بسم الله الرحمن الرحيم

وَالْعَصْرِ 1) إِنَّ الْإِنْسَانَ لَفِي خُسْرٍ (2) إِلَّا الَّذِينَ آَمَنُوا وَعَمِلُوا الصَّالِحَاتِ وَنَوَاصَوْل بِالْحَقِّ وَنَوَاصَوْل بِالصَّبْرِ (3) صدق الله العظيم

Acknowledgment

This work has been carried out at the Sudan University of Sciences and Technology.

First, I would like to tank my wife AzzaAlmhady for the long support in my dreams and for understanding and handling long lone periods while I was working to finish this phase of our life.

I would like also to tank my supervisors Dr. Jiddany Osman and Dr.AbduAlaziz, for supervision, guidance, helpful discussions and valuable time

In addition, I would like to thank the staff and management at the Sudanese Transmission Lines. co, and Ministry of Electricity and Dams, for general assistance in different ways.

Last, but not least, I would like to thank all my friends and family. You have contributed to this thesis more than you can imagine...

Abstract

The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large – scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Third, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large- scale wind power are illustrated with one case.

In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. The wind speed model to the wind farm includes the spatial coherence between different wind turbines in some type of scale. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well.

The case presented here illustrates the influences of the wind power on the power system quality stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates of voltage stability and on the power system oscillations.

From the case studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed.

Concerning the stability analysis, the study cases showed that large-scale wind power modifies the voltage stability of the power system and can cause power oscillations. It is showed here that the reactive power from the wind farms is the key factor on the voltage stability problem. During continuous operation, the distributed wind power variations did not give any problems to the power system stability concerning the power oscillations.

مستخلص

في بداية هذا البحث تم استعراض أساسيات انسياب طاقة الرياح على أنظمة القدرة من حيث الاستقرارية والجودة. ولقد تم تطبيق هذه الأساسيات على وحدات صغيرة ثم أخرى كبيرة لمعرفة حجم المشاكل والمعوقات التي تواجهه هذه القدرة لإدخالها في شبكات القدرة. لإكمال هذه الدراسة كان لزاماً ان يتم تشكيل نموذج لمولد طاقة الرياح وذلك للمساعده على تمثيل هذ المولد داخل الشبكة المستهدفة.

ولقد تم ايضا تجهيز النموذج وادخاله على الشبكة تمت دراسة الجهد والترد والقدرة الفعالة والقدرة غير الفعالة، وعموماً تم استبعاد تحليل التردد وذلك لتطابقه تماماً مع المنحنى المنتج بواسطة الجهد لذا ينطبق تحليل الجهد والتردد.

أخيراً تم في هذا البحث كيفية اجراء المعالجات لمشاكل ادخال وحدات التوليد بواسطة طاقة الرياح، لشبكة القدرة الرئيسية، وذلك عبر اختيار نوعية المولد والموقع مع استخدام التقانات الحديثة في توجيه مراوح المولدات بحيث تعطي أكبر استقرارية في التوليد.

وفي الخلاصة تم تحليل منتجات البحث في حالة الاستقرار وحالة الأعطال ،ولقد تم اخراج بعض التوصيات.

Table of content

Content	Page
الاية	I
Acknowledgment	II
Abstract	III
المؤجز	IV
Table of content	V
List of Figures	VII
List of Tables	VIII
Chapter One	1
Introduction	
1-1 Background	1
1-2 Problems	2
1-3 Objectives	3
1-4 Methodology	3
1-5 Thesis outline	4
Chapter Two	5
Modeling of wind turbine	
2-1 Wind power basics	5
2-2 The aerostatic system components	7
2-2-1 Aerodynamic rotor	7
2-2-2 Drive Train	7
2-3 The electrical system components	9
2-3-1 Electrical generator	9
2.3.2 Polar notation	11
2-4 Mechanical dynamics	12
2-5 Dynamic wind turbine model remarks	13
2-6 Current wind turbine types	14
2-6-1 Fixed speed induction generator	14
2-6-2 Double fed induction generator	14
2-6-3 Full converter synchronous generator	15
2-7 Stand-alone system	16
Chapter Three	17
Wind Power Integration	
3-1 Introduction	17
3-2 Small-scale integration of wind power	17
3-2-1 Steady state operation	19
3-2-2 Dynamic operation	21
3-3 Large-scale integration of wind power	25
3-3-1 Voltage stability problem	28

3-3-1-1 Analysis of voltage stability			
3-3-2 Frequency control problem	33		
3-3-2-1 Analysis of power system oscillation	34		
3-4 Remark on wind energy integration	37		
Chapter Four	39		
Case Studies and Discussions			
4-1 Case studies	39		
4-2 Voltage stability in modern power system	39		
4-2-1 Power system characteristics	39		
4-2-2 Wind power presentation	41		
4-2-3 Wind power impacts on the voltage stability	42		
4-3 Case study2, voltage stability and quality in a Sudanese power system	43		
4-3-1 Power system characteristics	43		
4-3-2 Wind power representation	44		
4-3-3 Wind power impact on the voltage stability	45		
4-4 Case analysis remarks	48		
Chapter Five	51		
Conclusion and Recommendation			
5-1 Conclusion	50		
5-2 Recommendation	51		
6- References list	52		

List of figures

Figure	Name	Page No
No		
2-1	Basic component of wind turbine	5
2-2	Interaction between each component of wind turbine unity	6
2-3	Dynamic representation of drive train model	8
3-1	Electrical component of a conventional wind farm	18
3-2	Single line equivalent for a wind turbine connection	21
3-3	Voltage fluctuations corresponding to flick emission unity	22
3-4	Measured power spectra of the electrical power from a 225KW pitch regulated wind turbine	23
3-5	Basic power system structure	26
3-6	Single line equivalent of power system	27
3-7	Simplified transmission line equivalent diagram	29
3-8	Power transfer to a node as function of the voltage(Nose Curve)	31
4-1	Single line diagram for wind farm connected to a grid at 33KV	40
4-2	Voltage behavior during and after fault	42
4-3	Active and reactive power response of stability	45
4-4	Wind power influences on the voltage to different wind speed	46

List of tables

Table No	Name	Page No
2-1	Household appliances details	16
2-2	Output of wind turbine	16
3-1	The main steady state parameters to wind turbine certified to power quality	20
3-2	The main integration problem	36
4-1	Basic characteristics of the 5MW wind turbine	47