## Appendix (A)

CR011.05/02

#### LUBRICATION SYSTEM

#### GENERAL

The lubricating requirements for the gas turbine power plant are furnished by a common forced-feed lubrication system. This lubrication system, complete with tank, pumps, coolers, filters, vaives and various control and protection devices, furnishes normal lubrication and absorption of heat rejection load of the gas turbine. Lubricating fluid is circulated to the two main turbine bearings, generator bearings, ' 'uction gear, and to the turbine accessory & r. Additionally, a portion of the pressurized fluid is diverted and filtered again for use by hydraulic control devices as control fluid and as a supply to other systems.

Refer to "Hydrocarbon Base Lubricating Oil Recommendations for Gas Turbines" in the FLUID SPECIFICATIONS section of this manual for the lubricating oil requirements.

The lubrication system is designed to provide an ample supply of filtered lubricant at the proper temperature and pressure for operation of the turbine and its associated equipment. The lubrication system including all major components is shown in the system schematic diagram in the F erence Drawings Section. Major system .ponents include:

- a. Lube reservoir in the turbine base.
- Main lube pump (shaft driven from the accessory gear).
- Auxiliary lube pump.
- Emergency lube pump.
- Pressure relief valve VR1 in the main pump discharge.
- Lube fluid heat exchangers.

- Main lube filters.
- Bearing header pressure regulator VPR2.

For turbine starting, a maximum of 800 SSU is specified for reliable operation of the control system and for bearing lubrication. A temperature switch, 26QN-1, prevents turbine startup if the temperature of the lubricant decreases to a point where oil viscosity is 800 SSU.

Lubricating fluid for the main, the auxiliary and the emergency pumps is supplied from the reservoir, while lubricating fluid used for control is supplied from the bearing header. This lubricant must be regulated to the proper, research amount of the proper, and the requirement of the requirement of the proper. must be regulated to the proper, predetermined pressure to meet the requirements of the main bearings and the accessory lube system, as well as the hydraulic control and trip circuits. Regulating devices are shown on the Lube System Schematic Diagram. All lubricating fluid is filtered and cooled before being piped to the bearing header.

#### FUNCTIONAL DESCRIPTION

#### GENERAL

The system is a closed loop, forced feed The system is a closed loop, forced feed system including a lube oil supply reservoir. The reservoir for the lubrication system is the 3300-gallon tank which is fabricated as an integral part of the turbine base. Lubricating fluid is pumped from the reservoir by the main shaft driven pump (part of the accessory gear) or auxiliary or emergency pumps to the bearing header, the accessory gear and the hydraulic supply accessory gear and the hydraulic supply

The lube pumps take their suction from the oil tank and discharge into a common header. All lubricant pumped from the lube

23/8 P. 12-26

4B-1

TE LINER PLAN  reservoir to the bearing header flows through the lube fluid heat exchanger to remove excess heat and then through the cartridge type filter providing five-micron filtration. After lubricating the bearings the lubricant flows back through various drain lines to the lube reservoir.

#### LUBE OIL TANK AND PIPING

The lube oil tank in the accessory end of the turbine base also supports and contains several lubrication system components. Mounted on or supported from the tank top are the ac and dc motor driven lube pumps, and various control and protective devices. Extending into the tank from the side of the lube reservoir are the lube fluid heat exchangers and filters. Access to the tank interior is through an opening in the top. An oil tank fill connection is provided in the side of the tank as are two oil drains near the tank bottom. The tank also has connections for a centrifuge.

Lube piping consists mainly of welded fabrications of seamless steel pipe with gaskets used to prevent leakage at bolted flanges. Whenever possible, the lube oil feed piping is contained within the oil tank or drain headers. A vent to atmosphere is installed at a flanged opening in a junction box in the external oil drain. All drain points are shown on the Purchaser's Connection Outline and the notes contained in the Reference Drawing section of this manual. Visual oil flow checks can be made using the flow sights provided in the drains. This flow should be checked when the lube oil pumps are started prior to every turbine startup.

A lube level gauge and alarm device is part of the tank level indicator which is operated by a float-arm. The device is mounted to the side of the lube oil tank above the maximum expected level of the lube supply. The float mechanism operates a dial gauge and two device switches, 71QH-1 and 71QL-1. The switches are connected into the alarm circuit of the turbine control panel to initiate an alarm

display message on the turbine panel scope and sound an audible alarm if the liquic level rises above, or falls below, the levels shown on the Schematic Piping Diagram The oil level gauge will indicate "F" (full) or "E" (empty) before the alarm is given.

There is also a sight glass mounted on the oil tank which provides for visual monitoring of the oil level.

Temperature readings of the lube of feed header are taken from the thermometer installed in the header. A diaphragm-operated regulating valve VPR2 is installed in the pump discharge line. I regulates pressure by sensing the pressure downstream of the main lube oil filters Capacity of the system including tank piping and system components is approximately 3500 gallons.

#### STANDBY HEATERS

During standby periods, the lubricating fluid is maintained at a viscosity proper for turbine startup and operation by twimmersion heaters, 23QT-1 and 23QT-2 installed in the lube reservoir. Temperatur switches 26QL-1 and 26QN-1 sens reservoir fluid temperature, and control the heaters to maintain fluid temperature to achieve allowable viscosity. Also switce 26QN-1 will not permit the turbine to be started if the fluid temperature drops below that required for startup.

The ac motor-driven auxiliary lube o pump operates during standby heatin periods to circulate the oil in the system.

#### LUBRICATING OIL PUMPS

The lubrication system uses three lub pumps:

 The main lube supply pump is positive displacement type pum mounted in and driven by th accessory gear.

\$1/8 59.12.26.

Nandin PLANT 89

Nandin Plantic

- b. The auxiliary (cooldown) lube supply pump driven by a vertical ac motor.
- The emergency lube supply pump driven by a vertical dc motor.

Both the auxiliary and emergency pumps are mounted on the oil tank cover. Output of each of the pumps at rated speed together with motor ratings are included in the Device Summary of this manual. Functional information concerning the pumps is included in the paragraphs that follow.

#### Main Lube Pump

The main lube pump is built into the inboard wall of the lower half casing of the accessory gear. It is driven by a splined quill shaft from the lower drive gear. The output pressure to the lubrication system is limited by back-pressure valve VR1 to maintain system pressure.

## Auxiliary And Emergency Lube Supply Pumps

The auxiliary and the emergency lube supply pumps are both submerged, centrifugal-type pumps that provide lubricant pressure during startup and shutdown of the gas turbine. These pumps operate as follows:

Auxiliary Lube Pump Operation - When ac power is available during the turbine starting and stopping sequences, system lube pressure is supplied by the auxiliary supply pump driven by ac motor 88QA during the time that the main shaft-driven pump is at a speed insufficient to develop operating pressure. At turbine startup, the ac pump starts automatically when the master control switch on the turbine control panel is turned to the START position. It continues to operate until the turbine reaches

#### a. (Continued)

approximately 95 percent of operational speed. At this point, the pump shuts down and system pressure is supplied by the shaft-driven, main lube pump.

On turbine shutdown, the ac motor-driven auxiliary pump starts after the 14HSX relay contact drops out. This occurs when turbine speed drops to 95 percent of operational speed. The pump continues to operate throughout the shutdown and cooldown period and runs until the operator takes the unit off of cooldown.

On gas turbines equipped with optional immersion heaters, the actuated auxiliary pump starts automatically whenever the heaters are on, to circulate the system lubricating fluid. For this function, the ac pump is controlled by the immersion heater contact which, in turn, is controlled by two temperature switches. The pump and heaters are actuated by the lubricating fluid temperature switch, 26QL-1.

b. Auxiliary Lube Supply Operation Testing - A test valve, mounted on the gauge cabinet, provides the means of checking the automatic startup of the auxiliary lube oil pump with signals generated by the low lube oil alarm/pump start pressure switch 63QA-2 while the unit is operating normally on the main lube oil pump. As the test valve is opened, lube oil pressure falls to the setting of the pressure switch and the auxiliary lube oil pump should start. The condition of "Auxiliary Lube Oil Pump Running" should be displayed on the turbine panel CRT. When the test valve is closed, the pump will continue to run (through the contacts of the

₹\$\\ 97.12-26.

Nanting Tu Machinery

ing Tu . ⊝oo

#### b. (Continued)

complete sequence check relay) until it is shut down manually at the motor control center. After this test has been completed the alarm should be reset.

c. Emergency Lube Pump Operation -If ac power is not available during the turbine starting and stopping sequences, system lube fluid pressure is supplied by the emergency lube supply pump driven by a dc motor (88QE) energized by a pressure switch, 63QL. The pump operates until the turbine reaches approximately 50 percent speed. It will continue to operate after 40 percent speed is reached if the system pressure has not reached the pressure setting of switch 63QL.

The emergency lube pump functions to supply lube fluid to the main bearing header during an emergency shutdown in the event that the auxiliary pump has been forced out of service, or is unable to maintain adequate lube pressure.

Emergency Lube Supply Operations Testing - A test valve and pressure switches are installed aft of an orifice in the pressure switch piping connected to the bearing lube header. The test valve is normally closed, and maintains lubricating system pressure on the switches. When a test is being performed, the test valve should be opened gradually to lower lubricating system pressure in the switch piping. This pressure is indicated on a gauge connected into the pressure line. The gauge provides a means of checking the pressure points at which the switches operate to indicate a condition of low lubricating fluid pressure on the alarm display and to start the emergency lube supply pump. If the pressure is indicated on setting of

#### d. (Continued)

switch 63QA-2, a condition of low lubricant pressure is indicated on the alarm display. Further opening of the test valve will reduce pressure in the test line to the pressure setting of switch 63QL which starts the emergency lube pump. An alarm indicates either a low pressure condition or that the emergency lube supply pump is running. A low lubricating fluid pressure indication should occur before the pump begins operating.

When the test valve is closed and the lube pressure is returned to normal, the emergency lube supply pump should stop as a result of restoration of pressure on switch 63QL.

A check valve is placed in the discharge piping of the auxiliary and emergency lube pumps to prevent fluid from being circulated to the oil tank through these centrifugal pumps when the main pump is operating.

#### NOTE

When tests are completed, the alarm display should be reset.

HEAT EXCHANGERS (LUBE OIL COOLERS)

Extended tank-type heat exchangers/coolers, with exposed fixed-tubesheet and bundle construction (straight-tube), are used to dissipate heat absorbed by the lubricating oil. Two (dual) heat exchangers are used and are installed horizontally through the side of the lube oil tank. Water is supplied to the heat exchangers for cooling.

Dual heat exchangers, arranged horizontally side by side, are installed in the tank and connected into the pump discharge header through a manual transfer valve.

99.12.26.

CLANT

Only one heat exchanger will be in service at a time, thus cleaning, inspection, and maintenance of the second one can be performed without interrupting oil flow or shutting the gas turbine down. By means of the manually-operated, worm-driven transfer valve, one heat exchanger can be put into service as the second is taken out; without interrupting the oil flow to the main lube oil header. The transfer of operation from one heat exchanger to the other should be accomplished as follows:

- Open the filler valve and fill the standby heat exchanger until a solid oil flow can be seen in the flow sight in the cooler vent pipe. This will indicate a "filled" condition.
- Operate the transfer valve with a wrench to bring the standby heat exchanger into service.
- 3. Close the filler valve.

Water flow through the heat exchanger is regulated by a temperature actuated valve VTR1 which has a sensor installed in the lube oil header downstream from the heat exchangers.

#### OIL FILTERS

#### Main Oil Filters

Filtration of all lube oil is accomplished by a 5 micron, pleated paper filter cartridges installed in the lube system just after the lube oil heat exchanger. A dual filter arrangement is used with a transfer valve installed between the filters to direct oil flow through either filter and into the lube oil header.

The dual filters, arranged horizontally side by side, are installed on the tank and connected into the pump discharge header through a manual transfer valve. Only one filter will be in service at a time; thus cleaning, inspection, and maintenance of the second one can be performed without interrupting oil flow or shutting the gas

turbine down. By means of the manuallyoperated, worm-driven transfer valve, one filter can be put into service as the second is taken out, without interrupting the oil flow to the main lube oil header. The same procedure should be used in filter transfer as given above for heat exchange transfer.

Filter elements should be changed when the differential pressure gauge indicates a differential pressure of 15 psi. An alarm switch 63QQ-1 signals when the differential pressure exceeds 15 psi. Refer to the Maintenance section of this manual for inspection schedules.

#### PRESSURE REGULATION

Two regulating valves are used to control lubrication system pressure. A back-pressure relief valve, VRI, limits the positive displacement main pump discharge header pressure and relieves excess fluid to the lube reservoir. The lube pressure in the bearing header is maintained at approximately 25 psig by the diaphragm-operated regulating valve, VPR2. The diaphragm valve is operated by sensing fluid pressure in the bearing header. This valve throttles flow to give 25 psig in the bearing header.

PRESSURE AND TEMPERATURE PROTECTIVE DEVICES

Low lubricating fluid pressure is detected by pressure switches 65QA-2, 63QT-2A and 2B which open after a decrease of line pressure to a specified value and trips the unit. Pressure switch 63QA-2, installed in the lubricant feed piping, signals an alarm and starts the auxiliary pump if the lubricant pressure drops below its predetermined setting.

Temperature switches 26QA-1 and 26QT-1A and -1B are installed in the lubricating fluid header piping to cause an alarm to sound and to trip the unit should the temperature of the lubricant to the bearings exceed the preset limit. Switch settings are such that an alarm is actuated

99.12.3d.

## Appendix (B)



Figure 1 Lube oil heaters

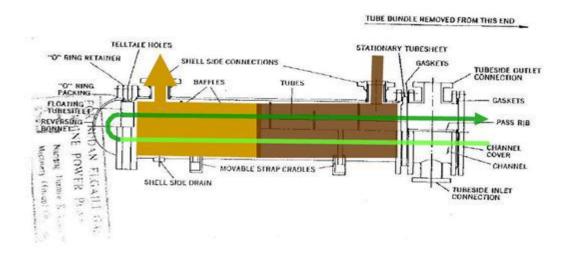



Figure 2 lube oil cooler pipe cooling

| xchangers                                     |                      |
|-----------------------------------------------|----------------------|
| Type of heat exchanger                        | U, W/m² · °C*        |
| Water-to-water                                | 850-1700             |
| Water-to-oil                                  | 100-350              |
| Water-to-gasoline or kerosene                 | 300-1000             |
| Feedwater heaters                             | 1000-8500            |
| Steam-to-light fuel oil                       | 200-400              |
| Steam-to-heavy fuel oil                       | 50-200               |
| Steam condenser                               | 1000-6000            |
| Freon condenser (water cooled)                | 300-1000             |
| Ammonia condenser (water cooled)              | 800-1400             |
| Alcohol condensers (water cooled)             | 250-700              |
| Gas-to-gas                                    | 10-40                |
| Water-to-air in finned tubes (water in tubes) | 30-60 <sup>†</sup>   |
|                                               | 400-850 <sup>†</sup> |
| Steam-to-air in finned tubes (steam in tubes) | 30-300 <sup>†</sup>  |
|                                               | 400-4000             |

**Figure 3:** Representative values of the overall heat transfer coefficients in heat exchangers.

## Appendix (C)

#### 2-308 PHYSICAL AND CHEMICAL DATA

TABLE 2-353 Saturated Liquid Water—Miscellaneous Properties

| Temperature, °C | 10 <sup>4</sup> β | 10⁴ k <sub>T</sub> /bar | $10^4 k_s$ /bar | v <sub>s</sub> , m/s | μ <sub>f</sub> , 10-6 Pa·s | c <sub>p</sub> , kJ/kg⋅K | k, W/m·K | Pr, bar        | σ, N/m  |
|-----------------|-------------------|-------------------------|-----------------|----------------------|----------------------------|--------------------------|----------|----------------|---------|
| 0               | -0.681            | 0.50885                 | 0.50855         | 1402.4               | 1.793                      | 4.2176                   | 0.567    | 13.32          | 0.07565 |
|                 |                   |                         |                 |                      |                            |                          | 0.007    |                |         |
| 1               | -0.501            | 0.50509                 | 0.50493         | 1407.4               | 1.732                      | 4.2140                   | 0.569    | 12.83          | 0.07551 |
| 2               | -0.327            | 0.50151                 | 0.50143         | 1412.2               | 1.675                      | 4.2107                   | 0.570    | 12.37          | 0.07537 |
| 3               | -0.160            | 0.49808                 | 0.49806         | 1417.0               | 1.621                      | 4.2077                   | 0.572    | 11.93          | 0.07522 |
| 4               | 0.003             | 0.49481                 | 0.49481         | 1421.6               | 1.569                      | 4.2048                   | 0.573    | 11.51          | 0.07508 |
| 4               | 0.003             | 0.49401                 | 0.49401         | 1421.0               | 1.509                      | 4.2040                   | 0.575    | 11.51          | 0.07508 |
| 5               | 0.160             | 0.49169                 | 0.49167         | 1426.2               | 1.520                      | 4.2022                   | 0.575    | 11.11          | 0.07494 |
| 6               | 0.312             | 0.48871                 | 0.48865         | 1430.6               | 1.474                      | 4.1999                   | 0.577    | 10.73          | 0.07480 |
| 6<br>7          | 0.312             |                         | 0.40000         |                      | 1.474                      | 4.1999                   | 0.577    | 10.73          |         |
| 7               | 0.460             | 0.48587                 | 0.48573         | 1434.9               | 1.429                      | 4.1977                   | 0.578    | 10.38          | 0.07465 |
| 8               | 0.604             | 0.48315                 | 0.48291         | 1439.1               | 1.387                      | 4.1956                   | 0.580    | 10.04          | 0.07451 |
| 9               | 0.744             | 0.48056                 | 0.48019         | 1443.3               | 1.346                      | 4.1938                   | 0.581    | 9.72           | 0.07436 |
|                 |                   |                         |                 |                      |                            |                          |          |                |         |
| 10              | 0.880             | 0.47809                 | 0.47757         | 1447.3               | 1.308                      | 4.1921                   | 0.5828   | 9.41           | 0.07422 |
| 11              | 1.012             | 0.47573                 | 0.47504         | 1451.2               | 1.271                      | 4.1906                   | 0.5844   | 9.11           | 0.07407 |
| 12              | 1.141             | 0.47347                 | 0.47260         | 1455.0               | 1.236                      | 4.1892                   | 0.5859   | 8.84           | 0.07393 |
| 13              | 1.267             | 0.47133                 | 0.47024         | 1458.7               | 1.202                      | 4.1879                   | 0.5875   | 8.57           | 0.07378 |
|                 |                   |                         |                 |                      |                            |                          |          |                |         |
| 14              | 1.389             | 0.46928                 | 0.46797         | 1462.4               | 1.170                      | 4.1867                   | 0.5891   | 8.32           | 0.07364 |
| 15              | 1.509             | 0.46733                 | 0.46578         | 1465.9               | 1.139                      | 4.1856                   | 0.5906   | 8.07           | 0.07349 |
| 16              | 1.626             | 0.46548                 | 0.46366         | 1469.4               | 1.139<br>1.110             | 4.1847                   | 0.5922   | 7.84           | 0.07334 |
|                 |                   |                         |                 |                      | 1.110                      |                          |          |                |         |
| 17              | 1.740             | 0.46371                 | 0.46162         | 1472.7               | 1.081                      | 4.1838                   | 0.5937   | 7.62           | 0.07319 |
| 18              | 1.852             | 0.46203                 | 0.45966         | 1476.0               | 1.054                      | 4.1830                   | 0.5953   | 7.41           | 0.07304 |
| 19              | 1.961             | 0.46043                 | 0.45776         | 1479.2               | 1.028                      | 4.1823                   | 0.5968   | 7.20           | 0.07289 |
|                 |                   |                         |                 |                      |                            |                          |          |                |         |
| 20              | 2.068             | 0.45892                 | 0.45593         | 1482.3               | 1.003                      | 4.1817                   | 0.5983   | 7.01           | 0.07274 |
| 21              | 2.173             | 0.45748                 | 0.45417         | 1485.3               | 0.979                      | 4.1812                   | 0.5999   | 6.82           | 0.07259 |
|                 |                   |                         | 0.45248         |                      |                            |                          |          |                |         |
| 22              | 2.275             | 0.45612                 | 0.45248         | 1488.3               | 0.955                      | 4.1807                   | 0.6014   | 6.64           | 0.07244 |
| 23              | 2.376             | 0.45484                 | 0.45084         | 1491.2               | 0.933                      | 4.1802                   | 0.6029   | 6.47           | 0.07228 |
| 24              | 2.475             | 0.45362                 | 0.44927         | 1493.9               | 0.911                      | 4.1798                   | 0.6044   | 6.30           | 0.07213 |
| 25              | 0.550             | 0.450.5                 | 0.44550         | 1.00 =               | 0.001                      | 4.1505                   | 0.0070   |                | 0.05100 |
| 25              | 2.572             | 0.45247                 | 0.44776         | 1496.7               | 0.891                      | 4.1795                   | 0.6059   | 6.15           | 0.07198 |
| 26              | 2.667             | 0.45139                 | 0.44630         | 1499.3               | 0.871                      | 4.1792                   | 0.6074   | 5.99           | 0.07182 |
| 27              | 2.761             | 0.45038                 | 0.44490         | 1501.9               | 0.852                      | 4.1790                   | 0.6089   | 5.85           | 0.07167 |
| 28              | 2.852             | 0.44943                 | 0.44355         | 1504.3               | 0.833                      | 4.1788                   | 0.6104   | 5.70           | 0.07151 |
| 30              | 3.032             | 0.44771                 | 0.44102         | 1509.1               | 0.798                      | 4.1785                   | 0.6133   | 5.44           | 0.07120 |
| 30              | 0.002             | 0.44111                 | 0.44102         | 1000.1               | 0.730                      | 4.1700                   | 0.0133   | 0.44           | 0.07120 |
| 32              | 3.206             | 0.44622                 | 0.43869         | 1513.6               | 0.765                      | 4.1783                   | 0.6162   | 5.19           | 0.07089 |
| 34              | 3.375             | 0.44496                 | 0.43655         | 1517.8               | 0.734                      | 4.1782                   | 0.6190   | 4.95           | 0.07058 |
|                 |                   |                         | 0.43459         |                      | 0.734<br>0.705             | 4.1783                   |          |                |         |
| 36              | 3.539             | 0.44390                 |                 | 1521.7               | 0.700                      |                          | 0.6218   | 4.74           | 0.07025 |
| 38              | 3.698             | 0.44305                 | 0.43280         | 1525.4               | 0.679                      | 4.1784                   | 0.6246   | 4.54           | 0.06992 |
| 40              | 3.853             | 0.44239                 | 0.43118         | 1528.9               | 0.653                      | 4.1786                   | 0.6273   | 4.35           | 0.06960 |
| 40              | 4.004             | 0.44102                 | 0.40050         | 1500.1               | 0.620                      | 4.1500                   | 0.6200   | 4.15           | 0.00005 |
| 42              | 4.004             | 0.44192                 | 0.42972         | 1532.1               | 0.629                      | 4.1789                   | 0.6299   | 4.17           | 0.06927 |
| 44              | 4.152             | 0.44162                 | 0.42842         | 1535.0               | 0.607                      | 4.1792                   | 0.6315   | 4.02           | 0.06894 |
| 46              | 4.296             | 0.44149                 | 0.42726         | 1537.7               | 0.586                      | 4.1797                   | 0.6351   | 3.86           | 0.06861 |
| 48              | 4.438             | 0.44153                 | 0.42624         | 1540.3               | 0.566                      | 4.1801                   | 0.6375   | 3.71           | 0.06828 |
| 50              | 4.576             | 0.44173                 | 0.42535         | 1542.6               | 0.547                      | 4.1807                   | 0.6400   | 3.57           | 0.06795 |
| 00              | 4.070             | 0.44110                 | 0.42000         | 1042.0               | 0.041                      | 4.1007                   | 0.0400   | 3.01           | 0.00130 |
| 55              | 4.910             | 0.44290                 | 0.42370         | 1547.4               | 0.5043                     | 4.1824                   | 0.6457   | 3.267          | 0.06710 |
| 60              | 5.231             | 0.44496                 | 0.42281         | 1551.0               | 0.4668                     | 4.1844                   | 0.6511   | 3.000          | 0.06624 |
|                 |                   |                         |                 |                      |                            |                          |          | 0.000          |         |
| 65              | 5.539             | 0.44788                 | 0.42262         | 1553.4               | 0.4338                     | 4.1869                   | 0.6561   | 2.768          | 0.06537 |
| 70<br>75        | 5.837             | 0.45162                 | 0.42309         | 1554.8               | 0.4045                     | 4.1897                   | 0.6607   | 2.565          | 0.06449 |
| 75              | 6.128             | 0.45614                 | 0.42418         | 1555.1               | 0.3784                     | 4.1929                   | 0.6649   | 2.386          | 0.06359 |
|                 |                   | 0.451.5                 |                 | 100                  | 0.000                      | 4.1000                   | 0.0000   | 2.77           | 0.0000  |
| 80              | 6.411             | 0.46143                 | 0.42587         | 1554.4               | 0.3550                     | 4.1965                   | 0.6686   | 2.228          | 0.06268 |
| 85              | 6.689             | 0.46748                 | 0.42812         | 1552.9               | 0.3340                     | 4.2005                   | 0.6721   | 2.088          | 0.06176 |
| 90              | 6.962             | 0.47429                 | 0.43093         | 1550.5               | 0.3150                     | 4.2050                   | 0.6753   | 1.962          | 0.06083 |
| 95              | 7.233             | 0.48185                 | 0.43429         | 1547.2               | 0.2979                     | 4.2102                   | 0.6779   | 1.850          | 0.05988 |
| 100             | 7.501             | 0.49019                 | 0.43425         | 1543.1               | 0.2823                     | 4.2164                   | 0.6800   | 1.850<br>1.756 | 0.05892 |
| 100             | 7.001             | 0.43019                 | 0.45019         | 1.040.1              | 0.2020                     | 4.2104                   | 0.0000   | 1.700          | 0.00092 |

Values mostly from Aleksandrov, A. A. and M. S. Trakhtenhertz, Thermophysical Properties of Water at Atmospheric Pressure, Standartov, Moscow, 1977 (99 pp.).

Figure 1: Thermo physical Properties of water at atmospheric pressure.

# Appendix (D)

TABLE 2-28 Density (kg/m3) of Water from 0 to 100°C°

| TABLE 2  | 2-28 Densit                   | y (kg/m³) of                  | Water from                                          | 0 to 100°C*                   |                               |                                          |                    |                                                     |                               |                    |
|----------|-------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------|------------------------------------------|--------------------|-----------------------------------------------------|-------------------------------|--------------------|
|          |                               |                               |                                                     |                               | ρ, kg/s                       | m <sup>3</sup>                           |                    |                                                     |                               |                    |
| t, °C    | 0.0                           | 0.1                           | 0.2                                                 | 0.3                           | 0.4                           | 0.5                                      | 0.6                | 0.7                                                 | 0.8                           | 0.9                |
| 0        | 999.839                       | 999.846                       | 999.852                                             | 999.859                       | 999.865                       | 999.871                                  | 999.877            | 999.882                                             | 999.888                       | 999.893            |
| 1        | 999.898                       | 999.903                       | 999.908                                             | 999.913                       | 999.917                       | 999.921                                  | 999.925            | 999.929                                             | 999.933                       | 999.936            |
| 2        | 999.940                       | 999.943                       | 999.946                                             | 999.949                       | 999.952                       | 999.954                                  | 999.956            | 999.959                                             | 999.961                       | 999.962            |
| 3        | 999.964                       | 999.966                       | 999.967                                             | 999.968                       | 999.969                       | 999.970                                  | 999.971            | 999.971                                             | 999.972                       | 999.972            |
| 4        | 999.972                       | 999.972                       | 999.972                                             | 999.971                       | 999.971                       | 999.970                                  | 999.969            | 999.968                                             | 999.967                       | 999.965            |
| 5        | 999.964                       | 999.962                       | 999.960<br>999.934                                  | 999.958                       | 999.956                       | 999.954<br>999.923                       | 999.951            | 999.949                                             | 999.946                       | 999.943            |
| 6        | 999.940                       | 999.937                       | 999.934                                             | 999.930                       | 999.926                       | 999.923                                  | 999.919            | 999.915                                             | 999.910                       | 999.906            |
| 7        | 999 901                       | 999.897                       | 999 892                                             | 999.887                       | 999.882                       | 999.877                                  | 999.871            | 999.866                                             | 999.860                       | 999.854            |
| 8        | 999.901<br>999.848            | 999.842                       | 999.892<br>999.836                                  | 999.829                       | 999.823                       | 999.877<br>999.816                       | 999.809            | 999.866<br>999.802                                  | 999.860<br>999.795            | 999.788            |
| 9        | 999.781                       | 999.773                       | 999.765                                             | 999.758                       | 999.750                       | 999.742                                  | 999.734            | 999.725                                             | 999.717                       | 999.708            |
| 10       | 999.699                       | 999.691                       | 999.682<br>999.584<br>999.474                       | 999.672                       | 999.663                       | 999.654                                  | 999.644            | 999.635<br>999.531                                  | 999.625                       | 999.615            |
| 11       | 999.605<br>999.497            | 999.595                       | 999.584                                             | 999.574                       | 999.563                       | 999.553<br>999.439                       | 999.542            | 999.531                                             | 999.520                       | 999.509            |
| 12       | 999.497                       | 999.486                       | 999.474                                             | 999.462                       | 999.451                       | 999.439                                  | 999.426            | 999.414<br>999.285                                  | 999.402<br>999.272            | 999.389            |
| 13       | 999.377                       | 999.364                       | 999.351                                             | 999.338                       | 999.325                       | 999.312                                  | 999.299            | 999.285                                             | 999.272                       | 999.258            |
| 14       | 999.244                       | 999.230                       | 999.216                                             | 999.202                       | 999.188                       | 999.173                                  | 999.159            | 999.144                                             | 999.129                       | 999.114            |
|          |                               |                               |                                                     |                               |                               |                                          |                    |                                                     |                               |                    |
| 15       | 999.099<br>998.943            | 999.084<br>998.926<br>998.757 | 999.069<br>998.910<br>998.740                       | 999.054<br>999.894<br>998.722 | 999.038<br>998.877<br>998.704 | 999.022<br>998.860<br>998.686            | 999.007            | 998.991<br>998.826<br>998.650                       | 998.975<br>998.809<br>998.632 | 998.958<br>998.792 |
| 16       | 998.943                       | 998.926                       | 998.910                                             | 999.894                       | 998.877                       | 998.860                                  | 998.843            | 998.826                                             | 998.809                       | 998.792            |
| 17       | 998.775                       | 998.757                       | 998.740                                             | 998.722                       | 998.704                       | 998.686                                  | 998.843<br>998.668 | 998.650                                             | 998.632                       | 998.614            |
| 18       | 998.595                       | 998.577                       | 998.558                                             | 998.539                       | 998.520                       | 998.502                                  | 998.482            | 998.463                                             | 998.444                       | 998.425            |
| 19       | 998.405                       | 998.385                       | 998.366                                             | 998.346                       | 998.326                       | 998.306                                  | 998.286            | 998.265                                             | 998.245                       | 998.224            |
| 20       | 998.204                       | 998.183<br>997.971<br>997.747 | 998.162                                             | 998.141<br>997.927            | 998.120<br>997.905            | 998.099<br>997.883                       | 998.078            | 998.057                                             | 998.035                       | 998.014<br>997.793 |
| 21       | 997 999                       | 997.971                       | 997.949                                             | 997.927                       | 997.905                       | 997.883                                  | 997.860            | 997.838                                             | 997.816                       | 997.793            |
| 22       | 997,770                       | 997.747                       | 997.725                                             | 997.702                       | 997.679                       | 997.656                                  | 997.632            | 997,609                                             | 997.585                       | 997.562            |
| 22<br>23 | 997.538                       | 997.515                       | 997.491                                             | 997.467                       | 997.443                       | 997.419                                  | 997.394            | 997.370                                             | 997.345                       | 997.321            |
| 24       | 997.770<br>997.538<br>997.296 | 997.515<br>997.272            | 998.162<br>997.949<br>997.725<br>997.491<br>997.247 | 997.467<br>997.222            | 997.197                       | 997.419<br>997.172                       | 997.146            | 998.057<br>997.838<br>997.609<br>997.370<br>997.121 | 997.345<br>997.096            | 997.321<br>997.070 |
| 25       | 997.045                       | 997.019                       | 996.993                                             | 996.967<br>996.703            | 996.941                       | 996.915                                  | 996.889            | 996.863                                             | 996.836                       | 996.810            |
| 26       | 996.783                       | 996.757<br>996.485            | 996.730<br>996.458                                  | 996,703                       | 996.676                       | 996,649                                  | 996.622            | 996.595<br>996.318                                  | 996.568<br>996.290            | 996.540            |
| 27       | 996.513                       | 996.485                       | 996.458                                             | 996.430                       | 996.402                       | 996.374                                  | 996.346            | 996.318                                             | 996.290                       | 996.262            |
| 28       | 996.233                       | 996.205                       | 996.176                                             | 996.148                       | 996.119                       | 996.090                                  | 996.061            | 996.032                                             | 996.003                       | 995.974            |
| 29       | 995.945                       | 995.915                       | 995.886                                             | 995.856                       | 995.827                       | 995.797                                  | 995.767            | 995.737                                             | 995.707                       | 995.677            |
| 30       | 995.647                       | 995.617                       | 995.586                                             | 995.556                       | 995.526                       | 995.495<br>995.184<br>994.865<br>994.538 | 995.464            | 995.433<br>995.121                                  | 995.403                       | 995.372            |
| 31       | 995.341                       | 995.310<br>994.997            | 995.586<br>995.278                                  | 995.247                       | 995.216                       | 995.184                                  | 995.153            | 995.121                                             | 995.090                       | 995.058            |
| 32       | 995.026                       | 994 997                       | 994.962                                             | 994.930                       | 994.898                       | 994.865                                  | 994.833            | 994.801                                             | 994.768                       | 994.735            |
| 33       | 994.703                       | 994.670                       | 994.637                                             | 994.604                       | 994.571                       | 994.538                                  | 994.505            | 994.472                                             | 994.438                       | 994.405            |
| 34       | 994.371                       | 994.338                       | 994.304                                             | 994.270                       | 994.236                       | 994.202                                  | 994.168            | 994.134                                             | 994.100                       | 994.066            |
| 35       | 994.032                       | 993.997                       | 993.963                                             | 993.928                       | 993.893                       | 993.859                                  | 993.824            | 993.789<br>993.436<br>993.075                       | 993.754                       | 993.719            |
| 36       | 993.684                       | 993 648                       | 993 613                                             | 993 578                       | 993 543                       | 993 507                                  | 993.471            | 993 436                                             | 993.400                       | 993.364            |
| 36<br>37 | 993.328                       | 993.648<br>993.292            | 993.613<br>993.256                                  | 003.970                       | 993.543<br>993.184            | 993.507<br>993.148                       | 993.471<br>993.111 | 993.075                                             | 993.400<br>993.038            | 993.364<br>993.002 |
| 38       | 992.965                       | 992.928                       | 992.891                                             | 993.578<br>993.220<br>992.855 | 992.818                       | 992.780                                  | 992.743            | 992.706                                             | 992.669                       | 992.631            |
| 39       | 992.594                       | 992.557                       | 992.519                                             | 992.481                       | 992.444                       | 992.406                                  | 992.368            | 992.330                                             | 992.292                       | 992.051            |
|          |                               |                               |                                                     |                               |                               |                                          |                    |                                                     |                               |                    |
| 40       | 992.215                       | 992.177                       | 992.139                                             | 992.100                       | 992.062                       | 992.023                                  | 991.985            | 991.946                                             | 991.907                       | 992.868            |
| 41       | 991.830                       | 991.791                       | 991.751                                             | 991.712                       | 992.673                       | 991.634                                  | 991.594            | 991.555                                             | 991.515                       | 991.476            |
| 42       | 991.436                       | 991.396                       | 991.751<br>991.357                                  | 991.712<br>991.317            | 992.673<br>991.277            | 991.237                                  | 991.594<br>991.197 | 991.157                                             | 991.515<br>991.116            | 991.076            |
| 43       | 991.036                       | 990.995                       | 990.955                                             | 990.914                       | 990.873                       | 991.237<br>990.833                       | 990.792            | 990.751                                             | 990.710                       | 990.669            |
| 44       | 990.628                       | 990.587                       | 990.546                                             | 990.504                       | 990.463                       | 990.421                                  | 990.380            | 990.751<br>990.338                                  | 990.297                       | 990.255            |
| 45       | 990.213<br>989.792            | 990.171                       | 990.129                                             | 990.087                       | 990.045                       | 990.003                                  | 989.961            | 989.919                                             | 989.876                       | 989.834            |
| 46       | 989.792                       | 989.749                       | 989.706                                             | 989.664                       | 989.621                       | 989.578                                  | 989.535            | 989.492                                             | 989.449                       | 989.406            |
| 47       | 989.363                       | 989.320                       | 989.276                                             | 989.233                       | 989.190                       | 989.146                                  | 989.103            | 989.059                                             | 989.015                       | 988.971            |
| 48       | 988.928                       | 988.884                       | 988.840                                             | 988.796                       | 988.752                       | 988.707                                  | 988.663            | 988.619                                             | 988.574                       | 988.530            |
| 49       | 988.485                       | 988.441                       | 988.396                                             | 988.352                       | 988.307                       | 988.707<br>988.262                       | 988.217            | 988.172                                             | 988.127                       | 988.082            |
| 10       | GOOTEGO                       | SOMETH.                       | 000000                                              | 0000002                       | 9000001                       | CONTROL I                                | WANTED I           | 0000112                                             | 0.001121                      | 0.0000002          |

**Figure 1**: Density of water from 0°C to 100 °C

TABLE 2-28 Density (kg/m³) of Water from 0 to 100°C (Concluded)

|          |         |         |         |         | ρ, kg/  | m <sup>3</sup> |         |         |         |                    |
|----------|---------|---------|---------|---------|---------|----------------|---------|---------|---------|--------------------|
| t, °C    | 0.0     | 0.1     | 0.2     | 0.3     | 0.4     | 0.5            | 0.6     | 0.7     | 0.8     | 0.9                |
| 50       | 988.037 | 987.992 | 987.946 | 987.901 | 987.844 | 987.810        | 987.764 | 987.719 | 987.673 | 987.627            |
| 51       | 987.581 | 987.536 | 987.490 | 987.444 | 987.398 | 987.351        | 987.305 | 987.259 | 987.213 | 987.166            |
| 52       | 987.120 | 987.073 | 987.027 | 986.980 | 986.933 | 986.886        | 986.840 | 986.793 | 986.746 | 986.699            |
| 53       | 986.652 | 986.604 | 986.557 | 986.510 | 986.463 | 986.415        | 986.368 | 986.320 | 986.272 | 986.225            |
| 54       | 986.177 | 986.129 | 986.081 | 986.033 | 985.985 | 985.937        | 985.889 | 985.841 | 985.793 | 985.745            |
| 55       | 985.696 | 985.648 | 985,599 | 985.551 | 985.502 | 985.454        | 985.405 | 985.356 | 985.307 | 985.258<br>984.766 |
| 56       | 985.219 | 985.160 | 985.111 | 985.062 | 985.013 | 984.963        | 984.914 | 984.865 | 984.815 | 984.766            |
| 57       | 984.716 | 984.666 | 984.617 | 984.567 | 984.517 | 984.467        | 984.417 | 984.367 | 984.317 | 984.267<br>983.762 |
| 58       | 984.217 | 984.167 | 984.116 | 984.066 | 984.016 | 983.965        | 983.914 | 983.864 | 983.813 | 983.762            |
| 59       | 983.712 | 983.661 | 983.610 | 983.559 | 983.508 | 983.457        | 983.406 | 983.354 | 983.303 | 983.252            |
| 60       | 983.200 | 983.149 | 983.097 | 983,046 | 982,994 | 982.943        | 982.891 | 982.839 | 982,787 | 982.735<br>982.213 |
| 61       | 982.683 | 982.631 | 982.579 | 982.527 | 982.475 | 982.422        | 982.370 | 982.318 | 982.265 | 982.213            |
| 62       | 982.160 | 982.108 | 982.055 | 982.002 | 981.949 | 981.897        | 981.844 | 981.791 | 981.738 | 981.685            |
| 63       | 981.631 | 981.578 | 981.525 | 981.472 | 981.418 | 981.365        | 981.311 | 981.258 | 981.204 | 981.151            |
| 64       | 981.097 | 981.043 | 980.989 | 980.935 | 980.881 | 980.827        | 980.773 | 980.719 | 980.665 | 980.611            |
| 65       | 980.557 | 980.502 | 980.443 | 980.393 | 980.339 | 980.284        | 980.230 | 980.175 | 980.120 | 980.065            |
| 66       | 980.011 | 979.956 | 979.901 | 979.846 | 979.791 | 979.736        | 979.680 | 979.625 | 979.570 | 979.515            |
| 67       | 979.459 | 979.403 | 979.348 | 979.293 | 979.237 | 979.181        | 979.126 | 979.070 | 979.014 | 978.958            |
| 68       | 978.902 | 978.846 | 978.790 | 978.734 | 978.678 | 978.621        | 978.565 | 978.509 | 978.452 | 978.396            |
| 69       | 978.339 | 978.283 | 978.226 | 978.170 | 978.113 | 978.056        | 977.999 | 977.942 | 977.885 | 977.828            |
| 70       | 977.771 | 977.714 | 977.657 | 977.600 | 977.543 | 977.485        | 977.428 | 977.370 | 977.313 | 977 255            |
| 71       | 977.198 | 977.140 | 977.082 | 977.025 | 976.967 | 976.909        | 976.851 | 976.793 | 976.735 | 977.255<br>976.677 |
| 72       | 976.619 | 976.561 | 976.503 | 976.444 | 976.386 | 976.327        | 976.269 | 976.211 | 976.152 | 976.093            |
| 73       | 976.035 | 975.976 | 975.917 | 975.858 | 975.800 | 975.741        | 975.682 | 975.623 | 975.564 | 975.504            |
| 74       | 975.445 | 975.386 | 975.327 | 975.267 | 975.208 | 975.148        | 975.089 | 975.029 | 974.970 | 974.910            |
| 75       | 974.850 | 974.791 | 974.731 | 974.671 | 974.611 | 974.551        | 974.491 | 974.431 | 974.371 | 974.311            |
| 76       | 974.250 | 974.190 | 974.130 | 974.069 | 974.009 | 973.948        | 973.888 | 973.827 | 973.767 | 973.706            |
| 77       | 973.645 | 973.584 | 973.524 | 973.463 | 973.402 | 973.341        | 973.280 | 973.218 | 973.157 | 973.096            |
| 78       | 973.025 | 972.974 | 972.912 | 972.851 | 972.789 | 972.728        | 972.666 | 972.605 | 972.543 | 972.481            |
| 79       | 972.419 | 972.358 | 972.296 | 972.234 | 972.172 | 972.110        | 972.048 | 971.986 | 971.923 | 971.861            |
| 80       | 971.799 | 971.737 | 971.674 | 971.612 | 971.549 | 971.487        | 971.424 | 971.361 | 971.299 | 971.236            |
| 81       | 971.173 | 971.110 | 971.048 | 970.985 | 970.922 | 970.859        | 970.796 | 970.732 | 970,669 | 971.236<br>970.606 |
| 82       | 970.543 | 970.479 | 970.416 | 970.353 | 970.289 | 970.226        | 970.162 | 970.098 | 970.035 | 969.971            |
| 83       | 969.907 | 969.843 | 969.772 | 969.715 | 969.652 | 969.587        | 969.523 | 969.459 | 969.395 | 969.331            |
| 84       | 969.267 | 969.202 | 969.138 | 969.073 | 969.009 | 968.944        | 968.880 | 968.815 | 968.751 | 968.686            |
| 85       | 968,621 | 968.556 | 968.491 | 968.427 | 968.362 | 968.297        | 969.232 | 968.166 | 968.101 | 968.036            |
| 86       | 967.971 | 967.906 | 967.840 | 967.775 | 967.709 | 967.641        | 967.578 | 967.513 | 967.447 | 967.381            |
| 87       | 967.316 | 967.250 | 967.184 | 967.118 | 967.052 | 966.986        | 966.920 | 966.854 | 966.788 | 967.381<br>966.722 |
| 88       | 966.656 | 966.589 | 966.523 | 966.457 | 966.390 | 966.324        | 966.257 | 966.191 | 966.124 | 966.057            |
| 89       | 965.991 | 965.924 | 965.857 | 965.790 | 965.723 | 965.656        | 965.589 | 965.522 | 965.455 | 965.388            |
| 90       | 965.321 | 965.254 | 965.187 | 965.119 | 965.052 | 964.984        | 964.917 | 964.849 | 964.782 | 964.714            |
| 91       | 964,647 | 954.579 | 964.511 | 964.443 | 964.376 | 964.308        | 964.240 | 964.172 | 964.104 | 964.036            |
| 92       | 963.967 | 963.899 | 963.831 | 963.763 | 963.694 | 963.626        | 963.558 | 963.489 | 963.421 | 963.352            |
| 93       | 963.284 | 963.215 | 963.146 | 963.077 | 963.009 | 962.940        | 962.871 | 962.802 | 962.733 | 962.664            |
| 94       | 962.595 | 962.526 | 962.457 | 962.387 | 962.318 | 962.249        | 962.180 | 962.110 | 962.041 | 961.971            |
| 95       | 961.902 | 961.832 | 961.762 | 961.693 | 961.693 | 961.553        | 961.483 | 961.414 | 961.344 | 961.274            |
| 95<br>96 | 961.204 | 961.632 | 961.064 | 960.993 | 960.923 | 960.853        | 960.783 | 960.712 | 960.642 | 960.572            |
| 96<br>97 | 960.501 | 960.431 | 960.360 | 960.289 | 960.219 | 960.333        | 960.077 | 960.006 | 959.936 | 959.865            |
| 98       | 959.794 | 959.723 | 959.652 | 959.581 | 959.510 | 959.438        | 959.367 | 959.296 | 959.936 | 959.865            |
| 99       | 959.082 | 959.010 | 958.939 | 958.867 | 958.796 | 958.724        | 958.653 | 958.581 | 958.509 | 958.431            |
| 100      | 958,365 |         |         |         |         |                |         |         |         |                    |
| 100      | 956,305 | l       |         |         |         |                |         |         |         |                    |

**Figure 2**: Density of water from 0°C to 100 °C

## Appendix (E)

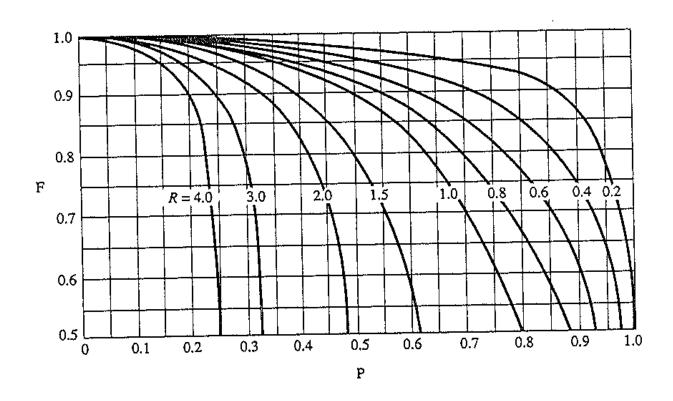
TABLE 4.5 Summary of useful empirical equations for calculating friction factors and heat transfer coefficients in flow over flat or slightly curved surfaces at zero angle of attack<sup>a</sup>

| Coefficient                                                                                      | Equation                                                                           | Conditions                                                                 |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                  | Laminar Flow                                                                       |                                                                            |
| Local friction coefficient                                                                       | $C_{fx} = 0.664 \text{Re}_x^{-0.5}$                                                | $\text{Re}_{\chi} < 5 \times 10^5$                                         |
| Local Nusselt number at distance x from leading edge                                             | $Nu_x = 0.332 Re_x^{0.5} Pr^{0.33}$<br>$Nu_x = 0.565 (Re_x Pr)^{0.5}$              | $Pr > 0.5$ , $Re_x < 5 \times 10^5$<br>$Pr < 0.1$ , $Re_x < 5 \times 10^5$ |
| Average friction coefficient                                                                     | $\bar{C}_f = 1.33 \text{Re}_l^{-0.5}$                                              | $\text{Re}_{\underline{I}} < 5 \times 10^5$                                |
| Average Nusselt number between $x = 0$ and $x = L$                                               | $\overline{Nu}_{L} = 0.664 \text{Re}_{L}^{0.5} \text{Pr}^{0.33}$                   | $Pr > 0.5$ , $Re_L < 5 \times 10^5$                                        |
|                                                                                                  | Turbulent Flow                                                                     |                                                                            |
| Local friction coefficient                                                                       | $C_{fx} = 0.0576 Re_x^{-0.2}$                                                      |                                                                            |
| Local Nusselt number at distance x from leading edge                                             | $Nu_x = 0.0288 Re_x^{0.8} Pr^{0.33}$                                               | $Re_x > 5 \times 10^5,  Pr > 0.5$                                          |
| Average friction coefficient                                                                     | $\bar{C}_f = 0.072[\text{Re}_L^{-0.2} - 0.0464(x_c/L)]$                            |                                                                            |
| Average Nusselt number between $x = 0$ and $x = L$ with transition at $Re_{x,c} = 5 \times 10^5$ | $\overline{\text{Nu}}_{L} = 0.036 \text{Pr}^{0.33} [\text{Re}_{L}^{0.8} - 23,200]$ | Re <sub>L</sub> > 5 × 10 <sup>5</sup> , Pr > 0.5                           |

<sup>&</sup>lt;sup>a</sup>Applicable to low-speed flow (Mach number <0.5) of gases and liquids with all physical properties evaluated at the mean film temperature,  $T_f = (T_s + T_\omega)/2$ .

Figure 1: Equations for flow over flat plate

### 20 Heat transfer


## TABLE 1-1

The thermal conductivities of some materials at room temperature

| Material             | k, W/m ⋅ °C* |
|----------------------|--------------|
| Diamond              | 2300         |
| Silver               | 429          |
| Copper               | 401          |
| Gold                 | 317          |
| Aluminum             | 237          |
| Iron                 | 80.2         |
| Mercury (I)          | 8.54         |
| Glass                | 0.78         |
| Brick                | 0.72         |
| Water (I)            | 0.613        |
| Human skin           | 0.37         |
| Wood (oak)           | 0.17         |
| Helium (g)           | 0.152        |
| Soft rubber          | 0.13         |
| Glass fiber          | 0.043        |
| Air (g)              | 0.026        |
| Urethane, rigid foam | 0.026        |

<sup>\*</sup>Multiply by 0.5778 to convert to Btu/h  $\cdot$  ft  $\cdot$  °F.

Figure 2: The Thermal Conductivities of Some materials



**Figure 3**: corrections factors plot for single pass cross flow exchanger both fluids unmixed.