DEDICATION

We dedicate this research with much love and appreciation;

To my family. Words cannot express how grateful am I to my mother and my father and my brother Mohyeldeen and my sister Ebtesam for all of the sacrifices that you've made on my behalf. Your prayer for me was what sustained me this far.

A special Dedication, I would like to extend my warm appreciation to my fiancée Mihad Faisal and her mother DR. Hanan Mohammed for their encouragement and support; they have strongly motivated me throughout the years that keep me moving forward.

ACKNOWLEDGEMENT

First and foremost I wish to express my profound gratitude to the Almighty Allah for sparing my life, seeing me through the program and for his bless and help throughout my life.

Then I would like to express my gratitude to my supervisor DR. Saifeldeen Abd Almajeed Mahmood who was generous with his Precious time to offer a professional advices and guidance. And because he was also happy and willing to help me solve the confusions and direct me approach to the final result of the thesis.

Special thanks to **Engineer. Abubakr Rahmtalla Abdalla Mohamed** for provided me by enough informations and who also willing to help me.

ABSTRACT

Everything in the modern human life has undergone rapid development. This development is supported by the advance of electronics and information technology.

This research develops a wireless flow monitoring system for Nile River by using the concept of the ultrasonic waves. The proposed system automatically sense the water level and then send these level values to the control room through a wireless radio frequency subsystem.

An electronic circuit has been designed and then constructed to build this system. The wireless subsystem consists of two modules, transmitter and receiver. The Transmitter module detects a collection of water levels and transmits these data to the receiver module as a database collection. The Receiver module then displays the data on a LCD monitor. Besides, a set of display LEDs has been built to display the received data level status as a scale (safe, medium critical and risky). The data level decision done depending on old database measurements. If the water level changes rapidly this considered as a dangerous, and the system will activate a buzzer to generate sound alarm.

When testing the circuit for detecting the water levels in sending and receiving the data, the results are accurate and reliable. These results encourage us to use the application to avoid the flood disaster.

المستخلص

كل شي في حياة الانسان الحديثة يخضع لتطور سريع, هذا التطور مدعوم بتقدم في الالكترونيات وتقنية المعلومات.

هذا البحث يصمم نظام مراقبة لمستوي الماء لاسلكيا باستخدام مفهوم الموجات الفوق الصوتية. النظام المقترح يتحسس أليا مستوي الماء ويقوم بارسال قيم هذا المستوي الي غرفة تحكم خلال نظام فرعي بتردد الراديو اللاسلكي. الدائرة الالكترونية صممت ومن ثم ركبت لبناء هذا النظام.

النظام الفرعي اللاسلكي يتألف من نموذجين, الارسال والاستقبال. نموذج الارسال يكتشف مجموعة من مستويات الماء وارسال هذه البيانات الي نموذج الاستقبال كقاعدة بيانات مجمعه. نموذج الاستقبال يقوم بعرض البيانات في شاشة مراقبة. بجانب, مجموعة من الثنائيات لعرض حالات مستوي البيانات المستقبلة كمقياس (آمن, وسط حرج, خطر). اتخاذ قرار في مستوي البيانات يعتمد علي قياسات قاعدة البيانات القديمة. اذا تغير مستوي الماء سريعا هذا يعتبر خطورة, والنظام سوف ينشط الجرس لتوليد انذار صوتي. عند اختبار الدائرة لاكتشاف مستويات الماء في ارسال واستقبال البيانات كانت النتائج اكثر دقة واعتمادية, هذه النتائج شجعتنا لاستخدام التطبيق لتجنب كوارث الفيضان.

Table of Contents

Title	Page No
DEDICATION	i
Acknowledgement	ii
Abstract	iii
List of Figures	vi
List of Tables	vii
List of Abbreviations	viii
Chapter One: Introduction	
1.1 Introduction	1
1.2 Problem Statement	2
1.3 Proposed Solution	2
1.4 Objectives	2
1.5 Methodology	3
1.6 Thesis Organization	3
1.7 Summary	4
Chapter Two: Literature review	
2.1 Introduction	5
2.2 Background	5
2.3 Previous Works	7
2.4 Summary	9

Chapter Three: System and Components

3.1 Introduction	10
3.2 Component description	10
3.2.1 Background of ultrasonic distance measurement	11
3.2.1.1 The HC-SR04 Ultrasonic Sensor	12
3.2.1.2 HC - SR04 Features	12
3.2.1.3 HC - SR04 Timing Diagram	14
3.2.2Arduino Uno	15
3.2.2.1 Pin Descriptions	16
3.2.2.2 Arduino Advantages	17
3.2.2.3 Arduino Disadvantages	18
3.2.3 RF Modules	18
3.2.3.1 HT12E Encoder	20
3.2.3.2 HT12D Decoder	20
3.2.4 Liquid Crystal Display	22
3.2.5 Light Emitting Diode	22
3.2.6 Buzzer	23
3.3 Software Used	24
3.3.1 Arduino (IDE)	25
3.4 Summary	26

Chapter Four: Hardware Design and its associated Software		
4.1 Introduction	27	
4.2 The whole Hardware Design and Implementation	27	
4.2.1 circuit follow up	29	
4.3 The system flowchart	32	
4.3 Summary	34	
Chapter Five: Results and Discussion		
5.1 Introduction	35	
5.2 The System Integration	35	
5.3 The System results and discussion	36	
5.4 Summary	41	
Chapter Six: Conclusion and Recommendations		
6.1 Conclusion	42	
6.2 Recommendations	43	
References	44	
Appendixes	45	

List of Figures

Figures	Figures Name	Page
No.		No.
2.1		1.1
3.1	The time between the transmission sound waves and the detection of the echo	11
3.2	HC-SR04 ultrasonic sensor	13
3.2	TIC-SIXO4 didasonic schsor	13
3.3	HC-SR04 Timing diagram	15
3.4	Pin diagram of Arduino Uno	16
3.5	Pin diagram of RF modules (a) Tx (b) Rx	19
3.6	Pin diagram of HT12E Encoder	20
3.7	Pin diagram of HT12d Decoder	21
3.8	Block diagram of LCD (16*2)	22
3.9	LED	23
3.10	The Buzzer	24
3.11	The software development flowchart	28
4.1	Block diagram of the system	30
4.2	Schematic circuit diagram of the system	31
	(transmitter module)	
4.3	Schematic circuit diagram of the system (receiver module)	33
4.4	the system flowchart	35
5.1	Transmitter module prototype	36

5.2	Receiver module prototype	36
5.3	Case 1: the water at the safe level	37
5.4	Case 2: the water at the medium level	38
5.5	Case 3: the water at the risky level	39

List of Tables

Table No.	Table Name	Page No.
3.1	Electrical parameters of HC-SR04 Ultrasonic Sensor	14
5.1	Comparison between values measured by HC-SR04 ultrasonic sensor and reference values by ruler	40

List of Abbreviations

U.S United State

RAM Random Access Memory

ROM Read Only Memory

EEPROM Electrical Erase Programmable Read Only Memory

PWM Pulse Width Modulation

ASK Amplitude shift keying

VREF Reference Voltage

IDE Integrated Development Environment

IC Integration Circuit

TTL Transistor-Transistor Logic

PCB Printed Circuit Board

LCD Liquid Crystal Display

LED Light Emitting Diodes