ABSTRACT

Biomass cogeneration systems can generate power and process heat simultaneously from a single energy resource efficiently. The sugar cane industry represents one of the most important biomass cogeneration systems which using sugar cane bagasse as fuel. In this study, the useful concept of energy and exergy utilization is analyzed and applied to the boiler, turbine, mills, and DSHS of elgunied sugar factory. Energy and exergy flow in these components is shown in this study. The percentage ratio of the exergy destruction to the total exergy destruction is found to be maximum in the boiler (81.393%) so that the boiler is the major source of irreversibilities in the power plant (34.393MW) exergy destruction compare with near value (2.857MW) exergy destruction in mills. So that, to improve the system performance a greater attention must given mainly to the boiler.

المستخلص

انظمة التوليد التي تعمل بالكتلة الحيوية يمكن ان تولد قوة كهربائية وتقوم بالمعالجات الحرارية في آن واحد من نفس مورد الطاقة وبكفاءة، حيث تمثل صناعة السكر احدى اهم انظمة توليد الكتلة العضوية التي يستعمل فيها مخلفات قصب السكر (البقاس) فيها كوقود. في هذه الاطروحة، تم تحليل مفهوم استخدام الطاقة والاكسيرجي في كل من الغلاية، التوربين، الطاقة الطواحين والمحمص لمصنع سكر الجنيد. كما تم تبيين سريان الطاقة والاكسيرجي لكل من هذه المكونات. وقد وجد بعد التحليل ان اكبر نسبة لتحطيم الاكسيرجي تكمن في الغلاية اذ تبلغ 81.393 لذا فان الغلاية تعتبر اكبر مصدر للارجوعية في عملية التوليد (34.393 ميغاوات) اكسيرجي محطمة في العصارات. لذلك لتحسين اداء النظام يجب شد الانتباه بشكل رئيسي لاداء الغلاية ورفع كفاءتها.

DEDICATION

I dedicate this work with much appreciation and love to:

My mother who cares of me Kindly

My brothers and sister who are always helpful

My friends and teachers

ACKNOWLEDGMENTS

This thesis would not have been possible without the support of my supervisor Dr. A. A. A. Abuelnuor for his extraordinary guidance and support throughout my entire process. I would also take this opportunity to express my great appreciations to the Faculty of Engineering and Elgunied sugar factory's engineers (Abdelnasir A Hamed and Ahmed m Elhassan) they have provided all the assistance and support to me. Finally, I am very grateful to all my lovely family, for their support and encouragement.

Table of Content

Content	
Abstract English	
Abstract Arabic	
Dedication	
Acknowledgments	IV
Table of content	V V III
List of figures	
List of tables	
Nomenclature	
Chapter one	
Introduction	
1.1 Background	2
1.2 Problem statement	5
1.3 Objectives of the research	5
1.4 Scope	6
1.5Significance of Research	
1.6Thesis outline	
Chapter Two	
Literature Review	
2.1 Introduction	
2.2 Current Studies	
2.2.1 Bagasse Feeder	
2.2.2 Excess Air for Combustion of Bagasse	
2.2.3 Products of Bagasse Combustion	
2.3 Quantity of Steam Obtainable From Unit Weight of Bagasse	
2.3.1 Condensation heat loss (L _c)	
2.3.2 Sensible Heat Loss (L _S)	
2.3.3 Loss of Heat Due To Incomplete Combustion (L _i)	
2.4 Boiler Heat Balance	

2.5 Steam Turbines		
2.5.1 Mechanical Drive Turbines and Electrical Drive Turbines		
2.5.2 Specific steam rate of the steam turbine		
2.6 Energy and Exergy		
2.6.1 Definition of Energy and Exergy		
2.6.2 The reference point		
2.6.3 Energy and Exergy Analysis		
2.6.4 Energy and Exergy Formulations		
2.7 Efficiency laws		
2.7.1 Energy Conversion Efficiencies	21	
2.7.2 Exergetic (second law) efficiency	21	
2.7.3 Energy and Exergy Analyzed Of Elgunied Sugar Factory	22	
Chapter Three		
Energy and Exergy Analysis of Elgunied Sugar Factory		
3.1 Energy and Exergy Analysis of Elgunied Sugar Factory	28	
3.1.1 Gross Calorific Value of Bagasse GCV or HCV	28	
3.1.2 Net Calorific Value of Bagasse NCV or LCV	28	
3.2 Energy and Exergy Analysis of Elgunied Sugar Factory	30	
3.2.1 Energy and Exergy Analysis for a Boiler	30	
3.2.1 Energy and Exergy Analysis for a Boiler 3.2.1.1 First Law Analysis on Combustor	30	
3.2.1.1 First Law Analysis on Combustor	30	
3.2.1.1 First Law Analysis on Combustor 3.2.1.2 Second law analysis on combustor	30	
3.2.1.1 First Law Analysis on Combustor 3.2.1.2 Second law analysis on combustor 3.2.1.3 First law analysis on heat exchanger	30 31 31	
3.2.1.1 First Law Analysis on Combustor 3.2.1.2 Second law analysis on combustor 3.2.1.3 First law analysis on heat exchanger 3.2.1.4 Second law analysis of heat exchanger	30 31 31 32	
3.2.1.1 First Law Analysis on Combustor 3.2.1.2 Second law analysis on combustor 3.2.1.3 First law analysis on heat exchanger 3.2.1.4 Second law analysis of heat exchanger 3.2.2 Energy and Exergy Analysis for a Turbine	30 31 31 32 33	

Chapter Four	
Results And Discussions	
4.1 Introduction	41
4.2 Results and Discussions	41
Chapter Five	
Conclusion And Recommendations	
5.1 Conclusion	50
5.2 Recommendations	51
References	52

List of Figures

Figure No	Description	Page
1.1	Electricity generations by fuels 2009	
2.1	Diagram For Exergy Flow Through Steam Turbine At 70 %MCR	24
2.2	Diagram for Exergy Flow Through Steam Turbine At 85 %MCR	25
2.3	Exergy destruction in simple back pressure cogeneration plant	26
3.1	Flow diagram of Elgunied Sugar Factory power plant	29
3.2	Schematic diagrams of combustor and heat exchanger in a boiler	30
4.1 a	Exergy Destruction Rate (MW) of Components	45
4.1 b	Exergy Destruction Rate (MW) of Components	46
4.2	Exergy Destruction % of Components	46
4.3	Exergy Destruction % of Elgunied Sugar Factory and Yung C. Lien sugar industry	47
4.4	Exergy efficiency %	48

List of Tables

Table No	Description	Page
3.1	Expressions for Exergy Destruction Rate and Exergy Efficiency for Elgunied Sugar Factory's Components	36
3.2	Main Data for Elgunied Sugar Factory	36
3.3	Chemical Composition of Bagasse	37
3.4	Properties of the Reference Environment	37
3.5	Operation Data of Plant	38
3.6	Enthalpy and Entropy Values of Steam Flow	39
4.1	Boiler Heat Balance	42
4.2	Energy and Exergy Analysis of Elgunied Sugar Factory	43
4.3	Expressions of Exergy Destruction Rate and Exergy Efficiency for Elgunied Sugar Factory's Components	44

NOMENCLATURE

LHV Lo	ower Heating Value .kJ/kg
HHV Hi	gher Heating Value .kJ/kg
GCV Gross	calorific value of bagasse
NCV Ne	et calorific value of bagasse
<i>m</i>	Mass flow rate, kg/s
h	Specific enthalpy ,kJ/kg
s	Specific entropy, kJ/kg K
W	Work produces, kW
P	Pressure, kPa
Q	Heat transfers, kW
L _C	Condensation heat loss
L _S	Sensible heat loss
L _U	Unburned bagasse loss
L_r	Radiation loss
L _i	Incomplete combustion loss
α Coefficient of hea	at loss for UN burnt bagasse
β Coef	ficient of heat loss radiation
γ Coeffic	cient of heat loss incomplete
Ψ	specific exergy
Ż	exergy rate kg/s
Χ˙ _d	exergy destruction kW
w	moisture per unit bagasse
S	Sucrose in bagasse