Sudan University of Science and Technology College of Graduate Studies

Role of Ultrasound in Evaluating Obstructure Uropathy in Sudanese

دور الموجات الصوتية في تشخيص انسدادية المسالك البولية

A thesis of Submitted for Partial Fulfillment of the Requirements of M.Sc. Degree in Medical Diagnostic Ultrasound

By:

Alsheikh Babiker Ahmed Hamid

Supervisor:

DR. Muna Ahmed Mohammed

October 2015

Dedication

To the soul of my mother .

To My father .

To my wife and daughters.

To my brothers and family.

To my teachers

Many thanks to Allah almighty who helped me to write this thesis .

My sincere thanks to DR. Mona Ahmed Mohamed me to pay attention to the important of research .

His lectures were full of knowledge as I believe he tries honestly to transfer his expertise to all of his student .

My thanks to DR Nagwa Ali and for his continuous attention & valuable advices.

I would like to thanks my seniors DR . Faiz Ahmed and Somia Mohamed & my college for their help during the practical sessions .

Finally many thanks to my family & friends who always encourage & support me

Abstract

The objective of this study is detection of urinary tract (UT) obstruction abnormality in the Sudan in 2015 and compare them with the previous studies . This study depends on practical scanning the through which the data was collected in a configuration of data collection sheet the data was collected from October 2015 to December the main results of this study are : Ultrasound examination can very quickly , demonstrate hydronephrosis . Regarding the types of hydronephrosis , ultrasound examination can easily determine deferent types . This study (100) patients came to ultrasound department check up .

This result (65) patients (65%) obstruction uropathy the causes of obstruction. Main cause stones 75% came next mass 20%, least infection 5%. Types Mild hydronephrosis 29% and Moderate hydronephrosis58%, severe hydronephrosis 13%. Ultrasound is sensitive and specific for renal stones, 83% and 100% for hydronephrosis, 83% and 100%, respectively. Its sensitivity to pick ureteric stones (40%) and to identify Hydroureter (50%) is low. Addition of Computer tomography (CT) KUB abdomen increases the sensitivity for ureteric stones to 100%.

which results from obstruction . Ultrasound criteria of obstruction is hydronephrosis dilatation of the calyx ultrasound have high accuracy in detected fluid which results from obstruction the common causes of obstruction uropathy are stones and masses . prostrate enlargement and posterior urethral valve infant , infections . Ultrasound is non invasive portable no need for contrast media .

ملخص البحث

تهدف هذه الدراسة الي معرفة دور الموجات فوق الصوتية واهميتها في تشخيص الانسداد في

المجاري البولية والوضع غير الطبيعي بها في السودان لعام 2015 ومقارنتها مع الدراسات

. السابقة

اعتمدت الدراسة على المسح المعملي ومن خلاله جمعت المعلومات عن طريق ورقة جمع المعلومات

. من اكتوبر الي ديسمبر تم مسح عدد 100 مريض من مناطق مختلفة

:نتيحة الدراسة

نتيجة الدراسة هي (65) مريض من عدد المرضى الكلي وتمثل (65%) في تشخيص الانسداد في

المجاري البولية نسبة لوجود الحصاوي والاورام والالتهابات. والحصاوي تمثل نسبة 75%

ويليها الاورام بنسبة 20% واخيرا الالتهابات تمثل 5% اما الانواع انسدادي 58% وانسداد جزئي

29%واخيرا انسدادكامل 13% الموجات الصوتية عالية الحساسية بالنسبة للحصاوي داخل الكلي وتمثل 83% الي 100% اما في الحالب تمثل 40%الي 50% بعد ان تأكدنا بالاشعة . %المقطعية وتمثل 100%

النتيجة الاساسية من هذا البحث ان الموجات الصوتية سريعة جدا بمعرفة التوسع في حوض الكلي وانواعه المختلفة ومن الدراسة وجد ان اسباب الاننسداد البولي الحصاوي والاورام وتضخم البروستاتا وانسداد صمام مجري البول الخلفي عند الاطفال ووجد ان الموجات متحركه ولاتحتاج الى الصبغة وسهلة

Table of Contents

No		Subject	Page No
Chapter 1	Introduction		1
1.1	Introduction		1
1.2.	Objective		2

1.2.1	General Objective	2
1.2.2	Specific Objective	2
1.3	Important of study	2
Chapter 2	Literature Review	3
2.1	Anatomy of Urinary Tract	3
2.1.1	Kidney	3
2.1.1.1	Structure of the Kidney	3
2.1.1.2	Relations	5
2.1.1.2.1	Posterior Relation	5
2.1.1.2.2	Anterior Relation	5
2.1.1.3	Blood supple	6
2.1.1.4	Lymph drianage	6
2.1.2	Ureter	6
2.1.2.1	Blood Supple	7
2.1.3	Urinary Bladder	7
2.1.4	Urethra	8
2.1.5	The normal renal tract by ultrasound	8
2.1.5.1	Ultrasound technique	9
2.2	Physiology of urinary tract	11
2.2.1	Fluid dynamic	11
2.2.1.1	Volume of blood flow	11
2.2.1.2	Renal Clearance	12
2.2.1.3	Glomerular Filtration	12
No	Subject	Page No
2.2.2	Tubular Transport	12
2.2.2.1	Reabsoption	12
2.2.2.2	Secretion	12

2.2.2.3	Passive Transport	12
2.2.2.4	Active Transport	12
2.2,3	Transport specific substance	13
2.2.3.1	Urea	13
2.2.3.2	Glucose	13
2.2.3.3	Sodium	13
2.2.3.4	chloride	13
2.2.3.5	Hydrogen	13
2.2.3.6	Potassium	13
2.2.3.7	Water	14
2.2.4	Integration tubular function	14
2.2.5	Diuresis	14
2.2.6	Endocrine control	15
2.2.6.1	Antidiuretic hormone	15
2.2.6.1	Rennin and aldosterone	15
2.3	Anomalis structure, function	16
2.3.1	Duplex Kidney	16
2.3.2	Ectopic kidney	16
2.3.3	Horseshow kidney	16
2.3.4	Extrarenal pelvis	18
2.3.5	Hypertrophied culomn bert	18
2.3.6	Dromedary hupm	19
2.3.7	Fetal lobation	19
2.3.10	Interrenicular Septum	20
No	Subject	Page No
2.3.8	Unilateral renal agenesis	20
2.3.9	Functional parenchymal	20

2.3.10	Interreniclar septum	21
2.3.11	Renal sinus lipomatosis	21
2.3.12	Ureteropelvic junction	21
2.4	Pathology	22
2.4.1	Obstruction uropathy	22
2.4.2	Renal cyst , cystic diseases	26
2.4.3	Neoplasm	29
2.4.4	Medical renal diseases	31
2.5	Renal sonography	33
2.6	Ultrasound	35
2.7	Previous studies	39
Chapter three	Methom & material	40
Chapter four	Results	42
Chapter five	Discussion and	50
5.1.	Discussion	50
5.2	conculosion	51
5.3	Recommendation	51
Reference		52
Appendix	Images	53-63

List of Table

Table (4.1) shows distribution of obstruction and non obstruction	າ
41	
Table 4.2 show gender (sex)-	
distribution	
Table 4.3 appear Age – distribution	
Table 4.2 Causes of obstruction -distribution	
44	
Table 4.3 Degree -distribution	
Table (4.5) Shows Degrees (hydronephrosis) – distribution	46
Table (4.6) showing site of obstruction - distribution	47
Table (4.7) showing relation between causes and degree hydron	ephrosis
48	
Table (4.8) showing relation between causes and sites	
49	

List of Figures

Fig 2.1: cross section show kidneys, ureters, (UB), Urethra male & female5
Fig 2.2 : cross section coronal show structure of the kidney 5
Fig 2.3 The posterior relation of the kidney 6
Fig 2.4 The anterior relation of the kidney 6
Fig 2.5 Sagital section for RT kidney
Fig (2.6) A Left kidney (LK) in coronal section.B The renal cortex lies
9
Fig 2.7 Renal abnormalities
Fig 2.8 cross section (us) show duplex , horseshoe kidney
Fig 2.9 transverse section(US) extrarenal pelvis

Fig 2.10 Coronal section (US) show hypertrophied column bertin 19
Fig 2.11 Transverse section (US)simple cyst
Fig 2.12 cross section (US) APKD
FIG 2.13 Parts of ultrasound transducer
Fig 2.14 Parts of ultrasound machine
Fig 2.15 Types transducers
Fig (4.1) shows distribution of obstruction and non obstruction
43
Fig 4.3 show ages of the patients
Fig 4.4 causes of obstruction 45
Fig 4.5 degrees hydronephrosis46
Fig (4.6) showing site of obstruction 47
Fig (4.7) showing relation between causes and mild hydronephrosis
48

Abbreviations

US Ultrasound

UT Urinary Tract

Q Question

PUJ Pelvi-ureteric-junction

UVJ Uretero-vesical junction

% Percent

No number

PCS Pelvic collecting system

UB Urinary bladder

PE Piezoelectronic

A Amplitude

CRT Cathode ray tube

M movement

B Biplane or Brightness

CT Computer Tomography

APKD Autosomal dominant (adult) polycystic kidney disease

PCKD polycystic kidney disease

MCDK Multicystic dysplastic kidney

A.R.F Acute Renal Failure