بسم الله الرحمن الرحيم

ٱللَّهُ نُورُ ٱلسَّمَاوَاتِ وَٱلْأَرْضِ مَثَلُ نُورُ السَّمَاوُ قِيهَا مِصْبَاحٌ أَلْمِصْبَاحٌ فِي زُجَاجَةٌ الزُّجَاجَةُ كُورِهِ عَمِ شَكَوَةٍ فِيهَا مِصْبَاحٌ الْمِصْبَاحُ فِي زُجَاجَةٌ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبُ دُرِّيٌ يُوقَدُ مِن شَجَرَةٍ مُّبَارِكَةٍ زَيْتُونَةٍ لَّا شَرُقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِي وَلَوْ لَمْ تَمْسَلُهُ نَارُ نُّورٌ عَلَى نُورٍ غَلَى نُورٍ غَلَى نُورٍ عَلَى نُورٍ يَعَلَى اللَّهُ اللَّهُ اللَّاسِ وَاللَّهُ يَعْدِى اللَّهُ لِنُورِهِ عَمَن يَشَآءٌ وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ بِكُلِ شَيْءٍ عَلِيمٌ لَيْكُمُ

صدق الله العظيم

سورة النورالآية (35)

DEDICATION

To

My parents, family, teachers, friends and all persons who be devoted to me.

TO

All those heroes who have lost their altruistic lives during fire fighting and fire rescue.

ACKNOWLEDGEMENT

First we thank God that helps us with his blessings to accomplish this dissertation.

The full support and encouragement from Dr. Elnagi Eltayeb Mohamed who supervises this research very closely and guides me up all the time to develop this thesis.

The support by – Kenana Technical College – which I did my practical cases in.

Special thanks to engineer Youssif Babiker Hussein who provides me technical and software information needed.

I wish to thank my family and my freinds. Especially thanks to my parents for their love and support all through my life.

Abstract

Fire is the main hazard that is enough to cause a huge damage, so fire safety is a system of work that is paramount system for different engineering works such as architecture, electrical and mechanical engineering. Fire fighting system is consider aims very effectively which could be implemented by; prevention to make sure fires don't start, precaution to minimise the damage from fire and procedures as an action to take in the event of fire. Different systems can be used to design a fire fighting system depend on the agent that uses in the system. In this thesis two different cases used to analysis three fire fighting systems; the first case is a production workshop, in this case compared between analytical calculation and software simulation of wet sprinkler system. In the second case FM-200 system and CO2 system applied separately in educational electronic lab using software simulations and compared between these two systems.

المستخلص

النيران من المخاطر الرئيسية التي تتسبب في أضرار وخيمة, لذا فإن نظام الحماية من الحريق يعتبر نظاما مهما لمختلف مجالات الهندسة مثل هندسة المعمار والهندسة الكهربائية والهندسة الميكانيكية. نظام مكافحة الحريق يراعي عمليا مجموعة أهداف مثل ؛ منع اندلاع النيران وتقليل الأضرار الناجمة عن النيران و عمل بعض الإجراءات في حال إندلاع النيران. هناك العديد من الأنظمة التي تستخدم في تصميم أنظمة مكافحة الحريق إعتمادا علي المادة العاملة المستخدمة في النظام. في هذه الأطروحة تم إستخدام حالتين مختلفتين لتحليل ثلاثة من أنظمة مكافحة الحريق; الحالة الأولي عبارة عن ورشة إنتاج, في هذه الحالة تم تطبيق نظام الرشاشات الرطب بإستخدام الطريقة التحليلية و برنامج المحاكاة وتمت المقارنة بينهما. أما الحالة الثانية فقد تم فيها تطبيق كل من نظام الهالون (200-FM) ونظام ثاني أكسيد الكربون منفصلين لمعمل إلكترونيات بإستخدام برنامج محاكاة لكل نظام وقد تمت المقارنة بين النظامين.

LIST OF CONTENTS

TITLE	PAGE
الآية	I
Dedication	II
Acknowledgements	Ш
Abstract	IV
المستخلص	${f V}$
List of contents	VI
List of tables	XIII
List of figures	XV
Abbreviations	XVII
List of appendices	XIX
CHAPTE ONE: INTRODUCTION	
1.1. Preface	2
1.2. Problem Definition	2
1.2. Purpose of the Thesis	3
1.3. Scope	3
1.4. Methodology	3

1.5.	Literatu	re Review	3
1.6.	Outline	of the Thesis	4
CHA	APTR T	TWO: FIRE SAFETY	
2.1.	The Fi	ire Triangle	6
2.2.	Fuel (Classifications	6
2.3.	Types	s of Fire Extinguishers	7
	2.3.1.	Water (APW) Fire Extinguishers	7
	2.3.2.	Carbon Dioxide Fire Extinguishers	8
	2.3.3.	Dry Chemical (ABC) Fire Extinguishers	8
CHA	APTR 7	THREE: SPRINKLER SYSTEM AND FM-200	
AGI	ENT SY	STEM	
3.1.	Backg	round	
3.2.	Sprink	tler System	11
	3.2.1	Definition of Sprinkler System	11
	3.2.2.	Types of Sprinkler Systems	12
		3.2.2.1. Antifreeze Sprinkler System	12
		3.2.2.2. Circulating Closed-Loop Sprinkler System	12
		3.2.2.3. Combined Dry Pipe-Pre action Sprinkler	
		System	12
		3.2.2.4. Deluge Sprinkler System	12
		3.2.2.5. Dry Pipe Sprinkler System	13
		3.2.2.6. Gridded Sprinkler System	13
		3.2.2.7. Looped Sprinkler System	13
		3.2.2.8. Pre action Sprinkler System	13
		3.2.2.9 Wet Pipe Sprinkler System	13

3.2.3.	System Components	14
	3.2.3.1. Branch Lines	14
	3.2.3.2. Cross Mains	14
	3.2.3.3. Feed Mains	14
	3.2.3.4. Flexible Listed Pipe Coupling	14
	3.2.3.5. System Riser	14
3.2.4.	Classification of Sprinklers	14
	3.2.4.1. Suppression Fast-Response (SFR) Sprinkler	14
	3.2.4.2. Extended Coverage Sprinkler	15
	3.2.4.3. Large Drop Sprinkler	15
	3.2.4.4. Nozzles	15
	3. 2.4.5. Old-Style/Conventional Sprinkler	15
	3. 2.4.6. Open Sprinkler	15
	3.2.4.7. Quick-Response Early Suppression (QRES)	
	Sprinkler	15
	3.2.4.8. Quick-Response Extended Coverage Sprinkler	15
	3.2.4.9. Quick-Response (QR) Sprinkler	15
	3.2.4.10. Residential Sprinkler	16
	3.2.4.11 Special Sprinkler	16
	3.2.4.12. Spray Sprinkler	16
	3.2.4.13. Standard Spray Sprinkler	16
	3.2.4.14. Concealed Sprinkler	16
	3.2.4.15. Flush Sprinkler	16
	3.2.4.16. Pendent Sprinkler	16
	3.2.4.17. Recessed Sprinkler	16
	3.2.4.18. Sidewall Sprinkler	16

3.2.4.19. Upright Sprinkler	17
3.2.5. Classification of Occupancies	17
3.2.5.1. Light Hazard Occupancies	17
3.2.5.2. Ordinary Hazard Occupancies	17
3.2.5.3. Extra Hazard Occupancies	18
3.2.6. Position, Location, Spacing, and Use of Sprinklers	18
3.2.6.1. General	18
3.2.6.2. Protection Areas per Sprinkler	18
3.2.6.3. Sprinkler Spacing	20
3.2.7. Design Area	22
3.2.8. Hydraulic Calculation Procedures	22
3.2.8.1. General	22
3.2.8.2. Friction Loss Formula	23
3.2.8.3. Equivalent Pipe Lengths of Valves and Fittings	23
3.2.9. Schedule for Light Hazard Occupancies	24
3.2.10. Schedule for Ordinary Hazard Occupancies	25
3.3. FM-200 Agent	
3.3.1. Definition	26
3.3.2. FM-200 Extinguishing Agent	26
3.3.2.1. Cleanliness	27
3.3.2.2. Physical Properties of FM-200 (HFC-227e	ea) 27
3.3.2.3. Fill Density	28
3.3.3. System Description	28
3.3.3.1. Operating Pressure	30
3.3.3.2. Operating Temperature Range Limitations	30
3.3.4. Component Descriptions	30
3.3.4.1. FM-200 Cylinder/Valve Assemblies	30

	•	3.3.4.2. Cylinder Mounting Bracket	32
	•	3.3.4.3. Fire trace Flexible Detector/Actuation Tubing	33
	•	3.3.4.4. Discharge Nozzles	33
	•	3.3.4.5. Pressure Switch	33
	•	3.3.4.6. Recharge Adapters, FM-200 Cylinder	34
	•	3.3.4.7. Cylinder Nitrogen Recharge Adapter	34
	•	3.3.4.8. Cylinder Hydrostatic Pressure Test Adapters	34
	•	3.3.4.9. FM-200 Warning Nameplate	34
	3.3.5. S	System Design and Limitation	34
	3	3.3.5.1. General	34
	3	3.3.5.2. Design Procedure	35
CH	APTR F	OUR: CALCULATION AND ANALYSIS	
4.1.	Calcul	ations of sprinkler system	42
	4.1.1.	Classification of Occupancies	42
	4.1.2.	Number of Sprinklers, and Spacing between	
		Sprinklers	42
	4.1.3.	Area Coverage per Sprinkler (Asp)	43
	4.1.4.	Selection of the Sprinklers Network	43
	4.1.5.	Selection of the Pipes Diameters	44
	4.1.6.	Designing Area	45
	4.1.7.	Calculation of GPM and Pressure	45
	4.1.8. Т	Tank Capacity	52
	4.1.9. S	Simulation	52

4.1.9.1 Simulation Results	54
4.1.10. Discussion	56
4.2. Calculations of FM-200 Agent System	56
4.2.1. Classification of Occupancies	56
4.2.2. Simulation	57
4.2.3. Simulation Results	58
4.2.4. Designed Dimensions of the Network	59
4.3. Calculations of CO2 Agent System	59
4.3.1. Classification of Occupancies	59
4.3.2. System Design	60
4.3.2.1. Simulation	60
4.3.2.2. Simulation Results	60
4.4. The results Analysis	61
CHAPTR FIVE: CONCLUSION AND RECOMMEN	DATION
5.1. Conclusion	63
5.2. Recommendation	64
REFERENCES	65
APPENDIX	66

LIST OF TABLES

TABLE	NO. PAGE N	Ю.
3-1	Protection Area Limitation per Sprinkler	19
3-2-a	Protection Areas and Maximum Spacing (Standard	
	Spray Upright/Standard Spray Pendent) for Light Hazard	20
3-2-b	Protection Areas and Maximum Spacing (Standard Spray	
	Upright/Standard Spray Pendent) for Ordinary Hazard	20
3-2-c	Protection Areas and Maximum Spacing (Standard	
	Spray Upright/Standard Spray Pendent) for Extra Hazard	21
3-3	Equivalent Schedule 40 Steel Pipe Length	24
3-4	Light Hazard Pipe Schedule	25
3-5	Ordinary Hazard Pipe Schedule	26
3-6	Cylinder Assemblies	31
3-7	DOT Specifications Used for the Manufacture of the	
	FM-200 Cylinders	31
3-8	Cylinder Gauge, Pressure-Temperature Relationship	32
3-9	Enclosure Size Limitation	35
3-10-a	The Minimum Safety Factor Required for the Hazard	36
3-10-b	The Minimum Design Concentration Required	36
3-11	Total Flooding Quantity	37
3-12-a	Maximum Volume That Can Be Protected By 3 Lb. Unit	38
3-12-b	Maximum Volume That Can Be Protected By 6 Lb. Unit	38
3-12-c	Maximum Volume That Can Be Protected By 12 Lb. Unit	t 39

3-13	Maximum Nozzle Limitation	39
3-14	Maximum Tubing and Fitting Limitation	40
4-1	Comparing between Analytical Results and	
	Simulation Results	56
4-2	Input Parameter	57

LIST OF FIGURES

FIGURE NO	O. PAGE N	NO.
3-1	Area/Density Curves	22
3-2	Isometric Diagram of FM-200	28
4-1	Geometric dimension of the workshop	42
4-2	Selected Spacing between Sprinklers	43
4-3	Sprinklers Network Using the Tree Network System	44
4-4	Selected Diameters of Pipes	44
4-5	Positions of the Sprinklers inside the Design Area	46
4-6	Designed Diameters of Pipes	52
4-7	General Project Data	53
4-8	Edit Pipe Data	53
4-9	Edit Pipe Node Data	54
4-10	Simulation Results of Elite Program	55
4-11	Demand Graph of the Hydraulic Supply	55
4-12	Geometric Dimension of the Lab	57
4-13	Calculation Program of Plumbing and Firefighting	
	Calculations for Fm-200 Agent	58

4-14	Calculation Results for Fm-200 System	58
4-15	Designed Fm-200 Network of the Case	59
4-16	Calculation Program of Plumbing and Firefighting	
	Calculations for CO2 Agent	60
4-17	Calculation Results for CO ₂ System	61

ABBREVIATIONS

APW Air-Pressurized Water

A_s Area of coverage per sprinkler

C Friction loss coefficient

CO2 Carbon dioxide

d Actual internal diameter of pipe in inches

D_d Designing density

FM Factory Mutual research global

GPM Gallon per minute

HFCs Hydro fluoro Carbons

k Nozzle Factor

L Larger distance between sprinklers

NFPA National Fire Protection Association

ODP Ozone Depletion Potential

p Frictional resistance in psi per foot of pipe

P_{drop} Pressure drop

P_{st} Pressure at the Farther Sprinkler Head

Q Flow in gpm

QR Quick-Response Sprinkler

QRES Quick-Response Early Suppression Sprinkler

Qst Discharge at the farther sprinkler head

S Shorter distance between sprinklers

SFR Fast Response Sprinkler

UL Underwriters Laboratories

ULC Underwriters' Laboratories of Canada