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Abstract: 

 

  Several new techniques are developed within the previous couple of 
years that convalesce results on special filters by take away the noise 
additional with success whereas protective the sides within the 
information .Image de-noising plays an important role in satellite 
communication and signal processing applications. In this research  , I 
suggest   an median filter ,NLmeansfilter ,Total Variation (TV) ,Hybrid 
Median Filtering (hmedian), Speckle Reducing Anisotropic Diffusion 
Filtering (srad) and Bilateral Filter and adaptive discreet wavelet     
technique for image de-noising. The noisy image is passed through One 
level discrete wavelet transform is applied , which is passed through 
post-processing hybrid median filter to remove noise in high-high 
coefficients . Finally, The Inverse discrete wavelet transform is applied to 
reconstruct the image. . 

The Image quality is measured  to reconstruct  image . I  have a tendency 
to take PSNR ,SNR ,RMES  and MSE as a potency issue to envision the 
effectiveness of planned de-noising formula. 
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  المستخلص :

 مرشحاتب لأجل تنقیة الصور  الماضیة القلیلة الأعوام في الجدیدة التقنیات من العدید تطویرتم 
تم  البحث، ھذا في. بمعلومات الصور  الاحتفاظ في النجاح زالة التشویش معوذلك لإ خاصة

  اختیار تطبیق المرشحات التالیة :

 NLmeansfilter ,Total Variation (TV) ,Hybrid Median Filtering 
(hmedian), Speckle Reducing Anisotropic Diffusion(srad) Filtering  و 

Bilateral   وبعد ذلك استخدام .discreet wavelet        تمریر یتم. لأجل تنقیة الصور 
لي تفكیك  المنفصلة  المویجاتیل من تحو واحد مستوى تطبیق خلال من المشوشة صورة

علي  مرشح  تمریر الجزء  ذو الترددات العالیة من الصورة المفككة   یتم الصورة وبعد ذلك
Hybrid Median المنفصلة المویجات تحویل معكوس تطبیق یتم وأخیرا،. الضجیج لإزالة 

  . صورة بناء لإعادة

 ،PSNR، SNR وذلك عن طریق قیاس  .للصورة المرشحة   الصورة جودة قیاس تمو 
RMES وMSE   للتأكد من فعالیة الطرق المستخدمة لإزالة التشویش. 
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 1.1 Introduction:   

Today medical imaging technology provides the clinician with a number 
of complementary fast, flexible, and precise diagnostic tools such as X-
ray, Computed Tomography (CT) and Magnetic Resonance Imaging 
(MRI) images. MRI, CT scan and X-ray are the most methodologies 
widely used to visualize human anatomy. Medical images often need 
preprocessing before being subjected to statistical analysis. A common 
preprocessing step is filtering. study spatial domain and transformed 
domain filtering techniques to solve the noisy problem. Image de-noising 
is an vital image processing task i.e. as a process itself as well as a comp- 
-onent in other processes. There are many ways to de-noise an image or a 
set of data and methods exists. The important property of a good image 
de-noising model is that it should completely remove noise as far as 
possible as well as preserve edges. Traditionally, there are two types of 
models i.e. linear model and non-liner model. Generally, linear models 
are used. The benefits of linear noise removing models is the speed and 
the limitations of the linear models is, the models are not able to preserve 
edges of the images in a efficient manner i.e the edges, which are recog- 
-nized as discontinuities in the image, are smeared out. On the other 
Hand, Non-linear models can handle edges in a much better way than 
linear models. [1] 

 
Magnetic resonance imaging (MRI) provides detailed images of living 
tissues, and is used for both brain and body human studies. Data obtained 
from MR images is used for detecting tissue deformities such as cancers 
and injuries .MRI imaging is also used when treating brain tumor, ankle 
and foot. From these high-resolution images, we can derive detailed 
anatomical information to examine human brain development and disc -
over abnormalities. MRI consists of T1 weighted, T2 weighted and PD 
(Proton Density) weighted images . To give proper diagnosis and good 
results, doctors are provided with the different results of enhanced 
images. Enhancement is a fundamental task in digital image processing 
and analysis, aiming to improve the appearance of image in terms of 
human brightness perception.[2]  

 
Digital image plays an important role in our daily life but, they usually 
suffer from the poor quality of the image, generally with lack of contrast, 
presence of artifact, blurring, noise and shading due to improper focusing 
of camera lens, lighting and other factors. Hence we have to improve the 
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quality of the image for proper analysis which can be done by image 
enhancement .Noise is defined as, pixel in the image show different 
intensity value instead of true value of pixels or noise is an unwanted 
signal that interferes with original image and degrades the quality of the 
image. Noise causes the random variations of image intensity and poor 
visibility of pixel. De-noising is a process of removing noise from the 
image. Image de-noising is not an easy task because it introduces blurring 
and artifacts in image. There are different types of de-noising technique 
and their application depends upon type of noise present in the image. 
Image de-noising technique classified into two categories. i.e., Spatial 
domain filtering where pixels are operated directly and Transform 
domain where transfornations  are used to de-noise the image.[3] 

1.2 Statement of Problem: 
The medical images is the most importance tool for  the doctors to 
diagnostic disease ,and the decision of them dependent on the images  . 
any problem in image like blurring ,  little of     illumination or  
inappropriate size me be  lead to bed image or nosing images .The most 
problem facing the medical  images is the distortion , Especially magnetic 
reasoning  images (MRI ).this research is focused on application of digital 
possessing  image tools  & filters teachings to enhancement  images .  

1.3 Objectives : 
 

I propose to  review the available literature about  enhancement imaging . 
In this review I will achieve the following two goals: 

 

1- To evaluate the potentiality of using filters technique & image 
possessing tool for enhancement  MRI   . 

2- Propose new   appropriate technique  to selected  & enhancement 
image . 
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1.4 thesis layout: 

the research is document in six chapters: 

 

Chapter one :  Introduction 

Chapter two:  literature review   

Chapter three : Theoretical back ground 

Chapter four : Methodology 

Chapter five : Result and discussions  

Chapter six  :  Conclusion and Recommendation 
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2.1 Image Enhancement: 

Image enhancement, which is one of the significant techniques in digital 
image processing, plays an important role in many fields, such as medical 
image analysis, remote sensing, high definition television, hyper spectral 
image processing, industrial X-ray image processing, microscopic 
imaging etc. Image enhancement is a processing on image in order to 
make it more appropriate for certain applications. [4] 

The principal objective of enhancement is to process an image so that the 

result is more suitable than the original image for a specific application. 

[5] 

 

2.2 review studies : 
 

P.Deepa1 and M.Suganthi2 1 proposed [1] :Visual information 
transmitted in the form of digital image is becoming a major method for 
communication in modern age but the image obtained after transmission 
is often corrupted with noise. Removing noise from the original images is 
still a challenging problem for researchers. There have been several 
published algorithms and each approach has it assumption, advantages 
and limitation. This paper presents a review of some significant work in 
the area of image de-noising filtering techniques applied to medical 
image. The performance of these techniques investigated the problem of 
image degradation which might occur during the acquisition of the 
images, optical effects such as out of focus blurring, camera motion, flat-
bed scanner and video images. We touch the images of Computed 
Tomography (CT) with a set of predefined noise levels. The performance 
of these techniques was evaluated with respect to two quantitative 
measures, Peak Signal-to-Noise Ratio (PSNR), and Mean Square 
Error(MSE).[1] 

Pratik Vinayak Oak1 proposed [2]: MRI is an advanced medical imaging 
technique used to produce high quality images of human body and 
different parts. It gives detail information to analyses the diseases. 
Medical image processing plays important role to give information in 



18 
 

more extent for such advance images. Original MRI images are generally 
having low contrast. It is  difficult for doctors to analyses them. By 
increasing the contrast of an image, it will be easy for analyzing because 
of detailed information. This increase in contrast can be done by number 
of ways in image processing. This paper compares different methods of 
enhancement of brain MRI using histogram based techniques.[2]  
 
 Sonia Goyal  and Seema Baghla proposed [6]: Medical imaging is one of 
the most important application areas of digital image processing. 
Processing of various medical images is very much helpful to visualize 
and extract more details from the image. Many techniques are available 
for enhancing the quality of medical image. For enhancement of medical 
images, Contrast Enhancement is one of the most acceptable methods. 
Different contrast enhancement techniques i.e. Linear Stretch, Histogram 
Equalization, Region based enhancement, Adaptive enhancement are 
already available. Choice of Method depends on characteristics of image. 
This paper deals with contrast enhancement of MRI images and presents 
here a new approach for contrast enhancement based upon Adaptive 
Neighborhood technique. A hybrid methodology for enhancement has 
been presented. Comparative analysis of proposed technique against the 
existing major contrast enhancement techniques has been performed and 
results of proposed technique are promising.[6] 
 

Rajulath Banu and Dr. A. Ranjith Ram proposed [7]:  In this paper, we 
study and compare various histogram based Magnetic Resonance 
Imaging(MRI) enhancement techniques .Image enhancement is a 
processing on an image in order to make it more appropriate for certain 
applications. It is used to improve the visual effects and the clarity of 
image or to make the original image more conducive for computer to 
process. Contrast enhancement changing the pixels intensity of the input 
image to utilize maximum possible bins. We need to study and review the 
different image contrast enhancement techniques because contrast losses 
the brightness in enhancement of image. By considering this fact, the 
mixture of global and local contrast enhancement techniques may 
enhance the contrast of image with preserving its brightness. Generally, 
MRI images are having low contrast. It may be difficult for analysing 
because of lack of detailed information. Contrast of MR images can be 
increased by number of ways in image processing. Histogram based 
techniques are used to enhance all types of medical images .[7] 
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Prof. J.Mehena proposed [8] Medical images edge detection is an 
important work for object recognition of the human organs and it is an 
important pre-processing step in medical image segmentation and 
reconstruction. Conventionally, edge is detected according to gradient-
based algorithm and template-based algorithm, but they are not so good 
for noise medical image edge detection. In this paper, basic mathematical 
morphological theory and operations are introduced, and then a novel 
mathematical morphological edge detection algorithm is proposed to 
detect the edge of medical images with salt-and-pepper noise. The 
simulation results shows that the novel mathematical morphological edge 
detection algorithm is more efficient for image denoising and edge 
detection than the usually used template-based edge detection algorithms 
and general morphological edge detection algorithms. It has been 
observed that the proposed morphological edge detection algorithm 
performs better than sobel, prewitt, roberts and canny’s edge detection 
algorithm. In this paper the comparative analysis of various image edge 
detection techniques is presented using MATLAB 8.0 .[8] 
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3.1 MRI:  

Magnetic resonance imaging (MRI) is a spectroscopic imaging technique 
used in medical settings to produce images of the inside of the human 
body.  MRI is based on the principles of nuclear magnetic resonance 
(NMR), which is a spectroscopic technique used to obtain microscopic 
chemical and physical data.[9]. 

about molecules 

3.1.1 The magnetism of the body:  

Equipped with a level of understanding of how magnet needles with and 
without spin are affected by radio waves, we now turn to the “compass 
needles” in our very own bodies.[10] 

 • Most frequently, the MR signal is derived from hydrogen nuclei 
(meaning the atomic nuclei in the hydrogen atoms). Most of the body’s 
hydrogen is found in the water molecules. Few other nuclei are used for 
MR. [10] 

• Hydrogen nuclei (also called protons) behave as small compass needles 
that align themselves parallel to the field. This is caused by an intrinsic 
property called nuclear spin (the nuclei each rotate as shown in figure 3). 
By the “direction of the nuclear spins” we mean the axis of rotation and 
hence the direction of the individual “compass needles”.[10] 

 • The compass needles (the spins) are aligned in the field, but due to 
movements and nuclear interactions in the soup, the alignment only 
happens partially,  very little, actually. There is only a weak tendency for 
the spins to point along the field. The interactions affect the nuclei more 
than the field we put on, so the nuclear spins are still largely pointing 
randomly, even after the patient has been put in the scanner. An analogy: 
If you leave a bunch of compasses resting, they will all eventually point 
towards north. However, if you instead put them into a running tumble 
dryer, they will point in all directions, and the directions of individual 
compasses will change often, but there will still be a weak tendency for 
them to point towards north. In the same manner, the nuclei in the body 
move among each other and often collide, as expressed by the 
temperature. At body temperature there is only a weak tendency for the 
nuclei to point towards the scanners north direction. Together, the many 
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nuclei form a total magnetization (compass needle) called the net 
magnetization. It is found, in principle, by combining all the many 
contributions to the magnetization, putting arrows one after another. If an 
equal number of arrows point in all directions, the net magnetization will 
thus be zero. Since it is generally the sum of many contributions that 
swing in synchrony as compass needles, the net magnetization itself 
swings as a compass needle. It is therefore adequate to keep track of the 
net magnetization rather than each individual contribution to it. As 
mentioned above, the nuclei in the body move among each other (thermal 
motion) and the net magnetization in equilibrium is thus temperature 
dependent. Interaction between neighboring nuclei obviously happens 
often in liquids, but they are quite weak due to the small magnetization of 
the nuclei. Depending on the character and frequency of the interaction, 
the nuclei precess relatively undisturbed over periods of, for example, 
100 ms duration. At any time, there is a certain probability that a nucleus 
takes part in a dramatic clash with other nuclei, and thus will point in a 
new direction, but this happens rather infrequently. The net magnetization 
is equivalent to only around 3 per million nuclear spins oriented along the 
direction of the field (3 ppm at 1 tesla). This means that the magnetization 
of a million partially aligned hydrogen nuclei in the scanner equals a total 
magnetization of only 3 completely aligned nuclei With the gigantic 
number of hydrogen nuclei (about 1027) found in the body, the net 
magnetization still becomes measurable. It is proportional to the field: A 
large field produces a high degree of alignment and thus a large 
magnetization and better signal-tonoise ratio.[10] 

 • If the net magnetization has been brought away from equilibrium, so it 
no longer points along the magnetic field, it will subsequently precess 
around the field with a frequency of 42 million rotations/second at 1 tesla 
(42 MHz, megahertz). This is illustrated in figure 4. Eventually it will 
return to equilibrium (relaxation), but it takes a relatively long time on 
this timescale (e.g. 100 ms as described above). Meanwhile, radio waves 
at this frequency are emitted from the body. We measure and analyze 
those. Notice: The position of the nuclei in the body does not change - 
only their axis of rotation. [10] 

• The precession frequency is known as the Larmor frequency in the MR 
community. The Larmor equation expresses a connection between the 
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resonance frequency and the magnetic field, and it is said to be the most 
important equation in MR: f = γB0 The equation tells us that the 
frequency f is proportional to the magnetic field, B0. The proportionality 
factor is 42 MHz/T for protons. It is called “the gyromagnetic ratio” or 
simply “gamma”. Thus, the resonance frequency for protons in a 1.5 tesla 
scanner is 63 MHz, for example. The Larmor equation is mainly 
important for MR since it expresses the possibility of designing 
techniques based on the frequency differences observed in 
inhomogeneous fields. Examples of such techniques are imaging, motion 
encoding and spectroscopy .But how is the magnetization rotated away 
from its starting point? It happens by applying radio waves at the above 
mentioned frequency. Radio waves are magnetic fields that change 
direction in time. The powerful stationary field pushes the magnetization 
so that it processes. Likewise the radio waves push the magnetization 
around the radio wave field, but since the radio wave field is many 
thousand times weaker than the static field, the pushes normally amount 
to nothing. Because of this, we will exploit a resonance phenomenon: By 
affecting a system rhythmically at an appropriate frequency (the systems 
resonance frequency), a large effect can be achieved even if the force is 
relatively weak. A well-known example: Pushing a child sitting on a 
swing. If we push in synchrony with the swing rhythm, we can achieve 
considerable effect through a series of rather weak pushes. If, on the other 
hand, we push against the rhythm (too often or too rarely) we achieve 
very little, even after many pushes. With radio waves at an appropriate 
frequency (a resonant radio wave field), we can slowly rotate the 
magnetization away from equilibrium. “Slowly” here means about one 
millisecond for a 90 degree turn, which is a relatively long time as the 
magnetization processes 42 million turns per second at 1 tesla (the 
magnetization rotates 42 thousand full turns in the time it takes to carry 
out a 90 degree turn, i.e., quite a lot faster). Figure 6 is a single scene 
from an animation found at http://www.drcmr.dk/MR that shows how a 
collection of nuclei each processing around both B0 and a rotating radio 
wave field as described earlier, together form a net magnetization that 
likewise moves as described. The strength of the radio waves that are 
emitted from the body depends on the size of the net magnetization and 
on the orientation. The greater the oscillations of the net magnetization, 
the more powerful the emitted radio waves will be. The signal strength is 
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proportional to the component of the magnetization, that is perpendicular 
to the magnetic field (the transversal magnetization), while the parallel 
component does not contribute (known as the longitudinal 
magnetization). In figure 4, the size of the transversal magnetization is 
the circle radius. If the net magnetization points along the magnetic field 
(as in equilibrium, to give an example) no measurable radio waves are 
emitted, even if the nuclei do process individually. This is because the 
radio wave signals from the individual nuclei are not in phase, meaning 
that they do not oscillate in synchrony perpendicular to the field. The 
contributions thereby cancel in accordance with the net magnetization 
being stationary along the B0-field (there is no transversal 
magnetization). [10] 

• The frequency of the radio waves is in the FM-band so if the door to a 
scanner room is open, you will see TV and radio communication as 
artifacts in the images. At lower frequencies we find line frequencies and 
AM radio. At higher frequencies, we find more TV, mobile phones and 
(far higher) light, X-ray and gamma radiation. From ultra-violet light and 
upwards, the radiation becomes “ionizing”, meaning that it has sufficient 
energy to break molecules into pieces. MR scanning uses radio waves 
very far from such energies. Heating, however, is unavoidable, but does 
not surpass what the body is used to.[10] 

 

Figure(3. 1): The spin of the nuclei (rotation) makes them magnetic 
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Figure (3.2): A magnetization M that process around the magnetic field 
B0 because of spin (rotation around M). 

 

Figure (3.3): The figure shows the same situations in two and three 
dimensions (top and bottom, respectively). 
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The nuclear spins are shown as numerous arrows (vectors). In the lower 
graphs, they are all drawn as beginning in the same point, so that the 
distribution over directions is clear (implicit coordinate system 
(Mx,My,Mz)). When a patient arrives in the ward, the situation is as 
shown in the two graphs to the left: The spins are oriented randomly, with 
a uniform distribution over directions, meaning that there is about an 
equal number of spins pointing in all directions. The net magnetization is 
near zero and the nuclei do not process. When a magnetic field B0 is 
added, as shown in the two figures to the right, a degree of alignment 
(order) is established. The field is only shown explicitly in the top right 
figure, but the effect is visible in both: The direction distribution becomes 
“skewed” so that a majority of the nuclei point along the field. In the 
lower right figure, the net magnetization (thick vertical arrow) and the 
precession (the rotation of the entire ball caused by the magnetic field) 
are shown. The lower figures appear in the article Is Quantum Mechanics 
necessary for understanding Magnetic Resonance? Concepts in Magnetic 
Resonance Part A, 32A (5), 2008.[10] 

 

Figure (3.4): Scene from animation found at http://www.drcmr.dk/MR  

that shows how radio waves affect a collection of nuclear spins 
processing around B0 (vertical axis) at the Larmor frequency. The radio 
wave field that rotates around the same axis at the same frequency, 
induces simultaneous rotation around a horizontal axis, as symbolized by 
the circular arrow. The relative orientation of the nuclei does not change, 
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and it is therefore adequate to realize how the net magnetization (here 
shown by a thick arrow) is affected by the magnetic field.[10] 

 

3.1.2Weightings:  

The contrast in an MR-image is controlled by the choice of measuring 
method (sequence and sequence parameters, which will be discussed 
later). For example, we call an image T2-weighted if the acquisition 
parameters are chosen so the image contrast mainly reflect T2-variations. 
One must understand, however, that even in a heavily T2-weighted 
image, the contrast will often reflect more than just T2-variation. To 
provide an example, variation in water content always results in some 
contrast. The echo time, TE, is the period from we rotate the 
magnetization into the transversal plane until we decide to measure the 
radio waves (a more precise definition will follow later). Meanwhile, a 
loss of magnetization and signal will occur due to T2-relaxation. The 
echo time is thus the period within the measurement which gives T2-
weighting in the images. A long TE compared to T2 will thus result in 
considerable T2-contrast, but only little signal. The greatest sensitivity to 
T2-variation will be achieved when TE 'T2. Often, we will repeat similar 
measurements several times, e.g. once per line in an image. The repetition 
-time, TR, is the time between these repetitions. Every time we make 
such a measurement, we (partially) use the longitudinal magnetization 
present (the magnetization is rotated into the transversal plane which 
results in emission of radio waves while the transversal component 
gradually disappears). If we use the magnetization often (short TR), every 
repeat will therefore only produce a small signal. If we, on the other hand, 
wait longer between repetitions (long TR), the magnetization will nearly 
recover to equilibrium between repetitions. What is meant by short and 
long TR? It is relative to T1 that is the time scale on which the 
longitudinal magnetization is rebuilt. If the magnetization is completely 
rebuilt between measurements for all types of tissue in the scanner, 
meaning if TR is significantly longer than the maximum T1, the T1-
contrast will disappear. In this case, the transversal magnetization 
immediately following the  rotation of the nuclei reflects the equilibrium 
magnetization. The radio waves do so, as well. The equilibrium 
magnetization is governed by the hydrogen concentration, also known as 
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the proton density (PD). Thus, we may conclude that using a long TR 
results in limited T1-weighting but a strong signal. If we apply a shorter 
TR, the signal is reduced for all types of tissue, but the signal becomes 
more T1-weighted, meaning that the images will be less intense, but with 
a relatively greater signal variation between tissues with differing T1. 
Finally, we can minimize both T1- and T2-contrast, which results in a 
PD-weighted image. In such an image, variation in the water content is 
the primary source of contrast, since the proton density is the density of 
MR-visible hydrogen that is largely proportional to the water content.[10] 

3.1.3 imaging :  

The most obvious methods for MR imaging could be imagined to be 
projection or the usage of antennas that can detect where in the body the 
radio waves are emitted. X-ray and normal microscopy are examples of 
such “optical” techniques, and it would appear obvious to extend this type 
of imaging to MR. Optical techniques are, however, “wavelength-
limited”, which means that they cannot be used to acquire images more 
detailed than approximately one wavelength. In other words: Due to 
fundamental causes, one cannot localize the source of radio waves more 
precisely than about one wavelength when using lenses or other direction-
sensitive antennas. The radio waves used in MR scanning are typically 
several meters long, so with optical techniques we can hardly determine 
whether the patient is in or outside the scanner (this argument is really 
only valid in the far field, which is the background for parallel imaging. 
More on this later). Optical techniques as we know them from binoculars, 
eyesight, CT, X-ray, ultrasound and microscopes, are thus practically 
useless for MR-imaging, and a fundamentally different principle is 
necessary. This principle was introduced by Paul Lauterbur in 1973, and 
it resulted in the Nobel Prize in Medicine in 2003. Basically, Lauterbur 
made the protons give their own locations away by making the frequency 
of the emitted radio waves reflect the position. Lauterbur shared the prize 
with Sir Peter Mansfield, who also contributed greatly to the development 
of techniques used in magnetic resonance imaging (MRI).[10] 

3.1.4 Principles:  

A requirement for MR imaging is that the scanner is equipped with extra 
electromagnets called “gradient coils” that cause linear field variations. 
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Direction and strength can be altered as desired. The spatial localization 
occurs according to different principles, of which the most simple is slice 
selection. Other forms of coding involve the so-called k-space.[10] 

3.1.5 Slice selection : 

By using gradient coils, the magnetic field strength can be controlled so 
that it, for example, increases from left to right ear, while the direction is 
the same everywhere (along the body). This is called a field gradient from 
left to right. By making the field inhomogeneous in this way, the 
resonance frequency varies in the direction of the field gradient. If we 
then push the protons with radio waves at a certain frequency, the 
resonance condition will be fulfilled in a plane perpendicular to the 
gradient as shown in figure 7. The spins in the plane have thus been 
rotated significantly, while spins in other positions simply vibrate 
slightly. Thus we have achieved slice selective excitation of the protons 
and a sagittal slice has been chosen.[10] 

 

Figure (3.5): Spin is influenced selectively in a sagital slice, if a gradient 
from left to right is applied while radio waves are transmitted.  

3.1.6 Spatial localization within a slice: 

 After the protons in a slice are excited, they will all emit radio waves. In 
order to create images of the slice, we must introduce a way to distinguish 
the signals from different positions within the slice. The fundamental 
principle can appear a bit foreign, but will be explained in detail at a later 
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stage. Briefly told, different patterns in the magnetization throughout the 
slice are created with the help of gradients. The strength of the radio 
signals that are returned tell us how much the object in the scanner “looks 
like” the applied pattern. By combining patterns according to their 
measured similarity to the object, the well-know MR-images are created. 
What is meant by “patterns” is first illustrated in one dimension, meaning 
that we consider spins placed on a line (e.g. between the ears) and watch 
their location and direction immediately after excitation.[10] 

As illustrated, immediately after excitation the spins all point in the same 
direction perpendicular to the magnetic field, which points out of the 
paper. They will thereafter process around the magnetic field, that is, they 
will rotate in the plane of the paper at a frequency that is dependent on 
the magnetic field. Insofar as the field is made to increase from left to 
right by applying a field gradient briefly, the spins will each turn an angle 
that depends linearly on the nucleus’ position: [10] 

the object, the magnetization has rotated several turns. The longer time a 
gradient is turned on, and the greater the field variation that arises, the 
more “phase roll” is accumulated (more rotations per unit length). We 
have through use of gradients, made the spins point in all directions in a 
controlled fashion and have thus simultaneously lost the signal. This is 
seen by comparing the two situations above, since the measured 
magnetization is the sum of all the contributions from the individual 
spins. When the spins are in phase (that is, pointing in the same 
direction), they jointly create a considerable magnetization that gives rise 
to radio waves being emitted. When the spins point in all directions as 
when a gradient has been applied, their sum is quite small. As a result, 
comparably weak radio waves are emitted. The gain from using the 
gradient can thus appear quite small: We have simply lost the signal. That 
does not, however, have to be the case. Look, for example, at the situation 
illustrated below where there are not (as above) protons uniformly 
distributed from left to right, but where there is a regular variation in 
water content instead.[10] 

3.1.7 Image acquisition and echo-time: 

the echo time was described as the duration from excitation until the point 
where radio waves are measured. Since the transversal magnetization in 
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this period is lost on a timescale of T2 (or T * 2 , if a refocusing pulse is 
not used), the echo time TE is thus determining the corresponding 
relaxation time weighting of the measurement. After the introduction of 
imaging, we now need to reconsider the definition of echo time, since 
several positions in k-space are typically being measured after each 
excitation. A typical approach to imaging is, for example, to measure 
individual points along a line in k-space one by one after each excitation. 
The single points (corresponding to different stripe patterns) are 
consequently not measured at the same time after excitation, and the 
echo-time definition has therefore become blurry. For echo-planar 
imaging (EPI), this problem is extreme, since the entire image is 
measured after a single excitation, meaning that some points in k-space 
are measured milliseconds after excitation, while others are measured, for 
example, 100 ms later and thus with a completely different T2 weighting. 
Is the possibility to characterize T2-weighting by a single parameter 
therefore lost? No! It turns out that the echo-time definition can be 
adjusted, so that it still can be interpreted as above. A surprising 
characteristic comes into play here: Even though parts of k-space are 
acquired shortly after excitation and other parts a long time after, the 
reconstructed image looks (contrast-wise) as if it has been acquired at a 
very certain time after excitation, that being the time where the middle of 
k-space has been acquired. As such, it makes good sense to define the 
echo-time as the duration from excitation until the time where the middle 
of k-space is measured[10] 

 

3.2 filters and noise : 

 

The term spatial domain refers to the image plane itself, and methods in 
this category are based on direct manipulation of pixels in an image. [5] 
 
As noted in the preceding paragraph, spatial domain techniques operate 
directly on the pixels of an image. The spatial domain processes  are 
denoted by the expression:[5] 
 
        g(x,y)=T[ƒ(x,y)]                                                ……………… (3.1) 
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where f(x, y) is the input image, g(x, y) is the output (processed) image, 
and T is an operator on f defined over a specified neighborhood about 
point (x, y). In addition, T can operate on a set of images, such as 
performing the addition of K images for noise reduction.[5] 
 
3.2.1 Spatial Filtering: 
 
This refers to an image operators that change the gray value at any pixel 
(x,y) depending on the pixel value in a square neighborhood centered at 
(x,y) using a fixed integer matrix of the same size. The integer matrix is 
called a filter, mask, kernel or a window. The mechanism of special 
filtering consists simply of moving the filter mask from pixel to pixel in 
an image. At each pixel (x,y), the response of the filter at 
that pixel is calculated using a predefined relationship (linear or 
nonlinear). The size of mask must be odd (i.e. 3x3, 5x5, e.t.c.) to ensure it 
has a center. The smallest meaningful size is 3x3 . The figure below 
shows the spatial filter mask .[11] 
 

 
Figure (3.6): show Spatial Filtering 
 
3.2.1.1 Linear Spatial filtering (Convolution):  
 
The process consists of moving the filter mask from pixel to pixel in an 
image. At each pixel (x,y), the response is given by a sum of products of 
the filter coefficients and the corresponding image pixels in the area 
spanned by the filter mask. For the 3x3 mask as shown in figure 3, the 
result (or response), R of linear filtering [11]. 
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R= w(-1,-1)f(x-1,y-1)+w(-1,0)f(x-1,y)+….+w(0,0)f(x,y)+…+ 
w(1,0)f(x+1,y)+w(1,1)f(x+1,y+1) 
 
In general, linear filtering of image f of size MxN with a filter mask of 
size mxn is given by the expression . 
   
 
g(x, y) = ∑ୟୱୀିୟ ∑ w(s, t)f(x + s, y + t)ୠ

୲ୀିୠ       ……………… (3.2). 
 
   
Where a = (m-1)/2 and b = (n-1)/2 [8]. To generate a complete filtered 
image, this equation must be applied for 
x=0,1,2,……..M-1 and y =0,1,….,N-1 [11]. 
 
3.2.1.2 Nonlinear Spatial filtering: 
 
The operation also consists of moving the filter mask from pixel to pixel 
in an image. The filtering operation is based conditionally on the values 
of the pixels in the neighborhood, and they do not explicitly use 
coefficients in the sum-of –products manner. For example, noise 
reduction can be achieved effectively with a nonlinear filter whose basic 
function is to compute the median gray-level value in the neighborhood 
in which the filter is located computation of the median is a nonlinear 
operation .[11]  
 
 
 
3.2.2.Smoothing Spatial Filters: 
 
Smoothing filters are used for blurring and noise reduction. Blurring is 
used preprocessing tasks such as removal of small details from an image 
prior to (large) object extraction, and bridging of small gaps in lines or 
curves. Noise reduction can 
be accomplished by blurring with a linear filter and also by nonlinear 
filtering .[2]  
 
3.2.2.1Smoothing Linear Filters: 
 
The output (response) of smoothing, linear filter is simply the average of 
the pixels contained in the neighborhood of the filter mask. These filters 
sometimes are called averaging filters. Also, they are also referred to as 
low-pass filters .Noise and edges consist of sharp transitions in gray-
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levels. Thus smoothing filters are used for noise reduction; however, they 
have the undesirable side effect that they blur edges. The 
two figures below shows two 3x3 averaging filters .[11] 
 

 
 
Figure (3.7): show Two 3 x 3 smoothing (averaging) filter masks [11]. 
 
 
The Averaging linear filtering of an image f of size MxN with a filter 
mask of size mxn is given by the expression [11]; 
 
 
 
 
୥(୶,୷)ୀ ∑౗౩సష౗ ∑ ୵(ୱ,୲)୤(୶ାୱ,୷ା୲)ౘ

౪సషౘ
∑౗౩సష౗ ∑ ୵(ୱ,୲)ౘ

౪సషౘ
                              ……………. (3.3) 

 
 
 
 
 
To generate a complete filtered image, this equation must be applied for x 
= 0,1,2,…,M-1 and y=0,1,2,….N-1 .The denominator in the above 
equation is simply the sum of the mask coefficients and, therefore, it is a 
constant that needs to be computed only once .The following figure 
below shows an example of applying standard average filter [11]. 
 
3.2.3  Order-Statistics (Nonlinear filters): 
 
Order-statistic filters are nonlinear spatial filters whose response is based 
on ordering (ranking) the pixels contained in the image area encompassed 
by the filter, and then replacing the value of the center pixel with the 
value determined by the ranking result. The best known filter in this 
category is the median filter, which as its name implies, replaces the 
value of a pixel by the median of the intensity values in the neighborhood 
of that pixel (the original value of the pixel is included in the computation 
of the median). Median filters are quite popular because, for certain types 
of random noise, they provide excellent noise reduction capabilities, with 
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considerably less blurring than linear smoothing filters of similar size. 
Median filters are particularly effective in the presence of impulse noise, 
called salt-and-pepper noise because of its appearance as white and black 
dots superimposed on an image [11]. 
 
3.2.4. Sharpening Spatial Filters: 
 
Sharpening aims to highlight fine details (e.g. edge) in an image, or 
enhance detail that has been blurred through errors or imperfect capturing 
devices. Imaging blurring can be achieved using averaging filters, and 
hence sharpening can be achieved by operators that invert averaging 
operators[11]. 
 
 
 
3.2. 4.1 Partial Derivatives of Digital Functions: 
 
The first order partial derivatives of the digital image f(x,y) is 
 
 
ப୤
ப୶

= f(x + 1, y)− f(x, y)  &  ப୤
ப୷

= f(x, y + 1) − f(x, y)   ………… (3.4) 
 
The first order must be : 
 Zero along flat segments (i.e. constant gray values) 
 Non-zero at the outset of gray level step or ramp (edges or noise). 
 Non-zero along segments of continuing changes i.e. ramps).[11] 
 
The second order partial derivatives of digital images are   
 
  
∂2f
∂x2 = f(x + 1, y) + f(x − 1, y) − 2f(x, y) 
                                                                                    ………… ..(3.5) 
∂2f
∂x2 = f(x, y + 1) + f(x, y − 1) − 2f(x, y) 
 
Second derivative must be; 
 Zero along flat segments. 
 Non-zero at the outset and of gray-level step or ramp 
 Zero along ramps.[11] 
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3.2.5 Laplacian Filter: 
 
The Laplacian operator of an image f(x,y) is  
 
 
∇2f = பଶ୤

ப୶ଶ
+ பଶ୤

ப୷ଶ
                                            …………….. ……..(3.6) 

 
 
The above equation can be implemented using the 3x3 mask 
as shown below .[14] 

 .اكتب المعادلة ھنا

 
Figure (3.8): show Laplacian Filter.  
 
Since the Laplacian filter is a linear spatial filter, we can apply it using 
the same mechanism of the convolution process. This will produce a 
Laplacian image that has grayish edge lines and other discontinuities, all 
superimposed on a dark, featureless background .The figure below shows 
an example of using Laplacian filter to sharper an image [11]. 
  

LINEAR AND NON LINEAR FILTERING TECHNIQUES: 
 
A traditional way to remove noise from image data is to employ spatial 
filters. Spatial filters can be further classified into linear and non-linear 
filters. A. Linear Filters 
tend to blur sharp edges, destroy lines and other fine image details, and 
perform poorly in the presence of signal dependent noise.[1] 
 
3.2.6 Mean Filters: 
 
Mean filtering is a simple, intuitive and easy to implement method of 
smoothing images, i.e. reducing the amount of intensity variation between 
one pixel and the next. The idea of mean filtering is simply to replace 
each pixel value in an image with the mean value of its neighbors, 
including itself. Mean filtering is usually thought of as a convolution 
filter. Like other convolutions it is based around a kernel, which 
represents the shape and size of the neighborhood to be sampled when 
calculating the mean, the mask has a value of N/1, where N is the mask 
size.[1] 
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3.2. 7 Gaussian Filters: 
 
The Gaussian smoothing operator is a 2D convolution operator that is 
used to ‘blur’ images, remove detail and noise .In this sense it is similar 
to the mean filter, but it uses a different kernel that represents the shape 
of a Gaussian. In 2D, the Gaussian distribution follows the equation: 
 
 
୍

ଶ஠஢
exp (− ୲ଶା୤ଶ

ଶ஢ଶ
)                                         ……………  ……..(3.7) 

 
 
 
Where σ is the standard deviation. The idea of Gaussian Smoothing is to 
use this 2D distribution as a point-spread Function; achieved by 
convolution. Once a suitable mask has been calculated, then the Gaussian 
smoothing can be performed using standard convolution.[1] 
 
3.2.8 Median Filters: 
 
The median filter is normally used to reduce noise in an image, somewhat 
like the mean filter. However, it often does a better job than the mean 
filter of preserving useful detail in the image. Median filter considers 
each pixel in the image in turn and looks at its nearby neighbors to decide 
whether or not it is representative of its surroundings. Instead of simply 
replacing the pixel value with the mean of neighboring pixel values; 
replace it with the median.[1] 
  
3.2.9 2D –Order statistics Filter:  
 
The 2D order-statistic filtering is used to remove the noise and enhance 
the weak boundaries of medical images. The 2D order-statistic filtering 
replaces each pixel of an image by the nthorder element in the sorted set 
of neighbours of size r by specified by the nonzero elements in 
domain.[1] 
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3.2.10 Bilateral Filter: 
 
The bilateral filter is a nonlinear, feature preserving image filter, 
proposed by Smith and Brady and separately by Tomasi and Manduchi . 
Although, the filter is initially designed to be an alternative to anisotropic 
diffusion recent researches demonstrate that it has close connections with 
robust estimation and anisotropic diffusion and the output is a weighted 
average of the input. They start with standard Gaussian filtering with a 
spatial kernel f However, the weight of a pixel depends also on a function 
g in the intensity domain, which decreases the weight of pixels with large 
intensity differences.[1] 
The basic idea underlying bilateral filtering is to do in the range of an 
image what traditional filters do in its domain. Two pixels can be close to 
one another, that is, occupy nearby spatial location, or they can 
be similar to one another, that is, have nearby values, possibly in a 
perceptually meaningful fashion. 
Consider a shift-invariant low-pass domain filter applied to an image:  
 

h(x) = kୢ
ିଵ ∫ ∫ f(ε)c(εஶ

ஶ
ஶ
ஶ − x)dε              …………………… (3.8) 

 
 
 
The bold font for f and h emphasizes the fact that both input and output 
images may be multi-band. In order to preserve the DC component, it 
must be[8] 
 
 
kୢୀ∫ ∫ ୡ(க)ୢகಮ

ಮ
ಮ
ಮ

                              ………………………….. (3.9) 
 
 
 
 
3.2.11 Sticks Filter: 
 
After an extensive research, a very strong edge preserving filter known as 
“sticks”. This filter is well known in literature for its capabilities in 
detection of boundaries and lines in presence of multiplicative noise. In 
this case, to find the defected region in materials with a high accuracy, it 
is crucial to conserve all boundaries. To find the lines in the image, it is 
necessary to determine whether a line passes through each pixel. In sticks 
filter, a neighbourhood around each pixel is constructed and a search for 
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lines passing through the center of that neighbourhood is performed. 
“This is an M-array hypothesis testing, where each of the hypotheses 
represents a possible line orientation” .For simplicity, the neighborhood 
can be considered to have a square shape. This way, the number of 
orientations is equal to the number of hypothesis. The set of hypotheses is 
called “sticks”.[1] 
 
3.2.12 Im filter: 
 
Im filter is used to filter a multidimensional array with amultidimensi-
onal filter. The result obtained is of same size as the array specified. The 
parameters specified carry out the multidimensional filtering. The syntax 
for this is:  
A = Imfilter(Y, Z, type1, type2,…) 
The values of type1 can be symmetric, replicate, circular, correlate, and 
type2 can be corr conv etc.[1] 
 
 
3.2.13 Total Variation (TV): 
 
Total variation based filtering was introduced by Rudin, Osher, and 
Fatemi .TV de-noising is an effective filtering method for recovering 
piecewise-constant signals. Many algorithms have been proposed to 
implement total variation filtering. The one described in these notes is by 
Chambolle .(Note: Chambolle described another algorithm in ).Although 
the algorithm can be derived in several different ways, the derivation 
presented here is based on descriptions given in [1, 10]. The derivation is 
based on the min-max property and the majorization-minimization 
procedure. Total variation is often used for image filtering and 
restoration, however, to simplify the presentation of the TV filtering 
algorithm these notes concentrate on one-dimensional signal filtering 
only. In addition, the algorithm described here may converge slowly for 
some problems. Faster algorithms for TV filtering have recently been 
developed, for example [1, 10]. The development of fast, robust 
algorithms for TV and related non-linear filtering is an active topic of 
research.[12] 
The total variation (TV) of a signal measures how much the signal 
changes between signal values. Specifically, the total variation of an N-
point signal x(n), 1 ≤ n ≤ N is defined as[8]: 
 
TV(x) = ∑ |x(n) − x(n − 1)|୒

୬ୀଶ                          …………….. (3.10) 
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3.2.14 Linear Despeckle Filter (DsFlsmv) : 
 
This filter utilizes the first order statistics, namely the variance and the 
mean of a pixel neighborhood and may be described with a multiplicative 
noise model .Hence the algorithms in this class may be traced back to the 
following equation:  
 
 
 
f୧,୨ = gത + k୧,୨(g୧୨ − g)ഥ                            …………………….. (3.11) 
 
Where f୧,୨, is the estimated noise-free pixel value, g୧,୨is the noisy pixel 
value in the moving window, ̅g is the local mean value of an N1 × N2 
region surrounding and including pixel  g୧,୨  , f୧,୨ is a weighting factor, 
with k ∈ [0. .1], and i, j, are 
the pixel coordinates. The factor k୧,୨, is a function of the local statistics in 
a moving window and can be found in the literature [9]as: 
 
 
k
୧,୨ୀ(ଵି୥ଶതതതത஢ଶ)

(஢ଶ൫ଵା஢౤మ൯)൘
                              …………………. (3.12) 

 
 
  
The values 2ߪ and ߪ௡ଶ represent the variance in the moving window and 
the variance of noise in the whole image respectively. The noise 
varianceߪ௡ଶ, may be calculated for the logarithmically compressed image, 
by computing the average noise variance over a number of windows with 
dimensions considerable larger than the filtering window .The moving 
window size is 5x5 and the number of iterations 
two.[12] 
 
3.2.15 Hybrid Median Filtering (DsFhmedian): 
 
The filter DsFhmedian ,which is an extension of the median filter, 
computes the average of the outputs generated by median filtering with 
three different windows (cross shape window, x-shape window and 
normal window). Here, a 5x5 size moving window was used with the 
number of iterations applied to each video frame equal to two.[12] 
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3.2.16 Speckle Reducing Anisotropic Diffusion Filtering (DsFsrad): 
Speckle reducing anisotropic diffusion was proposed in.It is based on 
setting the conduction coefficient in the diffusion equation using the local 
frame gradient and the frame Laplacian. The DsFsrad uses two seemingly 
different methods, namely the Lee and the Frost diffusion filters ,A more 
general updated function for the output image by extending the partial 
differential equation versions of the despeckle filter can be found in ;[13] 
 
 
 
 
 
 
 
f୧.୨ୀ୥౟,ౠ + ଵ

୬ୱ
div(cୱ୰ୟୢ(ห∇୥ห)∇g୧,୨) 

 
                                                      ………………….. (3.13) 

 

c2ୱ୰ୟୢ (|∇g|) =
1
2 ห∇g୧,୨ห2 −

1
16 ൫∇2g୧,୨൯2

ቀg୧,୨ + 1
4 ∇2g୧,୨ቁ2

 

 
 
 
3.3 Noise:  
 
During image acquisition and transmission, noise is seen in images. This 
is characterised by noise model. So study of noise model is very 
important part in image processing. On the other hand, Image de-noising 
is necessary action in image processing operation. Without the prior 
knowledge of noise model we cannot elaborate and perform de-noising 
actions.[14] 
Noise tells unwanted information in digital images. Noise produces 
undesirable effects such as artifacts, unrealistic edges, unseen lines, 
corners, blurred objects and disturbs background scenes.  Digital noise 
may arise from various kinds of sources such as Charge Coupled Device 
(CCD) and Complementary Metal Oxide Semiconductor (CMOS) 
sensors. In some sense, points spreading function (PSF) and modulation 
transfer function (MTF) have been used for timely, complete and 
quantitative analysis of noise models. Probability density function (PDF) 
or Histogram is also used to design and characterize the noise models. 
[14] 
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3.3.1 Gaussian Noise Model: 
  
It is also called as electronic noise because it arises in amplifiers or 
detectors. Gaussian noise caused by natural sources such as thermal 
vibration of atoms and discrete nature of radiation of warm objects . 
Gaussian noise generally disturbs the gray values in digital images. That 
is why Gaussian noise model essentially designed and characteristics by 
its PDF or normalizes histogram with respect to gray value.[14] 

 
Figure (3.9)show  PDF Gaussian noise . 
 
 
 
 
 
 
3.3.2 White Noise: 
 
Noise is essentially identified by the noise power. Noise power spectrum 
is constant in white noise. This noise power is equivalent to power 
spectral density function. The statement “Gaussian noise is often white 
noise” is incorrect . [14] 
However neither Gaussian property implies the white sense. The range of 
total noise power is -∞  to +∞ available in white noise in frequency 
domain. That means ideally noise power is infinite in white noise. This 
fact is fully true because the light emits from the sun has all the frequency 
components[14]. 
In white noise, correlation is not possible because of every pixel values 
are different from their neighbours. That is why autocorrelation is zero. 
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So that image pixel values are normally disturb positively due to white 
noise.[14] 
 
 
3.3.3 Brownian Noise (Fractal Noise): 
 
Colored noise has many names such as Brownian noise or pink noise or 
flicker noise or 1/f noise. In Brownian noise, power spectral density is 
proportional to square of frequency over an octave i.e., its power falls on 
¼ th part (6 dB per octave). Brownian noise caused by Brownian motion. 
Brownian motion seen due to the random movement of suspended 
particles in fluid. Brownian noise can also be generated from white noise. 
However this noise follows non stationary stochastic process. This 
process follows normal distribution. Statistically fractional Brownian 
noise is referred to as fractal noise. Fractal noise is caused by natural 
process. It is different from Gaussian process.[14] 
 
3.3.4 Impulse Valued Noise (Salt and Pepper Noise): 
This is also called data drop noise because statistically its drop the 
original data values. This noise is also referred as salt and pepper noise. 
However the image is not fully corrupted by salt and pepper noise instead 
of some pixel values are changed in the image. Although in noisy image, 
there is a possibilities of some neighbours does not changed . This noise 
is seen in data transmission. Image pixel values are replaced by corrupted 
pixel values either maximum ‘or’ minimum pixel value i.e., 255 ‘or’ 0 
respectively, if number of bits are 8 for transmission. Let us consider 3x3 
image matrices which are shown in the Fig.( 3.10). Suppose the central 
value of matrices is corrupted by Pepper noise. Therefore, this central 
value i.e., 212 is given in Fig. (3.10) is replaced by value zero. In this 
connection, we can say that, this noise is inserted dead pixels either dark 
or bright. So in a salt and pepper noise, progressively dark pixel values 
are present in bright region and vice versa.[16] 
 

 
 
Figure (3.10) The central pixel value is corrupted by Pepper noise. 
 
Inserted dead pixel in the picture is due to errors in analog to digital 
conversion and errors in bit transmission. The percentagewise estimation 
of noisy pixels, directly determine from pixel metrics. The PDF of this 
noise is shown in the Fig. (3.11) 
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Figure (3. 11)The PDF of Salt and Pepper noise 
 
3.3.5 Periodic Noise: 
 
This noise is generated from electronics interferences, especially in power 
signal during image acquisition. This noise has special characteristics like 
spatially dependent and sinusoidal in nature at multiples of specific freq- 
uency. It’s appears in form of conjugate spots in frequency domain. It can 
be conveniently removed by using a narrow band reject filter or notch 
filter.[14] 
 
3.3.6 Quantization noise:  
 
Quantization noise appearance is inherent in amplitude quantization 
process. It is generally presents due to analog data converted into digital 
data. In this noise model, the signal to noise ratio (SNR) is limited by 
minimum and maximum pixel value, P min and P max respectively. 
Quantization noise obeys the uniform distribution. That is why it is 
referred as uniform noise. Its PDF is shown in Fig. (3.12).[13] 
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Figure (3.12) show  Uniform noise 
 
3.3.7 Speckle Noise: 
 
This noise is multiplicative noise. Their appearance is seen in coherent 
imaging system such as laser, radar and acoustics etc,. Speckle noise can 
exist similar in an image as Gaussian noise. Its probability density 
function follows gamma distribution.[14] 
 
 
3.3.8  Photon noise  (Poisson Noise): 
 
When the physical signal that we observe is based upon light, then the 
quantum nature of light plays a significant role. A single photon at λ = 
500 nm carries an energy of E = hν = hc/λ = 3.97 × 10–19 Joules. 
Modern CCD cameras are sensitive enough to be able to count individual 
photons. [15] 
 
3.3.9 Thermal noise: 
 
An additional, stochastic source of electrons in a CCD well is thermal 
energy. Electrons can be freed from the CCD material itself through 
thermal vibration and then, trapped in the CCD well, be indistinguishable 
from “true” photoelectrons. By cooling the CCD chip it is possible to 
reduce significantly the number of “thermal electrons” that give rise to 
thermal noise or dark current. As the integration time T increases, the 
number of thermal electrons increases. The probability distribution of 
thermal electrons is also a Poisson process where the rate parameter is an 
increasing function of temperature. There are alternative techniques (to 
cooling) for suppressing dark current and these usually involve estimating 
the average dark current for the given integration time and then 
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subtracting this value from the CCD pixel values before the A/D 
converter. While this does reduce the dark current average, it does not 
reduce the dark current standard deviation and it also reduces the possible 
dynamic range of the signal.[15] 
 
3.3.10  On-chipelectronic noise : 
 
This noise originates in the process of reading the signal from the sensor, 
in this case through the field effect transistor (FET) of a CCD chip. 
 
3.3.11 Structured Noise:  
 
Structured noise are periodic, stationary or non stationary and aperiodic 
in nature. If this noise is stationary, it has fixed amplitude, frequency and 
phase. Structured noise caused by interferences among electronic com -
ponents .Noise presents in communication channel are in two parts, 
unstructured noise (u) and structured noise (s). structured noise is also 
called low rank noise. In a signal processing, it is more advantagable 
(more realistic) to considering noise model in a lower dimensionality 
space.[15] 
 
3.3.12 Rayleigh noise:  
 
Rayleigh noise presents in radar range images. In Rayleigh noise, 
probability density function is given as 

(݃)݌ = {ଶ
௕

(݃ − ܽ)݁
ష(೒షೌ)మ

್   for g≥ ܽ 
                0                             for < ܽ           ………………. (3.14)      
 
Where mean u=a+ √஠ୠ

ସ
 and variance σ2 = ୠ(ସି஠)

ସ
  are given as 

,respectively. [14] 
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Figure (3.13) Rayleigh distribution. 
 
3.3.13 The Rician Distribution of Noisy MRI Data: 
 
The image intensity in magnetic resonance magnitude images in the 
presence of noise is shown to be governed by a Rician distribution. Low 
signal intensities (SNR < 2) are therefore biased due to the noise. It is 
shown how the underlying noise can be estimated from the images and a 
simple correction scheme is provided to reduce the bias. The noise 
characteristics in phase images are also studied and shown to be very 
different from those of the magnitude images. Common to both, however, 
is that the noise distributions are nearly Gaussian for SNR larger than 
two.[16] 
It is common practice to assume the noise in magnitude MRI images is 
described by a Gaussian distribution. The power of the noise is then often 
estimated from the standard deviation of the pixel signal intensity in an 
image region with no NMR signal. This can, however, lead to an 
approximately 60% underestimation of the true noise power. Here we 
will show that there is a simple analytical relationship between the true 
noise power and the estimated noise variance. The characteristics of noise 
in magnitude MRI images has been studied before by Henkelman and the 
reader is referred to ref. 1 for the formulation of the problem. Henkelman 
analyzed the problem numerically and did not provide analytical 
expressions for the noise characteristics. The noise characteristics of 
quadrature detection, however, have been thoroughly analyzed and 
documented in applications to communication . During the preparation of 
this manuscript, we have come across several references in the MRI 
literature that describe some of the results presented here. Edelstein et al. 
showed that pure noise in magnitude images is governed by the Rayleigh 
distribution and later Bernstein et al. provided the closed form solution of 
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the more general Rician distribution in their study on detectability in 
MRI..[16] 
 
 

3.4 image quality factors : 
The visibility of  image quality by human eyes is may be difficult and 
subjective .so that we tendency to more objective method like    SNR ,  
EMSR and PSNR. 
 
3.4.1 EMSR&PSNR: 

Comparing restoration results requires a measure of image quality. Two 
commonly used measures are Mean-Squared Error and Peak Signal-to-
Noise Ratio . The mean-squared error (MSE) between two images g(x,y) 
and g^(x,y)  is: 

 
EMSR = ଵ

୑୒
∑୑୬ୀଵ ∑ [g^୒

୫ୀଵ (n, m) − g(n, m)]2         ……… (3.15) 

One problem with mean-squared error is that it depends strongly on the 
image intensity scaling. A mean-squared error of 100.0 for an 8-bit image 
(with pixel values in the range 0-255) looks dreadful; but a MSE of 100.0 
for a 10-bit image (pixel values in [0,1023]) is barely noticeable. Peak 
Signal-to-Noise Ratio (PSNR) avoids this problem by scaling the MSE 
according to the image range: 

PSNR = −10 log ୉୑ୗୖ
ୗమ

                               ……………….. (3.16) 
 
where S is the maximum pixel value. PSNR is measured in decibels (dB). 
The PSNR measure is also not ideal, but is in common use. Its main 
failing is that the signal strength is estimated as , rather than the actual 
signal strength for the image. PSNR is a good measure for comparing 
restoration results for the same image, but between-image comparisons of 
PSNR are meaningless.[17] 
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4.3.2 Signal–to–Noise ratio:  
 
The signal–to–noise ratio, SNR, can have several definitions. The noise is 
characterized by its standard deviation, sn. The characterization of the 
signal can differ. If the signal is known to lie between two boundaries,      
a min ≤ a  ≤ a max, then 
the SNR is defined as[18]:  
 
Bounded signal –          SNR= 20log10(

௔ ౣ౗౮షೌ೘೔೙ 
௦೙

)db           Equation  (3.17) 
 
4.3.3 Root Mean Squared  Error (MSE):  
 
The root-mean-square deviation (RMSD) or root-mean-square error 
(RMSE) is a frequently used measure of the differences between values 
(sample and population values) predicted by a model or an estimator and 
the values actually observed. The RMSD represents the sample standard 
deviation of the differences between predicted values and observed 
values. These individual differences are called residuals when the 
calculations are performed over the data sample that was used for 
estimation, and are called prediction errors when computed out-of-
sample. The RMSD serves to aggregate the magnitudes of the errors in 
predictions for various times into a single measure of predictive power. 
RMSD is a good measure of accuracy, but only to compare forecasting 
errors of different models for a particular variable and not between 
variables, as it is scale-dependent.[19] 
 
              
3.5 wavelet transform:  

 In most of the applications of image processing ,it is essential to analyse 
a digital signal. If the data will be transformed into any other domain then 
the structure and features of the signal may be better understood. There 
are several transforms available like Fourier transform, Hilbert transform, 
Wavelet transform, etc. The wavelet transform is better than fourier 
transform because it gives frequency representation of raw signal at any 
given interval of time, but fourier transform gives only the frequency- 
amplitude representation of the raw signal, but the time information is 
lost. So we cannot use the Fourier transform where we need time as well 
as frequency information at the same time.[20] 
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 3.5.1 Haar wavelet:  

Haar wavelet is one of the oldest and simplest type of wavelet. The Haar 
Transform provides prototype for all other wavelet transforms. Like other 
wavelet transforms, the Haar Transform decomposes the discrete signal 
into two sub-signals of half its length. One sub-signal is a running 
average or trend and other sub-signal is running difference or fluctuation. 
The advantage of Haar wavelet is that it is fast, memory efficient and 
conceptually simple.[20] 

Thresholding : 
Thresholding is the simplest method of image denoising .In this from a 
gray scale image, thresholding can be used to create binary image. 
Thresholding is used to segment an image by setting all pixels whose 
intensity values are above a threshold to a foreground value and all the 
remaining pixels to a background value.  Thresholding is mainly divided 
into two categories:[20] 
 
 
3.5.1.1 Hard Thresholding : 
 
Hard threshold is a "keep or kill" procedure and is more intuitively 
appealing. The transfer function of the Hard thresholding is shown in the 
figure(3.8). Hard thresholding may seem to be natural. Sometimes pure 
noise coefficients may pass the hard threshold and this thresholding 
method is mainly used in medical image processing.[20] 
 
 
 
Hard thresholding can be defined as follow: 
 
D(U,λ)=U for all |D|>λ       ,   0 otherwise   …………Equation (3.18) 
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Figure (3.14) show Original (I)and Hard thresholded signal(II) 
 
3.5.1.2 Soft Thresholding : 
 
Soft threshold shrinks coefficients above the threshold in absolute value. 
The false structures in hard thresholding can be overcomed by soft 
thresholding. Now a days, wavelet based de-noising methods have 
received a greater attention. Important features are characterized by large 
wavelet coefficient across scales in most of the timer scales.[20] 
  
Soft thresholding can be defined as follow:  
 
D (U, λ) =sgn (U) max (0, |U|- λ)         …………………… (3.19) 
 

    
Figure (3.15) show Original (I) and Soft thresholded signal (II) 
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3.5.2 Daubechies Wavelet Db3 : 
 
Daubechies wavelet is the first wavelet family which has set of scaling 
function which are orthogonal. This wavelet has finite vanishing mom -
ents.  Daubechies wavelets have balanced frequency responses but non-
linear phase responses. Daubechies wavelets are useful in compression 
and noise removal of audio signal processing because of its property of 
overlapping windows and the high frequency coefficient spectrum reflect 
all high frequency changes.[ 20] 
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Chapter four 

Methodology 
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This study object to enhancement MRI  from noise . this doing by use 
filters  and wavelet  technique . 

Data : 

The test  data used in this  study  was  acquisition from internet from 
(http://www.harvarduniversity .com  ) include normal   images . 

hardware and software : 

A pc  hp(530) was the primary hardware piece used in this test . -  

Matlab is main software package used in this test . - 

Procedures : 

The  test carried  out in this study consist of three steps  .step  one 
concern with apply the filters   on the images and get result , step two get 
the calibration  indicators (signal to noise ratio 'SNR', peak  noise signal 
ratio 'PNSR' ,' RMES ',' MES ' ), finally apply wavelet in the best  filter's 
result and  get the ratio again. That is explained in figures (4.1),(4.2). 

 

Step one: 

apply the filters  :From previous studies  has been  assumed  using this 
filters , hybrid median ,median2, SRAD, tvdenoise, bilaterall , 
NLmeansfilter and get results on figures blow. 

 
     

 
Step two : 
 
Get SNR,PSNR, RMES ,MES on for each filtered images and 
results on table one blow  . 

 
Finally : 

 
From result of SNR,PSNR, RMES ,MES I choosing hybrid median 
filter to apply the wavelet before using  it and apply it in high-high 
sub-band  and low-low sub-band and get the result after filtering in 
tables one and  two and figures blow . 
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Figure (4.1) show the  input image was noise free image the rician noise 
added to it then de-noised by different types of filters. 

 

 

 

 

 

  

Input image [I in] 

Add Rician noise 5%  

Apply Filter 

Output image [I out] 
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Figure (4.2) show the proposed technique (decomposition wavelet following by 

hybrid median and reconstructed image).   

]inInput image [I 

Add rician noise 

]aImage [I 

Wavelet decomposition 

High  frequency sub-bands  

Hybrid median 
filter   

]outOutput image [I 

LL  LH  HL  HH  

Sub-bands mixing (reconstruction ) 

low  frequency sub-bands 
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Chapter five  

Results & discussions 
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.1 Results :5  

  

As stated before main object of this study is evaluate the potentiality 
using filters and wavelet for enhancement MRI  with Rician noise. To 
achieve this objective through apply multi filters and choosing  the filter 
with  best result and apply wavelet  on the images and filtered, resulted  
image are recalibration with original image. 

 

5.1.2 Original images without noise  : 

 

 

Figure (5.1) show brain–hemispheric transaxial I original   
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Figure (5.2) show brain–hemispheric transaxial II original  

  

Figure (5.3) show brain–hemispheric transaxial III  original 
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Figure (5.4) show brain–hemispheric coronal II original 

 

Figure (5.5) show brain–hemispheric coronal II original 
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5.1.2 Filtered images : 

  

5.1.2.1  hybrid median filters : 

  

 

Figure (5.6) brain–hemispheric transaxial I with hybrid median filter  

  

Figure (5.7) brain–hemispheric transaxial II with hybrid median filter 
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Figure (5.8) show brain–hemispheric transaxial III with  hybrid median 
filter 

  

  

Figure (5.9) show brain–hemispheric coronal I with hybrid median filter 
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Figure (5.10) show brain–hemispheric coronal II with hybrid median 
filter 

 

5.1.2.2 Tvdenoise:  

  

  

Figure (5.11) show brain–hemispheric transaxial I with TV filter 
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Figure (5.12) show brain–hemispheric transaxial II with TV filter 

  

  

Figure (5.13) show brain–hemispheric transaxial  III TV filter 
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Figure (5.14) show brain–hemispheric coronal I with TV filter 

 

  

Figure (5.15) show brain–hemispheric coronal II  with TV filter  
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5.1.2.3 srad: 

 

Figure (5.16) brain–hemispheric transaxial I with srad filter 

  

  

Figure (5.17) brain–hemispheric transaxial II with srad filter 
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Figure (5.18) brain–hemispheric transaxial II with srad filter 

  

  

Figure (5.19) brain–hemispheric coronal I  with srad filter 
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Figure (5.20) brain–hemispheric coronal II  with srad filter 

  

5.1.2.4 Bilaterall: 

  

Figure (5.21) show brain–hemispheric transaxial I with Bilaterall filter 
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Figure (5.22) show brain–hemispheric transaxial II  with Bilaterall filter 

  

Figure (5.23) show brain–hemispheric transaxial III with Bilaterall filter 
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 Figure (5.24) show brain–hemispheric coronal I with Bilaterall filter 

  

  

Figure (5.25) show brain–hemispheric coronal II with Bilaterall filter 
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5.1.2.5 NLmeansfilter: 
 

  

Figure (5.26) show brain–hemispheric transaxial I with  NLmeansfilter 
filter 

 

  

Figure (5.27) show brain–hemispheric transaxial II  with  NLmeansfilter 
filter 
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Figure (5.28) show brain–hemispheric transaxial III with  NLmeansfilter 
filter 

  

Figure (5.29) show brain–hemispheric coronal I with  NLmeansfilter 
filter 
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Figure (5.30) show brain–hemispheric coronal II  with  NLmeansfilter 
filter 

5.1.2.6 hybrid median with wavelet(in low-low) : 

 

 

Figure (5.31) show brain–hemispheric transaxial I by  hybrid median with 
wavelet(in low-low)  
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Figure (5.32) show brain–hemispheric transaxial II by  hybrid median 
with wavelet(in low-low) 

  

  

Figure (5.33) show brain–hemispheric transaxial III by  hybrid median 
with wavelet(in low-low) 
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Figure (5.34) show brain–hemispheric coronal I by  hybrid median with 
wavelet(in low-low) 

  

Figure (5.35) show brain–hemispheric coronal II  by  hybrid median with 
wavelet(in low-low) 
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5.1.3.hybrid median with wavelet :  

  

  

  

Figure (5.36) show brain–hemispheric transaxial I with hybrid median  
filter+ wavelet 
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Figure (5.37) show brain–hemispheric transaxial II with hybrid median    
filter+ wavelet  

 

Figure (5.38) show brain–hemispheric transaxial III  with hybrid median   
 filter+ wavelet 

 

Figure (5.39) show brain–hemispheric coronal I  with hybrid median    
filter+ wavelet 
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Figure (5.40) show brain–hemispheric coronal II  with hybrid median    
filter+ wavelet 

 

  

Table(5.1) show the comparative resulted of filter using MES RMES 
PNSR SNR with the same images .  

SNR PSNR RMES MES  FILTER Images  
83.6696  36.3692  3.8885  15.1203  hybrid 

median  
brain–
hemispheric 
transaxial I 

23.6874  10.3213  78.0149  E+036.0863 srad  brain–
hemispheric 
transaxial I  

59.5395  25.0035  14.3901  207.0762  tvdenoise  brain–
hemispheric 
transaxial I  

58.3085  24.5136  15.2251  231.8027  bilateral  brain–
hemispheric 
transaxial I  

78.8275  34.2638  4.9551  24.5530  NLmeansfilter  brain–
hemispheric 
transaxial I  

74.4651  32.3738  6.1596  37.9404  hybrid 
median in 

low-low sub-
band   

brain–
hemispheric 
transaxial I 
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71.9476  31.2798      6.9863  48.8090  hybrid 

median  
brain–

hemispheric 
transaxial II  

25.2618  11.0050  72.1087  e+035.1997  srad brain–
hemispheric 
transaxial II 

60.0927  25.3896  13.7644  189.4590  tvdenoise brain–
hemispheric 
transaxial II 

59.9167  24.9126  14.5415  211.4540  bilateral brain–
hemispheric 
transaxial II 

67.9000  29.5186  8.5568  73.2183  NLmeansfilter brain–
hemispheric 
transaxial II 

63.5495  27.4733  10.8286  117.2592  hybrid 
median in 

low-low sub-
band   

brain–
hemispheric 
transaxial II 

           
66.8081  29.0464  9.0349  81.6286  hybrid 

median 
brain–

hemispheric 
transaxial III 

16.0008  
  

6.9831  114.5743  1.3127e+04 srad brain–
hemispheric 
transaxial III  

61.4097  25.4410  13.6832  187.2312  tvdenoise brain–
hemispheric 
transaxial III 

60.5074  24.9293  14.5136  210.6434  bilateral brain–
hemispheric 
transaxial III 

59.6196  25.9211  12.9475  167.6370  NLmeansfilter brain–
hemispheric 
transaxial III 

64.3512  25.6840  13.3057  177.0425  hybrid 
median in 

low-low sub-
band   

brain–
hemispheric 
transaxial III 

           
59.7618  25.9864  12.8505  165.1362  hybrid 

median 
brain–

hemispheric 
coronal I 

1 15.5433  6.7844  117.2254 E+041.3742 srad brain–
hemispheric 

coronal I 
61.4601  25.5578  13.5006  182.2653  tvdenoise brain–

hemispheric 
coronal I 

60.5328  25.1000  14.2311  202.5255  bilateral brain–
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hemispheric 
coronal I 

53.8882  23.4314  17.2453  297.4014  NLmeansfilter brain–
hemispheric 

coronal I 
58.9969  24.1366  15.9005  252.8244  hybrid 

median in 
low-low sub-

band   

brain–
hemispheric 

coronal I 

          
37.2383  20.6997  23.6186  557.8386  hybrid 

median 
brain–

hemispheric 
coronal II 

16.7870  11.8184  65.6628  E+034.3116 srad brain–
hemispheric 

coronal II  
52.0213  25.2277  14.0234  196.6553  tvdenoise brain–

hemispheric 
coronal II  

52.0982  24.9836  14.4232  208.0289  bilateral brain–
hemispheric 

coronal II  
33.1017  18.8959  29.0699  845.0563  NLmeansfilter brain–

hemispheric 
coronal II 

52.7964  25.3167  13.8805  192.6686  hybrid 
median in 

low-low sub-
band   

brain–
hemispheric 

coronal II 

 

  

  

  

  

  

 

  

  

  

 



81 
 

Table(5.2) show the comparative resulted of hybrid median filter after 
using the wavelet by MES RMES PNSR SNR . 

SNR  PSNR  RMES  MES  Images   
97.7607  45.2840  1.3933  1.9434  brain–

hemispheric 
transaxial I 

95.8781  40.9153  2.3040  5.3083  brain–
hemispheric 
transaxial II   

86.7914  36.7478  3.7226  13.8581  brain–
hemispheric 
transaxial III  

81.3720  34.3618  4.8995  24.0048  brain–
hemispheric 
coronal I 

54.9220  26.4277  12.2140  149.1810  brain–
hemispheric 
coronal II  

  

5.2 Discussions:   

In this research , experiments are conducted on five different  MRI 
medical images. The noise type is Rician  noise level  σ = .05 .  the filters 
(hybrid median  , srad, tvdenoise, bilaterall , NLmeansfilter) apply on the 
noisy images  . and from table one we observed that ; the hybrid median  
have a high (SNR , PSNR) and low ( MSE , RMES).  Haar  wavelet 
transforms are applied for de-noising ; Different PSNR MSE ,SNR and 
RMES values are calculated on each image .It is clear from the table one; 
that using wavelet to decomposition image before filtering and filtering 
using hybrid median  is better than using hybrid median directed for the 
purpose of de-noising in the  MRI medical images . De-noising is 
performed at Rician  noise σ=.05, on MRI images by using Haar wavelet 
with hybrid median filter in high-high sub-band  is the best  result (the  
values of  SNR ,PSNR are increase while MSE and RMES are decrease 
)from using hybrid median on all images except on image 5 we observed 
that, apply hybrid median in low-low sub-band is best result  that refer to 
; hybrid median is smoothing filter and it effect on the edges and the LL 
is contents the main feature of image more filtration  of LL (or image in 
general)  may lead to blurring image and decreasing the quality of image 
(as general ) but in brain–hemispheric coronal II image  it is very noisily 
image and more smoothing enhance it  . 
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Chapter six  

Conclusion & recommendation  
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6.1 Conclusion :  

According to the test carried throughout this study ,it can be concluded 
that: 

The rician noise is a major type of noise embedded with MRI 
image . Applying the filter it can be reducing the noise by high 
ratio of SNR &PSNR while low ratio of MSE & RMES  and this 
ratios different from filter to other and from image to other  
depended on the feature  and histogram of image  .apply the 
wavelet technique it enhancement the  results in all filters  . the 
low-low sub-band contain the details of image and more filtration 
can be lead to blurring image while the high-high sub-band contain 
the noise and more filtration lead to enhancement results .   The 
hybrid median give us the best result that means the hybrid median 
is effective rician  noise . 
 
. 

6.2Recommendation: 
  

 recommend to apply more types of wavelet to get more good 
resolution , high degree of filtration  images and high level from 
SNR ,PSNR   .  
Or apply any transformation technique like (Contourlet or Sanlet) 
to get best result .  

 
 
 
 
 
 
 
 

  

  



84 
 

References: 

[1] Performance Evaluation of Various Denoising Filters for Medical 
Image, P.Deepa1 and M.Suganthi , Department of Computer Science and 
Engineering Muthayammal Engineering College, Rasipuram. 2 
Department of Electronics and Engineering, Mahendra College of 
Engineering, Salem , P.Deepa et al, / (IJCSIT) International Journal of 
Computer Science and Information Technologies ,( 2014 ).  

[2] Contrast Enhancement of brain MRI images using histogram based 
techniques  ,  Pratik Vinayak Oak1, Prof.Mrs.R.S.Kamathe2 ME (Signal 
Processing), PES‘s Modern College of Engineering, Pune1 Assistant 
Professor, E &TC Dept. PES‘s Modern College of Engineering, Pune , 
International Journal Of  Innovative Research In Electrical, Electronics , 
Instrumentation And Control Engineering  Vol. 1, Issue (3, June 2013). 
 
[3] Image De-noising using Median Filter and DWT Adaptive Wavelet 
Threshold,   Ms.Dhanushree.V1, Mr.M.G.srinivasa2 1(PG Scholar 
(ECE), maharaja institute of Technology Mysore, India) 2(Asst.professor 
(ECE), maharaja institute of Technology Mysore, India) 
 
[4] Digital Image Processing, R. Gonzalez and R. Woods , 2nd edn., 
Prentice- Hall, New York (2002). 
 
 
[5] Fundamentals of Image Processing, Ian T. Young, Jan J. Gerbrands 
,Lucas J. van Vliet Delft University of Technology 
 
[6]  Region  Growing  Adaptive Contrast Enhancement  Of Medical MRI 
Images ,  Sonia Goyal* and Seema Baghla Department of Computer 
Science and Engineering, YCOE College of Engineering, Talwandi 
Sabo,India , Journal of Global Research in Computer Science Volume 2, 
No. 7, (July 2011 ). 
 
[7] Contrast Enhancement of MRI Images A Review ,   Rajulath Banu 
A.K1. , Dr. A. Ranjith Ram2  1, 2Department of ECE, Government 
College of Engineering Kannur, Kannur, Kerala 670 563, India ,  
International Journal of Emerging Technology and Advanced 
Engineering ,  
 Volume 5, Issue (6, June 2015) . 
 



85 
 

[8] Medical Images Edge Detection Based on Mathematical Morphology 
, Prof. J.Mehena Department of Electronics & Telecommunication Engg. 
DRIEMS, Tangi, Cuttack  . 
  
[9] Magnetic Resonance Imaging (MRI) , http://www.slideworld.org/. 
 
[10] Introduction to Magnetic Resonance Imaging Techniques, Lars G. 
Hanson, larsh@drcmr.dk Danish Research Centre for Magnetic 
Resonance (DRCMR), Copenhagen University Hospital Hvidovre Latest 
document version. 
 
 
 
 [11] Total Variation Filtering, Ivan W. Selesnick and _Ilker Bayram 
,(February, 2010). 
 
[12]http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MAN
DUCHI1/Bilateral_Filtering.html 
 
[13]http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELD
HUIZEN/node18.html 
 
[14] Image Enhancement using Histogram Equalization and Spatial 
Filtering, Fari Muhammad Abubakar1 ,Department of Electronics 
Engineering ,Tianjin University of Technology and Education (TUTE) 
,Tianjin, P.R. China  
 
[15] The Rician Distribution of Noisy MRI Data, Magn Reson Med. 
Author manuscript; available in PMC (25 ,February , 2008). 
 
 [16] Effectiveness of Contourlet vs Wavelet Transform on Medical 
Image Compression: a Comparative Study, Negar Riazifar, and Mehran 
Yazdi, International Journal of Electrical, Computer, Energetic, 
Electronic and Communication Engineering. 
 
 
. 
 
[17]  Medical Image Denoising In The Wavelet Domain Using Haar And 
DB3 Filtering,   anwaljot Singh Sidhu1, Baljeet Singh Khaira2, Ishpreet 
Singh Virk3, International Refereed Journal of Engineering and Science 
(IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 1, Issue 1 
(September 2012), PP.001-008. 



86 
 

 
[18] A Review  Paper : Noise Models  In Digital  Image  Processing , 
Ajay Kumar Boyat1 and Brijendra Kumar Joshi2, Signal & Image 
Processing : An International Journal (SIPIJ) Vol.6, No.2, (April 2015). 
 
[19] https://en.wikipedia.org/wiki/Root-mean-square_deviation. 
 
. 
[20]  An Adaptive   Image Enhancement Technique Preserving 

Brightness Level Using  Gamma Correction,  Ankit Aggarwal, R.S. 

Chauhan and Kamaljeet Kaur  ISSN 2231-1297, Volume 3, Number 9                      

(2013), pp. 1097-1108. 

 
 
 

 
 

 

 

 

 

  


