEllipse{i}; 

            feature(cnt,:) = ftrCalc(img,BW)'; 

        end         

    end 

end 

 

function showResult( inImage ,CellsEllipse, label) 

    imshow(inImage); hold on 

    parasiteIdx = find(label == 2); 

    normalIdx = find(label  == 1); 

    if ~isempty(CellsEllipse)  

        if ~isempty(parasiteIdx) 

            for iter=1:length(parasiteIdx) 
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                plot(CellsEllipse{parasiteIdx(iter)}(:,1),CellsEllipse{parasiteIdx(iter)}(:,2), 

'color',[0.8 0.5 0.5],'LineWidth', 2); 

            end 

        end 

        if ~isempty(normalIdx) 

            for iter=1:length(normalIdx) 

                plot(CellsEllipse{normalIdx(iter)}(:,1),CellsEllipse{normalIdx(iter)}(:,2), 

'color',[0.5 0.8 0.5],'LineWidth', 2); 

            end 

        end 

    end 

    title(['total cells count:' num2str(length(CellsEllipse)) ', normal: ' 

num2str(length(normalIdx)) ', malarial parasite: ' num2str(length(parasiteIdx))]); 

end 

 

function showEllipse( inImage ,CellsEllipse) 

    imshow(inImage); hold on 

    if ~isempty(CellsEllipse)  

        for iter=1:length(CellsEllipse) 

            plot(CellsEllipse{iter}(:,1),CellsEllipse{iter}(:,2), 'color',[0.5 0.8 

0.5],'LineWidth', 2); 

        end 
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    end 

end 

A.1.2 morphological processing function 

function [ out ] = morphRecon( img, strelSize) 

%MORPHRECON Summary of this function goes here 

%   Detailed explanation goes here 

    if nargin < 2 

        strelSize = 2; 

    end 

    se = strel('disk', strelSize); 

    Ie = imerode(img, se); 

    Iobr = imreconstruct(Ie, img); 

    Iobrd = imdilate(Iobr, se); 

    out = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr)); 

    out = imcomplement(out); 

end 

A.1.3 Marker controlled watershed function 

function out = mwss(img) 

    img = morphRecon(img); 

    bw = ~im2bw(img(:,:,2),graythresh(img(:,:,2))); 
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    bw = imfill(bw,'holes'); 

    %% 

    D = -bwdist(~bw,'chessboard'); 

    mask = imextendedmin(D,2); 

    D2 = imimposemin(D,mask); 

    Ld2 = watershed(D2); 

    out = bw; 

    out(Ld2 == 0) = 0; 

end 

A.1.4 Concave points segmentation function  

function stats = mia_particles_segmentation(I,param) 

% mia_particles_segmentation performs segmentation by using the concave points. 

%   Synopsis 

%       stats = mia_segmentation_concave(I,k,thd1,thd2,thdn) 

%   Description 

%         Returns segmentation result (objects boundaries) of overlapping nanoparticles 

%         by using concave points and ellipse fitting propeties. 

%   Inputs  

%          - I         grayscale or binary Image 

%          - k         kth adjucnet points to the corner point 

%         - thd1       Euclidean distance between ellipse centroid of the  
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%                      combined contour segments and ellipse fitted to each segment 

%         - thd2       Euclidean distance between between the centroids of ellipse 

%                      fitted to each segment. 

%         - thdn       Euclidean distance between contour center points 

%                       to define neighbouring segments  

%        - vis1        visualize the contoure evidence extraction step 

%        - vis2        visualize the contoure estimation step 

%   Outputs 

%         - stats      cell array contating the objects boundaries  

 

%          

%   Authors 

%          Sahar Zafari <sahar.zafari(at)lut(dot)fi> 

% 

%   Changes 

%       14/01/2016  First Edition 

 

    % load the parameters 

    k = param(1); 

    thd1 = param(2); 

    thd2 = param(3); 
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    thdn = param(4); 

    vis1 = param(5); 

    vis2 = param(6); 

    % Image Binarization by otsu's method 

%     I = morphRecon(I); 

%     level = graythresh(I); 

%     imgbw =  ~im2bw(I,level); 

    imgbw = mwss(I); 

    imgbw = fillBorderObjects(imgbw); 

    % Contour Evidence Extraction 

%     fprintf('Performs Contour Evidence Extraction.....\n') 

    contourevidence = mia_cmpcontourevidence(imgbw,k,thd1,thd2,thdn,vis1); 

    % Contour Estimation 

%     fprintf('Performs Contour Estimation.....\n') 

    stats =  mia_estimatecontour_lsf(I,contourevidence,vis2); 

end 

function out_bw = fillBorderObjects(in_bw) 

    bw_a = padarray(in_bw,[1 1],1,'pre'); 

    bw_a_filled = imfill(bw_a,'holes'); 

    bw_a_filled = bw_a_filled(2:end,2:end); 

    bw_b = padarray(padarray(in_bw,[1 0],1,'pre'),[0 1],1,'post'); 



62 

 

    bw_b_filled = imfill(bw_b,'holes'); 

    bw_b_filled = bw_b_filled(2:end,1:end-1); 

    bw_c = padarray(in_bw,[1 1],1,'post'); 

    bw_c_filled = imfill(bw_c,'holes'); 

    bw_c_filled = bw_c_filled(1:end-1,1:end-1); 

    bw_d = padarray(padarray(in_bw,[1 0],1,'post'),[0 1],1,'pre'); 

    bw_d_filled = imfill(bw_d,'holes'); 

    bw_d_filled = bw_d_filled(1:end-1,2:end); 

    out_bw = bw_a_filled | bw_b_filled | bw_c_filled | bw_d_filled; 

end 
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Appendix B 

B.1 Table of Equation 

Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Positive predictive 

value 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative predictive 

value 
𝑁𝑃𝑉 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

ANFIS node 

function 
𝑄𝑖

1 =  𝜇𝐴𝑖(𝑋) 

Gaussian 

membership function 
𝜇𝐴𝑖(𝑋) = 𝑒𝑥𝑝 {−

1

2

(𝑋 −  𝐶𝑖)2

𝜎𝑖
2 } 

Node 

interconnecting 

signal multiplication 

𝑤𝑖 =  𝜇𝐴𝑖(𝑋1) ×  𝜇𝐵𝑖(𝑋2), 𝑖 = 1,2 

of the i-th rule’s 

firing strength 
𝑤𝑖

− =  
𝑤𝑖

𝑤1 + 𝑤2

 

adaptive node 𝑄𝑖
4 =  𝑤𝑖

− 𝑓𝑖 =  𝑤𝑖
−(𝑚𝑖𝑋1 +  𝑛𝑖𝑋2 +  𝑞𝑖), 𝑖 = 1,2 

weighted average of 

all incoming signals 
𝑄𝑖

5 =  ∑ 𝑤𝑖
− 𝑓𝑖  

𝑖

=  
∑ 𝑤𝑖  𝑓𝑖  𝑖

∑ 𝑤𝑖  𝑖

, 𝑖 = 1,2 
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the overall output (f) 

of the learning 

process 

𝑓 =  
𝑤1

𝑤1 +  𝑤2

𝑓1 +  
𝑤2

𝑤1 +  𝑤2

 𝑓2 = 𝑤1
− 𝑓1 +  𝑤2

− 𝑓2

=   (𝑤1
−𝑋1)𝑚1 +  (𝑤1

−𝑋2)𝑛1 +  (𝑤1
−)𝑞1 +  (𝑤2

−𝑋2)𝑚2

+  (𝑤2
−𝑋2)𝑛2 +  (𝑤2

−)𝑞2 

variance 𝜎𝑏
2 =  𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡)  −  𝜇1(𝑡)]2 

Chebyshev 

distance 
𝐷𝑐ℎ𝑒𝑠𝑠 = max(|𝑥2 −  𝑥1|, | 𝑦2 −  𝑦1|) 

segment 

grouping 

𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝐴𝐷𝐷𝑆𝑖

, 

𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝐴𝐷𝐷𝑆𝑗

 

 

Fitting ellipse 

of segment group 
𝐴𝐷𝐷𝑆𝑖

=  
1

𝑛
 ∑ √(𝑥𝑘 −  𝑥𝑓,𝑘)2 +  (𝑦𝑘 −  𝑦𝑓,𝑘)2

𝑛

𝑘=1

 

fitting ellipse 

transform 

coordinates 

[
𝑥𝑘

′

𝑦𝑘
′ ] =  [

𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅
𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅

] [
𝑥𝑘 −𝑥𝑒𝑜

𝑦𝑘 −𝑦𝑒𝑜
] 

Simplified 

version of ADDsi 

𝐴𝐷𝐷𝑆𝑖
=  

1

𝑛
 [∑ √𝑥′

𝑘
2 +  𝑦′

𝑘
2(1 −  

1

|𝐷𝑘|
)

𝑛

𝑘=1

   ] 

Dk 𝐷𝑘
2 =  

𝑥′
𝑘
2

𝑎2
+

𝑦′
𝑘

2

𝑏2
 

ADD with 

contour longer than 

segment it self 

𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝜔𝑖𝐴𝐷𝐷𝑆𝑖

, 

𝐴𝐷𝐷𝑆𝑖∪𝑆𝑗
≤ 𝐴𝐷𝐷𝑆𝑗

 

 

wi 𝜔𝑖 =  
𝑙𝑖

𝑙𝑖 + 𝑙𝑗
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Distance 

between  Ellipse 

centroid and the first 

threshold 

𝑑(𝑒𝑖 , 𝑒𝑖𝑗) >  𝑡1 

𝑑(𝑒𝑗 , 𝑒𝑖𝑗) >  𝑡1 

Distance 

between  Ellipse 

centroid and the 

second threshold 

𝑑(𝑒𝑖 , 𝑒𝑗) > 𝑡2 

Area of cell 𝐴𝑟𝑒𝑎(𝑅) = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠(𝑅) 

compactness 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑅) =
2√𝜋𝐴𝑟𝑒𝑎(𝑅)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑅)
 

Form factor 𝑓𝑜𝑟𝑚 𝑓𝑎𝑐𝑡𝑜𝑟(𝑅) =  
4𝜋𝐴𝑟𝑒𝑎(𝑅)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

GLCM co-

occurrence matrix 
 

Dissimilarity 
 

Inverse 

difference moment 
 

Mean 

 

Skewness 
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kurtosis 

 

Standard 

deviation =
√

 

 


