الآية أعوذ بالله من الشيطان الرجيم

: قال تعالى

اللَّهُ الَّذِي خَلَقَكُمْ مِنْ ضَعْفٍ ثُمَّ جَعَلَ مِنْ بَعْدِ ضَعْفٍ قُوَّةً ثُمَّ جَعَلَ مِنْ بَعْدِ ضَعْفٍ قُوَّةً ثُمَّ جَعَلَ مِنْ بَعْدِ قُوَّةٍ ضَعْفًا وَشَيْبَةً يَخْلُقُ مَا يَشَاءُ وَهُوَ الْعَلِيمُ الْقَدِيرُ (54(

(سورة الروم: الاية (54)

Dedication

To everyone whom lightened a dark spot in my minds...
To my supervisor Ass.prof.
Mahmoud Mohammed Ahmed..
And to my family and friends

Acknowledgment

I would like to express my great thanks & tribute to everyone who support me in my work; especially who helped me in the family of modern medical center.

Full regardness for my supervisor Ass.prof. Mahmoud Mohamed Ahmed who gave a perfect advice and ideas, in such way that he motivated me to complete the work in success.

Contents:

Subject	Pag
	e
الآية	1
Dedication	II
Acknowledgment	III
Contents	IV
List of abbreviation	VI
List of table	VIII

List of figure	IX
Abstract	X
Chapter One: Introduction	
1-1Introduction	1
1-2Problem of Study	4
1-30bjectives	4
1-3-1 General objective	4
1-3-2 Specific objectives	4
1-4 Significances of the study	4
1-5 Overview of the study	4
Chapter Two: Literature Review	
2-1 Anatomy	6
2-1-1 Anatomical description for cervical spine	6
2-1-2 Joints Of The Vertebral Column	9
2-1-3 Ligament Of The Vertebral Column	11
2-1-4 The Intervertebral Disc	12
2-1-5 Blood Supply Of The Vertebral Column	12
2-1-6 The Spinal Cord	12
2-2 Physiology	14
2-3 Pathology	14
2-4 Development of cervical spine	16
2-5 MRI	17
2-5-1Neck MRI Technique	20
2-5-1-1Suggested protocol	21
2-5-1-2Additional sequences	22
2-5-1-3Image optimization	26
2-6 Previous Studies	30
Chapter Three: Materials and methods	
3-1 Materials	35
3-1-1 The patients	35
2-1-3The machine	36
3-2 Methods	36
3-2-1Duration and place of the study	36
3-2-2 Positioning technique used in this study	36
3-2-3 Measurement	37
3-2-4 Data analysis	37
Chapter Four: Results	
4-1 Results	38
Chapter Five: Discussion & Conclusion	
5-1 Discussion	45
5-2 Conclusion	47
5-3 Recommendation	48
References	49
Appendices	51

List of abbreviation

CT: Computed Tomography

MRI: Magnetic Resonance Image

Fig: Figure

HND: Herniation Nucleus Pulposus

LSS: Lumber Spinal Stenosis

HCD: Herniation Cervical Disc

SPSS: Social Program Statistical Analyses

CBR: Canal Body Ratio

RAPT: Ratio Of Anteroposterior To the Transverse Diameter

Min: Minimum

Max: Maximum

STD: Standard deviation

Sig: Significance

MM: Millimetres

ANOVA: Analysis Of Variance

MS: Multiple Sclerosis

GRE: Gradient echo

P: posterior

A: Anterior

L: left

R: Right

SNR: Signal To Noise Ratio

FOV: Field Of View

GMN: Gradient moment nulling

CSF: Cerebrospinal Fluid

CSE: Conventional Spin Echo

RF: Radio-frequency

S-I: superior to inferior

NEX/NSA: Number Of Excitations/ Number Of Signal Average

PD: Proton Density

ROI: Region Of Interest

STIR: Short T₁Inversion Recovery

Pe gating: peripheral gating

T₁: longitudinal Relaxation Time

T₂ : Transvers Relaxation Time

List Of Tables:

Table(4-1)show	ed statistica	l values	of	vertebral	measurement		
data	for	263		cervical	MRI.		
					38		
Table (4-2) Showed mean and std of Torg ratio in each age classes							
Table (4-3) a frequency table Show the frequency distribution and							
percent	of		2	63	patient		
age39							
Table (4-4) ANOVA Test show differences test in mean of these measured values with each Age class , Confidence level of 95% , p= 0.0543							
Table	(4-5):Correla	ition		between	five		
variable		44	4				

List of figure

Fig (2.1)						convical
Fig.(2-1)						cervical
vertebra					.7	
Fig.(2-2)	The		atlas:		Superior	
View	7					
Fig.(2-3)	The	axis:(A)	lateral	view	(B)	anterior
view		8				
Figure		(2-4) MRI		IRI	machine	
				.17		
Figure (2.5)	Sagitta	I SE T1 we	eighted mi	dline ima	age throu	ugh the
cervical spine23 Figure(2.6)Sagittal FSE T2weighted midline						
image through the cervical cord24						
Figure(2.7) Sagittal FSE T2 weighted image showing slice						
prescription boundaries and orientation for axial imaging of the						
cervical cord24						
Figure(2.8) Sagittal coherent GRE T2* weighted image of the						
cervical spine show in axial/oblique slice positions parallel to						
each disc space25						
Figure (2.9) Axial/	oblique col	nerent GF	RE T2* \	weighted	image
through			the			cervical

cord								
25								
Figure(2.10)	Axial b	alanced	GRE	throug	h the	cer	/ical
spine		26						
Figure (4	.1): Pie	Chart Sho	ow the pr	oportic	on or per	cent of	each	age
class	39							
Fig.(4-2)	simple	box-plot	demons	trate t	he age	classes	and	the
hieght		of	di	sc	ā	at		any
class								
40								
Fig.(4-3)s	simple b	ox-plot d	emonstra	te the	age clas	ss and th	ne he	ight
of		body			at			any
class								
40								
Fig.(4-4)	simple	box-plot	demons	trate t	he age	classes	and	the
diameter	•	of	b	ody		at		any
class								41
Fig.(4-5)	Showed	d simple	box-plot	demo	nstrate	age clas	sses	and
the	diam	eter	of	ca	ınal	at		any
class						41	l	
Fig.(4-6)	simple	box-plot	demons	trate t	he age	classes	and	the
torg		ratio			at			any
class								
42								

Abstract

This study was done to measure changes in cervical spine induce age by using MRI.

Cervical Spine MRI were taken for 263 adult patient investigated in medical modern center, during 2015. The measure way computer, the data were analyzed using mean value and standard deviation, as well as P-value to detect degree of significance using SPSS (social program for statistical analysis).

Our findings in measurement of Torg ratio, diameter of spinal canal, height of disc, there was significant changes with age. The Torg ratio explain spinal canal stenosis due to degenerative changes due to age especially over 60 year patients the mean \pm std. (73.706 \pm 17.18).

The Diameter of Body of cervical spine have indirect relationship with diameter of Spinal Canal which decreased By 0.303 for every one mm increate diameter of body cervical spine .these results may explain narrow of cervical spine canal due to degenerative changes of body cervical spine that affected by age.

The Diameter of Body of cervical spine has indirect relationship with height of Disc which decreased By 0.032 for every one mm increate diameter of body cervical spine .And The Height of Disc has indirect relationship with height of body cervical spine which decreased By 0.155 for every one mm increate height of body cervical spine .these result explain narrow of disc space due to Age .

Therefore conclusion of this study The degenerative changes of cervical spine related to age especially in older patient .

الخلاصة

أجريت هذه الدراسة لقياس التغيرات في العمود الفقري العنقي مع التقدم في السن باستخدام التصوير بالرنين المغناطيسي.

اتخذت صور الرنين المغنطيسي للعمود الفقري العنقي لمائتان وثلاث وستون مريض بالغ في المركز الطبي الحديث خلال عام 2015. ثم قياس البيانات باستخدام الحاسوب وقد تم تحليل البيانات باستخدام الوسط الحسابى والانحراف المعياري ووجد معامل الارتباط لتحديد دقة القياس باستخدام SPSS (برنامج اجتماعي للتحليل الإحصائي).

النتائج التي توصلنا إليها في قياس نسبة تورج، قطر القناة الشوكية، وارتفاع القرص، وهناك تغير مع التقدم في السن. ونسبة تورج توضح ضيق القناة الشوكيه نتيجه لتقييم التغيرات التنكسية المصاحبة لتقدم العمر خاصة المرضى الاكثر من 60 سنة . الوسط الحسابي ± الانحراف المعيارى . (73،706 ± 17.18).

قطر جسم العمود الفقري العنقي له علاقة غير مباشرة مع قطر قناة العمود الفقري الذي انخفض بنسبة 0.303 مع زيادة مليمتر واحد من قطر جسم العمود الفقري. هذه النتائج قد تفسر ضيق قطر قناة العمود الفقري مع التغيرات التنكسية لقطر جسم العمود الفقري العنقي التي تتاثر بالعمر.

قطر الجسم العمود الفقري العنقي له علاقة غير مباشرة مع ارتفاع القرص الذي انخفض بنسبة 0.032 مع زيادة مليمتر واحد من جسم العمود الفقري العنقى. وعلى ارتفاع القرص له علاقة غير مباشرة مع ارتفاع جسم

العمود الفقري العنقي الذي انخفض بنسبة 0.155 مع زيادة مليمة واحد من جسم هذا العمود الفقري العنقي النتائج قد تفسر- ضيق ارتفاع القرص نتيجه للعمر.

لذلك نستنتج من هذه الدراسة ان التغييرات التنكسية للعمود الفقري العنقى متعلقة بالعمر خاصة المرضى كبار السن .