بسم الله الرحمن الرحيم

الايــــة

اقْرَأْ بِاسْمِ رَبِّكَ الَّذِي خَلَقَ (1) خَلَقَ الْإِنسَانَ مِنْ عَلَقٍ (2) اقْرَأْ وَرَبُّكَ اقْرَأْ وَرَبُّكَ الْأَكْرَمُ (3) الَّذِي عَلَّمَ بِالْقَلَمِ (4) عَلَّمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ (5)

صدق الله العظيم سورة العلق

Dedication

To my parents,

Whom they sacrificed their own welfare for me

Acknowledgment

I wish to express my profound gratitude to my supervisor Dr. Ala Eldin Awouda, for his valuable guidance, continuous encouragement, worthwhile suggestions and constructive ideas throughout this research his support, pragmatic analysis and understanding made this study a success and knowledgeable experience for me.

Abstract

The development of high performance motor drives is very important in industrial as well as other purpose applications such as electric trains and robotics. Generally, a high-performance motor drive system must have good dynamic speed command tracking and load regulating response to perform task.

In this project present an implementation of self-tuned Fuzzy-PID controller for speed control of DC motor based Mat lab/Simulink. The algorithms of Fuzzy-PID controller and conventional PID controller are implemented using PID and Fuzzy logic simulation toolkit of the Mat lab.

The simulation results demonstrate that the designed self-tuned Fuzzy-PID controller realize a perfect speed tracking with lesser over shoot and settling time, minimum steady state error and give better performance compared too conventional PID controller and Fuzzy controller.

المستخلص

تطوير قيادة محرك عالي الاداء في غاية الاهمية في الصناعة، فضلا عن غير ها من التطبيقات مثل القطارات الكهربائية والروبوتات.

عموما نظام قيادة محرك عالي الاداء يجب ان يكون متتبع جيد للسرعة الديناميكية وجيد لاستجابة تنظيم الحمل لاداء المهمة في هذا المشروع تم تقديم وتطبيق متحكم غامض- تناسبي تكاملي تفاضلي ذاتي التنغيم للتحكم في سرعة محرك التيار المستمر بناءا علي محاكاة / ماتلاب . الخوارزميات لمتحكم غامض- تناسبي تكاملي تفاضلي ومتحكم تناسبي تكاملي تفاضلي تقليدي تم تطبيقها باستخدام متحكم تناسبي تكاملي تفاضلي ومتحكم المنطق الغامض بأدوات المحاكاة في ماتلاب .

وتبين نتائج المحاكاة أن تصميم متحكم غامض- تناسبي تكاملي تفاضلي ذاتي التنغيم تحقق أفضل تتبع للسرعة مع ادني تجاوز للحد المطلوب وتقليل حالة استقرار الخطاء وتعطي افضل أداء مقارنة بمتحكم تناسبي تكاملي تفاضلي التقليدي ومتحكم المنطق الغامض .

List of Contents

Subject	NO.
الاية	I
Dedication.	
Acknowledgment.	
Abstract.	IV
المستخلص	V
List of Contents	VI
List of Figure	VIII
List of Tables	X
List of Abbreviations	XI
Chapter One	
Introduction	
1.1 Background.	1
1.2 Problem Statement.	2
1.3 Proposed Solution.	2
1.4 Objectives.	2
1.5 Methodology.	2
1.6 Research Layout.	3
Chapter Two	
Literature Review	4
2.1 Overview.	
2.2 Conventional Control System.	
2.3 Performance Specifications.	
2.4 PID Controller.	
2.4.1 PID Structure.	
2.4.1.i Proportional Term.	
2.4.1.ii Integral Term.	9
2.4.1.iii Derivative Term.	10
2.4.2 Parallel PID Controller.	10
2.4.3 Series PID Controller.	
2.4.4 Tuning PID Controller.	12 12
2.4.4.i Manual Tuning.	
2.4.4.ii Ziegler -Nichols Method.	13
2.4.4.iii PID Tuning Software.	
2.5 Fuzzy Logic.	
2.5.1 Fuzzy Sets.	
2.5.2 Membership Function.	

2.5.3 Linguistic Variables.	
2.5.4 Operation on Fuzzy Sets.	
2.5.5 Fuzzy Rules.	
2.5.6 Fuzzy Inference.	
2.5.6.i Mamdani Inference.	
2.5.6.ii Sugeno Inference.	
2.6 DC Motor.	
2.6.1 Electrical Characteristics.	26
2.6.2 Mechanical Characteristics.	28
2.6.3 State Space Representation.	29
2.6.4 Transfer Function Block Diagram.	30
2.7 Literature Review	33
Chapter Three	
Methodology	
3.1 Simulink Model of DC Motor.	
3.2 PID Controller Design.	
3.3 Fuzzy Logic Controller Design.	
3.4 Fuzzy-PID Controller Design.	
Chapter Four	
Results & discussions	
4.1 Results and Discussion.	49
Chapter Five	
Conclusion & Recommendation	
5.1 Conclusion.	54
5.2 Recommendation.	55
References	
Appendix	

List of Figures

Figure	Title	Page
2.1	Basic Control System	5
2.2	Structure of PID Controller	8
2.3	PID Controller in Parallel	11
2.4	PID Controller in Series	11
2.5	Representation of Crisp and Fuzzy Subset	16
2.6	Different Types of Membership Functions	17
2.7	Operations on Classical Sets	18
2.8	Operations on Fuzzy Sets	20
2.9	DC Motor Parts	26
2.10	Electrical Representation of DC Motor	27
2.11	Block Diagram Representation of Equations	31
2.12	Block Diagram of the DC Motor Model	32
2.13	Overall Transfer Function for the DC Motor	32
3.1	Simulink Model of DC Motor	35
3.2	Simulink Model of System Using PID Controller	36
3.3	Process of Fuzzy Logic Controller	36
3.4	Simulink Model of System Using Fuzzy Logic	37
	Controller	
3.5	Membership Functions for Error Input.	38
3.6	Membership Functions for Change of Error Input	38
3.7	Membership Function for Output	38
3.8	Fuzzy IF-Then Rules.	39
3.9	Input and Output Relation for Fuzzy Controller.	40
3.10	The Structure of Self-Tuning Fuzzy PID Controller	40
3.11	the degree of membership of speed control error (e).	42
3.12	the degree of membership of change speed error	43
	(ce).	
3.13	the degree of membership of change kp (kp).	43
3.14	the degree of membership of change ki (ki).	43
3.15	the degree of membership of change kd (kd).	44
3.16	Fuzzy IF-Then Rules.	45
3.17	Relation Between Inputs and Outputs	46

3.18	Simulink model for Fuzzy-PID self-tuning controller	47
3.19	simulation block of Fuzzy PID Self-Tuning	47
3.20	simulation block of fuzzy PID self-tuning.	48
4.1	Step response of the system with PID	49
4.2	Error of the closed loop system using PID	50
4.3	Step response of the system with fuzzy	50
4.4	Error of the closed loop system using fuzzy	51
4.5	Step response of system using fuzzy-PID	51
4.6	Error of the closed loop system using fuzzy-PID	52
4.7	Step response of system.	52

List of Tables

Table	Title	Page
2.1	Effect of increasing parameter PID	12
2.2	Ziegler-Nichols method	13
3.1	Fuzzy Rules.	39
3.2	Fuzzy tuning rule of (kp).	44
3.3	Fuzzy tuning rule of (ki).	44
3.4	Fuzzy tuning rule of (kd).	45
4.1	Comparison between output response of controller	53

List of Abbreviations

PID	Proportional-Integral-Derivative
AC	Alternative Current
DC	Direct Current
FLC	Fuzzy Logic Controller
NL	Negative Large
NS	Negative Small
PVS	Positive Very Small
PS	Positive Small
PMS	Positive Medium Small
PM	Positive Medium
PML	Positive Medium Large
PL	Positive Large
PVL	Positive Very Large
MFs	Membership Functions
COG	Center of Gravity
PMDC	Permanent Magnet DC motor
SISO	Single input single output
MIMO	Multi input multi output
GA	Genetic algorithm