Sudan University of Science and Technology

College of Graduate Studies

A Thesis submitted in partial fulfillment for the requirement

of Master Degree in medical physics

Estimation of Patient Radiation Dose During Digital Radiography Examinations

By:

Jamalaldeen Abdalrhman Saifaldeen

Supervisor:

Dr. Hussein Ahmed Hassan

-:قال تعالي

﴿اللَّهُ نُورُالسَّمَاوِات وَالْأَرْضِ مَثَل نُورِهِ كَمِشْكَاةٍ فِيهَامِصْبَاحٌ الْمِصْبَاحُ فِي زُجَاجَةِ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبُ مَرِيٌّ يُوقَدُ مِنْ شَجَرَةٍ مُبَارَكَة زَيْتُونَةٍ لَاشَرْقِيَّة وَلَاغَرْبِيَّةٍ يَكَاد زَيْتُهَا يُضِيءُ وَلَوْلَمْ تَصْسَسْهُ نَرْتُورَةٍ لَا شُورِيَهْدِي اللَّهُ لِنُورِهِ مَنْ يَشَاءُ وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ بِكُل شَيْءٍ عَلِيمٌ ﴾ لِلنَّاسِ وَاللَّهُ بِكُل شَيْءٍ عَلِيمٌ ﴾ سورة النور الآية ﴿35﴾ سورة النور الآية ﴿35﴾

﴿ وَيَسْئَلُونَكَ عَنِ الرُّوحِ قُلِ الرُّوحُ مِنْ أَمْـر رَبِّـي وَمـاأُوتِيتُمْ مِنَ الْعِلْمِ إِلاَّ قَلِيلًا ﴾

سورة الإسراء الآية ﴿85﴾

Dedication

This thesis is dedicated to my parents

For their endless love, support, encouragement and prays of day and night make me able to get such success and honor.

Acknowledgements

I would like to express my deepest and endless gratitude to **Dr. Hussein Ahmed Hassan** for his fruitful guidance, professionalism, enthusiasm, valuable guidance, patience, kindness, consistent encouragement, support and guidance that I received throughout the research work. My great thanks extend to the staff of radiology department in Modern Medical Center thanks also extend to radiology department in Radiation and Isotopes Center of Khartoum for their great efforts helps in data collection also my thanks extend to my brother **Abu Sami** who was close with me by supporting, encouragement and guidance. Finally, deep thanks to all my family for their consistent mental support.

Abstract:

Diagnostic X-rays are useful in detecting abnormalities within the body, the digital x-ray is the advance modality of x-ray machines. Most clinical examination of the radiological field only take in account the image quality without taking care about dose receive by the patient .These study aimed to estimate the entrance skin doses and effective doses for adult patients underwent chest digital x-ray PA and lumbar spine (AP,LAT) examination using mathematical relation between output and entrance skin dose(ESD). The data was collected in two hospitals (MMC & RICK) in Khartoum state with average load 30,20 case per day respectively.

82 patients were examined in this study, 42 for chest and 40 for lumber AP&LAT, the data collected was include height, weight, age of patients, kilovoltage (kVp), tube current (mAs), and focus to skin distance (FSD) settings. These data was used to calculate ESD and effective doses (ED).

The mean ESD and ED of three examinations were (0.216±0.072),(3.869±1.09) and (4.695±1.07)mGy and mean ED were(0.036), (0.53) and (0.194) mSv for chest PA, lumber spine AP, and LAT respectively. These values were compared with those of published works and international established diagnostic reference levels. The variation of ESD was found to be 53% lower while ED was found to be 47% higher compared with values of (UNSCEAR 2000) these refer to techniques used for the examinations studied, the importance of establishing a national quality assurance program and examination protocols to ensure that patient doses are kept as Low as possible..

:الملخص

تعتبر التصوير بالاشعة السينية من انجح وسائل التشخيص والتصوير الرقمى هى احدث طريقة تصوير باشعة اكس ومن الملاحظ ان تقنيى الاشعة تصب تركيزهم فى جودة الصورة ويجهلون الجرعة الاشعاعية للمريض لذلك هدفت هذه الواسة الى تقييم التعرض الإشعاعية المرضى البالغين في فحص الأشعة السينية للصدر والظهر باستخدام معادلة رياضية وكذلك الجرعة المؤثرة. وقد اجريت هذه الواسة في كل من المركز الطبي الحديث ومركز الخرطوم للعلاج بالأشعة في الخرطوم.

وقد شملت فحص 82 مريض وتم تضمين بياناتهم) الطول - العمر- الوزن- النوع) وايضاجهدالتسريع وتيارالأنبوب والزمن والمسافة بين السطح والانبوب في النتائج .

ووجدان متوسط جرعة السطح لمرضى الصدرتساوى(0.072±0.216) ملى قراي والجرعة المؤثرة تساوى 0.036 ملى سيفرت و(3.869±1.09) ملى قراي لمرضى الظهر من الامام للخلف مع متوسط جرعة مؤثرة تساوى (0.53) ملى سيفرت و(4.695±1.07) ملى قراي لمرضى الظهر من الجانب بجرعة مؤثرة تساوى 0.194 ملى سيفرت.

وتم مقارنتها بنتائج مراسات سابقة في نفس المجال ووجد ان جرعة السطح اقل بنسبة 53% والجرعة المؤثرة اعلى بنسبة 47% وان الاختلاف البسيط في جرعات المرضى يعود الى الاختلاف في استخدام التقنيات والتي تشير اهمية تأسيس برنامج تأكيد الجودة وبروتوكولات الفحص الاشعاعى للتأكد من أن جرعة المريض محفوظة اقل ما يمكن.

Contents

الايه	I		
Dedication			
Acknowledgements			
Abstract (English)			
Abstract (العربية)			
Contents	VI		
List of tables	IX		
List of figures	X		
List of abbreviation	XII		
Chapter one : Introduction			
1.1 Introduction	1		
1.2 Radiation risk	3		
1.3. Problem of Study	3		
1.4. Objective of Study	3		
1.5. Thesis outline	4		
Chapter two :Background			
2.1 Literature review	5		
2.1.1 Discover of x-rays	5		
2.1.2 Classification of radiation	6		
2.1.3 Source of radiation	7		
2.2. Production of x-rays	8		
2.2.1 Bremsstrahlung	8		
2.2.2 characteristic x-rays	11		
2.2.3.Spectrum of X-ray	12		
2.3 interaction of photon with matter	14		
2.3.1. Compton scatters	15		
2.3.2 Pair production	15		
2.3.3 Photoelectric effects	16		
2.4. Detection of ionizing radiation	16		
2.4.1. X-ray detectors of digital radiography	17		
2.4.2. Gas field detectors	17		
2.4.2.1. Production of electron-ion pairs	18		
2.4.3. Computed radiography	19		
2.4.4 The modern film-screen	19		
2.5. characteristic of x-ray imaging system	19		
2.5.1. Figure of merit for image quality	20		
2.6. Biological effects of ionizing radiation	21		
2.6.1. Radiation and DNA			
2.6.1.1 Deterministic effects			
2.6.1.2. Stochastic effects			
2.7. Radiation quantities			
2.7.1. Radiation exposure	24		
2.7.2. Radiation absorbed dose			
2.7.3. Radiation equivalent dose	25		

2.7.4. Effective dose	25		
2.7.5. Medical exposure			
2.7.6. Entrance surface air karma	28		
2.7.7. Entrance surface dose	28		
2.7.8. Inverse square law	29		
2.7.9. Sievert (Sv)	29		
2.8.Previouse studies	29		
Chapter three : Materials and Methods			
3.1 Materials	33		
3.1.1 Equipment	33		
3.1.2 Patient	33		
3.2 Methods	33		
3.2.1 Study design	33		
3.2.2 Duration of study	33		
3.2.3 ESD calculation	33		
Chapter four : Results			
4.1 Results	36		
Chapter five: Discussion, Conclusion, Recommendation and	46		
References			
5.1. Discussion	46		
5.2. Conclusion	48		
5.3. Recommendation	49		
5.4. Reference	50		

List of tables

7 1	Dadiation variabing factor	26
2.1	Radiation weighing factor	26
2.2	Tissue weighting factor ICRP 33	27
2.3	Tissue weighting factor ICRP 26	27
2.4	Tissue weighting factor ICRP 60	27
3.1	Digital system characteristics	33
4.1	Age distribution for patients in chest x-ray examination	36
4.2	Mean and stander deviation of body mass index for chest	36
4.3	Mean and stander deviation of exposure factors in chest x-ray	37
	Mean exposure factors ,dose values and effective dose for	
4.4	patients underwent chest x-ray examination	39
	Age distribution for patient underwent lumbar spine (AP) x-ray	
4.5	examination	39
	Mean and stander deviation of body mass index of patients in	
4.6	lumbar spine x-ray examination	40
	Mean and stander deviation of exposure factors for lumbar	
4.7	spine(AP)	40
	Mean and stander deviation of exposure factors for lumbar	
4.8	spine(LAT)	40

	Mean and stander deviation of exposure factor ,dose and	
4.9	effective dose of patients in x-ray lumbar spine (AP)	41
	Mean and stander deviation of exposure factor ,dose values and	
4.10	effective dose of patients in x-ray lumbar spine (AP)	

List of figures

2.1	X-ray photograph of Roentgen,s wife's hand	6
2.2	Classification of radiation	7
2.3	Production of bremsstrahlung	10
2.4	X-ray spectra of intensity versus electron energy for (W) and (Mo)	10
2.5	Production of characteristic x-ray	12
2.6	Spectral distribution of x-ray	13
2.7	X-ray tube structure	14
2.8	Compton scatter process	25
2.9	Pair production process	
2.10	Effective of photon energy mass number	16
2.11	Effective of photon energy and atomic mass number to attenuation processes	16
	Correlation between entrance skin dose ESD (mGy) and body mass index for	
4.1	patient underwent chest x-ray examination	37
	correlation between entrance skin dose ESD (mGy) and tube potential kVp to	
4.2	patients undergwent chest X-ray .	38
	correlation between entrance skin dose ESD (mGy) and the product of the	
4.3	tube current (mAs) to patients underwent Chest X-ray	38
	Correlation between entrance skin dose ESD (mGy) and body weight Kg of	
4.4	patients underwend Chest X-ray .	39
	Correlation between entrance skin dose ESD (mGy) and body mass index	
4.5	(Kg\m2) of patients underwent lumbar spine AP X-ray .	41

	Correlation between entrance skin dose ESD (mGy) and tube potential kVp to	
4.6	patients underwent lumber spine AP X-ray.	42
	Correlation between entrance skin dose ESD (mGy) and the product of the	
4.7	tube current (mAs) to patients underwent lumbar spine AP X-ray .	42
	Correlation between entrance skin dose ESD (mGy) and body weight(kg) for	
4.8	lumbar spine AP .	43
	Correlation between entrance skin dose ESD (mGy) and body mass index to	
4.9	patients underwent lumbar spine LAT X-ray .	43
	Correlation between entrance skin dose ESD (mGy) and tube potential kVp	
4.10	to patients underwent lumbar spine LAT X-ray .	44
	Correlation between entrance skin dose ESD (mGy) and the product of the	
4.11	tube current to patients underwent lumbar spine LAT X-ray .	44
	Correlation between entrance skin dose ESD (mGy) and body weight(kg) to	
4.12	patients underwent lumbar spine LAT X-ray .	45
	List of abbreviation	
	List of doort viation	
	ICRU International Commission for Radiological Units	

	NRPB	National Radiation Protection Board	
	DR	Digital Radiography	
	IAEA	International Atomic Energy Agency	
	HPGe	High Purity Germanium	
	CR	Computed Radiography	
	SPD	Stimulable Phosphor Detector	
	SNR	Signal to Noise Ratio	
	DQE	Detective Quantum Efficiency	
	IR	Ionizing Radiation	
	RAD	Radiation Absorbed Dose	
	ICRP	international Commission for Radiation Protection	
	RICK	Radiation Isotopes Center of Khartoum	
	MMC	Modern Medical Center	
	BSF	Backscatter Factor	
	AP	Anterior Posterior	
	PA	Posterior Anterior	
	LAT	Lateral	
	FSD	Focus to Skin Distance	
	ISL	Inverse Squire Law	
	ESD	Entrance Skin Dose	
	ED	Effective Dose	