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Ubstract

Breast cancer is currently the foremost cause in women’s mortality worldwide. In Sudan, the
increasing incidence, detection at late stages and the early onset of the disease makes early
detection and diagnosis of breast cancer an overbearing task.

Currently, X-ray mammography is the single most effective, low-cost, and highly sensitive
technique for detecting small lesions. However, the sensitivity of mammography is highly
challenged by the presence of dense breast parenchyma, which deteriorates both detection and
characterization tasks. Thus, there is a significant necessity for developing methods for automatic
detection and classification of suspicious areas in mammograms, as a means of aiding
radiologists to improve the efficacy of screening programs and avoid unnecessary biopsies.

The objective of this study is to create a computer interfacing system for the localization,
detection and classification of breast masses using ANFIS.

The ANFIS classifier was used to detect the breast cancer when five features defining breast
cancer indications were used as inputs. The proposed ANFIS model combined the neural
network adaptive capabilities and the fuzzy logic qualitative approach.

Results demonstrated the proposed methodologies have high potential in enhancing breast
images, localizing, detecting and classifying the breast tumor. The system was able to achieve an
accuracy of 94.4% sensitivity, 100% specificity, 97.1% positive predictive value, 100% negative
predictive value, an Az value of 0.972 and an overall classification accuracy of 98%.

The created systems have therefore, proved to effectively enhance the quality of the breast
images and discriminate between malignant and benign tumors with an effective level of
precision.
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