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Abstract:

Several new techniques are developed within the previous couple of
years that convalesce results on special filters by take away the noise
additional with success whereas protective the sides within the
information .Image de-noising plays an important role in satellite
communication and signal processing applications. In this research , |
suggest an median filter ,NLmeansfilter ,Total Variation (TV) ,Hybrid
Median Filtering (hmedian), Speckle Reducing Anisotropic Diffusion
Filtering (srad) and Bilateral Filter and adaptive discreet wavelet
technique for image de-noising. The noisy image is passed through One
level discrete wavelet transform is applied , which is passed through
post-processing hybrid median filter to remove noise in high-high
coefficients . Finally, The Inverse discrete wavelet transform is applied to
reconstruct the image. .

The Image quality is measured to reconstruct image . | have a tendency
to take PSNR ,SNR ,RMES and MSE as a potency issue to envision the
effectiveness of planned de-noising formula.



ualﬁ.u.ud\
Clad pay ) geal) 485 JaY dudalall ALIEY o) go ) B Bayand) LBl Cpa dadad) yghat a3

A cdagd) 13 8 gall e gleey BUAY) B rladl aa gy sdal) A5y dlly dald
s ANl ciladpal) gadal LS

NLmeansfilter ,Total Variation (TV) ,Hybrid Median Filtering
S(hmedian), Speckle Reducing Anisotropic Diffusion(srad) Filtering
R ek sall 485 JaY discreet wavelet  aladial dld wmag, Bilateral
i ) Aladial) claggall Jisad (e g s giaa Gk DA (e Adgdiall 550
@.’&J.A g.k- PECIA] SJM‘QA@M‘ Saa il 33 g ) Jayad eﬁg‘ﬂ.ﬂéu.JSJM‘
Aadiall clag sall Jysad (uglea Gkl oy ) pdly guamal) 1Y Hybrid Median

g sl Baley

SNR (PSNR (st (gash oo dlldy | dadyal) 3 )guall 3, guall Baga (uld a3
- Ol gl ) 3Y daddical) (3l dllad e U8 MSE s RMES



Acknowledgements:

I would like to express our special appreciation and thanks to our advisor
MMr. Zeinb Adam you have been a tremendous mentor for Me . | thank
you from the bottom of our heart for encouraging our research and
helping me at every point towards the completion of the thesis. We
express our gratitude towards department of biomedical engineering for
providing the opportunity to present My thesis. A special thanks to My
family for being there with me in the time of need. Words cannot express
how grateful | to My mother, father for all the sacrifices they have made
on My behalf. These are your blessings and prayers that have sustained
My this far. Also this thesis would not had been complete without the
blessings and bestowed strength, ability from the almighty god.



List of figures:

Figure (3. 1): The spinofthe nuclei............c.coovv i i, 19
Figure (3.2): A magnetization M that process .............ccccvvvnvennen. 20
Figure (3.3): the same situations in two and three dimensions......... 20
Figure (3.4): Scene from animation found...............ccccoeveeveenn .. 21
Figure (3.5): Spin is influenced selectively in a sagital slice............ 24
Figure (3.6): Spatial Filtering..........coovi i i, 27
Figure (3.7): smoothing filter ..o 29
Figure (3.8): Laplacian Filter. ..........c.coovii i, 31

Figure (3.9) PDF Gaussian NOISE .......cuvruvrierienineierineineineannanns 37

Figure (3.10) The central pixel value is corrupted by Pepper noise.....38

Figure (3. 11)The PDF of Salt and Pepper noise.............ccoevvvvnenn. 39

Figure (3.12) Uniform NOiSe.......covvi i ee e e 40
Figure (3.13) Rayleigh distribution...............coociv i i i, 42

Figure (3.14) Original and Hard thresholded signal........................ 45
Figure (3.15) show Original and Soft thresholded signal .................. 46
Figure (4.1) block diagram of methodology

.............................. 49

Figure (4.2) the proposed

techniqQuUe.......oo v 50

Figure (5.1) brain—hemispheric transaxial I original..................... 52

5



Figure (5.2 ) brain—hemispheric transaxial 11

original.................... 53

Figure (5.3) brain—hemispheric transaxial 111

original..................... 53

Figure (5.4) brain—hemispheric coronal I original........................... 54
Figure (5.5) brain—hemispheric coronal Il original.......................... 54

Figure (5.6) brain—hemispheric transaxial I with hybrid median
filer....55

Figure (5.7) brain—hemispheric transaxial 11 with hybrid median
filter.55

Figure (5.8) brain—hemispheric transaxial 111 with hybrid median
filter.56

Figure (5.9) brain—hemispheric coronal | with hybrid median filter......56
Figure (5.10) brain—hemispheric coronal Il with hybrid median filter....57

Figure (5.11) brain-hemispheric transaxial I with TV
filter............. 57

Figure (5.12) brain—-hemispheric transaxial Il with TV
filter.............. 58

Figure (5.13) brain—-hemispheric transaxial 111 with TV
filter............. 58

Figure (5.14) brain—hemispheric coronal | with TV filter................. 59
Figure (5.15) brain—hemispheric coronal Il with TV filter................ 59

Figure (5.16) brain—hemispheric transaxial | with srad
filter.............. 60

Figure (5.17) brain—-hemispheric transaxial 11 with srad
filter............. 60

Figure (5.18) brain—-hemispheric transaxial 111 with srad
filter........... 61



Figure (5.19) brain—hemispheric coronal | with srad filter................ 61
Figure (5.20) brain—hemispheric coronal Il with srad filter............... 62

Figure (5.21) brain—-hemispheric transaxial | with Bilaterall
filter....... 62

Figure (5.22) brain—hemispheric transaxial Il with Bilaterall
filter....... 63

Figure (5.23) brain—-hemispheric transaxial 111 with Bilaterall
filter......63

Figure (5.24) brain—hemispheric coronal | with Bilaterall filter......... 64
Figure (5.25) brain—hemispheric coronal Il with Bilaterall filter......... 64

Figure (5.26) brain—hemispheric transaxial | with
NLmeansfilter........ 65

Figure (5.27) brain—-hemispheric transaxial 11 with
NLmeansfilter....... 65

Figure (5.28) brain—hemispheric transaxial 111 with
NLmeansfilter.....66

Figure (5.29) brain—hemispheric coronal | with NLmeansfilter filter...66
Figure (5.30) brain—hemispheric coronal Il with NLmeansfilter filter...67

Figure (5.31) brain—-hemispheric transaxial | hybrid median+
wavelet...67

Figure (5.32) brain—-hemispheric transaxial 11 hybrid median+
wavelet..68

Figure (5.33) brain—hemispheric transaxial 111 hybrid
median+wavelet..68

Figure (5.34) brain—hemispheric coronal I hybrid median wavelet....... 69
Figure (5.35) brain—hemispheric coronal Il hybrid median wavelet.....69

Figure (5.36) brain—hemispheric transaxial | hybrid median
+wavelet...70



Figure (5.37) brain—hemispheric transaxial 11 hybrid median +
wavelet.70

Figure (5.38)brain—hemispheric transaxia 111 hybrid median
+wavelet..71

Figure (5.39) brain—hemispheric coronal | hybrid median + wavelet.....71

Figure (5.40) brain—hemispheric coronal Il hybrid median + wavelet....72



List of tables:

Table(5.1) the results Of fIlters ..o, 75

Table(5.2) the results of hybrid median filter after using the wavelet...77.



Contents:

Contents: NO.
Abstract I
oaliial) I
Acknowledgements 1
List of figures \%
List of tables \
Contents VI

Chapter one Introduction
1.1 Introduction 2
1.2 statement of problem 3
1. 30bjectives 4
1.4 thesis layout 4
Chapter two literature review
2.1 review studies 6
2.2imaging enhancement 9
Chapter three Theoretical back ground
3.1 MRI 11
3.2filters 21
3.3 noise 32
3.4 measures of image quality 39
3.5 wavelet transform 40
Chapter four Methodology
4.1 Data 44
4.2 hardware and software 44
4.3 Procedures 44
Chapter five Result and discussions

5.1 Original images without noise 48
5.2 discussions 67

Chapter six Conclusion and Recommendation

10




6.1 Conclusion

69

6.2Recommendation

69

References

70

11




Chapter one

Introduction

12



1.1 Introduction:

Today medical imaging technology provides the clinician with a number
of complementary fast, flexible, and precise diagnostic tools such as X-
ray, Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) images. MRI, CT scan and X-ray are the most methodologies
widely used to visualize human anatomy. Medical images often need
preprocessing before being subjected to statistical analysis. A common
preprocessing step is filtering. study spatial domain and transformed
domain filtering techniques to solve the noisy problem. Image de-noising
is an vital image processing task i.e. as a process itself as well as a comp-
-onent in other processes. There are many ways to de-noise an image or a
set of data and methods exists. The important property of a good image
de-noising model is that it should completely remove noise as far as
possible as well as preserve edges. Traditionally, there are two types of
models i.e. linear model and non-liner model. Generally, linear models
are used. The benefits of linear noise removing models is the speed and
the limitations of the linear models is, the models are not able to preserve
edges of the images in a efficient manner i.e the edges, which are recog-
-nized as discontinuities in the image, are smeared out. On the other
Hand, Non-linear models can handle edges in a much better way than

linear models. [1]

Magnetic resonance imaging (MRI) provides detailed images of living
tissues, and is used for both brain and body human studies. Data obtained
from MR images is used for detecting tissue deformities such as cancers
and injuries .MRI imaging is also used when treating brain tumor, ankle
and foot. From these high-resolution images, we can derive detailed
anatomical information to examine human brain development and disc -
over abnormalities. MRI consists of T1 weighted, T2 weighted and PD
(Proton Density) weighted images . To give proper diagnosis and good
results, doctors are provided with the different results of enhanced
images. Enhancement is a fundamental task in digital image processing
and analysis, aiming to improve the appearance of image in terms of
human brightness perception.[2]

Digital image plays an important role in our daily life but, they usually
suffer from the poor quality of the image, generally with lack of contrast,
presence of artifact, blurring, noise and shading due to improper focusing
of camera lens, lighting and other factors. Hence we have to improve the
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quality of the image for proper analysis which can be done by image
enhancement .Noise is defined as, pixel in the image show different
intensity value instead of true value of pixels or noise is an unwanted
signal that interferes with original image and degrades the quality of the
image. Noise causes the random variations of image intensity and poor
visibility of pixel. De-noising is a process of removing noise from the
image. Image de-noising is not an easy task because it introduces blurring
and artifacts in image. There are different types of de-noising technique
and their application depends upon type of noise present in the image.
Image de-noising technique classified into two categories. i.e., Spatial
domain filtering where pixels are operated directly and Transform
domain where transfornations are used to de-noise the image.[3]

1.2  Statement of Problem:

The medical images is the most importance tool for the doctors to
diagnostic disease ,and the decision of them dependent on the images
any problem in image like blurring , little of illumination or
inappropriate size me be lead to bed image or nosing images .The most
problem facing the medical images is the distortion , Especially magnetic
reasoning images (MRI ).this research is focused on application of digital
possessing image tools & filters teachings to enhancement images .

1.3 Objectives :

| propose to review the available literature about enhancement imaging .
In this review | will achieve the following two goals:

1- To evaluate the potentiality of using filters technique & image
possessing tool for enhancement MRI

2- Propose new appropriate technique to selected & enhancement
image .
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1.4 thesis layout:

the research is document in six chapters:

Chapter one : Introduction

Chapter two: literature review
Chapter three : Theoretical back ground
Chapter four : Methodology

Chapter five : Result and discussions

Chapter six : Conclusion and Recommendation

15
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literature review
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2.1 Image Enhancement:

Image enhancement, which is one of the significant techniques in digital
image processing, plays an important role in many fields, such as medical
image analysis, remote sensing, high definition television, hyper spectral
image processing, industrial X-ray image processing, microscopic
imaging etc. Image enhancement is a processing on image in order to
make it more appropriate for certain applications. [4]

The principal objective of enhancement is to process an image so that the

result is more suitable than the original image for a specific application.

[5]

2.2 review studies :

P.Deepal and M.Suganthi2 1 proposed [1] :Visual information
transmitted in the form of digital image is becoming a major method for
communication in modern age but the image obtained after transmission
is often corrupted with noise. Removing noise from the original images is
still a challenging problem for researchers. There have been several
published algorithms and each approach has it assumption, advantages
and limitation. This paper presents a review of some significant work in
the area of image de-noising filtering techniques applied to medical
image. The performance of these techniques investigated the problem of
image degradation which might occur during the acquisition of the
images, optical effects such as out of focus blurring, camera motion, flat-
bed scanner and video images. We touch the images of Computed
Tomography (CT) with a set of predefined noise levels. The performance
of these techniques was evaluated with respect to two quantitative
measures, Peak Signal-to-Noise Ratio (PSNR), and Mean Square
Error(MSE).[1]

Pratik Vinayak Oakl proposed [2]: MRI is an advanced medical imaging
technique used to produce high quality images of human body and
different parts. It gives detail information to analyses the diseases.
Medical image processing plays important role to give information in
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more extent for such advance images. Original MRI images are generally
having low contrast. It is difficult for doctors to analyses them. By
increasing the contrast of an image, it will be easy for analyzing because
of detailed information. This increase in contrast can be done by number
of ways in image processing. This paper compares different methods of
enhancement of brain MRI using histogram based techniques.[2]

Sonia Goyal and Seema Baghla proposed [6]: Medical imaging is one of
the most important application areas of digital image processing.
Processing of various medical images is very much helpful to visualize
and extract more details from the image. Many techniques are available
for enhancing the quality of medical image. For enhancement of medical
images, Contrast Enhancement is one of the most acceptable methods.
Different contrast enhancement techniques i.e. Linear Stretch, Histogram
Equalization, Region based enhancement, Adaptive enhancement are
already available. Choice of Method depends on characteristics of image.
This paper deals with contrast enhancement of MRI images and presents
here a new approach for contrast enhancement based upon Adaptive
Neighborhood technique. A hybrid methodology for enhancement has
been presented. Comparative analysis of proposed technique against the
existing major contrast enhancement techniques has been performed and
results of proposed technique are promising.[6]

Rajulath Banu and Dr. A. Ranjith Ram proposed [7]: In this paper, we
study and compare various histogram based Magnetic Resonance
Imaging(MRI) enhancement techniques .Image enhancement is a
processing on an image in order to make it more appropriate for certain
applications. It is used to improve the visual effects and the clarity of
image or to make the original image more conducive for computer to
process. Contrast enhancement changing the pixels intensity of the input
image to utilize maximum possible bins. We need to study and review the
different image contrast enhancement techniques because contrast losses
the brightness in enhancement of image. By considering this fact, the
mixture of global and local contrast enhancement techniques may
enhance the contrast of image with preserving its brightness. Generally,
MRI images are having low contrast. It may be difficult for analysing
because of lack of detailed information. Contrast of MR images can be
increased by number of ways in image processing. Histogram based
techniques are used to enhance all types of medical images .[7]
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Prof. J.Mehena proposed [8] Medical images edge detection is an
important work for object recognition of the human organs and it is an
important pre-processing step in medical image segmentation and
reconstruction. Conventionally, edge is detected according to gradient-
based algorithm and template-based algorithm, but they are not so good
for noise medical image edge detection. In this paper, basic mathematical
morphological theory and operations are introduced, and then a novel
mathematical morphological edge detection algorithm is proposed to
detect the edge of medical images with salt-and-pepper noise. The
simulation results shows that the novel mathematical morphological edge
detection algorithm is more efficient for image denoising and edge
detection than the usually used template-based edge detection algorithms
and general morphological edge detection algorithms. It has been
observed that the proposed morphological edge detection algorithm
performs better than sobel, prewitt, roberts and canny’s edge detection
algorithm. In this paper the comparative analysis of various image edge
detection techniques is presented using MATLAB 8.0 .[8]
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3.1 MRI:

Magnetic resonance imaging (MRI) is a spectroscopic imaging technique
used in medical settings to produce images of the inside of the human
body. MRI is based on the principles of nuclear magnetic resonance
(NMR), which is a spectroscopic technique used to obtain microscopic
chemical and physical data.[9].

3.1.1 The magnetism of the body:

Equipped with a level of understanding of how magnet needles with and
without spin are affected by radio waves, we now turn to the “compass
needles” in our very own bodies.[10]

* Most frequently, the MR signal is derived from hydrogen nuclei
(meaning the atomic nuclei in the hydrogen atoms). Most of the body’s
hydrogen is found in the water molecules. Few other nuclei are used for
MR. [10]

» Hydrogen nuclei (also called protons) behave as small compass needles
that align themselves parallel to the field. This is caused by an intrinsic
property called nuclear spin (the nuclei each rotate as shown in figure 3).
By the “direction of the nuclear spins” we mean the axis of rotation and
hence the direction of the individual “compass needles”.[10]

» The compass needles (the spins) are aligned in the field, but due to
movements and nuclear interactions in the soup, the alignment only
happens partially, very little, actually. There is only a weak tendency for
the spins to point along the field. The interactions affect the nuclei more
than the field we put on, so the nuclear spins are still largely pointing
randomly, even after the patient has been put in the scanner. An analogy:
If you leave a bunch of compasses resting, they will all eventually point
towards north. However, if you instead put them into a running tumble
dryer, they will point in all directions, and the directions of individual
compasses will change often, but there will still be a weak tendency for
them to point towards north. In the same manner, the nuclei in the body
move among each other and often collide, as expressed by the
temperature. At body temperature there is only a weak tendency for the
nuclei to point towards the scanners north direction. Together, the many
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nuclei form a total magnetization (compass needle) called the net
magnetization. It is found, in principle, by combining all the many
contributions to the magnetization, putting arrows one after another. If an
equal number of arrows point in all directions, the net magnetization will
thus be zero. Since it is generally the sum of many contributions that
swing in synchrony as compass needles, the net magnetization itself
swings as a compass needle. It is therefore adequate to keep track of the
net magnetization rather than each individual contribution to it. As
mentioned above, the nuclei in the body move among each other (thermal
motion) and the net magnetization in equilibrium is thus temperature
dependent. Interaction between neighboring nuclei obviously happens
often in liquids, but they are quite weak due to the small magnetization of
the nuclei. Depending on the character and frequency of the interaction,
the nuclei precess relatively undisturbed over periods of, for example,
100 ms duration. At any time, there is a certain probability that a nucleus
takes part in a dramatic clash with other nuclei, and thus will point in a
new direction, but this happens rather infrequently. The net magnetization
is equivalent to only around 3 per million nuclear spins oriented along the
direction of the field (3 ppm at 1 tesla). This means that the magnetization
of a million partially aligned hydrogen nuclei in the scanner equals a total
magnetization of only 3 completely aligned nuclei With the gigantic
number of hydrogen nuclei (about 1027) found in the body, the net
magnetization still becomes measurable. It is proportional to the field: A
large field produces a high degree of alignment and thus a large
magnetization and better signal-tonoise ratio.[10]

* If the net magnetization has been brought away from equilibrium, so it
no longer points along the magnetic field, it will subsequently precess
around the field with a frequency of 42 million rotations/second at 1 tesla
(42 MHz, megahertz). This is illustrated in figure 4. Eventually it will
return to equilibrium (relaxation), but it takes a relatively long time on
this timescale (e.g. 100 ms as described above). Meanwhile, radio waves
at this frequency are emitted from the body. We measure and analyze
those. Notice: The position of the nuclei in the body does not change -
only their axis of rotation. [10]

* The precession frequency is known as the Larmor frequency in the MR
community. The Larmor equation expresses a connection between the
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resonance frequency and the magnetic field, and it is said to be the most
important equation in MR: f = yBO The equation tells us that the
frequency f is proportional to the magnetic field, BO. The proportionality
factor is 42 MHz/T for protons. It is called “the gyromagnetic ratio” or
simply “gamma”. Thus, the resonance frequency for protons in a 1.5 tesla
scanner is 63 MHz, for example. The Larmor equation is mainly
important for MR since it expresses the possibility of designing
techniqgues based on the frequency differences observed in
inhomogeneous fields. Examples of such techniques are imaging, motion
encoding and spectroscopy .But how is the magnetization rotated away
from its starting point? It happens by applying radio waves at the above
mentioned frequency. Radio waves are magnetic fields that change
direction in time. The powerful stationary field pushes the magnetization
so that it processes. Likewise the radio waves push the magnetization
around the radio wave field, but since the radio wave field is many
thousand times weaker than the static field, the pushes normally amount
to nothing. Because of this, we will exploit a resonance phenomenon: By
affecting a system rhythmically at an appropriate frequency (the systems
resonance frequency), a large effect can be achieved even if the force is
relatively weak. A well-known example: Pushing a child sitting on a
swing. If we push in synchrony with the swing rhythm, we can achieve
considerable effect through a series of rather weak pushes. If, on the other
hand, we push against the rhythm (too often or too rarely) we achieve
very little, even after many pushes. With radio waves at an appropriate
frequency (a resonant radio wave field), we can slowly rotate the
magnetization away from equilibrium. “Slowly” here means about one
millisecond for a 90 degree turn, which is a relatively long time as the
magnetization processes 42 million turns per second at 1 tesla (the
magnetization rotates 42 thousand full turns in the time it takes to carry
out a 90 degree turn, i.e., quite a lot faster). Figure 6 is a single scene
from an animation found at http://www.drcmr.dk/MR that shows how a
collection of nuclei each processing around both B0 and a rotating radio
wave field as described earlier, together form a net magnetization that
likewise moves as described. The strength of the radio waves that are
emitted from the body depends on the size of the net magnetization and
on the orientation. The greater the oscillations of the net magnetization,
the more powerful the emitted radio waves will be. The signal strength is
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proportional to the component of the magnetization, that is perpendicular
to the magnetic field (the transversal magnetization), while the parallel
component does not contribute (known as the longitudinal
magnetization). In figure 4, the size of the transversal magnetization is
the circle radius. If the net magnetization points along the magnetic field
(as in equilibrium, to give an example) no measurable radio waves are
emitted, even if the nuclei do process individually. This is because the
radio wave signals from the individual nuclei are not in phase, meaning
that they do not oscillate in synchrony perpendicular to the field. The
contributions thereby cancel in accordance with the net magnetization
being stationary along the BO-field (there is no transversal
magnetization). [10]

* The frequency of the radio waves is in the FM-band so if the door to a
scanner room is open, you will see TV and radio communication as
artifacts in the images. At lower frequencies we find line frequencies and
AM radio. At higher frequencies, we find more TV, mobile phones and
(far higher) light, X-ray and gamma radiation. From ultra-violet light and
upwards, the radiation becomes “ionizing”, meaning that it has sufficient
energy to break molecules into pieces. MR scanning uses radio waves
very far from such energies. Heating, however, is unavoidable, but does
not surpass what the body is used to.[10]

O

S

Figure(3. 1): The spin of the nuclei (rotation) makes them magnetic
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Figure (3.2): A magnetization M that process around the magnetic field
BO because of spin (rotation around M).

Figure (3.3): The figure shows the same situations in two and three
dimensions (top and bottom, respectively).
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The nuclear spins are shown as numerous arrows (vectors). In the lower
graphs, they are all drawn as beginning in the same point, so that the
distribution over directions is clear (implicit coordinate system
(Mx,My,Mz)). When a patient arrives in the ward, the situation is as
shown in the two graphs to the left: The spins are oriented randomly, with
a uniform distribution over directions, meaning that there is about an
equal number of spins pointing in all directions. The net magnetization is
near zero and the nuclei do not process. When a magnetic field BO is
added, as shown in the two figures to the right, a degree of alignment
(order) is established. The field is only shown explicitly in the top right
figure, but the effect is visible in both: The direction distribution becomes
“skewed” so that a majority of the nuclei point along the field. In the
lower right figure, the net magnetization (thick vertical arrow) and the
precession (the rotation of the entire ball caused by the magnetic field)
are shown. The lower figures appear in the article Is Quantum Mechanics
necessary for understanding Magnetic Resonance? Concepts in Magnetic
Resonance Part A, 32A (5), 2008.[10]

Figure (3.4): Scene from animation found at http://www.drcmr.dk/MR

that shows how radio waves affect a collection of nuclear spins
processing around BO (vertical axis) at the Larmor frequency. The radio
wave field that rotates around the same axis at the same frequency,
induces simultaneous rotation around a horizontal axis, as symbolized by
the circular arrow. The relative orientation of the nuclei does not change,
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and it is therefore adequate to realize how the net magnetization (here
shown by a thick arrow) is affected by the magnetic field.[10]

3.1.2Weightings:

The contrast in an MR-image is controlled by the choice of measuring
method (sequence and sequence parameters, which will be discussed
later). For example, we call an image T2-weighted if the acquisition
parameters are chosen so the image contrast mainly reflect T2-variations.
One must understand, however, that even in a heavily T2-weighted
image, the contrast will often reflect more than just T2-variation. To
provide an example, variation in water content always results in some
contrast. The echo time, TE, is the period from we rotate the
magnetization into the transversal plane until we decide to measure the
radio waves (a more precise definition will follow later). Meanwhile, a
loss of magnetization and signal will occur due to T2-relaxation. The
echo time is thus the period within the measurement which gives T2-
weighting in the images. A long TE compared to T2 will thus result in
considerable T2-contrast, but only little signal. The greatest sensitivity to
T2-variation will be achieved when TE 'T2. Often, we will repeat similar
measurements several times, e.g. once per line in an image. The repetition
-time, TR, is the time between these repetitions. Every time we make
such a measurement, we (partially) use the longitudinal magnetization
present (the magnetization is rotated into the transversal plane which
results in emission of radio waves while the transversal component
gradually disappears). If we use the magnetization often (short TR), every
repeat will therefore only produce a small signal. If we, on the other hand,
wait longer between repetitions (long TR), the magnetization will nearly
recover to equilibrium between repetitions. What is meant by short and
long TR? It is relative to T1 that is the time scale on which the
longitudinal magnetization is rebuilt. If the magnetization is completely
rebuilt between measurements for all types of tissue in the scanner,
meaning if TR is significantly longer than the maximum T1, the T1-
contrast will disappear. In this case, the transversal magnetization
immediately following the rotation of the nuclei reflects the equilibrium
magnetization. The radio waves do so, as well. The equilibrium
magnetization is governed by the hydrogen concentration, also known as
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the proton density (PD). Thus, we may conclude that using a long TR
results in limited T1-weighting but a strong signal. If we apply a shorter
TR, the signal is reduced for all types of tissue, but the signal becomes
more T1-weighted, meaning that the images will be less intense, but with
a relatively greater signal variation between tissues with differing T1.
Finally, we can minimize both T1- and T2-contrast, which results in a
PD-weighted image. In such an image, variation in the water content is
the primary source of contrast, since the proton density is the density of
MR-visible hydrogen that is largely proportional to the water content.[10]

3.1.3 imaging :

The most obvious methods for MR imaging could be imagined to be
projection or the usage of antennas that can detect where in the body the
radio waves are emitted. X-ray and normal microscopy are examples of
such “optical” techniques, and it would appear obvious to extend this type
of imaging to MR. Optical techniques are, however, “wavelength-
limited”, which means that they cannot be used to acquire images more
detailed than approximately one wavelength. In other words: Due to
fundamental causes, one cannot localize the source of radio waves more
precisely than about one wavelength when using lenses or other direction-
sensitive antennas. The radio waves used in MR scanning are typically
several meters long, so with optical techniques we can hardly determine
whether the patient is in or outside the scanner (this argument is really
only valid in the far field, which is the background for parallel imaging.
More on this later). Optical techniques as we know them from binoculars,
eyesight, CT, X-ray, ultrasound and microscopes, are thus practically
useless for MR-imaging, and a fundamentally different principle is
necessary. This principle was introduced by Paul Lauterbur in 1973, and
it resulted in the Nobel Prize in Medicine in 2003. Basically, Lauterbur
made the protons give their own locations away by making the frequency
of the emitted radio waves reflect the position. Lauterbur shared the prize
with Sir Peter Mansfield, who also contributed greatly to the development
of techniques used in magnetic resonance imaging (MRI).[10]

3.1.4 Principles:

A requirement for MR imaging is that the scanner is equipped with extra
electromagnets called “gradient coils” that cause linear field variations.
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Direction and strength can be altered as desired. The spatial localization
occurs according to different principles, of which the most simple is slice
selection. Other forms of coding involve the so-called k-space.[10]

3.1.5 Slice selection :

By using gradient coils, the magnetic field strength can be controlled so
that it, for example, increases from left to right ear, while the direction is
the same everywhere (along the body). This is called a field gradient from
left to right. By making the field inhomogeneous in this way, the
resonance frequency varies in the direction of the field gradient. If we
then push the protons with radio waves at a certain frequency, the
resonance condition will be fulfilled in a plane perpendicular to the
gradient as shown in figure 7. The spins in the plane have thus been
rotated significantly, while spins in other positions simply vibrate
slightly. Thus we have achieved slice selective excitation of the protons
and a sagittal slice has been chosen.[10]

Figure (3.5): Spin is influenced selectively in a sagital slice, if a gradient
from left to right is applied while radio waves are transmitted.

3.1.6 Spatial localization within a slice:

After the protons in a slice are excited, they will all emit radio waves. In
order to create images of the slice, we must introduce a way to distinguish
the signals from different positions within the slice. The fundamental
principle can appear a bit foreign, but will be explained in detail at a later
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stage. Briefly told, different patterns in the magnetization throughout the
slice are created with the help of gradients. The strength of the radio
signals that are returned tell us how much the object in the scanner “looks
like” the applied pattern. By combining patterns according to their
measured similarity to the object, the well-know MR-images are created.
What is meant by “patterns” is first illustrated in one dimension, meaning
that we consider spins placed on a line (e.g. between the ears) and watch
their location and direction immediately after excitation.[10]

As illustrated, immediately after excitation the spins all point in the same
direction perpendicular to the magnetic field, which points out of the
paper. They will thereafter process around the magnetic field, that is, they
will rotate in the plane of the paper at a frequency that is dependent on
the magnetic field. Insofar as the field is made to increase from left to
right by applying a field gradient briefly, the spins will each turn an angle
that depends linearly on the nucleus’ position: [10]

the object, the magnetization has rotated several turns. The longer time a
gradient is turned on, and the greater the field variation that arises, the
more “phase roll” is accumulated (more rotations per unit length). We
have through use of gradients, made the spins point in all directions in a
controlled fashion and have thus simultaneously lost the signal. This is
seen by comparing the two situations above, since the measured
magnetization is the sum of all the contributions from the individual
spins. When the spins are in phase (that is, pointing in the same
direction), they jointly create a considerable magnetization that gives rise
to radio waves being emitted. When the spins point in all directions as
when a gradient has been applied, their sum is quite small. As a result,
comparably weak radio waves are emitted. The gain from using the
gradient can thus appear quite small: We have simply lost the signal. That
does not, however, have to be the case. Look, for example, at the situation
illustrated below where there are not (as above) protons uniformly
distributed from left to right, but where there is a regular variation in
water content instead.[10]

3.1.7 Image acquisition and echo-time:

the echo time was described as the duration from excitation until the point
where radio waves are measured. Since the transversal magnetization in
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this period is lost on a timescale of T2 (or T * 2, if a refocusing pulse is
not used), the echo time TE is thus determining the corresponding
relaxation time weighting of the measurement. After the introduction of
imaging, we now need to reconsider the definition of echo time, since
several positions in k-space are typically being measured after each
excitation. A typical approach to imaging is, for example, to measure
individual points along a line in k-space one by one after each excitation.
The single points (corresponding to different stripe patterns) are
consequently not measured at the same time after excitation, and the
echo-time definition has therefore become blurry. For echo-planar
imaging (EPI), this problem is extreme, since the entire image is
measured after a single excitation, meaning that some points in k-space
are measured milliseconds after excitation, while others are measured, for
example, 100 ms later and thus with a completely different T2 weighting.
Is the possibility to characterize T2-weighting by a single parameter
therefore lost? No! It turns out that the echo-time definition can be
adjusted, so that it still can be interpreted as above. A surprising
characteristic comes into play here: Even though parts of k-space are
acquired shortly after excitation and other parts a long time after, the
reconstructed image looks (contrast-wise) as if it has been acquired at a
very certain time after excitation, that being the time where the middle of
k-space has been acquired. As such, it makes good sense to define the
echo-time as the duration from excitation until the time where the middle
of k-space is measured[10]

3.2 filters and noise :

The term spatial domain refers to the image plane itself, and methods in
this category are based on direct manipulation of pixels in an image. [5]

As noted in the preceding paragraph, spatial domain techniques operate

directly on the pixels of an image. The spatial domain processes are
denoted by the expression:[5]

g, V)=T[fxy)] (3.2)
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where f(X, y) is the input image, g(x, y) is the output (processed) image,
and T is an operator on f defined over a specified neighborhood about
point (X, y). In addition, T can operate on a set of images, such as
performing the addition of K images for noise reduction.[5]

3.2.1 Spatial Filtering:

This refers to an image operators that change the gray value at any pixel
(x,y) depending on the pixel value in a square neighborhood centered at
(x,y) using a fixed integer matrix of the same size. The integer matrix is
called a filter, mask, kernel or a window. The mechanism of special
filtering consists simply of moving the filter mask from pixel to pixel in
an image. At each pixel (x,y), the response of the filter at

that pixel is calculated using a predefined relationship (linear or
nonlinear). The size of mask must be odd (i.e. 3x3, 5x5, e.t.c.) to ensure it
has a center. The smallest meaningful size is 3x3 . The figure below
shows the spatial filter mask .[11]
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Figure 5.1 Spatial filtering

Figure (3.6): show Spatial Filtering
3.2.1.1 Linear Spatial filtering (Convolution):

The process consists of moving the filter mask from pixel to pixel in an
image. At each pixel (x,y), the response is given by a sum of products of
the filter coefficients and the corresponding image pixels in the area
spanned by the filter mask. For the 3x3 mask as shown in figure 3, the
result (or response), R of linear filtering [11].
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R= w(-1,-1)f(x-1,y-1)+w(-1,0)f(x-1,y)+....+w(0,0)f(X,y)+...+
w(1,0)f(x+1,y)+w(1,1)f(x+1,y+1)

In general, linear filtering of image f of size MxN with a filter mask of
size mxn is given by the expression .

gx,y)=Ya__, YP _ w(s,Df(x+sy+t) (3.2).

Where a = (m-1)/2 and b = (n-1)/2 [8]. To generate a complete filtered
image, this equation must be applied for
x=0,1,2,........ M-1andy =0,1,....,N-1 [11].

3.2.1.2 Nonlinear Spatial filtering:

The operation also consists of moving the filter mask from pixel to pixel
in an image. The filtering operation is based conditionally on the values
of the pixels in the neighborhood, and they do not explicitly use
coefficients in the sum-of —products manner. For example, noise
reduction can be achieved effectively with a nonlinear filter whose basic
function is to compute the median gray-level value in the neighborhood
in which the filter is located computation of the median is a nonlinear
operation .[11]

3.2.2.Smoothing Spatial Filters:

Smoothing filters are used for blurring and noise reduction. Blurring is
used preprocessing tasks such as removal of small details from an image
prior to (large) object extraction, and bridging of small gaps in lines or
curves. Noise reduction can

be accomplished by blurring with a linear filter and also by nonlinear
filtering .[2]

3.2.2.1Smoothing Linear Filters:
The output (response) of smoothing, linear filter is simply the average of
the pixels contained in the neighborhood of the filter mask. These filters

sometimes are called averaging filters. Also, they are also referred to as
low-pass filters .Noise and edges consist of sharp transitions in gray-
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levels. Thus smoothing filters are used for noise reduction; however, they
have the undesirable side effect that they blur edges. The
two figures below shows two 3x3 averaging filters .[11]
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Figure (3.7): show Two 3 x 3 smoothing (averaging) filter masks [11].
The Averaging linear filtering of an image f of size MxN with a filter

mask of size mxn is given by the expression [11];

gxy)=Y2a__, ¥ wisDf(x+sy+t)
Zg=_a ZE:-b W(S,t) ................ (33)

To generate a complete filtered image, this equation must be applied for x
= 0,12,...,M-1 and y=0,1,2,....N-1 .The denominator in the above
equation is simply the sum of the mask coefficients and, therefore, it is a
constant that needs to be computed only once .The following figure
below shows an example of applying standard average filter [11].

3.2.3 Order-Statistics (Nonlinear filters):

Order-statistic filters are nonlinear spatial filters whose response is based
on ordering (ranking) the pixels contained in the image area encompassed
by the filter, and then replacing the value of the center pixel with the
value determined by the ranking result. The best known filter in this
category is the median filter, which as its name implies, replaces the
value of a pixel by the median of the intensity values in the neighborhood
of that pixel (the original value of the pixel is included in the computation
of the median). Median filters are quite popular because, for certain types
of random noise, they provide excellent noise reduction capabilities, with
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considerably less blurring than linear smoothing filters of similar size.
Median filters are particularly effective in the presence of impulse noise,
called salt-and-pepper noise because of its appearance as white and black
dots superimposed on an image [11].

3.2.4. Sharpening Spatial Filters:

Sharpening aims to highlight fine details (e.g. edge) in an image, or
enhance detail that has been blurred through errors or imperfect capturing
devices. Imaging blurring can be achieved using averaging filters, and
hence sharpening can be achieved by operators that invert averaging
operators[11].

3.2. 4.1 Partial Derivatives of Digital Functions:

The first order partial derivatives of the digital image f(x,y) is

% =f(x+1y)—f(xy) & :—; =f(x,y+1)—f(x,y) ....cen.... (3.4)
The first order must be :

- Zero along flat segments (i.e. constant gray values)

- Non-zero at the outset of gray level step or ramp (edges or noise).

- Non-zero along segments of continuing changes i.e. ramps).[11]

The second order partial derivatives of digital images are

92f
ol f(x+1,y) +f(x—1,y) — 2f(x,y)
cveriienns (3.5)
aZf—f( +1)+f 1) — 2f(x,y)
50 = Ty x,y—1) = 2f(x,y

Second derivative must be;
- Zero along flat segments.
- Non-zero at the outset and of gray-level step or ramp
- Zero along ramps.[11]
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3.2.5 Laplacian Filter:

The Laplacian operator of an image f(x,y) is

g2f  o02f
=22, 94

V2t =
ax2  0dy2

The above equation can be implemented using the 3x3 mask
as shown below .[14]
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Figure (3.8): show Laplacian Filter.
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Since the Laplacian filter is a linear spatial filter, we can apply it using
the same mechanism of the convolution process. This will produce a
Laplacian image that has grayish edge lines and other discontinuities, all
superimposed on a dark, featureless background .The figure below shows
an example of using Laplacian filter to sharper an image [11].

LINEAR AND NON LINEAR FILTERING TECHNIQUES:

A traditional way to remove noise from image data is to employ spatial
filters. Spatial filters can be further classified into linear and non-linear
filters. A. Linear Filters

tend to blur sharp edges, destroy lines and other fine image details, and
perform poorly in the presence of signal dependent noise.[1]

3.2.6 Mean Filters:

Mean filtering is a simple, intuitive and easy to implement method of
smoothing images, i.e. reducing the amount of intensity variation between
one pixel and the next. The idea of mean filtering is simply to replace
each pixel value in an image with the mean value of its neighbors,
including itself. Mean filtering is usually thought of as a convolution
filter. Like other convolutions it is based around a kernel, which
represents the shape and size of the neighborhood to be sampled when
calculating the mean, the mask has a value of N/1, where N is the mask
size.[1]

36



3.2. 7 Gaussian Filters:

The Gaussian smoothing operator is a 2D convolution operator that is
used to ‘blur’ images, remove detail and noise .In this sense it is similar
to the mean filter, but it uses a different kernel that represents the shape
of a Gaussian. In 2D, the Gaussian distribution follows the equation:

t2+f2
B 202 )

—exp(

21O

Where o is the standard deviation. The idea of Gaussian Smoothing is to
use this 2D distribution as a point-spread Function; achieved by
convolution. Once a suitable mask has been calculated, then the Gaussian
smoothing can be performed using standard convolution.[1]

3.2.8 Median Filters:

The median filter is normally used to reduce noise in an image, somewhat
like the mean filter. However, it often does a better job than the mean
filter of preserving useful detail in the image. Median filter considers
each pixel in the image in turn and looks at its nearby neighbors to decide
whether or not it is representative of its surroundings. Instead of simply
replacing the pixel value with the mean of neighboring pixel values;
replace it with the median.[1]

3.2.9 2D -Order statistics Filter:

The 2D order-statistic filtering is used to remove the noise and enhance
the weak boundaries of medical images. The 2D order-statistic filtering
replaces each pixel of an image by the nthorder element in the sorted set
of neighbours of size r by specified by the nonzero elements in
domain.[1]
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3.2.10 Bilateral Filter:

The bilateral filter is a nonlinear, feature preserving image filter,
proposed by Smith and Brady and separately by Tomasi and Manduchi .
Although, the filter is initially designed to be an alternative to anisotropic
diffusion recent researches demonstrate that it has close connections with
robust estimation and anisotropic diffusion and the output is a weighted
average of the input. They start with standard Gaussian filtering with a
spatial kernel f However, the weight of a pixel depends also on a function
g in the intensity domain, which decreases the weight of pixels with large
intensity differences.[1]

The basic idea underlying bilateral filtering is to do in the range of an
image what traditional filters do in its domain. Two pixels can be close to
one another, that is, occupy nearby spatial location, or they can
be similar to one another, that is, have nearby values, possibly in a
perceptually meaningful fashion.
Consider a shift-invariant low-pass domain filter applied to an image:

h) = kgt O[O f(e)c(e —X)de i (3.8)

The bold font for f and h emphasizes the fact that both input and output
images may be multi-band. In order to preserve the DC component, it
must be[8]

kd=f;° f;o C(S)dS ................................ (39)

3.2.11 Sticks Filter:

After an extensive research, a very strong edge preserving filter known as
“sticks”. This filter is well known in literature for its capabilities in
detection of boundaries and lines in presence of multiplicative noise. In
this case, to find the defected region in materials with a high accuracy, it
is crucial to conserve all boundaries. To find the lines in the image, it is
necessary to determine whether a line passes through each pixel. In sticks
filter, a neighbourhood around each pixel is constructed and a search for
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lines passing through the center of that neighbourhood is performed.
“This is an M-array hypothesis testing, where each of the hypotheses
represents a possible line orientation” .For simplicity, the neighborhood
can be considered to have a square shape. This way, the number of
orientations is equal to the number of hypothesis. The set of hypotheses is
called “sticks”.[1]

3.2.12 Im filter:

Im filter is used to filter a multidimensional array with amultidimensi-
onal filter. The result obtained is of same size as the array specified. The
parameters specified carry out the multidimensional filtering. The syntax
for this is:

A = Imfilter(Y, Z, typel, type2,...)

The values of typel can be symmetric, replicate, circular, correlate, and
type2 can be corr conv etc.[1]

3.2.13 Total Variation (TV):

Total variation based filtering was introduced by Rudin, Osher, and
Fatemi .TV de-noising is an effective filtering method for recovering
piecewise-constant signals. Many algorithms have been proposed to
implement total variation filtering. The one described in these notes is by
Chambolle .(Note: Chambolle described another algorithm in ).Although
the algorithm can be derived in several different ways, the derivation
presented here is based on descriptions given in [1, 10]. The derivation is
based on the min-max property and the majorization-minimization
procedure. Total variation is often used for image filtering and
restoration, however, to simplify the presentation of the TV filtering
algorithm these notes concentrate on one-dimensional signal filtering
only. In addition, the algorithm described here may converge slowly for
some problems. Faster algorithms for TV filtering have recently been
developed, for example [1, 10]. The development of fast, robust
algorithms for TV and related non-linear filtering is an active topic of
research.[12]

The total variation (TV) of a signal measures how much the signal
changes between signal values. Specifically, the total variation of an N-
point signal x(n), 1 <n <N is defined as[8]:

TVX) =Y, Ix(n) —x(n—=1)] (3.10)
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3.2.14 Linear Despeckle Filter (DsFlsmv) :

This filter utilizes the first order statistics, namely the variance and the
mean of a pixel neighborhood and may be described with a multiplicative
noise model .Hence the algorithms in this class may be traced back to the
following equation:

fii=0+Kij(05—0) e (3.11)

Where f;;, is the estimated noise-free pixel value, g;;is the noisy pixel
value in the moving window, g is the local mean value of an N1 > N2
region surrounding and including pixel g;;, fi; is a weighting factor,
with k € [0..1], and i, j, are

the pixel coordinates. The factor k; ;, is a function of the local statistics in
a moving window and can be found in the literature [9]as:

k__ (1_g_2 2) ......................
1= ea(1eo2))

The values 02 and o2 represent the variance in the moving window and
the variance of noise in the whole image respectively. The noise
variances2, may be calculated for the logarithmically compressed image,
by computing the average noise variance over a number of windows with
dimensions considerable larger than the filtering window .The moving
window size is 5x5 and the number of iterations

two.[12]

3.2.15 Hybrid Median Filtering (DsFhmedian):

The filter DsFhmedian ,which is an extension of the median filter,
computes the average of the outputs generated by median filtering with
three different windows (cross shape window, x-shape window and
normal window). Here, a 5x5 size moving window was used with the
number of iterations applied to each video frame equal to two.[12]
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3.2.16 Speckle Reducing Anisotropic Diffusion Filtering (DsFsrad):
Speckle reducing anisotropic diffusion was proposed in.It is based on
setting the conduction coefficient in the diffusion equation using the local
frame gradient and the frame Laplacian. The DsFsrad uses two seemingly
different methods, namely the Lee and the Frost diffusion filters ,A more
general updated function for the output image by extending the partial
differential equation versions of the despeckle filter can be found in ;[13]

1.
fi.j=gi,]- + Edlv(csraddvg')in,j)

1 1

> |Vgii|2 — 7= (V29;;)2

24paq (IWgl) = 216
(gi,j =+ Z V2g1’]) 2

3.3 Noise:

During image acquisition and transmission, noise is seen in images. This
is characterised by noise model. So study of noise model is very
important part in image processing. On the other hand, Image de-noising
IS necessary action in image processing operation. Without the prior
knowledge of noise model we cannot elaborate and perform de-noising
actions.[14]

Noise tells unwanted information in digital images. Noise produces
undesirable effects such as artifacts, unrealistic edges, unseen lines,
corners, blurred objects and disturbs background scenes. Digital noise
may arise from various kinds of sources such as Charge Coupled Device
(CCD) and Complementary Metal Oxide Semiconductor (CMOS)
sensors. In some sense, points spreading function (PSF) and modulation
transfer function (MTF) have been used for timely, complete and
quantitative analysis of noise models. Probability density function (PDF)
or Histogram is also used to design and characterize the noise models.
[14]
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3.3.1 Gaussian Noise Model:

It is also called as electronic noise because it arises in amplifiers or
detectors. Gaussian noise caused by natural sources such as thermal
vibration of atoms and discrete nature of radiation of warm objects .
Gaussian noise generally disturbs the gray values in digital images. That
is why Gaussian noise model essentially designed and characteristics by
its PDF or normalizes histogram with respect to gray value.[14]
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Figure (3.9)show PDF Gaussian noise .

3.3.2 White Noise:

Noise is essentially identified by the noise power. Noise power spectrum
is constant in white noise. This noise power is equivalent to power
spectral density function. The statement “Gaussian noise is often white
noise” is incorrect . [14]

However neither Gaussian property implies the white sense. The range of
total noise power is -oo to +oo available in white noise in frequency
domain. That means ideally noise power is infinite in white noise. This
fact is fully true because the light emits from the sun has all the frequency
components[14].

In white noise, correlation is not possible because of every pixel values
are different from their neighbours. That is why autocorrelation is zero.
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So that image pixel values are normally disturb positively due to white
noise.[14]

3.3.3 Brownian Noise (Fractal Noise):

Colored noise has many names such as Brownian noise or pink noise or
flicker noise or 1/f noise. In Brownian noise, power spectral density is
proportional to square of frequency over an octave i.e., its power falls on
Ya th part (6 dB per octave). Brownian noise caused by Brownian motion.
Brownian motion seen due to the random movement of suspended
particles in fluid. Brownian noise can also be generated from white noise.
However this noise follows non stationary stochastic process. This
process follows normal distribution. Statistically fractional Brownian
noise is referred to as fractal noise. Fractal noise is caused by natural
process. It is different from Gaussian process.[14]

3.3.4 Impulse Valued Noise (Salt and Pepper Noise):

This is also called data drop noise because statistically its drop the
original data values. This noise is also referred as salt and pepper noise.
However the image is not fully corrupted by salt and pepper noise instead
of some pixel values are changed in the image. Although in noisy image,
there is a possibilities of some neighbours does not changed . This noise
is seen in data transmission. Image pixel values are replaced by corrupted
pixel values either maximum ‘or’ minimum pixel value i.e., 255 ‘or’ 0
respectively, if number of bits are 8 for transmission. Let us consider 3x3
image matrices which are shown in the Fig.( 3.10). Suppose the central
value of matrices is corrupted by Pepper noise. Therefore, this central
value i.e., 212 is given in Fig. (3.10) is replaced by value zero. In this
connection, we can say that, this noise is inserted dead pixels either dark
or bright. So in a salt and pepper noise, progressively dark pixel values
are present in bright region and vice versa.[16]

254 | 207 | 210 254 | 207 | 210
97 | 212192 0F—» 0 32
62 106 | 20 62 106 | 20

Figure (3.10) The central pixel value is corrupted by Pepper noise.

Inserted dead pixel in the picture is due to errors in analog to digital
conversion and errors in bit transmission. The percentagewise estimation
of noisy pixels, directly determine from pixel metrics. The PDF of this
noise is shown in the Fig. (3.11)
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Figure (3. 11)The PDF of Salt and Pepper noise

3.3.5 Periodic Noise:

This noise is generated from electronics interferences, especially in power
signal during image acquisition. This noise has special characteristics like
spatially dependent and sinusoidal in nature at multiples of specific freg-
uency. It’s appears in form of conjugate spots in frequency domain. It can
be conveniently removed by using a narrow band reject filter or notch
filter.[14]

3.3.6 Quantization noise:

Quantization noise appearance is inherent in amplitude quantization
process. It is generally presents due to analog data converted into digital
data. In this noise model, the signal to noise ratio (SNR) is limited by
minimum and maximum pixel value, P min and P max respectively.
Quantization noise obeys the uniform distribution. That is why it is
referred as uniform noise. Its PDF is shown in Fig. (3.12).[13]
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Figure (3.12) show Uniform noise
3.3.7 Speckle Noise:

This noise is multiplicative noise. Their appearance is seen in coherent
imaging system such as laser, radar and acoustics etc,. Speckle noise can
exist similar in an image as Gaussian noise. Its probability density
function follows gamma distribution.[14]

3.3.8 Photon noise (Poisson Noise):

When the physical signal that we observe is based upon light, then the
quantum nature of light plays a significant role. A single photon at A =
500 nm carries an energy of E = hv = hc/A = 3.97 >< 10-19 Joules.
Modern CCD cameras are sensitive enough to be able to count individual
photons. [15]

3.3.9 Thermal noise:

An additional, stochastic source of electrons in a CCD well is thermal
energy. Electrons can be freed from the CCD material itself through
thermal vibration and then, trapped in the CCD well, be indistinguishable
from “true” photoelectrons. By cooling the CCD chip it is possible to
reduce significantly the number of “thermal electrons” that give rise to
thermal noise or dark current. As the integration time T increases, the
number of thermal electrons increases. The probability distribution of
thermal electrons is also a Poisson process where the rate parameter is an
increasing function of temperature. There are alternative techniques (to
cooling) for suppressing dark current and these usually involve estimating
the average dark current for the given integration time and then
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subtracting this value from the CCD pixel values before the A/D
converter. While this does reduce the dark current average, it does not
reduce the dark current standard deviation and it also reduces the possible
dynamic range of the signal.[15]

3.3.10 On-chipelectronic noise :

This noise originates in the process of reading the signal from the sensor,
in this case through the field effect transistor (FET) of a CCD chip.

3.3.11 Structured Noise:

Structured noise are periodic, stationary or non stationary and aperiodic
in nature. If this noise is stationary, it has fixed amplitude, frequency and
phase. Structured noise caused by interferences among electronic com -
ponents .Noise presents in communication channel are in two parts,
unstructured noise (u) and structured noise (s). structured noise is also
called low rank noise. In a signal processing, it is more advantagable
(more realistic) to considering noise model in a lower dimensionality
space.[15]

3.3.12 Rayleigh noise:

Rayleigh noise presents in radar range images. In Rayleigh noise,

probability density function is given as
—(g-a)2

P(@={(g-we > forg=a

0 for<a ...l (3.14)
Where mean u=a+ \/“Tb and variance 02:@
respectively. [14]

are given as
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Figure (3.13) Rayleigh distribution.
3.3.13 The Rician Distribution of Noisy MRI Data:

The image intensity in magnetic resonance magnitude images in the
presence of noise is shown to be governed by a Rician distribution. Low
signal intensities (SNR < 2) are therefore biased due to the noise. It is
shown how the underlying noise can be estimated from the images and a
simple correction scheme is provided to reduce the bias. The noise
characteristics in phase images are also studied and shown to be very
different from those of the magnitude images. Common to both, however,
is that the noise distributions are nearly Gaussian for SNR larger than
two.[16]

It is common practice to assume the noise in magnitude MRI images is
described by a Gaussian distribution. The power of the noise is then often
estimated from the standard deviation of the pixel signal intensity in an
image region with no NMR signal. This can, however, lead to an
approximately 60% underestimation of the true noise power. Here we
will show that there is a simple analytical relationship between the true
noise power and the estimated noise variance. The characteristics of noise
in magnitude MRI images has been studied before by Henkelman and the
reader is referred to ref. 1 for the formulation of the problem. Henkelman
analyzed the problem numerically and did not provide analytical
expressions for the noise characteristics. The noise characteristics of
quadrature detection, however, have been thoroughly analyzed and
documented in applications to communication . During the preparation of
this manuscript, we have come across several references in the MRI
literature that describe some of the results presented here. Edelstein et al.
showed that pure noise in magnitude images is governed by the Rayleigh
distribution and later Bernstein et al. provided the closed form solution of
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the more general Rician distribution in their study on detectability in
MRI..[16]

3.4 image quality factors :

The visibility of image quality by human eyes is may be difficult and
subjective .so that we tendency to more objective method like SNR,
EMSR and PSNR.

3.4.1 EMSR&PSNR:

Comparing restoration results requires a measure of image quality. Two
commonly used measures are Mean-Squared Error and Peak Signal-to-
Noise Ratio . The mean-squared error (MSE) between two images g(x,y)
and g"(x,y) is:

EMSR=——¥M, IN_,[g"(nm)—g(nm]2 ... (3.15)

One problem with mean-squared error is that it depends strongly on the
image intensity scaling. A mean-squared error of 100.0 for an 8-bit image
(with pixel values in the range 0-255) looks dreadful; but a MSE of 100.0
for a 10-bit image (pixel values in [0,1023]) is barely noticeable. Peak
Signal-to-Noise Ratio (PSNR) avoids this problem by scaling the MSE
according to the image range:

EMSR

PSNR = —10 log—;

where S is the maximum pixel value. PSNR is measured in decibels (dB).
The PSNR measure is also not ideal, but is in common use. Its main
failing is that the signal strength is estimated as §?2, rather than the actual
signal strength for the image. PSNR is a good measure for comparing
restoration results for the same image, but between-image comparisons of
PSNR are meaningless.[17]
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4.3.2 Signal-to—Noise ratio:

The signal-to—noise ratio, SNR, can have several definitions. The noise is
characterized by its standard deviation, sn. The characterization of the
signal can differ. If the signal is known to lie between two boundaries,
amin <a <amax, then

the SNR is defined as[18]:

Bounded signal — SNR= 20|oglo(amaxsw)db Equation (3.17)

n

4.3.3 Root Mean Squared Error (MSE):

The root-mean-square  deviation (RMSD) or root-mean-square error
(RMSE) is a frequently used measure of the differences between values
(sample and population values) predicted by a model or an estimator and
the values actually observed. The RMSD represents the sample standard
deviation of the differences between predicted values and observed
values. These individual differences are called residuals when the
calculations are performed over the data sample that was used for
estimation, and are called prediction errors when computed out-of-
sample. The RMSD serves to aggregate the magnitudes of the errors in
predictions for various times into a single measure of predictive power.
RMSD is a good measure of accuracy, but only to compare forecasting
errors of different models for a particular variable and not between
variables, as it is scale-dependent.[19]

3.5 wavelet transform:

In most of the applications of image processing ,it is essential to analyse

a digital signal. If the data will be transformed into any other domain then
the structure and features of the signal may be better understood. There
are several transforms available like Fourier transform, Hilbert transform,
Wavelet transform, etc. The wavelet transform is better than fourier
transform because it gives frequency representation of raw signal at any
given interval of time, but fourier transform gives only the frequency-
amplitude representation of the raw signal, but the time information is
lost. So we cannot use the Fourier transform where we need time as well
as frequency information at the same time.[20]

49



3.5.1 Haar wavelet:

Haar wavelet is one of the oldest and simplest type of wavelet. The Haar
Transform provides prototype for all other wavelet transforms. Like other
wavelet transforms, the Haar Transform decomposes the discrete signal
into two sub-signals of half its length. One sub-signal is a running
average or trend and other sub-signal is running difference or fluctuation.
The advantage of Haar wavelet is that it is fast, memory efficient and
conceptually simple.[20]

Thresholding :

Thresholding is the simplest method of image denoising .In this from a
gray scale image, thresholding can be used to create binary image.
Thresholding is used to segment an image by setting all pixels whose
intensity values are above a threshold to a foreground value and all the
remaining pixels to a background value. Thresholding is mainly divided
into two categories:[20]

3.5.1.1 Hard Thresholding :

Hard threshold is a "keep or kill"* procedure and is more intuitively
appealing. The transfer function of the Hard thresholding is shown in the
figure(3.8). Hard thresholding may seem to be natural. Sometimes pure

noise coefficients may pass the hard threshold and this thresholding
method is mainly used in medical image processing.[20]

Hard thresholding can be defined as follow:

D(UL)=U forall DA, 0 otherwise ............ Equation (3.18)
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Figure (3.14) show Original (I)and Hard thresholded signal(Il)
3.5.1.2 Soft Thresholding :

Soft threshold shrinks coefficients above the threshold in absolute value.
The false structures in hard thresholding can be overcomed by soft
thresholding. Now a days, wavelet based de-noising methods have
received a greater attention. Important features are characterized by large
wavelet coefficient across scales in most of the timer scales.[20]

Soft thresholding can be defined as follow:

D (U, 1) =sgn (U) max (0, [U-X)  .cooviirriiieeniennn. (3.19)
1 1
0.5 e
0 0
-0.5 ! /—
1 ”

-1 0 1 -1 0 n |
Figure (3.15) show Original (1) and Soft thresholded signal (I1)
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3.5.2 Daubechies Wavelet Db3 :

Daubechies wavelet is the first wavelet family which has set of scaling
function which are orthogonal. This wavelet has finite vanishing mom -
ents. Daubechies wavelets have balanced frequency responses but non-
linear phase responses. Daubechies wavelets are useful in compression
and noise removal of audio signal processing because of its property of
overlapping windows and the high frequency coefficient spectrum reflect
all high frequency changes.[ 20]
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Chapter four
Methodology
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This study object to enhancement MRI from noise . this doing by use
filters and wavelet technique .

Data :

The test data used in this study was acquisition from internet from
(http://www.harvarduniversity .com ) include normal images .

hardware and software :

A pc hp(530) was the primary hardware piece used in this test . -
Matlab is main software package used in this test .-

Procedures :

The test carried out in this study consist of three steps .step one
concern with apply the filters on the images and get result , step two get
the calibration indicators (signal to noise ratio 'SNR', peak noise signal
ratio 'PNSR' ;' RMES "' MES "), finally apply wavelet in the best filter's
result and get the ratio again. That is explained in figures (4.1),(4.2).

Step one:

apply the filters :From previous studies has been assumed using this
filters , hybrid median ,median2, SRAD, tvdenoise, bilaterall ,
NLmeansfilter and get results on figures blow.

Step two :

Get SNR,PSNR, RMES ,MES on for each filtered images and
results on table one blow .

Finally :
From result of SNR,PSNR, RMES ,MES | choosing hybrid median
filter to apply the wavelet before using it and apply it in high-high

sub-band and low-low sub-band and get the result after filtering in
tables one and two and figures blow .
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Input image [lin]

|

Add Rician noise 5%

l

Apply Filter

Output image [l out]

Figure (4.1) show the input image was noise free image the rician noise
added to it then de-noised by different types of filters.
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Input image [lin]

l

Add rician noise

!

Image [l.]

l

Wavelet decomposition

P

B v

High frequency sub-bands
low frequency sub-bands

Hybrid median

filter

Sub-bands mixing (reconstruction)

l

Output image [lou]

Figure (4.2) show the proposed technique (decomposition wavelet following by

hybrid median and reconstructed image).
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Chapter five

Results & discussions
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5.1 Results :

As stated before main object of this study is evaluate the potentiality
using filters and wavelet for enhancement MRI with Rician noise. To
achieve this objective through apply multi filters and choosing the filter
with best result and apply wavelet on the images and filtered, resulted
image are recalibration with original image.

5.1.2 Original images without noise :
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Figure (5.1) show brain—hemispheric transaxial | original
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Figure (5.2) show brain—hemispheric transaxial Il original
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Figure (5.3) show brain—hemispheric transaxial 111 original
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Figure (5.4) show brain—hemispheric coronal Il original
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Figure (5.5) show brain—hemispheric coronal 1l original
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5.1.2 Filtered images :

5.1.2.1 hybrid median filters :
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Figure (5.6) brain—hemispheric transaxial | with hybrid median filter
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Figure (5.7) brain—hemispheric transaxial 1l with hybrid median filter
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Figure (5.8) show brain—hemispheric transaxial 111 with hybrid median
filter
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Figure (5.9) show brain—hemispheric coronal | with hybrid median filter
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Figure (5.10) show brain—hemispheric coronal Il with hybrid median
filter

5.1.2.2 Tvdenoise:
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Figure (5.11) show brain—hemispheric transaxial | with TV filter
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Figure (5.12) show brain—hemispheric transaxial 11 with TV filter
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Figure (5.13) show brain—hemispheric transaxial 111 TV filter
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Figure (5.14) show brain—hemispheric coronal | with TV filter
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Figure (5.15) show brain—hemispheric coronal Il with TV filter

65



5.1.2.3 srad:
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Figure (5.16) brain—hemispheric transaxial | with srad filter

B2 L. AR, O o 5
File Edit View Inset Tools Desktop Window Help &

DEAS | kAGOBDEL- |0 am

Despeckled Image by DsFsrad

!

X

i

100

150

A
L\

200

250
100 150 200 250

« 1o3em [
" 61172016 |

Figure (5.17) brain—hemispheric transaxial Il with srad filter
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Figure (5.18) brain—hemispheric transaxial Il with srad filter
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Figure (5.19) brain—hemispheric coronal I with srad filter
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Figure (5.20) brain—hemispheric coronal Il with srad filter

5.1.2.4 Bilaterall:
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Figure (5.21) show brain—hemispheric transaxial | with Bilaterall filter

68



Brow: - oy i B T 222 aamemew

File Edit View Inset Tools Desktop Window Help >

DEAS | kAGOBDEL- |0 am

denoisy

10:49PM | |

e REE O gy

Figure (5.22) show brain—hemispheric transaxial Il with Bilaterall filter
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Figure (5.23) show brain—hemispheric transaxial I11 with Bilaterall filter
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Figure (5.25) show brain—hemispheric coronal Il with Bilaterall filter
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5.1.2.5 NLmeansfilter:
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Figure (5.26) show brain—hemispheric transaxial | with NLmeansfilter
filter
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Figure (5.27) show brain—hemispheric transaxial 11 with NLmeansfilter
filter
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Figure (5.28) show brain—hemispheric transaxial 11l with NLmeansfilter
filter

Broe: B - T ey

File Edit View Inset Tools Desktop Window Help

DEds | MRANBEL-B|0E | =D

2s1pM | |
6/5/2016 |

A R E A

Figure (5.29) show brain—hemispheric coronal | with NLmeansfilter
filter
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Figure (5.30) show brain—hemispheric coronal Il with NLmeansfilter
filter

5.1.2.6 hybrid median with wavelet(in low-low) :
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Figure (5.31) show brain—hemispheric transaxial | by hybrid median with
wavelet(in low-low)
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Figure (5.32) show brain—hemispheric transaxial Il by hybrid median
with wavelet(in low-low)
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Figure (5.33) show brain—hemispheric transaxial 111 by hybrid median
with wavelet(in low-low)
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Figure (5.34) show brain—hemispheric coronal | by hybrid median with
wavelet(in low-low)
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Figure (5.35) show brain—hemispheric coronal Il by hybrid median with
wavelet(in low-low)
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5.1.3.hybrid median with wavelet :
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Figure (5.36) show brain—hemispheric transaxial I with hybrid median
filter+ wavelet
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Figure (5.37) show brain—hemispheric transaxial Il with hybrid median
filter+ wavelet
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Figure (5.38) show brain—hemispheric transaxial 111 with hybrid median
filter+ wavelet
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Figure (5.39) show brain—hemispheric coronal | with hybrid median
filter+ wavelet
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Figure (5.40) show brain—hemispheric coronal Il with hybrid median
filter+ wavelet

Table(5.1) show the comparative resulted of filter using MES RMES
PNSR SNR with the same images.

Images FILTER MES RMES PSNR SNR
brain— hybrid 15.1203 3.8885 36.3692 83.6696
hemispheric median
transaxial |

brain— srad 6.0863E+03 78.0149 10.3213 23.6874
hemispheric

transaxial |

brain— tvdenoise 207.0762 14.3901 25.0035 59.5395
hemispheric

transaxial |

brain— bilateral 231.8027 15.2251 24.5136 58.3085
hemispheric

transaxial |

brain— NLmeansfilter 24.5530 4,9551 34.2638 78.8275
hemispheric

transaxial |

brain— hybrid 37.9404 6.1596 32.3738 74.4651
hemispheric median in

transaxial | low-low sub-
band
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brain— hybrid 48.8090 6.9863 31.2798 71.9476
hemispheric median
transaxial Il
brain— srad 5.1997e+03 72.1087 11.0050 25.2618
hemispheric
transaxial Il
brain— tvdenoise 189.4590 13.7644 25.3896 60.0927
hemispheric
transaxial Il
brain— bilateral 211.4540 14.5415 24.9126 59.9167
hemispheric
transaxial Il
brain- NLmeansfilter 73.2183 8.5568 29.5186 67.9000
hemispheric
transaxial Il
brain— hybrid 117.2592 10.8286 27.4733 63.5495
hemispheric median in
transaxial Il | low-low sub-
band
brain— hybrid 81.6286 9.0349 29.0464 66.8081
hemispheric median
transaxial lll
brain— srad 1.3127e+04 114.5743 6.9831 16.0008
hemispheric
transaxial lll
brain— tvdenoise 187.2312 13.6832 25.4410 61.4097
hemispheric
transaxial lll
brain— bilateral 210.6434 14.5136 24.9293 60.5074
hemispheric
transaxial Ill
brain— NLmeansfilter 167.6370 12.9475 25.9211 59.6196
hemispheric
transaxial lll
brain— hybrid 177.0425 13.3057 25.6840 64.3512
hemispheric median in
transaxial lll | low-low sub-
band
brain— hybrid 165.1362 12.8505 25.9864 59.7618
hemispheric median
coronal |
brain— srad 1.3742E+04 117.2254 6.7844 15.5433 1
hemispheric
coronal |
brain— tvdenoise 182.2653 13.5006 25.5578 61.4601
hemispheric
coronal |
brain— bilateral 202.5255 14.2311 25.1000 60.5328
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hemispheric

coronal |
brain- NLmeansfilter 297.4014 17.2453 23.4314 53.8882
hemispheric
coronal |
brain- hybrid 252.8244 15.9005 24.1366 58.9969
hemispheric median in
coronal | low-low sub-
band
brain- hybrid 557.8386 23.6186 20.6997 37.2383
hemispheric median
coronal Il
brain- srad 4.3116E+03 65.6628 11.8184 16.7870
hemispheric
coronal Il
brain- tvdenoise 196.6553 14.0234 25.2277 52.0213
hemispheric
coronal Il
brain- bilateral 208.0289 14.4232 24.9836 52.0982
hemispheric
coronal Il
brain- NLmeansfilter 845.0563 29.0699 18.8959 33.1017
hemispheric
coronal Il
brain- hybrid 192.6686 13.8805 25.3167 52.7964
hemispheric median in
coronal Il low-low sub-
band
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Table(5.2) show the comparative resulted of hybrid median filter after
using the wavelet by MES RMES PNSR SNR .

Images MES RMES PSNR SNR

brain— 1.9434 1.3933 45.2840 97.7607
hemispheric
transaxial |

brain— 5.3083 2.3040 40.9153 95.8781
hemispheric
transaxial Il

brain— 13.8581 3.7226 36.7478 86.7914
hemispheric
transaxial llI

brain— 24.0048 4.8995 34.3618 81.3720
hemispheric
coronal |

brain— 149.1810 12.2140 26.4277 54.9220
hemispheric
coronal Il

5.2 Discussions:

In this research , experiments are conducted on five different MRI
medical images. The noise type is Rician noise level o= .05 . the filters
(hybrid median , srad, tvdenoise, bilaterall , NLmeansfilter) apply on the
noisy images . and from table one we observed that ; the hybrid median
have a high (SNR , PSNR) and low ( MSE , RMES). Haar wavelet
transforms are applied for de-noising ; Different PSNR MSE ,SNR and
RMES values are calculated on each image .It is clear from the table one;
that using wavelet to decomposition image before filtering and filtering
using hybrid median is better than using hybrid median directed for the
purpose of de-noising in the MRI medical images . De-noising is
performed at Rician noise 6=.05, on MRI images by using Haar wavelet
with hybrid median filter in high-high sub-band is the best result (the
values of SNR ,PSNR are increase while MSE and RMES are decrease
)from using hybrid median on all images except on image 5 we observed
that, apply hybrid median in low-low sub-band is best result that refer to
; hybrid median is smoothing filter and it effect on the edges and the LL
is contents the main feature of image more filtration of LL (or image in
general) may lead to blurring image and decreasing the quality of image
(as general ) but in brain—hemispheric coronal Il image it is very noisily
image and more smoothing enhance it .
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Chapter six

Conclusion & recommendation
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6.1 Conclusion :

According to the test carried throughout this study ,it can be concluded
that:

The rician noise is a major type of noise embedded with MRI
image . Applying the filter it can be reducing the noise by high
ratio of SNR &PSNR while low ratio of MSE & RMES and this
ratios different from filter to other and from image to other
depended on the feature and histogram of image .apply the
wavelet technique it enhancement the results in all filters . the
low-low sub-band contain the details of image and more filtration
can be lead to blurring image while the high-high sub-band contain
the noise and more filtration lead to enhancement results . The
hybrid median give us the best result that means the hybrid median
is effective rician noise .

6.2Recommendation:

recommend to apply more types of wavelet to get more good
resolution , high degree of filtration images and high level from
SNR ,PSNR .

Or apply any transformation technique like (Contourlet or Sanlet)
to get best result .
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