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1.1 INTRODUCTION

Breast cancer is the most common invasive cancer in females worldwide. It accounts for
16% of all female cancers and 22.9% of invasive cancers in women. 18.2% of all cancer
deaths worldwide [1].

Early detection is the key to improve breast cancer prognosis, and mammography is
considered the modality of choice for the early detection of breast carcinomas [2].
Mammography is an imaging procedure that allows the application of low dose radiation
(usually around 0.7 mSv) in order to obtain an image of the female breast for medical

examination.

1.2 OBJECTIVES

In breast cancer screening radiologists select a small percentage of women for referral
based on suspicious abnormalities in their mammograms. To maintain high specificity,
radiologists do not refer all abnormalities they see. Consequently, not all cancers initially
detected are acted upon because SFM (Screen-film mammography) is currently the
commonly type of mammography used in the medical facilities in Sudan, the eminent
benefits of DM (Digital mammography ) modalities incorporating image processing and

CAD (Computer-aided detection) diagnosis technologies are deficient.

The specific objectives of this project are to:

1. Toshow and prove the difference of the interpretation of mammographic images by
radiologists.

2. Attempt to develop CAD techniques that aim to provide a second option diagnosis for
radiologist.

3. Reduce health care costs by decreasing the need for follow-up procedures such as

biopsy.

1.3 THESIS LAYOUT

The project is divided into two stages, as follows:



Stage |

Shows difference between

radiologists diagnosis

Stage |l

Algorithm development

In the first stage: Twenty digital mammogram images were downloaded from MIAS
database. Each image contains one or two benign tumors to prove the variability among
radiologists to detect benign tumors in the images.

The second stage was attempted to develop the algorithm required for the detection of
benign tumors in digital mammograms. The analysis of mammograms and the proposed

algorithm will be carried out using Matrix Laboratory (MATLAB)
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2.1ANATOMY AND PHYSIOLOGY OF THE BREAST

The exterior of all humans’ breasts are basically the same; however, the size, shape, and
function of breasts vary significantly between the sexes. The key parts of the female
breast include:

a. Breast: The larger, more pronounced part of the breast is typically visible through
clothing. Some cultures associate breast size with sexuality, and others view a
woman’s breast size as a sign of maturity and fertility.

b. Areola: This circular area around the nipple typically has darker or deeper pink
colored skin. The color can change over time due to hormonal changes associated
with menstruation, menopause, and pregnancy.

c. Nipple: The protruding tip of the breast, the nipple is where breast milk ultimately
flows from and exits the body. It is also the site of many nerve endings. Typically,

each breast has one, but in rare cases more than one may be present.

2.1.1 BREAST ANATOMY

Anatomically, each breast has 15 to 20 sections, called lobes that are arranged like the
petals. Each lobe has many smaller lobules, which end in dozens of tiny bulbs that can
produce milk. The lobes, lobules, and bulbs are all linked by thin tubes called ducts.
These ducts lead to the nipple in the center of a dark area of skin called the areola,
resulting in a darkened appearance as shown in Figure (2.1), Fat fills the spaces between
lobules and ducts. There are no muscles in the breast, but muscles lie under each breast

and cover the ribs [3].

Each breast also contains blood vessels and vessels that carry lymph. The lymph vessels
lead to small bean-shaped organs called lymph nodes, clusters of which are found under
the arm, above the collarbone, and in the chest, as well as in many other parts of the

body.



Breast Structure

Figure 2.1 shows the structure of the breast [3].

2.1.2 BREAST PHYSIOLOGY

The breast’s main function is to produce, store and release milk to feed a baby. Milk is
produced in lobules throughout the breast when they are stimulated by hormones in a
woman’s body after giving birth. The ducts carry the milk to the nipple. Milk passes from
the nipple to the baby during breast-feeding.

2.1.2.1 HORMONES OF LACTASION
The complex physiology of breastfeeding includes a delicate balance of hormones. The

four hormones that help breasts to make milk are:

a. Estrogen.

b. Progesterone.

c. Prolactin.

d. Oxytocin.

The body naturally knows how to adjust the level of these hormones to help the breasts to

make milk, as shown in the Figure (2.2).
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Figure 2.2 shows the hormone levels of location [4].

2.2 BREAST CANCER

Women are more prone to problems with their breasts. These problems can include:

1. Breast cancer.
Benign breast lumps.
Mastitis or breast infection.

> wpn

Virginal breast hypertrophy or premature development of large breasts.

Breast cancer is a type of cancer originating from breast tissue, most commonly from
the inner lining of milk ducts or the lobules that supply the ducts with milk. Cancers
originating from ducts are known as ductal carcinomas, while those originating from

lobules are known as lobular carcinomas as shown in Figure (2.3).
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Figure 2.3 shows the Micrograph a lymph node invaded by ductal breast
carcinoma [5].

Worldwide, breast cancer accounts for 22.9% of all cancers (excluding non-melanoma
skin cancers) in women. Breast cancer is more than 100 times more common in women

than in men, although men tend to have poorer outcomes due to delays in diagnosis [6].

The characteristics of the cancer determine the treatment which may include surgery,

medications (hormonal therapy and chemotherapy) and radiation .

2.3 MAMMOGRAPHY

Mammaography is method that allows the early detection of breast cancer. The detection
process involves diagnosing the mammograms based on the identification of areas of

high intensities that indicate the presence of either benign or malignant tumors [7].

There are two main types of mammaography: film-screen mammography and digital
mammography DM, also called full-field digital mammography or FFDM. The technique
for performing them is the same. What differs is whether the images take the form of

photographic films or of digital files recorded directly onto a computer [6].
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2.4 DIGITAL MAMMOGRAPHY

Digital mammography, also called full-field digital mammography (FFDM), is a
mammography system in which the x-ray film is replaced by electronics that convert x-
rays into mammographic pictures of the breast, as shown in Figure (2.4). These systems
are similar to those found in digital cameras and their efficiency enables better pictures
with a lower radiation dose. These images of the breast are transferred to a computer for
review by the radiologist and for long term storage. The patient’s experience during a

digital mammogram is similar to having a conventional film mammogram.

Most centers now use digital mammography. Because digital images are viewed on a
computer, they can be lightened or darkened, and certain sections can be enlarged and
looked at more closely. The ability to control images on a computer makes digital
mammography more accurate than film mammography for some women. In general,
digital mammography is better at finding breast cancer in women who:

a) Are premenopausal or peri-menopausal.
b) Are under age 50.

¢) Have dense breast tissue.

For women who do not fall in one of the above groups, film and digital mammography

are similar in their ability to find breast cancer early [3].

Figure 2.4 shows the digital mammaography [8].



2.5 BENIGN TUMOR

Masses are three-dimensional lesions which may represent a localizing sign of breast
cancer. They are described by their location, size, shape, margin characteristics, X-ray
attenuation (radio density), effect on surrounding tissue, and any other associated
findings (i.e. architectural distortion, associated calcifications, skin changes). Depending
on the morphologic criteria of the mass, the likelihood of malignancy can be established.
A round, oval, or lobulated mass with sharply defined borders has a high likelihood of
being benign, as shown in Figure (2.5) [9].

Figure 2.5 shows the Mammogram with benign mass [9].

A mammographic image may contain several visible lesions. These lesions could be
either masses, calcifications, asymmetric densities or architectural distortions. Each is

assessed according to a variety of features using CAD systems.

2.6 COMPUTER-AIDED DETECTION (CAD) SYSTEM

CAD is a computer-based process designed to analyze mammographic images for

suspicious areas; in effect, it is a "second pair of eyes" for the radiologist.
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The U.S. Food and Drug Administration approved CAD for mammography in 1998 and
the Centers for Medicare and Medicaid Services (CMS) increased reimbursement for
CAD in 2002. Measuring the true impact of CAD on the accuracy of mammographic

interpretation has been challenging.

CAD is a relatively young interdisciplinary technology combining elements of artificial
intelligence and digital image processing with radiological image processing.

It is fundamentally based on highly complex pattern recognition. X-ray images are
scanned for suspicious structures. Normally a few thousand images are required to
optimize the algorithm. Digital image data are copied to a CAD server and are prepared
and analyzed in several steps:

1. Preprocessing.

2. Segmentation.

3. Structure/ROI (Region of Interest).

4. Evaluation/classification [10].

2.7 IMAGE PROCESSING

Image processing is processing of images using mathematical operations by using any
form of signal processing for which the input is an image, such as a photograph or video
frame; the output of image processing may be either an image or a set of characteristics
or parameters related to the image. Most image-processing techniques involve treating
the image as a two-dimensional signal and applying standard signal-processing

techniques to it.

Image processing usually refers to digital image processing, but optical and analog image
processing also are possible. This article is about general techniques that apply to all of
them. The acquisition of images (producing the input image in the first place) is referred

to as imaging.
2.7.1 DIGITAL IMAGE
Digital image: Discrete samples f [x, y] representing continuous image

f (x,y) Each element of the 2-d array f [x,y] is called a pixel or pel (from “picture

element*)
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2.7.2 DIGITAL IMAGE PROCESSING

Digital image processing is the use of computer algorithms to perform image processing

on digital images. As a subcategory or field of digital signal processing, Fundamental

steps in image processing:

1.
2.

7.

Image acquisition: to acquire a digital image

Image preprocessing: to improve the image in ways that increases the chances for
success of the other processes.

Image segmentation: to partitions an input image into its constituent parts or objects.
Image representation: to convert the input data to a form suitable for computer
processing.

Image description : to extract features that result in some quantitative information of
interest or features that are basic for differentiating one class of objects from
another.

Image recognition: to assign a label to an object based on the information provided by
its descriptors.

Image interpretation: to assign meaning to an ensemble of recognized objects.

2.7.3 Gray Level Coocurrence Matrices

The Gray Level Coocurrence Matrix (GLCM) method is a way of extracting second order

statistical texture features. The approach has been used in a number of applications.

A GLCM is a matrix where the number of rows and columns is equal to the number of

gray levels G, in the image.

The matrix element P (i, j|Ax, Ay) is the relative frequency with which two pixels,

separated by a pixel distance(Ax, Ay), occur within a given neighborhood, one with

intensity i and the other with intensity j.

One may also say that the matrix element p(i, j|d, 8) contains the second order

statistical probability values for changes between gray levels i and j at a particular

displacement distance d and at a particular angle(8) [11].
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2.7.3.1 PROPERTIES OF THE GLCM

The simplest definition of the probability of a given outcome is "the number of times this
outcome occurs, divided by the total number of possible outcomes."[12].

2.7.4 HARALICK TEXTURE FEATURES

The proposed algorithms of this study are built on the following features. The Haralick
texture features are used for image classification. These features capture information
about the patterns that emerge in patterns of texture. The features are calculated by
construction a co-occurrence matrix that is traditionally computationally expensive. Once
the co-occurrence matrix has been constructed, calculations of the 13 features begin.
Some of these features include angular second moment, contrast, correlation, as well as a
variety of entropy measures the basis for these features is the gray-level co-occurrence

matrix.

Below are described all the features used in the experiment and the meaning of each one
in the actual texture analysis case is explained. In all the formulas p (i; j) stands for

(i; )HThentry or value in a normalized GLCM [12].
2.7.4.1 CONTRAST

Contrast is a local grey level variation in the grey level cooccurrence matrix. It can be

thought of as a linear dependency of grey levels of neighboring pixels [12].
Contrast = Y}, 4 P;; (i — j)? 2.1)

2.7.4.2 HOMOGENEITY

Homogeneity measures the uniformity of the non-zero entries in the GLCM. It weights

values by the inverse of contrast weight [12].

. — P;ij
Homogeneity = Z?,’jzlom (2.2)

The GLCM homogeneity of any texture is high if GLCM concentrates along the

diagonal, meaning that there are a lot of pixels with the same or very similar grey level
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value. The larger the changes in grey values, the lower the GLCM homogeneity making
higher the GLCM contrast. The range of homogeneity is [0, 1].

2.7.4.3 DISSIMILARITY

Dissimilarity is a measure that defines the variation of grey level pairs in an image [12].

Dissimilarity = Y.\;24 P;;li — j| (2.3)
2.7.44 ENTROPY

Entropy in any system represents disorder, where in the case of texture analysis is a
measure of its spatial disorder [12].

Entropy = Z?,Ii;}) P;; (—LnP;;) (2.4)

A completely random distribution would have very high entropy because it represents
chaos. Solid tone image would have an entropy value of 0. This feature can be useful to
tell us if entropy is bigger for heavy textures or for the smooth textures giving us

information about which type of texture can be considered statistically more chaotic [12].

2.7.4.5 ENERGY

The higher the Energy value, the bigger the homogeneity of the texture. The range of
Energy is [0, 1], where Energy is 1 for a constant image [12].

Energy = YV, P (2.5)
2.8 MATLAB

The name MATLAB stands for matrix laboratory. MATLAB was written originally to
provide easy access to matrix software developed by the LINPACK (Linear System
Package) and EISPACK (Eigen System Package) projects. Today, MATLAB engines
incorporate the LAPACK (Linear Algebra Package) and BLAS (Basic Linear Algebra
Subprograms) libraries, constituting the state of the art in software for matrix

computation [5].

Typical uses include the following:
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1. Math and computation.

2. Algorithm development.

3. Data acquisition.

Modeling, simulation, and prototyping.

Data analysis, exploration, and visualization.

I

Scientific and engineering graphics.

7. Application development, including graphical user interface building.

MATLAB is an interactive system whose basic data element is an array that does not
require dimensioning. This allows formulating solutions to many technical computing
problems, especially those involving matrix representations, in a fraction of the time it
would take to write a program in a scalar non-interactive language such as C or
FORTARAN.
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In this chapter, the evolution of CAD systems and various methodologies used by
previous researchers will be overviewed. The ultimate effort for these researchers was to
optimize and attain reliable and consistent computerized systems for the augmentation of
mammogram interpretation through the application of different feature extraction
techniques and procedures.

Incorporation of digital images and image processing within acknowledge based decision

aid for radiologists was later developed [13].

3.1 COMPUTER —-AIDED DETECTION OF BENIGN
TUMORS OF FEMAL BREAST

The use of a combination of statistical feature analysis techniques to obtain the best result
for the automatic detection of benign tumors in digital mammograms was done by
Hamza, A.O et al. Where the combination of statistical tools including (mean and
median),(mean, median, and standard deviation) ,(mean, median, and Kkurtosis),(mean,
median, and correlation),(mean, median, and covariance),(mean, median, and
skewedness) and (mean,median,and variance), and concluded that the combination the

mean and median were more accurate than the result of the other combinations.}[7].

3.2 COMPUTER-AIDED DETECTION

The introduction of CAD systems provided the opportunity of quick, near real-time
performance of analytical computations on digital information that is not readily
available to the radiologist until after the cost of film-processing has occurred [14].

A study performed to compare the tumor detection rate with and without use of CAD
system resulted in a 2% increase in accuracy using CAD versus without, thus proving
that CAD systems are useful additional tools to avoid unnecessary biopsies and to

increase accuracy of mammography [15].

3.3 ARTIFICIAL NEURAL NETWORKS
By using different combinations of features, CAD systems with the aid of ANNSs

(artificial neural networks) were able to classify microcalcifications. Some features and
procedures introduced by different researches which finally optimized the detection of
micro calcifications by using two ANNs (one for mass detection and one for
microcalcifications cluster detection) were used to classify each suspicious region by

assigning it a likelihood score for the abnormality under examination [16].
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3.4ADETECTION OF BREAST CANCER CELLS BY USING
TEXTURE ANALYSIS

The use of a texture analysis. approach to detect cancer on mammograms was done by
Hamza, A.O et al . Fifty-five regions of interest (ROIs) containing abnormal breast tissue
and 192 ROIs containing normal breast tissue were extracted from digital mammograms
obtained from the Mammographic Image Analysis Society database. Haralick texture
features derived from spatial grey-level dependence matrix were calculated for each ROI.
The importance of each feature in distinguishing abnormal from normal tissues was
determined by stepwise linear discriminant analysis. The methodology obtained 92.7% of

accuracy for the detection of abnormal tissue (cancer) on digitalized mammograms [17].

3.5 HARALICK TEXTURE FEATURES

A wide variety of methods for describing texture features have been proposed in previous
studies. Tuceryan and Jain , divided texture analysis methods into four major categories:
statistical, geometrical, model-based and signal processing methods. One commonly
applied and referenced method is the co-occurrence method, introduced by Haralick. In
this method, the relative frequencies of grey level pairs of pixels separated by a distance d
in the direction 6 combined to form a relative displacement vector (d, 0), which is
computed and stored in a matrix, referred to as grey level co-occurrence matrix (GLCM)
P. This matrix is used to extract second-order statistical texture features. Haralick

suggests 14 features describing the two dimensional probability density function pij [18].

3.6 PATTERN RECOGNITION

Pattern recognition methods commonly used for face recognition were applied in order to
analyze digital mammograms. The methods are based on novel Classification schemes
like the AdaBoost and the support vector machines (SVM). A number of tests have been
carried out to evaluate the accuracy of these two algorithms under different
circumstances. Results for the AdaBoost classifier method were promising. In the best
case the algorithm achieved high accuracy. The SVM based algorithm did not perform as
well. In order to achieve a higher accuracy for this method, image features that are better
suited for analyzing digital mammograms than the currently used ones should be chosen
[19].

The SVM (support vector machines) classification schemes yielded overall maximum
accuracy rates, both when the shape type feature was excluded or included in the input
vector, higher than the corresponding maximum rates of any other linear or NN

alternative. Thus, a representative application of advanced SVM models, compared to
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several linear and NN classification schemes, is suggestive to their superiority in
classification problems that exhibit high degree of nonlinearity in the training datasets
[20].

3.7 CONTRAST-LIMITED ADAPTIVE HISTOGRAM
EQUALIZATION

A study was performed to determine whether contrast-limited adaptive histogram
equalization (CLAHE) or histogram-based intensity windowing (HIW) improves the
detection of simulated masses in dense mammograms. The success in detecting simulated
masses on mammograms with dense backgrounds depended on the parameter settings of
the algorithms used. The best HIW setting performed better than the best fixed-intensity
window setting and better than no processing.

Performance with the best CLAHE settings was no different from that with no
processing. In the HIW experiment, there were no significant differences in observer

performance between processing conditions for radiologists and non-radiologists [21].
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4.1 STAGE I: THE DIFFERENCE BETWEEN
RADIOLOGIST DIAGNOSIS

The first phase of this study involved choosing a sample of 20 digital mammograms
containing one or two benign tumors and presenting them to 3 different radiologists for

interpretation.
4.1.1 SAMPLE SELECTION

Digital mammograms were obtained from the mini-MIAS (Mammographic Image
Analysis Society) database [22].
The mammograms by popular request, the original MIAS database (digitised at 50
micron pixel edge) has been reduced to 200micron pixel edge and clipped/padded so that
every image is 1024 x 1024 pixels.
The follow list gives the films in the MIAS database and provides appropriate
details as follows:
First column: MIAS database reference number.
Second column: character of background tissue:

a. F Fatty

b. G Fatty-glandular

c. D Dense-glandular
Third column: Class of abnormality present:
CALC Calcification

CIRC Well-defined/circumscribed masses

S

SPIC Spiculated masses
MISC Other,ill-defined masses
e. ARCH Architectural distortion
f. ASYM Asymmetry

g. NORM Normal

Fourth column: severity of abnormality:

o o

a. B Benign
b. M Malignant
Fifth, Sixth columns: X, Y image-coordinates of centre of abnormality.

Seventh column: Approximate radius (in pixel) of a circle enclosing the abnormality.
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All of the chosen mammograms have been diagnosed by experts of radiology. They all
contained the following features:
1. Benign.

2. Circular shape.

3. PGM format.

4. 1024 x 1024 sizes.
5. 8-hit color.

6. 1 MB pixels.

Each mammogram contains either one or two benign tumors of variable sizes and

different tissue type (fatty, dense or fatty glandular tissue).
4.1.2 VISUAL INSPECTION OF MAMMOGRAMS

Three radiologists (Radiologists A, B and C) were chosen to visually inspect the sample.
The radiologists were asked to specify the region of tumor in each image by drawing a
circle around it using the Microsoft Paint application.

4.2 STAGE II: IMAGE ANALYSIS

This stage involves developing an image processing algorithm that can automatically

detect benign tumors in digital mammograms.

4.2.1 ROl (REGON OF INTEREST) SELECTION
In each mammogram image two (2) frames were selected, one represents normal tissue

and other represents abnormal tissue.

4.2.2 ALGORITHM DEVELOPMENT
The following haralick feature analysis techniques were tested in order to automatically

detect benign tumors:
a. Contrast.
b. Energy.

c. Homogeneity.

The above features were tested in order to determine the best method of benign tumor
detection. This was done by developing a MATLAB code that divides the input image
into small frames, each frame having a size of 51 x 51 pixels.

The developed code (see Appendix 1) reads the input image that contains the tumor. It

then moves frame by frame, each time calculating each of the haralick features.
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The following figure, Figure (3.1) shows the flowchart used for the proposed algorithm
that incorporates the contrast, energy and homogeneity haralick features.
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Figure 4.1shows the Algorithm flowchart for code using mean and median.
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5.1. RADIOLOGIST VARIABILITY

The following figures show the variability amongst radiologists A, B and C in

interpreting the tumor in each mammogram.

1)

3)

Figure 5.1 shows the imgl as diagnosed by (1) radiologist A, (2) radiologist B, (3)
radiologist C The radiologist diagnosis is marked by the circles.

It is clear from the above figures that the radiologists are not consistent in determining

the number of the tumor.
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(1)

)

Figure 5.2 shows the img2 as diagnosed by (1) radiologist A, (2) radiologist B, (3)
radiologist C The radiologist diagnosis is marked by the circles.

It is clear from the above figures that the radiologists are not consistent in determining

the size of the tumor.
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A comparison was made in tables (5.1,5.2,5.3,54,55,56,5.7,5.8,5.9,5.10,
511,5.12,513,5.14,5.15,5.16,5.17,5.18, 5.19, 5.20 ) below between normal
frames and abnormal frames using Haralick Texture feature (Contrast, Energy and

Homogeneity) with 6=0 (Horizontal) and d=1 with matlab program.

Table 5.1 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 26.3153 35.8196 0.2255 0.1257 0.5128 0.5374
2 20.4439 26.0141 0.1609 0.3054 0.6389 0.5436
3 27.142 11.8212 0.1353 0.2564 0.6376 0.6797
4 31.6157 10.1024 0.1242 0.2205 0.5912 0.5507
5 15.8525 36.5725 0.166 0.1408 0.6338 0.5533
6 255373 22.0306 0.3158 0.1525 0.5412 0.5805
7 23.6298 13.4275 0.2064 0.339 0.5291 0.6462
mdb001.pgm 8 222478 8.1443 0.0906 0.2724 0.5972 0.5809
9 13.4478 0.1831 0.6241
10 28.1098 0.2557 0.5665
11 22.858 0.321 0.6246
12 19.8463 0.158 0.5888
13 22.5506 0.2764 0.6318
14 27.4635 0.2124 0.5118
15 10.811 0.2165 0.5712
16 23.6894 0.2126 0.6265
total 3615607 ~  163.9322 32604 18127 9.4271 4.6723
average 2259754375 = 20.491525 0.203775 | 0.2265875 0.58919375 0.5840375

Table 5.2 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 39.9627 34.2941 0.1319 0.3047 0.588 0.5758
2 29.0867 28.8706 0.13 0.2541 0.5805 0.5554
3 19.0749 31.5608 0.1593 0.2761 0.647 0.5085
mdb005.pgm 4 28.2737 28.5976 0.097 0.2546 0.6012 05728
5 242216 34.742 0.1097 0.2577 0.5751 0.4652
6 32.0878 31.7749 0.0922 0.2641 0.5697 0.5039
total 172.7074 189.84 0.7201 1.6113 3.5615 3.1816
average 28.78456667 31.64 0.12001667 0.26855 0.593583333 0.530266667
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Table 5.3 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal

1 33.3663

2 24.2275

3 36.0659

mdb010.pgm 4 31.8039
total 125.4636

average 31.3659

26.411
12.1443
28.6965
25.1859

92.4377
23.109425

0.1683
0.1223
0.2068
0.2491

0.7465
0.186625

0.2359
0.2195
0.2732
0.2921

1.0207
0.255175

homo tumor
0.6016
0.5765
0.5862
0.3606

21249
0.531225

homo normal
0.5991
0.5762
0.5566
0.6035

2.3354
0.58385

Table 5.4 comparison between normal frame and abnormal frame

=
=]

W00~ WN =

29.5125
37.4102
18.0424
30.2122
28.6745
33.2314
25.7235
27.3365
34.7482

mdb017pgm

total 264.8914

average 29.43237778

35.2078
31.4682
48.6055
32.9757
20.9349
37.9106
22.9243
20.4659
33.5247

284.0176

31.565751111

0.048

0.218
0.1223
0.0846
0.2393
0.1342
0.1139
0.2403
0.2171

1.4177

contrast tumor contrast normal energy tumor energy normal

0.2139
0.194
0.2311
0.2006
0.1406
0.146
0.053
0.1484
0.1495

14771

015752222 0.164122222

homo tumor
0.5865
0.5038
0.6407
0.6025
0.5432
0.5531
0.6423
0.5559
0.5807

5.2087
0.578744444

homo normal
0.6005
0.5922
0.5055
0.6083
0.6035
0.5542
0.6442
0.6488
0.5855

5.3427
0.593633333
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Table 5.5 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 42.7114 32.6392 0.3288 0.2455 0.6334 0.5268
2 51.051 40.0271 0.1377 0.3058 0.5904 0.5335
3 24.44 71.3063 0.1181 0.2205 0.6319 0.5371
4 25.8204 43.7176 0.1409 0.3637 0.5717 0.6448
5 36.5055 62.5765 0.1473 0.2865 0.6069 0.5493
6 38.1302 41.7922 0.151 0.2464 0.5087 0.6028
mdb025.pgm 7 42.2086 29.431 0.183 0.2447 0.422 0.5831
8 27.2125 57.6282 0.1585 0.3026 0.6206 0.6252
9 43.5859 59.6757 0.1979 0.222 0.6482 0.5618
10 28.0114 50.8416 0.112 0.3504 0.6232 0.6252
11 21.8149 39.4427 0.1224 0.1739 0.5767 0.5934
12 14.5114 38.8333 0.2268 0.2998 0.5916 0.5815
total 396.0032 567.9114 20244 3.2618 7.0253 6.9645

average 33.00026667 47.32595 0.1687 0.271816667 0.585441667 0.580375

Table 5.6 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 23.4086 22.3639 0.1165 0.1183 0.6056 0.5732
2 34.2557 52.671 0.2277 0.1979 0.6205 0.539
3 18.1412 33.918 0.1548 0.2632 0.5651 0.5797
4 35.9906 25.309 0.1869 0.1325 0.5386 0.5512
mdb063.pgm 5 22.8157 73.4808 0.1403 0.2411 0.6071 0.5446
6 331231 27.3588 0.1403 0.2801 0.5845 0.6077
7 37.4416 33.6729 0.2085 0.1133 0.5719 0.5816
8 19.1169 37.4482 0.1597 0.2695 0.6083 0.6099
9 27.6392 22.4627 0.1081 0.2703 0.5823 0.5399
total 251.9326 328.6853 1.4428 1.8862 5.2839 5.1268
average 27.99251111 36.52058889 0.16031111 0.209577778 0.5871 0.569644444

Table 5.7 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 34.971 53.6027 0.1545 0.1951 0.6029 0.5814
2 27.858 36.8733 0.1243 0.1233 0.6153 0.5901
3 10.7231 39.6616 0.2273 0.1398 0.6265 0.5882
mdb069.pgm 4 324627 18.0329 0.1101 0.1519 0.6091 0.6445
5 19.5055 21.0761 0.1868 0.2 0.6227 0.6097
6 14.2651 27.0008 01925 0.1472 0.5855 0.6173
total 139.7854 196.2474 0.9955 0.9573 3.662 3.6312
average 23.29756667 32.7079 0.16591667 0.15955 0.610333333 0.6052
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Table 5.8 comparison between normal frame and abnormal frame

mdb081 pgm

No
1 210702
2 43 4255
3 281573
4 30,9522
L 181302
[ 11.0557
7 33,9396
8 236216
9 94243
10 149082
] 26.0157
12 19721
13 IT 8443
14 166478
15 24 5522
16 18 4408
17 286329
1% 25.4102
19 337027
20 143027
21 24.7592
22 211827
23 22 6306
24 334745
25 21.622
26 28.3373
27 322745
28 252176
29 24 5616
30 22.227h

total 7363487
average 24 54495667

168212
36 4322
39,0133
34.5592
227792
26.7357
33.04H
717894
250631
353392
32,8671
23.5573
52.6502
659853
702706
753051
41.2008
35.1952
333702
54.7725
550761
50 5294
63 9682
451243
25.6667
30.7141
27.25H
215176
13 4675
25 4322

1305047
39.68349

o1
01423
0.0833
0.0957
0.1386
0.2126
0127
0.0761

0.267
0.2553
0.1589
0.2155
0.0797
0.1606
0.3904
0.2073
0.1357

0.147
0.0977

0182
01753
0.2338
0.2036
0.1461
01237
01201
0.1598
0.1659
0.096%
0.1259

4.8267
0.16089

contrast tumolcontrast nurmalenergg tumolenergy normal

0.1703
0.2136
0.2778
0.3248
0.2213
0.2547
0.2221
0.2616
0.2877
0.2296
0.2827
0.2301
0.2904
02648
0.2713
0.2395
0.3055
0.2439
0.1676
0.2643
0.3
0.2104
0.1909
01518
0.0888
01124
0.1345
01579
0.155
0.1033

6.6402
0.22134

homo tumor
05729
05833
05478
05525
05732
06113
05924
05757
0664
05999
06394
05886
05519
05628
0598
05323
05878
0548
05481
05693
04539
04997
06001
05633
063
05835
05475
05489
06121
06218

17.26
0.575333333

homo normal
05982
06151
06369
06073
06252
05252
06232
05398
05823
05989
06701
0593
05812
05726
05676
06222
06017
05625
06132
06224
06224
05958
0514
05876
05976
05987
0.5036
05402
06137
05984

17.7307
0.50023333
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Table 5.9 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal

13.8478
18.0549
30.72
29.7427
17.3537
22.038

mdb083.pgm

DN B W=

total 131.7571
average 21.95951667

22.5992
25.7255
19.8588
24.0188
221427
24.7216

139.0666
23.17776667

0.1702
0.1864
0.1332
0.0875
0.087
0.0722

0.7365
0.12275

0.2741
0.3348
0.405
0.3054
0.3044
0.3922

2.0159

0.335983333

homo tumor
0.6259
0.6328
0.5871
0.6317
0.6351
0.5909

3.7035
0.61725

homo normal
0.5953
0.5475
0.6397
0.5553
0.5762
0.5935

3.5075
0.584583333

Table 5.10 comparison between normal frame and abnormal frame

=
o

DN AW =

30.6694
23.6769
25.8745
35.7078
12.9286
21.531

mdb104.pgm

total 150.3882
average 25.0647

60.4643
26.7216
23.2737
42.3506
23.1655
20.1718

196.1475
32.69125

0.1735
0.1144
0.129
0.1624
0.1921
0.1415

0.9129
0.15215

contrast tumor contrast normal energy tumor energy normal

0.2046
0.1044
0.1591
0.339
0.1386
0.1206

1.0663
0.177716667

homo tumor
0.5916
0.5874
0.4886
0.5659
0.5422
0.5813

3.367
0.5595

homo normal
0.5017
0.5379
0.5171
0.5805
0.543
0.5878

3.268
0.544666667

Table 5.11 comparison between normal frame and abnormal frame

=
=]

O~ oAWK =S

13.9373
36.16
20.9804
12.4549
28.4455
24.2204
29.8298
42.0635

mdb132.pgm

total 208.0918
average 26.011475

12.5427
8.2698
24.8282
24.1992
7.6486
7.8682
13.189
17.8259

116.3716
14.54645

0.1943
0.1002
0.1561
0.1288
0.2203
0.1594
0.2464
0.1903

1.3958
0.174475

contrast tumor contrast normal energy tumor energy normal

0.3997
0.295
0.3164
0.2371
0.2709
0.2751
0.3713
0.4234

25889
0.3236125

homo tumor
0.5855
0.5231
0.6019
0.5757
0.6021
0.5289
0.5788
0.6275

4.6235
0.5779375

homo normal
0.6579
0.5953
0.5665
0.5867
0.6024
0.5633
0.6603
0.6535

4.8859
0.6107375
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Table 5.12 comparison between normal frame and abnormal frame

No.
1
mdb142.pgm 2

total
average

contrast tumor contrast normal energy tumor energy normal

24.7749
33.4494

58.2243

29.11215

30.1427
26.1443

56.287
28.1435

0.14
0.2141

0.3541
0.17705

0.2536
0.2635

0.5171
0.25855

homo tumor
0.5997
0.6066

1.2063
0.60315

homo normal
0.5948
0.6002

1.195
0.5975

Table 5.13 comparison between normal frame and abnormal frame

No.
mdb144.pgm 1

total
average

contrast tumor contrast normal energy tumor energy normal

22,9522

22,9522
22,9522

24.1631

24.1631
24.1631

0.1702

0.1702
0.1702

0.1046

0.1046
0.1046

homo tumor
0.5825

0.5825
0.5825

homo normal
0.5851

0.5851
0.5851

Table 5.14 comparison between normal frame and abnormal frame

=
=]

0~ WwN =

mdb150.pgm

w

10
11
12
13
14
15

total
average

contrast tumor contrast normal energy tumor energy normal

12.5671
17.3733
22.7471
23.7282
22.8369
36.2694
24.6086
32.6761
26.9973
259812
29.7906
26.1992
29.3302
28.538
19.4825

379.1257
25.27504667

22.24
30.0878
29.8196
34.0086
40.2996
18.1337
17.9557
25.2408
33.9082
37.1396
18.3827
23.8475
24,6408
24.2784
34.8922

414.8752
27.65834667

0.4398
0.1002
0.0832
0.0666
0.1212
0.1097
0.1706
0.2222
0.1631
0.0669
0.1063
0.1769
0.2287
0.1449
0.1602

2.3605

0.2633
0.26
0.2807
0.2511
0.2299
0.3102
0.3686
0.2954
0.2601
0.2642
0.181
0.2366
0.3422
0.314
0.2348

4.0921

0.16736667 0.272806667

homo tumor
0.7171
0.5434
0.6214
0.6008
0.5722
0.5979
0.565
0.6251
0.592
0.6128
0.5739
0.5971
0.6588
0.6243
0.59

9.0918
0.60612

homo normal
0.6029
0.565
0.5463
0.4876
0.4682
0.6577
0.6586
0.6187
0.4788
0.4293
0.5745
0.5856
0.6194
0.6232
0.537

8.4528
0.56352
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Table 5.15 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 41.2486 34.778 0.2688 0.2895 0.3616 0.4725
2 21.5592 226588 0.3043 0.4627 0.5735 0.6834
mdb152.pgm 3 11.9718 20.6588 0.2168 0.5487 0.5825 0.7411
4 34.1961 30.5725 0.2735 0.2823 0.4592 0.5335
5 10.2965 33.8855 0.2323 0.2524 0.5906 0.4791
6 8.6275 23.2471 0.4451 0.4523 0.6757 0.6673
total 127.8997 165.8007 1.7408 2.2879 3.2431 3.5769
average 21.31661667 27.63345 0.29013333 0.381316667 0.540516667 0.59615

Table 5.16 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 8.6298 24.3765 0.306 0.3636 0.6584 0.6094
2 14.2482 9.8902 0.2756 0.4552 0.6389 0.7156
mdb190.pgm 3 7.9937 22.7169 0.3478 0.3018 0.5788 0.667
4 10.0651 11.3992 0.3915 0.3081 0.7148 0.6081
total 40.9368 68.3828 1.3209 1.4287 2.5909 2.6001
average 10.2342 17.0957 0.330225 0.357175 0.647725 0.650025

Table 5.17 comparison between normal frame and abnormal frame

No. contrast tumor contrast normal energy tumor energy normal homo tumor homo normal
1 271275 10.2525 0.0536 0.27 0.5973 0.6259
2 24.6933 10.102 01274 0.418 0.6094 0.6903
mdb195.pgm 3 21.8929 11.8965 0.1019 0.4233 0.629 0.6622
4 29.6925 25.3482 0.115 0.2618 0.5994 0.609
5 23.8776 23.2722 0.0931 0.24 0.6271 0.5381
6 28.9569 49.5824 0.1278 0.1509 0.5942 0.5911
total 156.2407 130.4538 0.6188 1.764 3.6564 3.7166
average  26.04011667 21.7423 0.10313333 0.294 0.6094 0619433333
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Table 5.18 comparison between normal frame and abnormal frame

mdb198.pgm

total
average

contrast tumor contrast normal energy tumor energy normal

12.5929
25.7725
20.729
221365
33.8682
20.1627
34.3231
12.2667
24.0424
33.0102
29.1718
43.8227
39.1247
34.6557
35.1671

420.8462
28.65641333

-

58.9353
60.622
20.6698
85.8804
63.2976
26.3522
76.76
37.0729
46.2357

475.8259
52.86954444

0.2815
0.1253
0.0695
0.1657
0.1386
0.1242
0.1659
0.3219
0.1461
0.1488
0.1648
0.1918
0.2344
0.2087
0.2856

27728

0.18485333 " 0.235333333

r

0.3054
0.2338
0.1364
0.2663
0.2374
0174
0.2815
0.3225
0.1607

2118

homo tumor
0.5819
0.5868
0.5719
0.5573
0.5577
0.5821
0.5531
0.6005
0.6291
0.5941
0.5401
0.5204
0.5834
0.6021
0.5761

8.6366
0.675773333

homo normal
0.597
0.5573
0.5471
0.4909
0.5659
0.5336
0.5106
0.5856
0.599

4.987
0.554111111

Table 5.19 comparison between normal frame and abnormal frame

mdb290.pgm

No.

DN B WN =

total
average

contrast tumor contrast normal energy tumor energy normal

31.0631
15.9341
26.6945
25,6533

99.345
24.83625

r

r

51.3455
16.8588
23.5153
36.891

31.9282
31.1067

191.6455
31.94091667

0.0837
0.1899
0.1015
0.1417

0.5168
0.1292

0.1845
0.187
0.1057
0.1525
0.077
0.1147

0.8214
0.1369

homo tumor
0.6098
0.6075
0.5959
0.6119

24251
0.606275

homo normal
0.6094
0.5958
0.5826
0.5722
0.5872
0.5762

3.5234
0.587233333
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Table 5.20 comparison between normal frame and abnormal frame

mdb290.pgm

No.

DB WN =

total
average

contrast tumor contrast normal energy tumor energy normal

31.0631
15.9341
26.6945
25.6533

99.345
2483625

r

r

51.3455
16.8588
23.5153
36.891

31.9282
31.1067

191.6455
31.94091667

0.0837
0.1899
0.1015
0.1417

0.5168
0.1292

0.1845
0.187
0.1057
0.1525
0.077
0.1147

0.8214
0.1369

homo tumor
0.6098
0.6075
0.5959
0.6119

24251
0.606275

homo normal
0.6094
0.5958
0.5826
0.5722
0.5872
0.5762

3.56234
0.587233333
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Table 5.21 contrast average

No. picture contrast tumor contrast normal diffrence
1 mdb001.pgm 22.59754375 20.491525 -2.10601875
2 mdb005.pgm 28.78456667 31.64 2.855433333
3 mdb010.pgm 31.3659 23.109425 -8.256475
4 mdb017pgm 29.43237778 31.55751111 2.125133333
5 mdb025.pgm 33.00026667 47.32595 14.32568333
B mdb083.pgm 27.99251111 36.52058889 B.52B077778
7 mdb069.pgm 23.29756667 32.7079 5410333333
8 mdb081.pgm 2454495667 39.68349 15.13853333
9 mdb083.pgm 21.95951667 23.17776667 1.21825
10 mdb104.pgm 25.0647 32.69125 7.62655
11 mdb132.pgm 26.011475 14.54645 -11.465025
12 mdb142.pgm 2911215 28.1435 -0.96865
13 mdb144.pgm 22,9522 241631 1.2109
14 | mdb150.pgm 25.27504667 27.65834667 2.3833
15 | mdb152.pgm 21.31661667 27.63345 6.316833333
16 mdb190.pgm 10.2342 17.0957 6.8615
17 mdb195.pgm 26.04011667 21.7423 -4.297816667
18 mdb198.pgm 28.65641333 52.86954444 24.21313111
19 mdb248.pgm 28.61118333 21.18065 -7.430533333
20 mdb290.pgm 24.83625 31.94091667 7.104666667

60

50

40

contrastavg. 30 -

M contrast tumor

B contrast normal

20 -

1234567 8 91011121314151617181920

Images

Figure 5.3 shows the contrast average calculated by MATLAB code
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Table 5.22 Energy average

No. picture energy tumor, energy normal diffrence
1 mdb001.pgm 0.203775 0.2265875 0.0228125
2 mdb005.pgm | 0.120016667 0.26855 0.148533333
3 mdb010.pgm 0.186625 0.255175 0.06855
4 mdb017pgm 0.157522222 0.164122222 0.0066
5 mdb025.pgm 0.1687 0.271816667 0.103116667
6 mdb063.pgm | 0.160311111 0.209577778 0.049266667
7 mdb069.pgm | 0.165916667 0.15955 -0.006366667
8 mdb081.pgm 0.16089 0.22134 0.06045
9 mdb083.pgm 0.12275 0.335983333 0.213233333
10 mdb104.pgm 0.15215 0.177716667 0.025566667
11 mdb132.pgm 0.174475 0.3236125 0.1491375
12 mdb142.pgm 0.17705 0.25855 0.0815
13 mdb144.pgm 0.1702 0.1046 -0.0656
14 mdb150.pgm | 0.157366667 0.272806667 0.11544
15 mdb152.pgm | 0.290133333 0.381316667 0.091183333
16 mdb190.pgm 0.330225 0.357175 0.02695
17 mdb195.pgm | 0.103133333 0.294 0.190866667
18 mdb198.pgm | 0.184853333 0.235333333 0.05048
19 mdb248.pgm | 0.133316667 0.244316667 0.111
20 mdb290.pgm 0.1292 0.1369 0.0077

0.45
0.4

0.35
0.3
0.25
0.2
0.15
0.1
0.05

Energy Avg.
M energy tumor

M energy normal

1234567 8 91011121314151617181920

Images

Figure 5.4 shows energy average calculated by MATLAB code
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Images below represent the output of the energy average (max and min)

Figure 5.5 shows the image mdb005.pgm

Figure 5.6 shows the image 063.pgm
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Figure 5.8 shows the imagel32.pgm
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Table 5.23 Homogeneity average

No. picture homo tumor hemo normal diffrence
1 mdb001.pgm 0.58919375 0.5840375 0.00515625
2 mdb005.pgm 0.593583333 0.530266667 0.063316667
3 mdb010.pgm 0.531225 0.58385 -0.052625
4 mdb017pgm 0.578744444 0.593633333 -0.014888889
5 mdb025.pgm 0.585441667 0.580375 0.005066667
6 mdb063.pgm 0.5871 0.569644444 0.017455556
7 mdb069.pgm 0.610333333 0.6052 0.005133333
8 mdb081.pgm 0.575333333 0.591023333 -0.01569
9 mdb083.pgm 0.61725 0.584583333 0.032666667
10 mdb104.pgm 0.5595 0.544666667 0.014833333
1 mdb132.pgm 0.5779375 0.6107375 -0.0328
12 mdb142.pgm 0.60315 0.5975 0.00565
13 mdb144.pgm 0.5825 0.5851 -0.0026
14 mdb150.pgm 0.60612 0.56352 0.0426
15 mdb152.pgm 0.540516667 0.59615 -0.055633333
16 mdb190.pgm 0.647725 0.650025 -0.0023
17 mdb195.pgm 0.6094 0.619433333 -0.010033333
18 mdb198.pgm 0.575773333 0.554111111 0.021662222
19 mdb248.pgm 0.598616667 0.564783333 0.033833333
20 mdb290.pgm 0.606275 0.587233333 0.019041667
Homogeneity Avg.

B homo tumor

B homo normal

1234567 8 91011121314151617181920

Images

Figure 5.9 shows the Homogeneity average calculated by MATLAB code
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Chapter six
Conclusions and Recommendations
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6.1 CONCLUSIONS

The difference of the interpretation of mammographic images by radiologists was very
clear and the result of their diagnosis showed a marked variation in size and number of
tumors.

The analysis of tables and the differences in the reading and its scatter show it’s not
possible to locate exactly the place of the tumor and its spread using the Haralick method.
This difficulty can be attribute to the technical problems of taking the mammogram shots,
the size of the frame, the age of the patient, his health condition and body size, so
another features needed to increase the accuracy of the system.

6.2 RECOMMENDATIONS

1. The variation of the specialist diagnosis show that there is a need to Ultrasound

techniques for tumor location and it spread.

2. It’s recommended that increasing the number of samples for analysis can give better

results.
3. Using another features or combination feature to increase the accuracy of the system.

4. Decreasing the size of the frame to increase the accuracy of the image analysis.
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