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Abstract

Recent advancement in genomic technologies has opened a new realm for early
detection of diseases that shows potential to overcome the drawbacks of manual detection
technologies. Computer based malarial parasite analysis and classification has opened a new
area for the early malaria detection that showed potential to overcome the drawbacks of manual
strategies. This thesis presents a method for automatic classification of malarial infected cells.
Blood cell segmentation and morphological analysis is a challenging due complexity of the
blood cells. To improve the performance of malaria parasite segmentation and classification,
we have used different set of features which are forward to the ANFIS classifier for malaria
classification. the segmentation of clustered partially overlapping objects with a shape initially
separated using marker controlled watershed segmentation accompanied with and overlapping
cells concave point segmentation and contours are approximated using an ellipse. whereas
ANFIS classifier for classification on different set of texture and shape features. This Study
shows 96.33% and 96.31% recognition rates for both training and testing using ANFIS

classifier.
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Introduction

1.1 Global Struggle with Malaria

Malaria is a common but serious protozoan disease caused by peripheral blood, spleen
or liver parasites of the genus Plasmodium. The World Health Organization estimates 300-500
million malaria cases and more than 1 million deaths per year [1]. It is caused by any of the
four-different species of Plasmodium parasite, vivax, ovale, malariae and falciparum. Disease

is transmitted via the bite of an infected female of the Anopheles mosquito.

Overtreatment of negative patients accelerates the evolution of antimalarial drug
resistance, complicates the diagnosis of other acute febrile illnesses, and wastes resources in
low-wealth regions that have limited supplies of antimalarial treatment options [2]. A prompt
and accurate diagnosis is, therefore, imperative to the control and management of malaria.
Delays in diagnosis and treatment are leading causes of malaria-related deaths in several
endemic countries, and in non-endemic countries, technicians frequently falsely diagnose a
patient due to lack of experience in examining peripheral blood smears for identification of
parasitemia [3]. Furthermore, clinicians often doubt microscopy results and continue to treat

non-infected patients based on clinical suspicion of the presenting symptoms [2, 4].

Figure 1 Female Anopheles mosquito taking a blood meal.
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Detection methods for Malaria can for Malaria be classified into two Categories, based
on their cost and performance. These are the high cost methods and low cost methods.
Polymerase Chain Reaction (PCR) based techniques that detect specific nucleic acid sequences
and Third Harmonic Generation (THG) imaging of emission from the Hemozoin using infrared
ultrafast pulsed laser excitation, belong to the class of high cost methods. Studies have shown
that these techniques can yield high sensitivity and specificity to malaria diagnosis. However,
they are rarely used in developing countries where the disease is endemic because of the high
cost, specialized infrastructure needs and handling difficulties. RDTs are relatively fast in
malaria diagnosis and can be administered by unskilled personnel. However, their results can
be unreliable. Besides, commercially available RDT kits are specific to single species of
plasmodium parasites and in cases where mixed infection is suspected, all the four kits should
be used to detect deferent Malaria Species. This makes the technique relatively expensive [5].
The most widely used technique for determining the development stage of the malaria disease
is visual microscopical evaluation of Giemsa stained blood smears [6]. The obvious limitation
of this technique is time consuming. Besides, the results obtained are difficult to reproduce.
An automated diagnosis system can be designed by understanding the diagnostic expertise and
representing it by specifically tailored image processing, analysis and pattern recognition
algorithms. A complete system must be equipped with: image acquisition, preprocessing,
segmentation (object localization), and classification tasks. In order to perform diagnosis on
peripheral blood samples, the system must be capable of differentiating between malarial

parasites, artifacts, and healthy blood components.

1.2 Problem Statement

Conventional microscopy is the gold standard method of malaria diagnosis using giemsa
stained blood smears. however, this is a routine and time consuming procedure and requires a
trained Technician. Plus, sophisticated techniques for malaria detection are expensive and
unaffordable in places where malaria is a serious problem. Parallel to this, less sophisticated

techniques are affordable but their results always are not reliable. Besides a recent study on



the field shows the agreement rates among the clinical experts for the diagnosis are surprisingly

low.

1.3 Objectives

This Study Has main and Specific objectives as follows.

1.3.1 Main objective

The long-term goal of the research is to develop an accurate automatic malaria detection

and classification system which can reduce the overall testing time.

1.3.2 Specific objectives

This research has specific objectives as follows:

1. Incorporate multiple segmentation methods for better detection of infected RBCs.
2. Classify each RBC contained within the image as infected or not.

3. Design a Graphical user interface for ease of use.

1.4 Thesis outline

The thesis accumulates six chapters, the first chapter is the introduction to inform other
researchers about thesis problems and objectives, the second chapter is theatrical fundamentals
which give readers the required knowledge and tools as walkthrough to the thesis, the third
chapter discuss the literature of previous studies and their problem’s encountered and how they
solve it, the whole thesis was based on their studies, the use of image processing techniques to
segment malaria cells and Machine learning capabilities identify malaria parasite, the fourth
chapter is the methodology, it’s a specific layout of this thesis and how every contribute to
final, the fifth chapter is results and discussions which summarizes thesis methodology in

statistical results and why and how those results are acquired.

The final chapter is conclusion and recommendations which outline the final outcome
and the resultant of the thesis, which objectives are accomplished and how thesis method could

be enhanced and developed further more.



Theoretical Fundamentals

2.1 The Malaria Parasitic Life Cycle

The life cycle of the malaria parasite (Figure 2) requires both a vertebrate host and a
mosquito for survival. Malaria is spread to humans by an infected female pregnant Anopheles
mosquito (Figure 1), which releases sporozoites into the vertebrate host during a blood meal.
Sporozoites are highly motile reproductive organisms that travel through the circulatory system
and invade the hepatocytes of the liver. An asexual replication process known as schizogony
occurs, resulting in the production of tens of thousands (per hepatocyte) of haploid forms,

known as merozoites, until the hepatocyte membrane finally ruptures [7].

b Sporozoites

/‘r’\

Transmission
to mosquito

.09

Gametocytes

Figure 2 Malaria parasite life cycle.

Merozoites are then released into the blood stream to invade erythrocytes (Figure 3),
also known as red blood cells (RBCs), and develop into three morphologically and
metabolically distinct stages named rings, trophozoites and schizonts. Merozoites invade RBCs
to escape phagocytosis by leukocytes, commonly known as white blood cells (WBCs), and to
consume hemoglobin as a protein source for continued replication and survival. Rings are the
first intraerythrocytic stage, evolving over the course of several hours into the larger

trophozoite form, which upon initiation of asexual reproduction, begins the schizont stage.



Schizonts produce between eight and twenty-four daughter merozoites and ultimately
rupture the erythrocytic membrane. Each merozoite is then capable of initiating a new cycle of
intraerythrocytic asexual replication in a new RBC, Schizonts are rarely present in peripheral
blood of P. falciparum infections, except in severe cases [8]. The repeated cycles of
development and multiplication within human erythrocytes is responsible for the pathological

symptoms associated with human malaria.

Figure 3 Microscopic image of intraerythrocytic P. falciparum merozoites rupturing an RBC membrane to infect
additional RBCs and perpetuate the infection cascade.

P

Figure 4 Giemsa-stained Plasmodium falciparum showing hemozoin (green arrow).



During the erythrocytic stage, the malaria parasite consumes hemoglobin and
detoxifies heme by forming an insoluble crystalline brown pigment known as hemozoin.
Hemozoin is produced in all erythrocytic stages but is only readily detectable in late

trophozoites and schizonts.

A critical step in parasite development, which accounts for the large geographic
distribution of malaria worldwide and the rapid spread of drug-resistant strains, is the ability
of a subpopulation of the parasites within human red blood cells to differentiate into precursor
male and female sexual forms called gametocytes. These forms are transmitted to a female
Anopheles mosquito during a blood meal. Mating between male and female gametocytes takes
place within the mosquito stomach and is followed by meisois and a series of asexual divisions
to produce oocysts, each harboring thousands of new sporozoites. In a process known as
gliding motility, the sporozoites migrate to the salivary glands of the mosquito to infect another

vertebrate host during another blood meal [9]. This perpetuates the malaria life cycle.

2.2 Components of the Blood

Considering malaria’s inhabitance within the systemic circulation, the components of
blood should be discussed in further detail to provide the reader with sufficient background

knowledge.

Blood is an essential fluid for oxygen and nutrient transportation to and metabolic waste
uptake from the cells of the body. It is comprised of three cell types: RBCs, WBCs, and
platelets, all of which are suspended in plasma, a clear to yellow liquid comprised mostly of

water, dissolved proteins, and cell nutrients.

2.2.1 Red blood Cells

RBCs provide the critical function of delivering oxygen to tissues and circulate
throughout the human body for approximately 120 days before being filtered by the kidneys
when their supporting proteins are no longer viable [10]. RBCs primarily consist of
hemoglobin, a metalloprotein responsible for oxygen uptake and distribution throughout the

body. Hemoglobin has four identical sub-units, each with a heme component, globin chain,
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and an iron atom bound to the heme [10]. Oxygen has a high affinity to loosely and reversibly

bind with iron, thereby enabling RBCs to efficiently transport oxygen molecules.

The cellular structure of the RBC is beneficial to its primary functions (Figure 5). The
plasma membrane provides sufficient structure while maintaining compliance, allowing cells
to circulate through narrow capillary beds. The biconcave shape optimizes the surface area to
improve oxygen transfer across the plasma membrane. RBCs also expel their nucleus during
erythropoiesis to allow for maximal hemoglobin content, but immature cells may consist of

reticular material for a short period of time while in circulation.

Figure 5 Scanning electron micrograph of a red blood cell, magnification 11397X.

2.2.2 White Blood Cells

WBCs, shown pictorially in (Figure 6), are responsible for the immune response to
infection [10]; they are subdivided into five subpopulations: neutrophils, lymphocytes,
monocytes, eosinophils, and basophils. WBCs are capable of attacking extracellular parasites;

however, once a parasite has invaded an RBC, it becomes invisible to most immune responses.
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Figure 6 The five types of WBCs. In a normal blood sample, the neutrophil is the most common (40-75%),
followed by the lymphocyte (20-45%), monocyte (3-11%), eosinophil (0-7%), and basophil (0-1%).

2.2.3 Platelets

Platelets are cell fragments from megakaryocytes that contribute to hemostasis and blood

clotting activity [10]. They are shown in (Figure 7) in a Wright stained microscopic image, a

common laboratory stain for peripheral blood smear analysis.

Figure 7 Platelets observed with Wright stain, manifesting as small dark-purple fragments. A neutrophil is
shown at the center of the image.

2.3 Prevention of Malaria

The use of insecticides, insecticide-treated bed nets, and drug therapies has and will
continue to decrease the prevalence and mortality rate associated with malaria [11,12].
However, many populations throughout the world remain at a significant risk of infection

because the mosquito resistance to insecticides and artemisinin may contribute to a surge of as
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many as 26 million new annual cases [13, 14]. There is no malaria vaccine currently approved
for human use but advancements in medical research and technology may offer capabilities to
finally eradicate this disease in the future [11]. Accurate diagnostics also contribute to the
prevention of malaria because, the sooner a patient can be diagnosed with malaria, the sooner
that patient can be treated with antimalarial to eradicate the parasite, preventing subsequent

disease transmission.

2.4 Treatment Methods

Malaria treatment depends on several factors, including disease severity, the
Plasmodium species, the clinical status of the patient, pregnancy, and the geographic region in
which the infection was acquired [15]. Intravenous and oral drugs, such as chloroquine,
quinine, quinidine, doxycycline, and Artemisinin Combination Therapies (ACT), are generally
successful at eradicating uncomplicated cases but certain species of malaria exhibit drug
resistance that render some treatments ineffective. ACTs, for example, have demonstrated a
95% cure rate in nonresistant uncomplicated falciparum malaria cases [16]; however, recent
resistance development to artemisinin is concerning and may have severe repercussions.
Artemisinin was previously capable of clearing malaria parasites from a patient within 24
hours, but now requires three to four days for a complete treatment [17]. In the near future,
some patients may not respond to artemisinin at all. Complicating matters further is the
prevalence of counterfeit anti-malaria drugs, which contributes to inadequate treatment for the

patient and increases the risk of drug resistance development [18].

Treatment based solely on symptoms and without proper diagnosis contributes to
resource waste, drug resistance development, and the unnecessary exposure of patients without
clinical malaria to antimicrobial agents [19, 2]. Further complicating matters is the fact that
many people carry and transmit the disease but are asymptomatic of malaria and are not treated
[12]. Furthermore, due to the increased cost of newer and more effective drugs, such as
artemisinin, diagnostic methods have become vitally important to efficient distribution in
resource poor regions [2]. The interested reader should refer to the Guidelines for Treatment

of Malaria in the United States published by the Centers for Disease Control and Prevention
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for additional information on prevention and treatment methods [20]. An accurate laboratory
diagnosis and knowledge of disease severity, stage progression, and Plasmodium species is
imperative in formulating a treatment protocol [21]. A screening method such as the one
proposed in this thesis would permit early diagnosis and treatment of malaria, potentially
before the onset of symptoms and disease transmission to another individual. This will help

contribute to vector control and by extension, prevent malaria infection.

2.5 Existing Diagnostic Methods and Instrumentation

There are numerous methods available today for the diagnosis of malaria. Each method
has its own unique set of advantages and disadvantages, but, to date, an optimal method does
not exist. Socioeconomic factors, durability and stability, and distribution limitations are just
some of the challenges facing malaria diagnosis. Two of the most important parameters for a
malaria diagnostic test are sensitivity and specificity, both of which are statistical measures of
the performance of a binary classification test (i.e., whether or not the patient is infected with

malaria). Sensitivity is the proportion of correctly identified positives and is given by:

TP
Sensitivity = ———— @
Y= TP+ FN

while specificity is the proportion of correctly identified negatives and is given by:

Svecificity = l (2)
pecificity = Fy TP

Where TP is the occurrence of true positives, TN is the occurrence of true negatives, FP
is the occurrence of false positives, and FN is the occurrence of false negatives. Two measures
closely related to sensitivity and specificity are positive predictive value (PPV) and negative
predictive value (NPV). The PPV is the proportion of positive test results that are correct and
IS given by:

TP
= 3
PPV TP + FP )

Conversely, NPV is the proportion of negative test results that are correct and is given by:
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TN
= — 4
NPV TN + FN )

The PPV and NPV of a particular test can provide a clinician with a level of confidence
in regards to the accuracy of a given result. Other features such as parasite morphology
assessment, species differentiation, and parasitemia estimation are available in certain methods
depending on the diagnostic technology of the test or system. Current diagnostic methods were
analyzed in a comprehensive literature review to determine the shortcomings of existent
technology and help formulate new ideas to address these issues. A summary of significant

findings is described in the following sections.

2.5.1 The Gold Standard Malaria Diagnostic Test: Giemsa-Stained

Peripheral Blood Smears and Microscopy Review

The current gold standard for detection of Plasmodium employs Giemsa staining of thin
and thick blood smears with conventional light microscopy [22] (Figure 8). Giemsa is specific
to the phosphate groups of DNA and attaches to regions of high adenine-thymine bonding,
yielding a high-contrast parasitic visualization. Microscopy review of Giemsa stains is the most
commonly-performed laboratory diagnostic test due to its simplicity, relatively low cost,
ability to differentiate parasitemia, and manual determination of parasitemia magnitude [3].
Microscopic review of peripheral blood smears suffers from inherent flaws that severely inhibit
efficacy in diagnosing malaria. Most importantly, the sensitivity of microscopy is typically no
greater than 75% to 90%, and in some settings, can be as low as 50% [19, 2]. Low parasitemia
levels further complicate Giemsa staining [23], as the average microscopist can only detect 50
to 100 parasites per microliter [24]. Reviewing peripheral blood smears is time-consuming (30
to 60 minutes) and requires a trained observer to interpret parasitemia, thereby limiting its
capability for high-throughput screening. Inadequate staining and poor microscopy methods
can degrade the visualization of the parasite making it more difficult for species differentiation.
Acrtifacts in blood can often be mistaken for malaria parasites even if proper staining techniques
are performed (Figure 9) [25]. The most frequent mistake is the misidentification of platelets

that are superimposed on red blood cells as malaria parasites. Their appearance is similar but
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platelets can be differentiated based on the absence of chromatin dots and refrainment patterns
when focusing. Eosinophils can often be confused with P. ovale and P. vivax trophozoites
because eosinophilic stippling is similar in appearance to Schuffners dots. Dust particles, stain
deposits, obscuring debris, and blood cell ghosts are other common artifacts that may confuse
the microscopist. Despite these insufficiencies, it is still the most common method for detecting

Plasmodium parasites, with over 165 million peripheral smears performed in 2010 [19].

T~ o SR ®

A B ch )

Figure 9 Interfering substances in peripheral blood smears. A. Platelet superimposed on a red blood cell. B.
Platelet clump, which can potentially be misinterpreted as schizonts. C. Schuffners dots in a P. ovale trophozoite. D.
Eosinophil, exhibiting red stip.

2.5.2 Fluorescent Diagnostic Methods

Fluorescent stains such as acridine orange, DAPI, and benzothiocarboxypurine (BCP)
have demonstrated efficacy in malaria diagnosis when conventional light microscopes are fixed
with an interference filter. This method offers advantages particularly evident in conditions of

low parasitemia. The rate of staining and observation is increased and the training level
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required to achieve consistent and reliable results is decreased. Excessive cost and availability
of materials are limiting to these methods and a trained observer is still required for
interpretation of results [26, 27, 6]. The nucleic-acid selective stain, acridine orange, has been
successfully applied to the Quantitative Buffy Coat [28]. system for rapid diagnosis of malaria
and other parasitic infections with an eightfold increase in lower detection limits compared to
Giemsa-stained thick smears [23]. In this method, blood specimen is stained with acridine
orange in a micro hematocrit tube. After centrifugation, a clear plastic float, with a specific
gravity equal to that of the buffy coat (WBC layer), settles to the buffy coat layer and expands
this region up to ten-fold. RBCs infected with malarial parasites are less dense, and therefore
occupy the space near the buffy coat - RBC interface. Centrifugal stratification concentrates
the parasites into a discrete region (1 to 2 mm) and retains the parasites close to the tube wall
so they may be visualized using a fluorescence microscope with an LED illumination
attachment known as the Para Lens (QBC Diagnostics) (Figure 10) [29, 30]. Since the parasites
are concentrated from a relatively large volume of blood (50 to 110 mL, compared to 5 mL for
peripheral smears), the sensitivity is increased and the examination time required to confirm or
disprove infections is decreased. in [30] demonstrated that, after centrifugation is complete (5
minutes at 12,000 g), only 7 to 10 minutes are required for review to confirm that the sample
IS negative, and [29] demonstrated that less than one minute is required to confirm a positive

infection.

Figure 10 QBC Malaria test showing two trophozoites of P. falciparum (arrows). Parasitic DNA appears green
and the cytoplasm appears yellow-orange.
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2.5.3 Rapid Diagnostic Tests

Rapid diagnostic tests (RDTs) offer a simple, prompt, accurate, and cost-effective
diagnostic test for identifying malaria parasitemia by the detection of three distinct
Plasmodium antigens. Plasmodium histidine-rich protein Il (pHRP-2) is specific to P.
falciparum and P. Vivax. Plasmodium lactate dehydrogenase (pLDH) is likewise specific to P.
falciparum and P. vivax, but its isomers can also be used to detect all Plasmodium species (i.e.,
pan specific). Finally, Plasmodium aldolase is also pan specific. The combination of these
antigens can be used to detect the presence of P. falciparum, P. vivax, or any combination
thereof [19]. To perform a test, blood specimen is placed on a nitrocellulose strip with
antibodies dispersed in well-defined lines (Figure 11). The lysed specimen migrates down the
strip and if it contains Plasmodium parasites, the complex of the antibodies and parasite
antigens generates visible indicators to demonstrate a positive test result. A labeled goat
antibody capture provides a control method to indicate that the test is functioning properly [31].
Malaria diagnosis by RDTs has been reported as excellent [3], but there are several deficiencies
with this method. First, non-falciparum infections may be misdiagnosed as negative for malaria
if the RDT only contains pHRP-2. Multiple immunochromatographic tests must be combined
when using RDTSs to ensure that all species of malaria may be detected. There are also variants
of P. falciparum in South America that do not produce HRP-2 and therefore cannot be detected
using an RDT. Cross-reactions have been reported for patients with Schistosoma mekongi
infection, rheumatoid factor or other auto-antibodies. Additionally, RDTs cannot be used to
measure parasitemia magnitude, therefore the severity of the disease is not known to the
clinician unless a peripheral smear is reviewed. Finally, RDTs are inefficient at diagnosing low
parasitemia, which may lead to a false diagnosis and further symptom development by the
patient. These limitations generally require the clinician to use RDTs in conjunction with other
diagnostic methods for confirmation of reported results, characterization of infection, and to

monitor the progress of patients undergoing anti-malarial treatment [3].
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Figure 11 AMRAD (Sydney, Australia) rapid diagnostic test showing a positive result for P. falciparum (Left)
and negative result (Right). [31]

2.5.4 Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) is a relatively new malaria diagnostic method that
has been documented to be one of the most sensitive and specific tests especially in case of
low parasitemia [3]. It is common practice to utilize PCR as a confirmatory method in advanced
laboratories due to its superior performance to Giemsa staining [3]. Briefly, PCR is a process
wherein the DNA of the parasite is amplified to several orders of magnitude greater. A process
known as thermal cycling repeatedly heats and cools the sample to enable DNA melting and
the subsequent enzymatic replication of the malaria DNA. PCR has demonstrated an ability to
detect as little as five parasites per mL, or 0.001 % parasitemia, assuming a 5 x 106. It is
important to note that the availability of PCR is limited in low wealth endemic regions due to
its complex methodology, high cost, time-intensive procedure (i.e., >24 hours) and need for
trained technicians [3, 31]. Quality control and regular maintenance is also a requirement of
PCR, further limiting its potential for malaria diagnosis in rural areas. It is, therefore, mostly

reserved for research and, occasionally, diagnostic purposes in large clinics and hospitals.
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2.5.5 Alternative Diagnostic Methods

Other diagnostic methods such as serological, Loop-Mediated Isothermal PCR
(LAMP), microarrays, flow cytometry, automated blood cell counters, and mass
spectrophotometry are less commonly used. They each offer some distinct advantages but have

significant limitations that diminish their effectiveness as malarial diagnostic methods.

2.6 Adaptive neuro-fuzzy inference system (ANFIS)

The fuzzy set theory developed by (Zadeh, 1965) provides as a mathematical framework
to deal with vagueness associated with the description of a variable. The commonly used fuzzy
inference system (FIS) is the actual process of mapping from a given input to output using
fuzzy logic. Fuzzy logic is particularly useful in the development of expert systems. Expert
systems are built by capturing the knowledge of humans: however, such knowledge is known
to be qualitative and inexact. Experts may be only partially knowledgeable about the problem
domain, or data may not be fully available, but decisions are still expected. In these situations,
educated guesses need to be made to provide a solution to the problems. This is where fuzzy
logic can be employed as a tool to deal with imprecision and qualitative aspects that are
associated with problem solving [32]. A fuzzy set is a set without clear or sharp boundaries or
without binary membership characteristics. Unlike a conventional set where object either
belongs or do not belong to the set, partial membership in a fuzzy set is possible. In other
words, there is a softness associated with the membership of elements in a fuzzy set [32]. A
fuzzy set may be represented by a membership function. This function gives the grade (degree)
of membership within the set. The membership function maps the elements of the universe on
to numerical values in the interval [0, 1]. The membership functions most commonly used in
control theory are triangular, trapezoidal, Gaussian, sigmoidal membership functions show in
Figure 12 [33, 34, 35].
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Figure 12 Six types of fuzzy membership functions: triangular (A), z-shape (B), trapezoidal (C), s-shape (D),
sigmoid (E) and Gaussian (F).

As mentioned previously, the fuzzy inference system is the process of formulating the
mapping from a given input to an output using fuzzy logic. The dynamic behavior of an FIS is
characterized by a set of linguistic description rules based on expert knowledge. The fuzzy
system and neural networks are complementary technologies. The most important reason for
combining fuzzy systems with neural networks is to use the learning capability of neural
network. While the learning capability is an advantage from the view point of a fuzzy system,
from the viewpoint of a neural network there are additional advantages to a combined system.
Because a neuro-fuzzy system is based on linguistic rules, we can easily integrate prior
knowledge in to the system, and this can substantially shorten the learning process. One of the
popular integrated systems is an ANFIS, which is an integration of a fuzzy inference system
with a back-propagation algorithm [32, 36]. There are two types of fuzzy inference systems
that can be implemented: Mamdani-type and Sugeno-type [37, 38]. Because the Sugeno system
is more compact and computationally more efficient than a Mamdani system, it lends itself to
the use of adaptive techniques for constructing the fuzzy models. These adaptive techniques
can be used to customize the membership functions so that the fuzzy system best models the
data. The fuzzy inference system based on neuro-adaptive learning techniques is termed

adaptive neuro-fuzzy inference system [39]. In order for an FIS to be mature and well
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established so that it can work appropriately in prediction mode, its initial structure and
parameters (linear and non-linear) need to be tuned or adapted through a learning process using
a sufficient input-output pattern of data. One of the most commonly used learning systems for
adapting the linear and nonlinear parameters of an FIS, particularly the first order Sugeno fuzzy
model, is the ANFIS. ANFIS is a class of adaptive networks that are functionally equivalent to

fuzzy inference systems [32].

2.6.1 Architecture of ANFIS
(Figure 12) shows the architecture of a typical ANFIS with two inputs X1 and X2, two

rules and one output f, for the first order Sugeno fuzzy model, where each input is assumed to
have two associated membership functions (MFs). For a first-order Sugeno fuzzy model a

typical rule set with two fuzzy if-then rules can be expressed as [32]:
Rule (1): If X1is A1 and Xz is By, then f1 = m1 X1 + n1 X2 + Qs
Rule (2): If X11s Az and Xz is Bo, then f2 = mz X1 + n2Xz + Q2.

where: my, ng, g1 and my, nz, g2 are the parameters of the output function.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

A

Figure 13 Structure of the ANFIS model.

It contains five layers where the node functions in the same layer are of the same
function family. Inputs, outputs and implemented mathematical models of the nodes of each

layer are explained below.
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Layer 1: This layer performs fuzzification of the inputs,The node function of every

node i in this layer take the form:

Qi = nA(X) (5)
where X is the input to node i, pAi is the membership function (which can be triangular,
trapezoidal, gaussian functions or other shapes) of the linguistic label Ai associated with this
node and O; is the degree of match to which the input X satisfies the quantifier Ai. In the current

study, the Gaussian shaped MFs defined below are utilized.

1(X - Cl-)z} ©)

nt= -

where {C;, o;} are the parameters of the MFs governing the Gaussian functions. The

parameters in this layer are usually referred to as premise parameters.

Layer 2: Every node in this layer multiplies the incoming signals from layer 1 and sends the

product out as follows,

w; = pud;(X1) X puB;(X;),i =1,2 (7)

where the output of this layer (w;) represents the firing strength of a rule.

Layer 3: Each neuron in this layer calculates the normalized degree of truth of the fuzzy rule,
every node i in this layer is a node labeled N, determine the ratio of the i-th rule’s firing strength

to the sum of all rules’ firing strengths as:

Wi

V; = i = 1,2 (8)

wy +w,’
where the output of this layer represents the normalized firing strengths.

Layer 4: Every node i in this layer is an adaptive node with a node function of the form:

Q;} = Wi_ fl = Wi_(mixl + niXZ + qi)!i = 112 (9)
where w;” is the output to layer 3, and {m;, n;, q;} is the parameter set of this node. Parameters

in this layer are referred to as consequent parameters.
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Layer 5: There is only a single node in this layer that computes the overall output as the

weighted average of all incoming signals from layer 4 as:
_ Xiwi fi .
Q?=Zwi fi= 5= 12 (10)

4

2.6.2 Training Process

As mentioned earlier, both the premise (non-linear) and consequent (linear) parameters
of the ANFIS should be tuned, utilizing the so-called learning process, to optimally represent
the factual mathematical relationship between the input space and output space. Normally, as
a first step, an approximate fuzzy model is initiated by the system and then improved through
an iterative adaptive learning process. Basically, ANFIS takes the initial fuzzy model and tunes
it by means of a hybrid technique combining gradient descent backpropagation and mean least-
squares optimization algorithms. At each epoch, an error measure, usually defined as the sum
of the squared difference between actual and desired output, is reduced. Training stops when
either the predefined epoch number or error rate is obtained. There are two passes in the hybrid
learning procedure for ANFIS. In the forward pass of the hybrid learning algorithm, functional
signals go forward till layer 4 and the consequent parameters are identified by the least squares
estimate. In the backward pass, the error rates propagate backward and the premise parameters
are updated by the gradient descent. When the values of the premise parameters are learned,
the overall output (f) can be expressed as a linear combination of the consequent parameters
[33]:

41

w,
= —f + — = w; + w,
f wy + W2f1 wy + wy fz 1 fl 2 fz

= (wiX)m;+ (wiX,)n, + (wy)g, + (w; X,)m, (11)

+ (wy Xo)n, + (wy)q,

which is linear in the consequent parameters m,, n,, q;, m,, n, and q.
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Literature Review

A literature survey summarizes all the relevant literature researched during the course
of this project. It presents certain approaches used by many researchers for classification. It
also compares the performance of all classifier with other common classifier with same
parameters. Finally, the best parameters and classifier combination is discussed. Lucy Gitonga,
et al [40] introduces a technique for identifying the parasites life stages and species using
microscopic images of thin blood smears stained with Giemsa was developed. The technique
entailed designing and training Artificial Neural Network (ANN) classifiers to perform the
classification of infected erythrocytes into their respective stages and species. The system
recorded 99.9% in recognizing stages and 96.2% in recognizing plasmodium species. Daniel
Maitethia Memeu, et al [41] proposes an accurate, speedy and affordable system of malaria
detection using stained thin blood smear images was developed. The method uses Artificial
Neural Net- work (ANN) to test for the presence of plasmodium parasites in thin blood smear
images. Images of infected and non-infected erythrocytes were acquired, preprocessed,
relevant features extracted from them and eventually diagnosis was made based on the features
extracted from the images. Classification ac- curacy of 95.0% in detection of infected
erythrocyte was achieved with respect to results obtained by expert microscopist.
Magudeeswaran Veluchamy, et al [42] describes the method of evaluating the clinical status is
counting of cell types based on features that it contains. There is a need for a rapid, reproducible
method, superior to human inspection and for the classification of cells. For solving these
problems, quantitative digital-image analysis is applied and a novel method for classifications
of affected blood cells from normal in an image of a microscopic section is presented. These
blood cell images are acquired from different patient with sickle cell anemia, sickle cell disease
and normal volunteers. Approach: The segmentation of blood cells is made by morphological
operations such as thresholding, erosion and dilation to preserve shape and size characteristics.

In addition, we use back propagation neural network to classify the blood cells more efficiently.

Dipti D. Patankar, et al [43] presents automatic methods for detection and classification

of malarial parasites in thin blood smear. For this Artificial Neural Network (ANN) and

21



Bayesian Network (BN) are used as promising techniques. Morphological features such as
shape, size are considered to identify infected erythrocytes and possible type of plasmodium.
ParasChawla, et al [44]. In order to use medical images for the diagnosing process, it must be
noiseless. However, most of the images are affected by noises and artifacts. In order to achieve
this de-noising of CT images, an effective CT image de-noising technique is proposed. The
proposed technique removes the Additive white Gaussian Noise from the CT images and
improves the quality of images. The proposed work is comprised of three phases; they are
preprocessing, training and testing. In the preprocessing phase, the CT image which is affected
by the AWGN noise is transformed using multi wavelet transformation. In the training phase
the obtained multi-wavelet coefficients are given as input to the Adaptive Neuro-Fuzzy
Inference System (ANFIS). Sudhansu Kumar Mishra, et al [45] presents an alternate ANN
structure called functional link ANN (FLANN) for imaged noising. In contrast to a feed
forward ANN structure i.e.a multilayer perceptron (MLP), the FLANN is basically a single
layer structure in which non-linearity is introduced by enhancing the input pattern with
nonlinear function expansion. In this work three different expansions are applied. Yazeed A.
Al-Sbou, et al [46] describes the image de-noising is a challenging task in the digital image
processing research and application. This makes it imperative to find a robust method to
comply that task. In this paper, a detailed performance evaluation of using the neural networks
as a noise reduction tool is presented. Suchitra Sarangi, et al [47] discusses image restoration
is an important part of image processing in which it presents a functional link artificial neural
network based technique for image restoration which has the capacity of reducing the Gaussian
noise present in an image. Then a comparison has been carried out between the proposed filter
& the other existing filter. Junyuan Xie,et al,[48] propose a novel approach to low-level vision
problems that combines sparse coding and deep networks pre-trained with de-noising auto-
encoder (DA).We propose an alternative training scheme that successfully adapts DA,
originally designed for unsupervised feature learning, to the tasks of image de-noising and
blinding painting. Snigdha Mohanty, et al [49] describes design the four artificial neural
networks(ANNSs) for de-noising of digital image corrupted with AWGN or salt and pepper

noise is presented. and then using a Multilayer perceptron(MLP) using the popular back
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propagation algorithm, Direct Linear Artificial Feed-through Neural Network (DLFANN),
Functional Link Artificial Neural Network (FLANN) and Modified-Functional Link Artificial
Neural Network (MFLANN)have been implemented in this regard and extensive computer
simulation have been carried out for performance comparison among these algorithms. Leipo
Yan, et al [50] proposes new approach to address image de noising based on a new neural
network, called noisy chaotic neural network (NCNN). The original Bayesian framework of
image de-noising is reformulated into a constrained optimization problem using continuous
relaxation labelling. The NCNN, which combines the simulated annealing technique with the
Hopfield neural network (HNN), is employed to solve the optimization problem. Sheenum
Marwaha, et al, [51] provides a brief review of computerized aided automated diagnosis
techniques which use Digital Image Processing, their benefits and the types of diseases
diagnosed by these systems. However, CAD system is having many problems, so new methods
need to be introduced by combining the benefits of other classification techniques with CAD.
Ms. Deepali Ghate, et al, [52] discusses computerized diagnosis, which will help in immediate
detection of the disease to some extent, so that the proper treatment can be provided to the
malaria patient. Also the image processing algorithm is used which will reliably detect the
presence of malaria parasite from Plasmodium falciparum species in thin smears of Giemsa
stained peripheral blood sample. S. S. Savkare, et al, [53] presents an automatic technique is
proposed for Malaria parasites detection from blood images by extracting red blood cells
(RBCs) from blood image and classifying as normal or parasite infected. Manual counting of
parasite is tedious and time consuming and need experts. Proposed automatic approach is used
Otsu thresholding on gray image and green channel of the blood image for cell segmentation,
watershed transform is used for separation of touching cells, color and statistical features are
extracted from segmented cells and SVM binary classifier is used for classification of normal
and parasite infected cells. Pallavi T. Suradkar,et al,[54]reviews image analysis studies aiming
at automated diagnosis or screening of malaria infection in microscope images of thin blood
film smears. Malaria is a mosquito-borne infectious disease of humans and other animals
caused by parasites (a type of microorganism) of the genus Plasmodium. Infection is initiated

by a bite from an infected female mosquito, which introduces the parasites via its saliva into
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the circulatory system, and ultimately to the liver where they mature and reproduce.
Deepa.A.Kurer, et al, [55] presents the image processing algorithm to automate the diagnosis
of malaria in blood images is developed in this project. The image classification system is
designed to positively identify malaria parasites present in thin blood smears, and differentiate

the species of malaria.

[56] Illustrate a technique for identifying the malaria for blood cell images, which
involves counting of Blood cell using an adaptive OTSU thresholding technique. Which use to
segment the image and separate the RBC and WBC. The paper also considers the area of cells
to declare severity and uses SVM as Classifier for declaring the result of whether the patient is
affected by Malaria or Not. An approach is proposed to detect red blood cells with consecutive
classification into parasite infected and normal cells for estimation of parasitemia. The
extraction of red blood cells achieves a reliable performance and the actual classification of
infected cells. Sensitivity of system is 93.12%, and Specificity is 93.17%. Shape based and
statistical features are generated for classification. The features are selected for recognition of
two classes only. This approach leads to the high specialization of each classifier and results
in an overall increase in accuracy. Makkapati and Rao [58] explored the segmentation for HSV
color space. A scheme presented in [57] is based on HSV color space that segments Red Blood
Cells and parasites by detecting dominant hue range and by calculating optimal saturation
thresholds. Methods those are less computation-intensive than existing approaches are
presented to remove artifacts. The scheme is evaluated using images taken from Leishman-
stained blood smears. Sensitivity of the scheme was found to be 83%. The method operates in
HSV space and is dynamic in the sense that relevant thresholds are determined from the
statistics of the given image rather than keeping them fixed for all images. Schemes determine
optimal saturation thresholds to segment RBCs and chromatin dots that are robust with respect
to the color variability encountered. The work in [57] illustrates the use of color image
processing techniques. Raviraja et al. [58] introduces a blood image processing for detecting
and classifying malarial parasites in images of Giemsa stained blood slides, in order to evaluate

the parasitemia of the blood. To detect the red blood cells that are infected by malarial parasites,
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statistical based approach is used. To separate automatically the parasites (trophozoites,
schizonts and gametocytes) from the rest of an infected blood image, color, shape and size
information are used and later the image is compared with infected images after transformation
of image by scaling, shaping to reconstruct the image. The images returned are statistically
analyzed and compare to generate a mathematical base. Also, the evaluation of the size and
shape of the nuclei of the parasite is also considered. Ruberto et al. [59] introduces
morphological approach to cell image segmentation more accurate than the normal watershed
based algorithm. The used non-flat disk-shape structuring element enhanced the roundness and
compactness to improving the accuracy of normal watershed based algorithm whereas flat
disk-shape structuring element to separate overlapping cells. These methods make use of
knowledge of the RBC structure that is not used in existing watershed based algorithm. In [59]
a scheme based on RGB color space that segments Red Blood Cells and parasites by detecting
dominant hue range and by calculating optimal saturation thresholds is presented. Methods that
are less computation intensive than existing approaches are proposed to remove artifacts. The
scheme is evaluated using images taken from Leishman-stained blood smears. Sensitivity of
the scheme is found to be 83%. Automated image analysis-based software. Malaria Count. for
parasitemia determination, i.e. for quantitative evaluation of the level of parasites in the blood,
has been described in [59]. The presented system is based on the detection of edges
representing cell and parasite boundaries. The described technique includes a preprocessing

step, edge detection step, edge linking, clump splitting, and parasite detection.
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Table 1 Summary table of literature methods for Malaria Detection

Reference Target Preprocessing Segmentation Features Classificatio | Accuracy
Article Data Method n
publisher Method
Lucy Gitonga | Parasite Digital ~ zooming, | Using hue and | Statistical Artificial 99.9% stages
Life stages contrast saturation optimum | features neural 96.2% parasite
enhancement and | thresholds network detection
mean filter
Maitethia Presence of | Digital  zooming, | thresholding Direct pixel | Artificial 95% accuracy
Memeu plasmodium and mean filter values, shape | neural
based and | network
texture based
Magudeeswa | Counting blood | - Morphological Statistical back
ran cells based on operation and edge | based, shape | propagation 80% accuracy
Veluchamy its features detection based and | ANN
texture based
Dipti D. | Detection and | Median filter Color based | Morphologic | ANN and
Patankar classification of segmentation al  features | Bayesian
malaria parasite (size, shape) network
S.S. Automatic Mean filter and | Otsu’s  threshold | Color SVM 83.75%
Savakare malaria Green plane | and watershed statistical accuracy
detection selection features
Shiff Identifying Mean filter and | Otsu’s thresholding | HSV SVM 93.12
malariain blood | HSV color space statistical sensitivity and
images conversion features 93.17
Specificity
Amit Kumar | Detectionofred | Mean filter and | Optimum - - 83% accuracy
blood cells and | HSV color space | saturation
infected conversion thresholds
parasites
Ravirja Detecting and | Color normalization | Morphological Statistical k-nearest 74% sensitivity,
classifying thresholding based and | neighbor 98% specificity
malarial shape based | classifier
parasites features
Ruberto Morphological | - Watershed and | - - -

cell

segmentation

non-flat disk shape
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Methodology
4.1 Image Analysis Module

Due to complexity of the blood sample images, malarial parasite segmentation and
morphological analysis is a challenging problem. Machine vision based malarial diagnostic
methods has been widely studied in order to provide early and accurate diagnose of malaria
parasite. An ideal diagnostic method would be accurate, non-invasive, and inexpensive. The
key tasks for malarial parasite classification involve segmenting the malaria parasite infected

cells from the complicated background. The system block diagram is shown in Figure 13.

Image Acquisition

i
Image Preprocessing
!
Cell Segmentation
i
Feature Extraction
i
Database - Malaria Classification

Figure 14 Image Analysis Module.

4.2 Image Acquisition

A number of thick blood films was prepared using Giemsa staining technique. it is a

rapid staining method for screening of parasites. The sensitivity of a thick blood film is 5-10
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parasites/pul. Thin blood films stained by Giemsa’s is useful for specification of parasites and
for the stippling of infected red cells and have a sensitivity of 200 parasites/pil. The optimal pH
of the stain is 7.2. The requirements need for film preparation are Giemsa stain powder, 100%
Methanol, Bibulous paper, Microscope with x100 oil immersion lens (Olympus CX21). The
preparation of stain procedure was followed as recommended by Khartoum laboratory
Administration in the following order: first fixing the slider in 100% methanol for ~30” and
rinse off in tap water, then Make up a fresh solution of 10% Giemsa stain in distilled water,
Stain for ~30” and Rinse off slide in tap water and dry thoroughly using bibulous paper to dab.
now for screening part View slide under oil immersion with a 100x objective. Images were
acquired using a camera attached to the microscope which is a Leica DFC 295 camera and
acquire the 1000x magnified image form the oil immersion lens maintaining a constant image
size of 300x300 pixels.

Figure 15 Sample image obtained by leica DFC 295 camera with resolution of 300x300.

4.3 Image Preprocessing

Blood smear images might be affected by illumination and color distribution of blood
images due to the varieties of digital camera and staining variability. Most of the microscopes
provide uniform or relatively uniform illumination images. The aim of preprocessing step is to

obtain images with low noise, high contrast than original images for the further processing.
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This particular problem poses difficulties for classification of blood cells since it is hard to deal
with proper segmentations of objects with quite similar colors. This process contains two

operations image enhancement and noise reduction.

Morphological techniques called "opening-by-reconstruction” and "closing-by-
reconstruction™ was applied to clean up image noise and eliminate non-uniform background
illumination, by using disk shaped element with a radius of 2 pixels to apply a morphological
erosion to the image, the result is le. Then the image is reconstructed by le with help of matlab

function "imreconstruct", the result image is Ir.

Next Appling a morphological dilation to Ir by the same disk shaped structure element
Ird, then Appling a morphological reconstruction to both Ird and Ir complements, the result is

Irr. finally obtaining the complement of Irr.

Disk Structure Element (2

pixel Raduis)

!

Morphological
Erosion

!

Morphological Morphological
Reconstruction Dilation

i

Image
Complement

‘i

Morphological Image out Image
Reconstruction ™ Complement r—

Image

Figure 16 Image preprocessing Algorithm Flow Diagram.
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4.4 Cell Segmentation

In the analysis of automatic classification of malarial parasite procedures, the most
important and difficult part is segmentation of malaria parasite infected blood cells from the
background and other cells because the blood cells are often overlaid with each other and is
the basis of quantitative analysis of its deformability and hence its filterability [61]. Cell
shapes, light variation and noise are the other factors that make segmentation a difficult task.
Accurate segmentation allows fruitful result in sub-sequent levels. Malarial parasite lies in

erythrocytes thus we need to segment the erythrocyte form the blood images.

4.4.1 Otsu's thresholding

This method was used for background and foreground segmentation; Otsu’s method
reduces image's gray level to a binary image. The algorithm assumes that the image contains
two classes of pixels following bi-modal histogram (foreground pixels and background pixels),
it then calculates the optimum threshold separating the two classes so that their combined
spread intra-class variance is minimal, or equivalently (because the sum of pairwise squared
distances is constant and shows that minimizing the intra-class variance is the same as

maximizing inter-class variance: [62]

0 = wo()w1 (O [1e(t) — pi ()] (12)
Where w, , are the probabilities of the two classes separated by a threshold t and p, , are the
mean of two classes. The green image plane was selected because it contains high contrast

RBCs version of the image. Then Appling Otsu’s method as shown in figure 16:
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Figure 17 Otsu's method: (a) the input image form morphological reconstruction, (b) after Appling Otsu's
Threshold

4.4.2 Marker controlled Watershed segmentation

Some images in this study have multiple overlapping cells, and those appear as one cell,

and that poses a problem later in classification section.

Two combination methods were used to separate cells, the first one watershed
segmentation, this algorithm considers the input image as a topographic surface (where higher
pixel values mean higher altitude) A watershed is a basin-like landform defined by highpoints

and ridgelines that descend into lower elevations and stream valleys [63].

It’s not suitable to use the algorithm directly because it results in over segmentation, is
a well-known phenomenon in watershed segmentation. Over segmentation occurs because
every regional minimum, even if tiny and insignificant, forms its own catchment region. One
solution is to modify the image to remove minima that are too shallow. So, an enhanced
watershed technique also known as marker controller watershed was used, it relies on a marker
image to simulates its flooding algorithm. The local minima of the image's pixel distance were

used as a marker.

Chessboard distance transform was applied to Otsu’s image to simulate every object in
the image as valleys, this transform also known as Chebyshev distance is a metric defined on
31



a vector space where the distance between two vectors is the greatest of their differences along
any coordinate dimension. In two dimensions, i.e. plane geometry, if the points p and g have

Cartesian coordinates (X1, y1) and (X2, y2), their Chebyshev distance is:

Dipess = max(lxz - xll» | Y2 — Y1l) (13)
The marker controller watershed algorithm is shown in figure 17:

Otsu’s Image imaage Ehessbhoard
Complegment ) Distance Transform

!

Local Minima
Transform

Out Image Watershed + | I

Figure 18 Marker controlled watershed algorithm.

(b)

Figure 19 marker controlled watershed segmentation, (a) Otsu image with some overlapping cells, (b) the result
image after separating overlapping cells
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4.4.3 Segmentation using concave points

Segmentation of overlapping objects aims to address the issue of representation of
multiple objects with partial views. Overlapping or occluded objects occur in various
applications, such as morphology analysis of molecular or cellular objects in biomedical and
industrial imagery where quantitative analysis of individual objects by their size and shape is
desired [64-66]. In many such applications, the objects can often be assumed to have

approximately elliptical shape.

The watershed transform is one of the commonly used approaches in overlapping cell
segmentation. However, methods based on the watershed transform suffer from a poor or
inadequate initialization and may experience difficulties with segmentation of highly

overlapped objects in which a strong gradient is not present.

In [67] a novel and efficient method is proposed for the segmentation of partially
overlapping RBCs with a convex shape. The RBCs are assumed to be clearly distinguishable
from the background of the image and their contours form approximately elliptical shapes. The
proposed method relies on two sequential steps of contour evidence extraction and contour
estimation. The contour evidence extraction step is further divided into two sub-steps: contour
segmentation and segment grouping. In the contour segmentation step, object contours are
divided into separate contour segments. In the segment grouping step, contour evidences are
built by joining the contour segments that belong to the same object. Once the contour evidence

IS obtained, contour estimation is performed using numerically stable direct ellipse fitting.

This method consists of two consecutive main step (Figure 19): contour evidence
extraction and contour estimation. the segmentation process starts with pre-processing to build
an image silhouette and the corresponding edge map, the edge map is constructed from output
of last watershed stage using the Canny edge detector, In the contour evidence extraction steps,
edge points that belonged to each object are grouped using concave points and properties of
fitted ellipses. Once the contour evidence has been obtained, contour estimation is carried out

to infer the missing parts of the overlapping objects.
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Figure 20 Concave Point segmentation Algorithm.

4.4.3.1 Contour Evidence Extraction
The first step is to extract the contour evidence containing the visible parts of the objects
boundaries that can be used to inference the occluded parts of overlapped objects. The contour

evidence extraction involves two separate tasks: contour segmentation and segment grouping.

4.4.3.1.1 Contour Segmentation

A partial overlap between two or more elliptic-shape objects leads to a concave shape
with concave edge points that correspond to the intersections of the object boundaries. It is a
common practice to utilize these concave points to segment the contour of overlapping objects
[67]. Different methods such as polygonal approximation, curvature, and angle have been
applied to determine the location of concave points in the image. In this work, after extracting
the image edge by canny edge detector, the concave points are obtained through the detection
of corner points followed by the concavity test [67]. The corner points are detected using the
modified curvature scale space (CSS) method based on curvature analysis [67]. The output of
the corner detector includes the points with the maximum curvature lying on both concave and
convex regions of object contours. Since being only interested in the concave points joining
the contours of overlapping objects, the detected corner points are examined if they lie on
concave regions. Let us denote a detected corner point by pi, and its two kth adjacent contour
points by p;—« and pi+k. The corner point pi is qualified as concave if the line connecting p;—« to
pi+k does not reside inside the object. The obtained concave points are used to split the contours
into contour segments. Figure 20 shows an example of concave point extraction and contour
segmentation.
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(b)

(d)

Figure 21 Contour segmentation: (a) Edge map; (b) Corner detection ; c¢) Concavity test to extract concave corners
(green circle) and removed convex corners (pink square); (d) Contour segmentation by concave points the colors are used
only for illustrative.

4.4.3.1.2 Segment Grouping

Due to the overlap between the objects and the irregularities in the object shapes,
a single object may produce multiple contour segments. Segment grouping is needed to
merge all the contour segments belonging to the same object. The basic idea behind the
proposed method for segment grouping is to find a group of contour segments that
together form an object with elliptical shape. Segment grouping in its naive form,
iterates over each pair of contour segment, examining if they can be combined. In this
work, to optimize the grouping process, a limited search space is applied and the contour
segment under grouping process is only examined with the neighboring segments. Two
segments are neighbor if the Euclidean distance between their center points is less than
the predefine threshold value. The contour segment grouping is carried out through the
process of ellipse fitting. Given a pair of contour segments, si and sj, and a function
measuring the goodness of ellipse fitting, the segment si is grouped to sj if the goodness
of ellipse fitted to the joint segments is higher compared to the goodness of ellipses
fitted to each individual contour segments separately. The goodness of fit is described
as average distance deviation (ADD) [68] which measures the discrepancy between the

fitted curve and the candidate contour points. The lower value of ADD indicates higher
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goodness of fit and, therefore the joint rule to perform segment grouping in terms of
ADD is defined as
ADDs,s; < ADDs,,

ADD,s; < ADD;, (14)

Where the definition of ADD is as follows: Given the contour segment s; consisting of
n points, S; = {pr(Xk, Vite=1, and the corresponding fitted ellipse points, S;; =

Pk (Xp o Verdk=1, ADDyg, is defined as:

n
1
ADDg, = - Z\/(xk — Xep)* t (Ve — Yrx)? (15)
k=1

Within the transformed coordinate system

[x,’c] _ [cos(Z) —Sin(D] [;C/: _xeo] (16)

Vi sin@  cos® ~Yeo

Eq. (2) can be simplified to

n
1 1
ADDg, = — [Z i+ yil-—) ] (17)
n & | Di|
where Dy is given by
x,Z yIZ
_ Tk k
Di= 5+ (19

And a, b, (Xeo, Yeo) and 0 are the ellipse parameters, the semi-major axis length, the semi-
minor axis length, the ellipse center point, and the ellipse orientation angle with respect to x

axis, respectively.

The plain ADD criterion for segment grouping often leads to undesired results if the
contour points do not strictly fit to the ellipse model. In order to address this issue, additional
rules are needed. Given a pair of contour segments to be processed for grouping, the segment

with longer length usually provides a more reliable clue to the object than the shorter one.
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Based on this assumption, a weighing scheme using the length of contour segments is added
to the grouping process where the ADD of contour segment with longer length is down-
weighted by the ratio of its length with respect to the total length of contour segments to be

grouped. Assuming the contour segment si is longer than contour segment s;, Eq. (14) is

replaced by
ADDs,ys; < w;ADDg,
ADDg,s; < ADDg; (19)
Where
l;
YT L+l (20)

and li and 1j are the lengths of contour segments s; and s;, respectively. The contour segments
in far proximity are less likely to represent a single object and should not be merged. As the
result, the two contour segments whose ellipse models are at very far distance from each other
should not grouped. Either, ellipse fitted to the combined contour segments should not be at
far distance from the ellipses fitted to each individual contour segments. Following these
conventions and being interested in grouping of close contour segments, two additional rules
are applied similarly to [10]. Let us denote the centroids of the fitted ellipse for the contour

segments s;, sj and Si¢; by ei, €j and ei, respectively. The contour segments s; and s;

should not be grouped as a single segment provided that, first, the distance from the ellipse
centroid of the combined contour segments e;j.j to the center of its members, ej and ej, is larger
than the preset threshold ti:
d(ei,eij) >ty 1)
d(ej,eij) >t
and second, the distance between their corresponding ellipse centroids is larger than the

predefined threshold t,
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d(ei,ej) > t, (22)

Where d(p;, p,) is the Euclidean distance between points p1 and p..

The value of t1 can be determined using the object properties [69] and is usually close to the
length of the minor axis of fitted ellipses to the smallest object in the image. The value of t2
should be set in such way that prevents the grouping of the contour segment belong to different
objects or as [69] proposed 2.5 to 4 times higher than the threshold t1. Figure 21 shows an
example of segment grouping.

(b) (¢)

Figure 22 Segment grouping: (a) Original binary image; (b) Contour segmentation; (c) Segment grouping (the
thin gray lines are added to illustrate the grouping of non-adjacent segments).

4.4.3.2 Contour Estimation

The last step of proposed method is the contour estimation, where, by means of the
visual information produced from the previous step, the missing parts of the object contours
are estimated. Ellipse fitting is a very common approach in overlapping object segmentation,
especially in the medical and industrial applications. The most efficient recent ellipse fitting
methods based on shape boundary points are generally addressed through the classic least
square fitting problem. In this work, the contour estimation is addressed through a stable direct
least square fitting method [70] where the partially observed objects are modeled in the form
of ellipse-shape objects. Figure 22 shows an example of contour estimation applied to contour

evidences.
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(a) (b) (c)

Figure 23 Contour estimation: (a) Original image; (b) Contour evidence extraction; (c) Contour estimation.

Figure 24 one of the test images segmented using concave point and ellipse fitting.

4.5 Feature Extraction

Recent researches on feature extraction and selection of red blood cell have shown the
importance of feature extraction phase for red blood cell analysis. Researchers have used
different features based on their target blood cells/disease. The features which give
predominant difference between normal cells and infected cells are identified as feature set.
Textural [71] and color features [72, 73] are very important in order to differentiate form other

cells and has been widely used for blood cell recognition whereas color features play important
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role in order to differentiate similar shapes and overlapped cells. a geometrical and intensity

features along with GLCM based texture features was used.

4.5.1 Geometrical features

Geometrical features remain very important for complex shape recognition and lot of
researchers used geometrical features for blood analysis. extracting geometrical features that
are invariant under different condition and analogous to those used by hematologist. These
features include nucleus area, relative area, nucleus parameter, nucleus relative parameter,
nucleus roundness and nucleus relative roundness, nucleus mean, nucleus variance, cytoplasm
area, cytoplasm parameter, cytoplasm mean, cytoplasm variance, cytoplasm ratio to nucleus
and number of object of in nucleus. for leukocyte recognition, area, compactness and form

factor feature was used.

Area(R) = Total Number of pixels(R) (23)
2/ mArea(R
compactness(R) = - (R) (24)
perimeter(R)
tor(R) = 4rtArea(R) (25)
form factor(R) = perimeter?

4.5.2 Texture Features

Due to the importance of textural feature for complex object classification, we have
extracted several texture features, i.e. co-occurrence matrix. The co-occurrence feature matrix
describes the second order probabilistic features relating to the gray level relationship in the
pixel neighborhood. GLCM s statistical measure used to characterize the image texture by
calculating how often pairs of pixel occurrence in special specified relationship. It is a
symmetric matrix constructed on the basis of image gray levels with distance and angle. The
disparate co-occurrence feature matrix is created by the divergence of angle and distance. As
different type of nucleus represents different texture, thus GLCM based texture features are
taken into account for classification. If an image M consists of N gray levels, the co-occurrence

matrix dimension is NxN. Let | be the segmented region of the leukocyte nuclei, the GLCM is

40



computed by summing all the texture information in image | including the average spatial

relationship between neighboring gray tones.

six texture features were used from co-occurrence matrix alongside statistical features
to represent mean, skewness, kurtosis, standard deviation, dissimilarity and Inverse Difference

Moment. Co-occurrence feature matrix is computed as

_ AN 1ifI(x,y)=i I(x+Ax,y+Ay) =j
Caxay (1.)) ; ; { 0 Otherwise (26)
Dissimilarity
1N |b
3 ; B W (27)
Inverse Difference Moment
G-1G-1
IDM = P(z’, 7) (28)
iz =0 1+ ( 3_7)
Mean
MI(k, 1}—N— D Y [u(m-k,n-1)] (29)
mne K
Skewness
MS(k,) = —— 3 3 [u(m—k,n-1)= MI(k, bl (30)
NR mne R
Kurtosis
1
Mé(k,)=— > > [u(m-k,n-1)-Mi(k,D)] (31)
NR mne R 4

Standard deviation
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mne R 2

1
M) Jﬁ > Y [u(m=k,n=1)=Mi(k,1)] (32)

4.6 Classification of infected cells

Conventional approaches of pattern classification involve clustering training samples
and associating clusters to given categories. The complexity and limitations of previous
mechanisms are largely due to the lacking of an effective way of defining the boundaries
among clusters. This problem becomes more intractable when the number of features used for

classification increases [74].

The neuro-fuzzy approach is better than neural network classifiers in the sense that prior
knowledge about the training data set can be encoded into the parameters of the neuro-fuzzy
classifier. This encoded knowledge, usually acquired from human experts or data visualization
techniques, can almost always allow the learning process to begin from a good initial point not
far away from the optimal one in the parameter space, thus speeding up the convergence to the
optimal or a near-optimal point. Moreover, the parameters obtained after the learning process

can be easily transformed into structure knowledge in the form of fuzzy if-then rules [74].

Generally, ANFIS is used as classifier. ANFIS is a function approximator program. But,
the usage of ANFIS for classifications is unfavorable. For example, there are three classes, and
labeled as 1, 2 and 3. The ANFIS outputs are not integer. For that reason, the ANFIS outputs
are rounded, and determined the class labels. But, sometimes, ANFIS can give 0 or 4 class
labels. These situations are not accepted. As a result, ANFIS is not suitable for classification

problems.

By using the k-means algorithm to initialize the fuzzy rules. For that reason, a number
of two clusters were chosen (infected and non-infected). Also, Gaussian membership function
is only used for fuzzy set descriptions, because of its simple derivative expressions the
differences are about the rule weights and parameter optimization. The rule weights are adapted
by the number of rule samples. The scaled conjugate gradient (SCG) algorithm is used to

determine the optimum values of nonlinear parameters. The SCG is faster than the steepest
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descent and some second order derivative based methods, then Linguistic hedges are applied
to the fuzzy sets of rules, and are adapted by SCG algorithm. By this way, some distinctive
features are emphasized by power values, and some irrelevant features are damped with power
values. The power effects in any feature are generally different for different classes. The using

of linguistic hedges increases the recognition rates [75].

The database used for training were acquired from the central Disease control CDC

which include 145 malaria image.

After segmentation process, every segmented cell was treated individually, resulting in

2259 training cells.

The training and testing recognition rates were 96.33% and 96.31%.

Feature
Extraction

S W (SN S S S S S — —— ‘
! I
| Geometrical |
| Features I

Segmented : I

Cells | ANFIS
—l ﬁ .

| I Classifier
| Texture |
I Features |
' |
. _

Figure 25 Feature Extraction and Classification workflow
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Results and discussions
5.1 Results

After training ANFIS classifier, it shows 96.33% and 96.31% recognition rates for both
training and testing. Figure 25 address the classifier performance with 1500 iteration.
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Figure 26 ANFIS classifier Performance

The main Classification function is AMCC in matlab which accepts three inputs: first

is the blood smear image (colored), second is the minimum cell radius, third is the maximum

cell radius. This limits ellipse estimation result to RBCs size range. Finally, the results of

classification are: first statistical Result, which gives the total count of RBCs, normal RBCs

count and infected RBCs count. Second, an image which labels infected RBCs with Red color
and normal RBCs in green color which is shown in Figure 27.
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total colls count:34, normal: 28, malarial parasite: 6
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Figure 27 Automatic malaria classification function and its input and output (Green normal, red infected malaria
cells).

Figure 28 shows the graphical user interface which implements AMCC function to a
user-friendly environment which enables the technician to choose a stored blood image, shows
its size and color type information, selecting RBCs size range. finally, analyze the image to
classify RBCs and gives statistical result in the bottom of the window labeled as count, blood
image diagnosis as positive or negative and last labeling input image with green color for

normal RBCs and red color for infected RBCs with malaria cells.
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Figure 28 graphical user interface program.

A number of 27 infected test images acquired from Khartoum laboratory administration,
Table 2 shows manual (reference) cells count, number of infected cell and normal cells and

compare it with the proposed method results.
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Table 2 Comparison between manual and automated method

Manual Reference Automatic Method
Images total number  normal malaria | total number of normal  malaria
number of cell cells cells cell cells cells
1 30 24 6 29 21 8
2 18 17 1 18 17 1
3 51 44 7 52 45 7
4 47 38 8 37 29 8
5 18 16 2 18 16 2
6 34 28 6 34 28 6
7 30 28 2 30 28 2
8 25 17 8 25 21 4
9 29 24 5 30 25 5
10 35 32 3 35 32 3
11 17 15 2 17 16 1
12 17 15 2 20 18 2
13 14 13 1 15 14 1
14 7 4 3 7 4 3
15 13 12 1 13 12 1
16 36 35 1 36 34 2
17 15 14 1 16 14 2
18 18 16 2 16 14 2
19 39 37 2 34 30 4
20 13 12 1 14 13 1
21 48 46 2 48 46 2
22 21 17 4 24 20 4
23 14 13 1 16 15 1
24 15 12 3 17 15 2
25 63 60 3 59 56 3
26 19 17 2 19 17 2
27 13 11 2 13 11 2

Table 3 Detection error analysis

Result Type Mean error | Stander deviation Error Range
Total cells mean 1.3703 2.203985 +-10
Detection Error
Normal cells mean error 1.7037 2.267068843 +-7
Infected cells mean error 0.445 0.933699562 +-4
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The 27 images have a total of 699 cell, 617 are normal and 81 are infected. The system detects

a total of 692 cells, 611 are normal and 81 are infected with malaria.

Mean rate of 98.9% total rate of detection, 99% detection rate of normal cells and 100%

detection rate for infected cells.

5.2 Discussions

The results indicate that image analysis may be used for the automatic classification of
infected blood cells from patients with malaria cell anemia the pattern classes of normal and
other infected. Most of the previous methods which were being used for Malaria classification
are time consuming and expensive. Pathologist's skill has an important role in the results
accuracy. respect to all of these facts, the several excluded results would have no coordination
with each other. May be for a same sample, two pathologists give different opinion on
diagnosis. In the proposed method cells, unique features are used for diagnosis, morphological
(shape based features) and textural features which allow to get quantitative results. This is so
useful for the pathologists to authorizes him/her to decide in many aspects. But in many works
these values were comparative and were not available for pathologist because they were not
real and numeral data. Finally, this method provides us with fast, quantitative results which are

not as expensive as the previous ones.
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Conclusion & recommendations

6.1 Conclusion

There are different methods for malaria parasite detection. The proposed automated
algorithm has many advantages compared to other diagnostic techniques. It avoids the
problems associated with rapid methods, such as being species-specific and having high per-
test costs, while retaining many of the traditional advantages of microscopy, example. species

differentiation.

This Thesis addresses the classification of malaria diseases using image processing.
Although, malaria cell segmentation and morphological analysis is a challenging problem due
to both the complex cell nature uncertainty in microscopic videos. by effectively analyzing
various parameter of blood cell image using GLCM matrix as Texture features and Geometrical
feature. The experimental results indicate that the proposed approach is a valuable approach,
which can be significantly support an accurate identification of malaria diseases in a little
computational effort. There can be mistake in counting manually the number of RBC & WBC
(process of Giemsa) as the boundaries are not clearly defined or visible which lead us to the
error in wrong decision. So, to solve this problem the developed algorithm can be more helpful
for other techniques. As this system, can meet the real-time application requirements, so a

standalone working version of this system can be developed.

6.2 Recommendations

The performance of the system can be increased by creating new set of feature which can
be well optimized with classifier and which gives best, also training ANFIS classifier using
newly developed particle swarm optimization (PSO) algorithm should increase system's
detection rate significantly to obtain better results. finally developing new technique instead of

ellipse fitting method to trace and simulate overlapped cells boundaries.
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Appendix A
A.1 Matlab Codes:

A.1.1 Main function

function [ out, totCells,normCells, infecCells] = AMCC( inImage, opt )

%AMCC a function written by hosam hatim osman to classify and detect malarial

Yoparasite
% load the method parameters
If nargin <2
opt.show = 1;
opt.minCellRadius = 220;
opt.maxCellRadius = 7000;
end
load engine2
param = readparam();
out.decision = 'normal’;
cellsEllipse = mia_particles_segmentation(inlmage,param);
% showEllipse(inimage,cellsEllipse);
selcCellsEllipse = cellThresh(cellsEllipse,opt.minCellRadius,opt.maxCellRadius);
[features,out.outCellsEllipse] = calcCellFeatures(inlmage,selcCellsEllipse);
out.label = evalfis(features(:,engine2.featureldx),engine2.fis)’;

out.label(out.label > 1.5) = 2;
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out.label(out.label < 1.5) = 1;
totCells = length(out.label);
normCells = length(out.label(out.label == 1));
infecCells = length(out.label(out.label == 2));
if ~isempty(out.label == 2)
out.decision = "infected’,
end
if opt.show ==
showResult(inimage,out.outCellsEllipse,out.label);
end

end

function [feature,outCellsEllipse] = calcCellFeatures(img, cellsEllipse)
if size(img , 3) ==
img =img(:,:,2);
end
% i1 = rescale(morphRecon(img));
% 0_pso = segmentation(il,2,'pso");
% o_pso_bw = imfill(~im2bw(o_pso,graythresh(o_pso)),'holes";

0_pso_bw = imfill(~im2bw(img,graythresh(img)),'holes");
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sz = size(img);
cnt=0;
outCellsEllipse = {};
for i = 1:length(cellsEllipse)
x = cellsEllipse{i}(:,1); y = cellsEllipse{i}(:,2);
BW =0 _pso_bw & imdilate(poly2mask(x,y,sz(1),sz(2)),strel('disk',5));
If ~isempty(find(BW, 1))
cnt=cnt+1;
outCellsEllipse{cnt} = cellsEllipse{i};
feature(cnt,:) = ftrCalc(img,BW)';
end
end

end

function showResult( inimage ,CellsEllipse, label)
imshow(inlmage); hold on
parasiteldx = find(label == 2);
normalldx = find(label == 1);
If ~isempty(CellsEllipse)
If ~isempty(parasiteldx)

for iter=1:length(parasiteldx)
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plot(CellsEllipse{parasiteldx(iter) }(:,1),CellsEllipse{parasiteldx(iter) }(:,2),
‘color’,[0.8 0.5 0.5],'LineWidth', 2);

end
end
if ~isempty(normalldx)
for iter=1:length(normalldx)

plot(CellsEllipse{normalldx(iter)}(:,1),CellsEllipse{normalldx(iter)}(:,2),
‘color',[0.5 0.8 0.5],'LineWidth', 2);

end
end
end

title(['total ~ cells  count:'  num2str(length(CellsEllipse)) ',  normal:

num2str(length(normalldx)) ', malarial parasite: ' num2str(length(parasiteldx))]);

end

function showEllipse( inimage ,CellsEllipse)
imshow(inlmage); hold on
if ~isempty(CellsEllipse)
for iter=1:length(CellsEllipse)

plot(CellsEllipse{iter}(:,1),CellsEllipse{iter}(:,2), ‘color',[0.5 0.8
0.5],'LineWidth', 2);

end
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end
end
A.1.2 morphological processing function
function [ out ] = morphRecon( img, strelSize)
%MORPHRECON Summary of this function goes here
% Detailed explanation goes here

If nargin <2

strelSize = 2;

end

se = strel('disk’, strelSize);

le = imerode(img, se);

lobr = imreconstruct(le, img);

lobrd = imdilate(lobr, se);

out = imreconstruct(imcomplement(lobrd), imcomplement(lobr));

out = imcomplement(out);

end

A.1.3 Marker controlled watershed function

function out = mwss(img)
img = morphRecon(img);

bw = ~im2bw(img(:,:,2),graythresh(img(:,:,2)));
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bw = imfill(bw,'holes");

%%

D = -bwdist(~bw,'chessboard’);

mask = imextendedmin(D,2);

D2 = imimposemin(D,mask);

Ld2 = watershed(D2);

out = bw;

out(Ld2 ==0) =0;
end
A.1.4 Concave points segmentation function
function stats = mia_particles_segmentation(l,param)
% mia_particles_segmentation performs segmentation by using the concave points.
% Synopsis
%  stats = mia_segmentation_concave(l,k,thd1,thd2,thdn)

% Description

% Returns segmentation result (objects boundaries) of overlapping nanoparticles
% by using concave points and ellipse fitting propeties.

% Inputs

% -1 grayscale or binary Image

% -k kth adjucnet points to the corner point

% -thdl  Euclidean distance between ellipse centroid of the

59



%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

combined contour segments and ellipse fitted to each segment
- thd2 Euclidean distance between between the centroids of ellipse
fitted to each segment.
-thdn  Euclidean distance between contour center points
to define neighbouring segments
- visl visualize the contoure evidence extraction step

- Vis2 visualize the contoure estimation step

Outputs

- stats  cell array contating the objects boundaries

Authors

Sahar Zafari <sahar.zafari(at)lut(dot)fi>

Changes

14/01/2016 First Edition

% load the parameters
k = param(2);
thdl = param(2);

thd2 = param(3);
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thdn = param(4);
visl = param(5);
vis2 = param(6);
% Image Binarization by otsu's method
% | =morphRecon(l);
% level = graythresh(l);
% imgbw = ~im2bw(l,level);
imgbw = mwss(l);
imgbw = fillBorderObjects(imgbw);
% Contour Evidence Extraction
%  fprintf('Performs Contour Evidence Extraction.....\n")
contourevidence = mia_cmpcontourevidence(imgbw,k,thd1,thd2,thdn,visl);
% Contour Estimation
%  fprintf(‘Performs Contour Estimation.....\n")
stats = mia_estimatecontour_Isf(l,contourevidence,vis2);
end
function out_bw = fillBorderObjects(in_bw)
bw_a = padarray(in_bw,[1 1],1,'pre");
bw_a_filled = imfill(bw_a,'holes’);
bw_a_filled =bw_a_filled(2:end,2:end);

bw_b = padarray(padarray(in_bw,[1 0],1,'pre"),[0 1],1,'post");
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bw_b_filled = imfill(bw_b,'holes");

bw_b_filled = bw_b_filled(2:end,1:end-1);

bw_c = padarray(in_bw,[1 1],1,'post);

bw_c_filled = imfill(bw_c,'holes’);

bw_c_filled = bw_c_filled(1:end-1,1:end-1);

bw_d = padarray(padarray(in_bw,[1 0],1,'post’),[0 1],1,'pre");
bw_d_filled = imfill(bw_d,'holes");

bw_d_filled = bw_d_filled(1:end-1,2:end);

out_bw =bw_a filled | bw_b_filled | bw_c_filled | bw_d_filled;

end
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B.1 Table of Equation

Appendix B

TP
Sensitivit Sensitivity = ————
y ensitivity TP T FN
Specificity S i ficity = N
pecificity = TN+ FP
Positive predictive
PPV = —
value TP + FP
Negative predictive
NPV = ———
value TN + FN
ANFIS node 1
. Qi = ud;i(X)
function
Gaussian 1(X - Ci)z}
Ai(X) =expy—————
membership function uA(X) p{ 2 o}

Node
interconnecting

signal multiplication

w; = pd;(Xy) X uB;(X;),i =12

of the i-th rule’s
firing strength

w;

W ———
t wy +w,

adaptive node

WL_ fl = Wl-_(ml-Xl + niXZ + qi)!i = 1,2

weighted average of

all incoming signals




the overall output (f) | f

of the learning

Wy w,
———fit ——
wy + w, wy + w,

fo=wi i+ w; fy

= (W1_X1)m1 + (W1_X2)n1 + (W1_)CI1 + (Wz_Xz)mz

coordinates

process _ _
+ (W X)n, + (w3)q,
variance o = wo(D)wy (O)[1e() — w ()]
Chebyshev
. Dipess = max(lxz — x4/, 1 Y2 — y1l)
distance
ADDSiUSj < ADDg,,
segment
_ ADDg. 5. < ADDs.
grouping i J
. . n
Fitting ellipse 1 5 5
ADDg, = — Z\/(xk — Xr)*+ Uk — Yrx)
of segment group n&d
fitting ellipse
x| _ [cos® —sin®][Xk Xeo
transform [y,’(] B [sin(b cos® ] [J’k _yeo]

Simplified

version of ADDs;

contour longer than

segment it self

x,Z :yl2

D 2 _ Tk Tk

‘ D a? b2
ADD with ADDs,s; < w;ADDg,

ADDg,5, < ADD,

Wi
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Distance

between Ellipse
centroid and the first
threshold

d(ei, eij) > t1

d(ej, eij) > t1

Distance
between Ellipse
centroid and the

second threshold

d(ei, e]) > tz

Area of cell Area(R) = Total Number of pixels(R)
2/ mArea(R
compactness compactness(R) = . (R)
perimeter(R)
4nArea(R)
Form factor form factor(R) = ————
perimeter
n m
GLCM co- C if) =zz if I(x,y) =1 I(x+Ax,y+Ay) =j
occurrence matrix Axhy ==} Otherwise
1 N bz w;
Dissimilarit 5 = T
y 2 ; B W
Inverse G-lG-! 1
IDM P(i,7)
. 2
difference moment

Mean

MI(k, 1}_N— > > [u(m=-k,n=1)]

mne K

Skewness

M5(k, l]-ﬁ > Y [u(m-k,n-1)-MI(k, 1]]

mne K

65




1

kurtosis Mé(k,I) = — Z Z[u{m— k,n—1)—=MI(k,1)]
NR mne Rk 4
Standard )
deviation M3(D) _ NR &, Zluam—k.n=D-Mik.D]
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