قال تعالى:

((اقْرَأْ بِاسْمِ رَبِّكَ الَّذِي خَلَقَ ﴿ ١ ﴾ خَلَقَ الْإِنسَانَ مِنْ عَلَقٍ ﴿ ٢ ﴾ اقْرَأْ وَرَبُّكَ الْإِنسَانَ مَا لَمْ يَعْلَمْ ﴿ ٥ ﴾)) الْأَكْرَمُ ﴿ ٣ ﴾ الَّذِي عَلَّمَ بِالْقَلَمِ ﴿ ٤ ﴾ عَلَّمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ ﴿ ٥ ﴾))

صدق الله العظيم

سورة العلق الآيات 1-5

Dedication

This Research is dedicated to my father and my mother.

Acknowledgement

First and foremost, I wish to thank God for giving me strength and courage to complete this research.

I would like to thank my supervisor, Dr. GEDANI OSMAN ADDLAN for his assistance and guidance to complete this research.

I would like to thank Sudanese Electrical Distribution Company and Sudanese Electricity Transmission Co forgive me helpful information for the research.

In addition, I would like to thank my family for their patience and encouragement.

Abstract

One of serious problems in power systems that can threaten the concept of power system reliability and security is voltage instability and losses. Improving the systems reactive power handling capacity via Flexible AC Transmission system (Facts) devices is a remedy for prevention of voltage. The main objectives of this research are to investigate the methods of reduction the technical losses and corona losses in transmission line. And apply these methods in transmission line Marawi-Elmarkhiat as case study. Neplan Program was used to reduction these losses by static var compensator (SVC). And improved voltage. results show that the total losses about 22.017 MW, losses are reduced to 19.02 MW when installed static var compensator in main bus bar of kabashi substation.

مستخلص

واحدة من أخطر المشاكل في أنظمة القدرة الكهربائية والتي يمكن ان تهدد أمن وموثوقية أنظمة القدرة الكهربائية هي عدم استقرارية أنظمة الجهد الكهربائية والمفاقيد الفنية. لحل عدم استقرارية الجهد يتم تحسين امداد القدرة الرد فعلية عن طريق أجهزة نظام نقل التيار المتردد المرنة. الأهداف الأساسية لهذا البحث هي البحث عن طرق تقليل المفاقيد الفنية والمفاقيد الناتجة عن الكورونا في خطوط النقل باستخدام المعوضات التزامنية الساكنة وتطبيق هذه الطريقة في خط النقل مروي للمرخيات كحالة دراسة. تم استخدام برنامج نبلان لتقليل هذه المفاقيد وتحسين الفولتية بوسطة المكثف التزامني الساكن وجدت المفاقيد الكلية 22.01ميقا واط وقللت الي 19.02ميقا واط عندما تم تركيب المعوض التزامني الساكن في القضيب العمومي لمحطة الكباشي.

TABLE OF CONTENTS

	الآية		i	
	Dedication			
	Acknowledgement			
	Abstract (English)			
	مستخلص			
	Table of Contents			
	List of Figures		ix	
		List of Tables	X	
CHAPTER ONE: Introduction				
1.1	Intro	duction	1	
1.2	Problems Statement		2	
1.3	Research Objectives		2	
1.4	Methodology		3	
1.5	Thesis Layout		3	
	CI	HAPTER TWO: Literature Review		
2.1	Intro	duction	5	
2.2	Tech	nical Losses	5	
2.2.1		Technical losses calculation	7	
2.3	Loss	es in a Transformer	12	
2.3.1		Copper losses	12	
2.3.2	2	Iron losses	13	
2.4	Diele	ectric losses	14	
2.5	Radiation and Induction Losses		15	
2.6	Corona Losses		15	

2 (1					
2.6.1		Source of corona	16		
2.6.2		Corona calculation	17		
2.6.3		Ways to reduce corona loss in transmission lines	18		
2.7	Non-	- Technical Losses	19		
СН	CHAPTER THREE : Flexible AC Transmission				
		Systems (FACTS)			
3.1	Introduction		21		
3.2	Types of Facts		21		
3.3	Optimal allocation and sizing of FACTS devices		22		
3.4	FACTS applications for improving system stability		23		
3.5	Static VAR Compensator (SVC)		23		
3.5.1		Advantages of SVC	23		
3.5.2	2	SVC Components	24		
3.5.3		Common SVC Topologies	29		
3.5.4		SVC V-I Characteristic	30		
3.5.5		Modelling of SVC	31		
3.5.6		Control Concept of SVC	33		
3.6	VOL	TAGE STABILITY	35		
3.6.1		Classification of Power System Stability	36		
3.6.2		Voltage Stability	37		
3.6.3		Causes of Voltage Instability	38		
3.6.4		Classification of Voltage Stability	38		
3.6.5		Static voltage stability analysis techniques	40		
3.6.6	Dynamic Voltage Stability Analysis Technique 4		42		
3.6.7	Meth	nods of Improving Voltage Stability	43		

C	CHAPTER FOUR: Simulation And Results	
4.1	Marwi-Markhiat Transmission Line	
4.2	Power Flow Analysis	49
4.3	Normal Operation without SVC	49
4.4	Optimal Size of SVC	50
4.5	Optimal location of SVC by Using UQ-curves	50
4.6	Normal System With SVC Connected to Kabashi bus	51
4.7	Normal System With SVC Connected To Mrkhiat busbar	52
4.8	Active and Reactive Power Losses	53
CHAP	TER FIVE: Conclusion And Recommendat	ions
5.1	Conclusion	56
5.2	Recommendations	56
	REFERENCES	58
	APPENDIX	60

LIST OF FIGURES

Fig	Title	page
2.1	a typical bus of the power system	8
2.2	Transmission line model for calculating line flows	11
3.1	One-line diagram of the common SVC components	24
3.2	Current through the TCR for different firing angles α , with the	29
	applied voltage shown as the blue, dashed line	
3.3	The V-I Characteristic Curve of SVC	31
3.4	SVC connected to a transmission line	32
3.5	SVC with control concept briefly illustrated	34
3.6	Illustration of the relationship between TCR current and firing angle	34
3.7	Illustration of the relationship between TCR current and firing	35
	angle (or conduction angle)	
3.8	Classification of power system stability	37
4.1	Single line diagram Marwi-Markhiat transmission line test	48
4.2	displayed UQ-curve	51
4.3	Voltage magnitude before & after Placement of SVC at	52
	Kabashi busbar	

LIST OF TABLES

Table	Title	page
4.1	Voltage magnitudes for Base case Without SVC	49
4.2	Voltage magnitudes after Placement of SVC at Kabashi	51
	busbar	
4.3	Voltage magnitude for bus Marwi, Markhiat, Kabashi without	53
	and with SVC	
4.4	Active and Reactive Power Losses before & after Placement	53
	of SVC at Kabashi busbar	
4.5	Active and Reactive Power Losses before & after Placement	54
	of SVC at Markhiat busbar	
4.6	Active and Reactive Power Losses before & after Placement	54
	of SVC at _Markhiat and kabashi busbars	