Chapter One

The Variational Iteration Method

The main objective of this chapter is a study Variational Iteration Method
for partial differential equation (PDE). And we have given examples.

As we discussed the convergence of He’s variational iteration method.
Sec (1.1): Definition of Variational Iteration Method

It was expressed before that Adomian decomposition method, with its
changed structure and the clamor term wonder and a portion of the
conventional strategies will be utilized as a part of this content. The other
understood routines, for example, the converse dispersing strategy, the
pseudo strategies won't be utilized here on the grounds that it can be found
in numerous different writings.

Furthermore to adomian decay method, those recently created a
variational iteration method will make connected. The variational iteration
method (VIM) created toward Ji-Huan, he will be completely utilized
toward mathematicians to handle a totally assortment for exploratory Also
building applications: straight and non -linear, and homogenous and
inhomogeneous too. It might have been indicated that this strategy is
successful Furthermore dependable for systematic what's more numerical
purposes. Those strategies provide for quickly focalized progressive close
estimation of the correct result on such an answer exists. The VIM doesn't
require particular medicines for non-linear issues Likewise clinched
alongside adomian method, bother techniques, and so forth throughout
this way, observing and stock arrangement of all instrumentation may be
anyhow. Done the thing that follows; we introduce the fundamental steps
of the technique..

Consider the differential equation [1]:
Lu+Nu=g(t) @
with the initial conditions depends on the order of operator L.

Where L and N are linear and nonlinear operators respectively, and



g(t)is the source inhomogeneous term.

The variational iteration method presents a correction functional for
equation (1) in the form:

g (1) = U, (1) + [ A(E)(Lu(€) + NT, (£) - (&) e, (2)

where 4is a general Lagrange multiplier, which can be identified
optimally via the variational theory, and ,is a restricted variation which
meanssi, = 0.1t is obvious now that the main steps of the He variational
iteration method require first the determination of the Lagrange multiplier
A(&) that will be identified optimally. Integration by parts is usually used
for the determination of the Lagrange multiplier A(£) .In other words we
can use:

[ (©)dé = A, (&) - [ 4(€)u, (§)de,

[A@)u(©)de = AE) (£) = A'(E)u, (&) + [ A'(€)u, (§)dE, 3)

and so on. The last two identities can be obtained by integration by parts.
Having determined the Lagrange multiplieri(¢), the successive
approximations function. Consequently, the solution

u=Ilimu, 4)

n—oo

In other words, the correction functional (2) will give several
approximations, and therefore the exact solution is obtained as the limit of
the resulting successive approximations.

The determination of the Lagrange multiplier plays a major role in the
determination of the solution of the problem. In what follows, we
summarize some iteration formulae that show ODE, its corresponding
Lagrange multipliers,and its correction functional respectively:

u'+ F(u(€).u(&)=0.4 =1,

D, =0, - [l + 0,

u”+ f(u(&),u'(€),u"(€))=0,1= (& -x),

Uy =y = [ € 0L+ £ (U, U1,
’ 4

(i)



0"+ UL N(E) =04 = (E - X"
(i) X
un+l=un+J%(§—x)2[u;'+f(u u’,u,udé,

u™ 4 f (u(g),u!(g).uul(g),u(w)): 0,1 = E(g - X)31
(iv)
_u+I(5x>M”+fwnn;'W(”$f

el
(n=1)!

=u +(-1)" j—l)l(e: )20+ £ (U0, ™) Be,

_ X)(n_l) ,

u™ + £ (uE), u'(&).u"(E),u™)=0,1
(V)

forn>1.

Example(1.1.1)[1]:
Consider the following linear partial differential equation

U +u, =x+y , u(0,y)=0 (5)
Solution:

The correction functional for equation (5) is

MUy)u(xwaM@[ (&) ”@y)é yjﬁ (6)
Using (3), the stationary conditions
1+1],,=0 (7)
A =0
Follow immediately. This in turn gives
A=-1 (8)

Substituting this value of the Lagrange multiplier A = —1 into the
functional (6) gives the iteration formula



Uy, (X,Y) = u(xy)+[z(rs)[a§“(§ y)+ ay“(rs y)-€- yjdr:n>o 9)

As state before, we can select u,(x,y)=u(0,y)=0from the given
conditions.

Using this selection into (9) we obtain the following successive
approximations

Up(x,y)=0

0y ) = (.Y ) I{auo(ﬁ ), auoé(f/y) ‘ yj . %X2+Xy’

0,00, Y) =0, (X Y) - j[a“l(”) ied) - yjdr:=xy,

Uy (%.Y) = U, (X, Y ) - j[auz(”) o)y y}w:xy,

u,(x,y)=xy.

The VIM admits the use of
u(x,y)=limu,(x,y),
That gives the exact solution by
u(x,y)=xy.
Example (1.1.2)[1]:
Consider the following homogeneous partial differential equation:
u, +Xu, =3u,u(x,0)=x? (10)

Solution:

Ups (6, ) = U, (X ,y)+jz(§){a“n;2’5) ox Pa02) _ay ,f:}drs (11)

As presented before, the stationary condition are:



1+ 4], =0
A=
and this gives
A=-1

Substituting this value of the Lagrange multiplier 1 = -1into the functional
(11) gives the iteration formula

Uy a0y ) = U, (6, y) - j{a“ Sty a“”g'g)—wn(x,:)}d: (12)

As state before, we can select u,(x,y)=u(x,0)=x> from the given

conditions. Using this selection into (12) we obtain the following
successive approximations

Up(x,y)=x"

Ul(X,y)IX J‘|:8U0(X 5) auoa(;(!g)_wo(x’§:|d§=)(2+x2y,

uz(x’y)=X2+X2y_J'|:aulé);'§)+ léz 5) — 3 (X §:|

) 2 1 .,
=X +xy+zxy,

2 2 1 5.5 | ou,(x,&) ou,(x,&)
Us(X,y)=x"+x y+zxy —ﬂ o +X ™ —ajz(x,g}dé

=X’ +X y+ix y +ix y>?
21 3l

U, (6, y)=x*(1+y +y*+y*+y*+.)
The VIM admits the use of

u(x,y)=limu,(x,y)

that give exact solution by

uix,y)=x%"’



Example (1.1.3) [1]:
u,+u, +u, =3,u(0,y,z)=y +z (13)
Solution:

The correction functionalfor Eq. (13) is

ou,(&,y,2) AU, (5,y,2)  au,(5,Y,2) 3}j§n>0

This also gives
A=-1

Consequently, we obtain the iteration formula

PJ(%YZ) U (Ey.2)  AlEy.2) }15 (14)

un+1(x,y,2)=un(xly’z)_I o oy

0

We selectu,(x,y,z)=y +z from the given conditions. Using this selection
into (12) we obtain the following successive approximations

Up(X,y,z)=y +z2

ouy(&,y,2) | 0ug(é,y,2) ﬁuo(cfyZ) E=X+y+17,
o oy

u,(x,y,z)=y+z - I

0

u,(x,y,z)=x+y +z I

0

{aul(éyZ) L ou(é.y.2) ﬁul(cfyZ) }jg Xty iz,
o0& oy

u,(X,y,z)=x+y +z



Sec (1.2): Nonlinear PDEs by VIM

Similarly, as state before, those variational iteration method handles
nonlinear issues in a parallel way to that utilized for straight issues. Those

primary step is to figure out the Lagrange multiplier AE) , afterward
those progressive approximations could be acquired clinched alongside a
recursive way. In the following, we will analyze the same samples
examined in front of to delineate those forces of those VIM.

Example (1.2.1)[1]:
u +uu, =1+x +t,u(x,0)=x,t >0 (15)

where U =u(.t)
Solution:

Note that the equation in homogeneous. The correction, functional for this
equation reads

0u, (6,8) | 00, (x,8)

oe T ox _1_X_§}d§ (16)

Uy a(X1) =U, (X ,t>+tjw;){

The stationary conditions give 4=-1 . Based on this, we obtain the
iteration formula.

TCRS =un(x,t)—]{a“"a(§'5) v, M) g —ﬁ}dr:

Selecting Yo :1)=X from the given initial condition yields the successive
approximations.

Ug(X,t)=x



LX) =% - ‘I{auo(x 8, 08“08(:'5)—14—5}:
St U

2!

b (x ) =X +t L ]{aul(x ), 15“1(X'5)—1—x—§}d§
s OoX
Sxrt-b

3!

_ (T ffoup(x.8) | au(x.8) .
us(x,t)=x +t 31 J[ oc +U, x 1-x §}d§
L

41

_ o ffou(x,8) | ous(x,8) o -
u,(x,t)=x +t Al I![ oF +U, x 1-x §}d§
Sxrt-b

5!

t? t* t*
u(x,t)= X+t_§_§_4|+

The VIM admits the use of

u(x,t)= !imun(x 1)
Then

u(x,t)=x +t

Example (1.2.2) [1]:

u =2x° —%uxz,u(x,O)zo

(17)
Solution:
Proceeding as befor we obtain the iteration formula:
Uy a(X 1) =U, (x ,t)_I[M_sz_luzm (x ,f)}fan 20
oL 08 8 (18)

10



Selecting Yo® 1) =0 from the given initial condition yields the successive
approximations:

U,(x,t)=0

uy(x.) =0~ j[a““x ) oxr- Ly, (x, f)}iﬁ 2xt

(X t)=2x" —tj[%’;'@—zxz —%uzlx(x,f)}iﬁ

=2x2t+gx2t3
3

_ g 3 ou, (x, &)
US(X,t)—2X2t+3X2t Z‘)‘[ Py —2x*=Zu’,, (X, 5)}5

=2x % +3X2t3+ixzt5+ixzt7
3 15 63

3

u,(x,t)=2x2 tel o 2ysy Lyry
3 15 63

As a result, the exact solutions are given by

u(x,t) = 2x > tanht

11



Sec(1.3): Systems of Linear and Nonlinear PDFs by
Variational Iteration Method:

We will apply the variation iteration method for solving systems of
linear partial differential equation. We write a system in an operator form

by:

Lu+R,uv)=09,

1
Ly +R,(uv)=g, (19)

where u =u(x,t), with initial data

u(x,0) =f,(x)
v (x,0)=f,(x)

where L;is considered a first order partial differential operator, and
R;,1<j <3,are linear operators andR,, and R, are source terms.

Following the discussion presented above for a variational iteration
method, the following correction, functional for the system (19) can be set
in the form:

Uy, (6,) =U, (1) + [ A [Lu, () + Ry, V) - 9, B E
i (20)

Vo 0 =V s 00 8) + [ 2 [LUg (€) + Ry, V) — 9, ()P €

where 4,,j =12is the general Lagrange multiplier, which can be
identified optimally via the variational theory, and u andv, as

restricted variations which means 6, =0, and &7, =0 . The
Lagrange multipliers 4,,j=12 will be identified optimally via

integration by parts as introduced before. The successive
approximation u_,(x,t) and v_,(x,t),n>0, of the solution u(x,t) and

v (x,t)will follow immediately uponusing the obtained Lagrange
multipliers and by using selective functionsu, and v .

The initial value may be used for the selective zeroth approximations.
With the Lagrange multipliers A; determined, several approximations

12



u; (x,t).v;(x,t),j >0,can be computed. Consequently, the solutions are
given by

u(x,t)=Ilimu,(x,t)
nj>oo (21)
v(x,t):!mvn(x,t)

To give a clear overview of the analysis introduced above, the two
examples that were studied before will be used to explain the technique
that we summarized before, therefore we will keep the same numbers.

Example(1.3.1) [1]:

We first consider the linear system:

u, +v, =0 22)
v, +u, =0
with the initial data
u(x,0)=e*v(x,0)=e* (23)
where u =u(x,t) and v =v (x,t)
Solution:
The correction, functional for (22) are
Uy aOX:) =, (¢ t)+M(¢)P‘ nloe) | O, X, 5)}15
(24)
Vo0 =V, (X, t>+ja (5){"” n{X.0) | AL, 5)}15
This gives the stationary conditions
1+4],,=0 (25)
A€ =t)=0
and
1+4,1.4=0
(& =t)=0

As a result, we find

13



AL=2=-1 (26)

Substituting these values of the Lagrange multipliers into the functional
(24) gives the iteration formulas

un+l(X 1t) =Un(X ,t)

{au ((X.8) v, (x, 5)}dg
(27)

!
!

Va0, =V, (1) - VV o (X,0) | O, (X, 5)}15 n>0

We can select u,(x,0)=e*v,(x,0)=e by using the given initial values.
Accordingly, we obtain the following successive approximations

up,(x,t) =e”,
Vo(x,t)=e™
u,(x,t)=e” +te
v,(x,t)=e™ —te*

—-X

X 12x

u,(x,t)=e* +te" +§t e

1
V,(x,t)=e* —te* Jrgtze‘X

) . (28)
u;(x,t)=e* +te ™ + —t%e* + —t%e ™
2! 3!
—_a X _tnX 1 2 —x_i 34 X
V,(x,t)=e te +Zte 3!te ,
un(x,t)zex(1+it2+it“+...j+e‘X [t+it3+it5+...j
21 4 31 5l
v, (x,t)=e* ety e e (tetes T
21 41 3! 5!
Since the
u(x,t) =Ilimu, (x,t)
n—owo (29)

v(x,t)=Ilimv (x,t)
Consequently, the exact analytical solutions are of the form

14



uyv) =(eX cosht +e *sinht,e * cosht —e* sinht) (30)

Example(1.3.2) [1]:
Consider the linear system of partial differential equations

u +u, -2 =0
t X (31)
V,+v, +2u=0
with the initial data
u(x,0)=sinx v (x,0) =cosx

Solution:

The correction functional for (31) read:

ou,(x,£) | aU,(x,£)
o0& OX

Vn+1(X,t)=Vn(X,t)+].l(§){av a(z £), ORS) gy, 5)}015 n>0

U (X1) =U, (1) + | A(r:){ -7 (x m:)}drs

(32)

Proceeding as before, we find
A=A =-1

Substituting these values of the Lagrange multipliers into the functional
(32) gives the iteration formals

Uy (1) =0, (6 1) - IP’ nP08), A 0) W(x,ﬁ)}dﬁ
(33)
V) =V, () - j{av nU0E), AaE)uy, 5)} ¢

We can select u,(x,0)=sinx, v,(x,0)=cosx , by using the gives initial
values. Accordingly, we obtain the following successive approximations.

Uo(X,0) =sinx

v, (x,0) =cosx

15



u,(x,t) =sinx +t cosx

v,(x,t) =cosx —tsinx
t2
U,(x,t) =sinx +tcosx —Esinx

: t?
V,(x,t)=cosx —tsinx —Ecosx

: t? . t
us(x,t) =sinx +tcosx —Esmx +§cosx

t? t
V,(X,t) =cosx —tsinx ——Cosx ——sinx
2! 3!

t? t* t* t*

u,(x,t)=sinx [1——+—+...J+cosx [t +—+—+...J
21 41 31 41
2 4 3 4

v, (x,t)=cosx [1—t—+t—+...J+sinx [t +t—+t—+...J
21 41 31 41

Since the

u(x ,t):!in(lun(x,t)

v(x,t):!mvn(x,t)

This gives the pair of solutions (u,v) in a closed form by

(v )=(sin(x +t),cos(x +t))

Frameworks from claiming nonlinear halfway differential equations
emerge to asignificant number experimental models for example, such
that the proliferation about shallow water waves and the Brusselator
model from claiming concoction reaction-diffusion model. To utilize
those VIM, we compose an arrangement done an driver structure toward.

Lu+R,uvw)+N,uv.w)=09,
Lu+R,uvw)+N,uyv,w)=g, (34)
Lu+R;uyv.w)+N,uyv,w)=09,

16



u(x,0)=f,(x),
v (x,0)=f,(x), (35)
w (x,0) =f,(x),

where L, is considered a first order partial differential operatorRr;,1<j <3
andN ;,1< j <3are linear and nonlinear operators respectively, andg,, g,
and g, are source terms. The correction, functional for equations of the
system (35) can be

U (X1) =0, (6,0) + [ A(E)[Lu, (X, ) + Ry (W, ¥, M) + N (0, V7, W,) - 9,(E) B,
Vo (0 =V, () + [ ALY, (6,8) + Ry, ¥, W) + N (0, V', W)~ 0, (OB E, (36)

W (8) =W, 08 + [ AE) [LU, (X, E) + Ry, Vo W)+ N o0, ¥, W) — 9, (E)HE,

Where 4;,1< j <3 are general Lagrange’s multipliers, which can be
identified optimally via the variational theory, andd, v, , and w_as
restricted variations which means su, =0,6v, =0andsw, =0. It is required
first to determine the Lagrange multipliers 4, that will be identified

optimally via integration by parts. The successive approximations
u,(x,t)v ., (x,t)w_,(x,t),n >0, of the solutionsu(x,t),v (x,t)and w(x,t)
will follow immediately upon using the obtained Lagrange multipliers and
by using selective functions u,v,and w, . The initial values are usually

used for the selective zeroth approximations. With the Lagrange
multipliers 4, determined, then several approximations

u; (x,t)v,;(x,t)w;(x,t),n >0can be determined. Consequently, the

solutions are given by:
u(x,t)=limu (x,t),

v (x.t) =limv, (x.1), (37)

w (x,t) =!inlwn(x 1)

To give a clear overview of the analysis introduced above, we will apply
the VIM to the same two illustrative systems of partial differential
equations that were studied in the previous section.

Example(1.3.3) [1]:

Consider the inhomogeneous nonlinear system

17



PDE u, +vu, +u =1 (38)
vV, —-uv, -v =1

IC u(x,0)=e*yv(x,0)=e*
Solution:

The correction functionals for (38) read

ou, (x.,6)
o5

v, (x,8)
og

Uy a(,1) =, x t)+M(«:)[ 7, (¢, ) ~n(x,r§)—1jdr:
(39)

aV(X 8) .,

Vo (K.8) =V (X t)+jz(§)[ 0, (x,£) ~n(x,r:)—1jd§

The stationary conditions are given by:
1+24,=0,4(5=1t)=0
1+4,=0, 2(E=t)=0

So that

=2y =-1 (40)
Substituting these values of the Lagrange multipliers into the functionals
(39)gives the iteration formulas

),

un+l(X 1t) =Un(X ,t)

[au n(X:5) | (x,8)

un(x,ﬁ)—ljdﬁ
(@1)

v, (X,8) aV(X £)

u,(x,¢)

|
!

Vn+l(X1t):Vn(X t) { +Vn(X1§)_1Jd§

The zeroth approximations u,(x,t)=e*and v (x,t)=e ™ are selected by
using the given initial conditions. Therefore, we obtain the following
successive approximations.
u,(x,t)=e", V,(x,t)=e™
u(x,t)y=e* —te*, v,(x,t)=e " +te™
t? :
u(x,t)=e* —te* +§ex + noiseterms,
-X -X tz —X H
V,(x,t)=e"" +te +§e + noiseterms,

18



By canceling the noise terms between u,,u,,...and betweenv, v,,..., we find

t?2 ¢ t2 3
u,(x,t)y=e*|1-t+———+.. |V, (x,t)=e |1+t + —+—+...
21 3l 21 3l

And as a result, the exact solution s are given by:

u(x,t)=e*"v(x,t)=e>"
Obtained upon using the Taylor expansion fore™ and e'. It is obvious that
we did not use any transformation formulas or linearization assumptions
for handling then onlinear terms.

Example(1.3.4) [1]:

Consider the following nonlinear system

u, —v,w, =1,
v, —w,u, =5, (42)
W, —u,v, =5

With the initial conditions:
u(x, y,0) = x+ 2y, v(x,y,0) = x - 2y, wW(x, y,0) =—x + 2y (43)
Solution

Proceeding as before we find

Substituting these values of the Lagrange multipliers gives the iteration
formulas

U, (% y.t)=u, (xy,t) - J[a“ ((;(gy &) oy, (:;Xy 5) ow,, (x y.&) }dﬁ
Vo (6 Y, 0) =V, (%, Y, 1) - ]{‘W (ng 8) _ow, (;Xy €) ou (Xyﬁ) 5}15

ow,(x,y,§) ou (xyﬁ) 8V(xy§)
o& oX

W, (X, Y,8) = W, (%, Y1) - j{

The zeroth approximations

s}dg

19



Uo (X, y,t)=x+2y

Vo(X, y,t) =x-2y

W, (X, y,t)=—x+2y
are selected by using the given initial conditions. Consequently, the
following successive approximations

Uo (X, y,t)=x+2y
Vo(X,y,t) =x-2y

W, (X, Yy, t)=—x+2y

u, (X, y,t)=x+2y+3t
vi(Xy,t)=x-2y+3t
w, (X, y,t)=—x+2y+3t

u,(x,y,t)=x+2y+3t

V(X y,t)=x-2y +3t

W, (X, y,t)=—x+2y+3t
are readily obtained. Notice that the successive approximations became
the same for u after obtaining the first approximation. The same
conclusion can be made forv and w. Based on this, the exact solutions are
given by:

u(x,y,t)=x+2y+3t
V(X y,t)=x—-2y +3t
w(x,y,t)=—Xx+2y + 3t

Example(1.3.5) [1]:
Consider the following nonlinear system

u, +uv, =2,v, +u,v, =0, u(x,0) =X, v(x,0) = x (44)

Solution
The correction, functional:

ou, (x&) | u,(68) v, (x.&) z}d :
Py ox ox

Vo () =V, (6 1) + [ 2, (g)ﬁvna(?ﬁ) N aun;:,ﬁ) . avn;:,ﬁ)}dg

The stationary conditions are given by:

Uy (X,1) =1, (X,1) +h(¢>{
X (45)

20



A=A, =-1

Substituting these values of the Lagrange multiplies into the functionals
(45) gives the iteration formulas:

Upy (X, 1) =U, (X,1) = f{au”a(z’ $) | au”;:’g) x avn;:,g) -

M, (01) | (08 v ()],
Py ox ox

2}d§

Vn+l(X’ t) =V, (X, t) - j.|:

The zeroth approximations u,(x,t) =x,andv,(x,t) = xare selected by using

the given initial conditions. Therefore, we obtain the following successive
approximations.

Uy (X, 1) =X, vy (X, t) =X
u, (X, t)=x+t, v, (x,t) =x -t

U, (X, t)=x+t, v,(x,t)=x -t

u(x,t) =x+t, v(x,t)=x—t
Example(1.3.6) [1]:
U +uv, —w, =1L v +vw, +u, =L w +wu, -v, =1 (46)

u(x, ¥,0) =x +y, v(x, y,0) =x -y, w(x, y,0) =-Xx +y

Solution:
Proceeding as before we find

A=Ay =Ay=—1

Substituting these values of the Lagrange multipliers gives the iteration
formulas:

21



b (YD = U (X y,t)_‘f{aun(x,y,f:) LU (Y8 V(% y.8) oW, (x,Y.6) _1}, ‘

o0& OX OX
V(XY ) =V, (K y.t) IP (% Y,6) aVn(g;(y,f)X&Nn(;;(y,ﬁ)Jraun(;;/ 29) _1},5,
We (XY D =V (X, Y1) — I{avv (ax§y 8) é’wn(;;(y,ﬁ) X8un(é<),(y,§) _6’vn(2;,y,§) _ng

The zeroth approximations

U (X, y,0)=x+Yy

Vo(X,y,0)=x~-y
Wy (X, ¥,0) =—Xx+Yy

are selected by using the given initial conditions. Consequently, the
following successive approximations:

UO(X' y’O) =X+Y,V, (Xv y,O) =X-Y, W, (X, y,O) =-X+Yy
u (X, y,0)=x+y+t,v,(x,y,0)=x-y+t, w,(x,y,0) =—x+y +3t

U, (X, ¥,0)=x+y+t, v, (X, y,0) =x-y+t, w,(X,y,0) =—x+y +3t

U, (X, y,0)=x+y+t v, (X,y,0)=x—-y+t, w, (X, y,0) =—x+ y+ 3t

22



Sec (1.4): On the Convergence of He’s Variational Iteration
Method

In this section we will consider He’s a variational iteration method for
solving second-order initial value problems.

The variational iteration method changes the differential equation to a
recurring sequence of functions. The limit of that sequence is considered
as the solution of the partial differential equation. Now consider the
second - order partial differential equation in the following form (most
general form can be considered without loss of generality):

=0, (47)

o 20 U o o
"ot "ox Tox? ot oxot

with specified initial conditions.

The variational iteration method changes the partial differential equation
to a correction, functional in t -direction in the following form:

‘ ou, ou, o4, ou, ou
u,,(x,t)y=u (x,t)+[AF|u, ,—r, =0 ——n -0~ oo g, 48
nﬂ()(){[agaxaxzagzaxagﬁ (48)
where d_is considered as He’s monographs i.e. s@,)=0. To find the
optimal value of 1 , we make correction functional stationary in the
following form:
t du, ou, o, o, o4,
BU (X, 1) =8U, (X 1) +8[AF [u, = == == —n —tIde=0,  (49)
: & T ox T ox? ' o&” oxoE

Which results in the stationary conditions and consequently the optimal
value is obtained. In fact the solution of the differential equation is
considered as the fixed point of the following functional under the suitable
choice of the initial term u,(x,t):

(50)

t 2 2 )
un+l(X,t):un(X,t)+J.ﬂ,F[un aun aun aun aun aun jdg,
0

"OE T ox Ox? ' BE? oxoE

Definition (1.4.1) [6]: A variable quantity v is a functional dependent on a
function u(x) if to each function u(x) of a certain class of functions u(x)
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there corresponds a value v . The variation of a functional v [u(x)]is
defined in the following form:

v [u (x)]:iv [u(x)+asul_ . (51)
ox “=
As a well-known result, we have [7]:

Theorem (1.4.2) [6]: If a functional v [u(x )]which has a variation achieves
a maximum or a minimum at u =u,(x), whereu(x)is an interior point of
the domain of definition of the functional, then at u =u,(x),

ov =0. (52)
Also as a very powerful tool we have [8]:

Theorem (1.4.3) [6]:(Banach’s fixed point theorem). Assume that X is a
Banach space and

A:X 5X
is a nonlinear mapping ,and suppose that
|Au]-Afd]| <y fu-a],uadeX (53)

For some constanty <1.Then A has a unique fixed point. Furthermore, the
sequence

=Alu,] (54)

with an arbitrary choice of u, € X ,converges to the fixed point of A and

k=2
o —u, <o —uo] 2. 7 (55)

j=1-1

According to Theorem (1.4.3), for the nonlinear mapping

(56)

t 2 2 2
A[u]:u(x,t)+IlF u,a—u,a—u,auz,ai, ou dé,
) oE ox 'ox 2 0EY ox OE

a sufficient condition for convergence of the variational iteration method
is strictly contraction of A. Furthermore, the
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sequence (50) converges to the fixed point of A which also is the solution
of the partial differential (47).

Consider the sequence (50) in the following form:

(57)

t 2 2 2
ou, ou, ou, ou, ou,
Un.p Uy ZI’“:[“”’ o0& " ox Tox? ' a&? ’axagjdg’
0

It is clear that the optimal value must be chosen such that extremities the
residual functional

t 2 2 2
J./“: un’aun,aun’auzn’au;’aun de, (58)
0 o0& Ox oOx° 0&° oxo&

which is equivalent to the extermination of A. But in Theorem (1.4.2) the
necessary condition for minimization is given.

As a direct result which shows the relation between He’s variational
technique and A domian Decomposition method we have:

Remark (1.4.4) [6]: For the time-dependent partial differential in the
form of

u, +F(u,u,,u,, )=0, (59)

with the properly given initial condition, then He’s a variational method
and decomposition procedure of A domian are equivalent.

Example (1.4.5) [6]:
As the first example considers the telegraph equation

U, +2du, —u,, =0 (X ’t)ED X(O’OO)’ (60)

u=gu, =h(x,t)el x{t =0}, (61)

For d >0, the term 2du, representing a physical damping of wave
propagation. This equation is investigated in [8].

Using the well-known He’s a variational iteration method we have
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U, (X, 1) =u, (x t)+j/1[az n(x, £)+2d° 5 ! (62)
To find the optimal value of 1 we have

su_ . (x,t)=ou,(x t)+5j/1[ 1(x, &)+ 2d ] (63)
or

UL (X,t)=u(x t)+jl O £y s2d My ey bie (64)

n+l ! n ! ) aXZ ! ag ! .
which results
[A a n

8., (X £) = 8u, (X ) = 62U, (X,1)], , +62 6“5 (x 1)

+tj5,1'un(x &) é+2ddAu, (x,€)), —2d]5zun(x L&) & =0. (65)

Therefore, the stationary conditions are obtained in the following form:
1+2o|;L(z§)—;L'(§)=o|§:t ,
A"(g)-2d2'(¢) =0,
which yields
1
i(ﬁ)zd(t—f)(t—§—d—j, (66)

and the desired sequence is found as

un+1(x,t)=un(x,t)+l'd(t— ( 5——)[ 5”(x JE)+ 2d 5
Example (1.4.6) [6]:

As another example, consider the beam equation in the following form

ou o
a—t+m—0 (x,t) el x(0,), (67)
u=g (X,t)eD x{t =0}.
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Using the variational iteration method we have

au o'a
n X, + n
ag( &)+ o

un+1(x,t>=un(x,t>+}1[ (x,f:)jdrs. (68)

Imposing the stationary condition we have

5un+1(x,t)=5un(x,t)+5l/l[%ué: (X,§)+§f§ (X,ﬁ)jd £. (69)
or
6un+1(x,t>=5un(x,t>+5laaa“£ (x,)dE.
Thus, we have
Uy, (X 1) =8U, (X t) + 62U, (X, )|, —tj&'un (x,E)dE=0. (70)

Hence we have the following stationary conditions:

(&)= 0|.§:t ,
1+ A(&) =o|§:t ,
which yields
A=-1

Therefore, we obtain the following iteration formula:

un+1(x,t>=un(x,t)—j[ "(x,§)+“:(x,5)jd«:.

ou
o0& OX
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