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الايه   

 

 بِسْمِ الِله الرَّحْمنِ الرَّحِيمِ 

 

:                                                                       يل تعالاق  

شَهِدَ اللَّهُ أنََّهُ لَا إِلَهَ إِلاَّ هُوَ وَالْمَلائِكَةُ وَأوُْلُواْ الْعِلْمِ قَائِمًا باِلْقِسْطِ ﴿
الْعَزيِزُ الَْْكِيم﴾ لَا إِلَهَ إِلاَّ هُوَ   

 
 صدق الله العظيم

﴾۸۱﴿نآل عمرا  سوره  
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Abstract 

 

In this thesis we solve systems of nonlinear ordinary differential equations by 

applying the spectral relaxation method (SRM).The SRM is an efficient numerical 

method that gives accurate results. First we give a historical idea and details of 

the SRM method. Then we present a study of a boundary layer flow with a 

convective surface boundary condition. The system of equations governing the 

thermo-hydrodynamic boundary layer flow is solved using the spectral relaxation 

method. The effects of the governing fluid parameters on the velocity, 

temperature and concentration profiles are also studied .Dufour and Soret effects 

on incompressible Newtonian fluid flow over a vertical down-pointing cone, are 

investigated studied numerically by using the spectral relaxation method.  Results 

presented in this study are compared with those of previously published 

literature for selected values of the governing physical parameters. We also 

analysed the residual error and we investigate the accuracy of the method, and 

then we compare the result against solutions obtained from published literature. 
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  الخـــلاصــة

بتطبيق طريقة الطيف المسترخية لحل  أنواع مختلفة من المعادلات التفاضلية العادية  قمنا  ا البحثفي هذ

بداية اعطينا فكرة مفصلة عن . طريقة الطيف المسترخية هي طريقة عددية تعطي نتائج دقيقة. اللاخطية

مع شروط سطح الحمل الحراري  الي الإنسياب علي الطبقات الحدية تطرقناثم . طريقة الطيف المسترخية

  باستخدام إنسياب الطبقات الحدية الحرارية الهيدروديناميكيةصف تم حل نظام المعادلات التي ت. الحدية

التي تصف وسائط المائع علي السرعة والحرارة  التأثيرات ايضا تم دراسة  طريقة الطيف المسترخية

ثيرات دوفور وسيوريت علي إنسياب المائع النيوتوني الغير منضغط الذي يـمر علي مخروط تأ.والتركيز 

بمقارنة نتائجنا مع نتائج دراسات طريقة الطيف المسترخية   مقلوب القاعدة ،تم دراستها عدديا باستخدام

 .الجبرية ايضا  تحققنا من الخطأ المتبقي والدقة. سابقة لبعض قيم الوسائط الفيزيائية المختارة
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Chapter 1 

 
Overall introduction 
 
The spectral relaxation method is a numerical technique based on simple 

iteration schemes formed by reducing large systems of nonlinear equations into 

smaller systems of linear equations, see Motsa [1]. The method has been 

applied to various science and engineering problems described by coupled 

nonlinear systems of ordinary or partial differential equations.  The basic idea of 

the SRM approach is simple decoupling and rearranging the governing nonlinear 

equations in a Gauss-Seidel approach to obtain a linear system of equations. The 

resulting SRM iterative scheme is then integrated using the chebyshev spectral 

collocation method to obtain the numerical solution. The method was 

introduced by Motsa and Makukula [2] for the solution of the steady von 

Karman flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation. 

The SRM approach gave accurate results and it was noted that the speed of 

convergence of the SRM scheme can be significantly improved by using 

successive over relaxation (SOR) techniques. Shateyi [3] used the SRM to solve 

the magneto hydrodynamics (MHD) flow and heat transfer in a Maxwell fluid 

over a stretching surface in a porous medium. The SRM was found to be 

accurate and rapidly convergent to the numerical results. 

Shateyi and Makinde [4] investigated the problem of steady stagnation point 

flow and heat transfer of an electrically conducting incompressible viscous fluid 

using the SRM. In Shateyi and Marewo [5], the SRM was applied to magneto-

hydrodynamic boundary layer flow with heat and mass transfer in an 

incompressible upper-convicted Maxwell fluid over a stretching sheet with 

viscous dissipation and thermal radiation. A generalized presentation of the 

method was presented in [1] and implemented in three ODEs based systems of 

boundary layer flow equations of varying complexity. The SRM was found to be 

an efficient numerical method which gives accurate results, even with only a few 

grid points. The method has also been successfully applied in obtaining 

numerical solution of chaotic and hyper-chaotic systems see Motsa et al. [6], 

Motsa et al. [7], Nik and Rebelo [8], and Dlamini et al. [9]. Motsa et al. [7] 

extended the SRM to a multistage technique called multistage spectral 
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relaxation method (MSRM) for solving complex nonlinear initial value problems 

(IVPs) with chaotic properties. The MSRM was found to be an accurate, efficient, 

and reliable method for solving very complex IVPs with chaotic behaviour. 

Nikand Rebelo[8] applied the MSRM in solving hyper-chaotic complex systems 

and the accuracy and validity of MSRM was tested against Matlab Runge-Kutta 

based inbuilt solvers and against previously published results.  

Motsa et al. [10] extended the application of SRM to systems of nonlinear partial 

differential equations (PDEs) that model unsteady boundary layer flow. The 

accuracy of SRM in solving nonlinear PDEs was determined by comparing the 

computational performance of the SRM against the spectral quasi-linearisation 

method (SQLM) and Keller-box finite difference scheme The SRM was found to 

be more efficient in terms of computational accuracy and speed compared to 

the SQLM and Keller-box method. Awad et al. [11] used the SRM to solve the 

coupled highly nonlinear system of partial differential equations due to an 

unsteady flow over a stretching surface in an incompressible rotating viscous 

fluid in presence of binary chemical reaction and Arrhenius activation energy. 

Recently, Haroun et al. [12] applied SRM to unsteady MHD mixed convection in a 

nanofluid due to a stretching/shrinking surface with suction/injection. They 

reported that SRM is an accurate technique for solving nonlinear boundary value 

problems. In this course we will use the SRM to solve systems of highly nonlinear 

ODEs that describe some fluids, flow, heat and mass transfer. 
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Chapter 2 

The spectral method:- 

The spectral methods are very powerful tools used to solve ordinary differential 

equations defined on simple domain and having smooth solutions. They have 

been widely used due to its high order of accuracy than other alternative 

numerical methods such as the finite elements, finite differences and finite 

volume methods. This means that a number of grid points needed to achieve the 

desired precision is very low, thus spectral methods require less memory than 

related numerical methods. Spectral methods approximate functions by means 

of truncated series of orthogonal functions. These functions include the Fourier 

series for periodic problems, the chebyshev and Legendre polynomials for non-

periodic polynomials. More details of spectral methods are found in studies by 

Canuto et al. [13], Fornberg [14] and Trefethen [15]. The Chebyshev spectral 

method which approximate functions by the Chebyshev polynomials will be used 

in this study. We define the    order Chebyshev polynomials   ( )  by 

  ( )      (        ( ))                                                                              (   )

in the interval         

An unknown, continues function say  ( ) can be approximated at        by a 

linear combination of Chebyshev polynomials 

  (  )  ∑     

 

   

(  )                                                                       (   ) 

where    are the coefficients of the expansion and   are the Gauss- Lobatto 

collocation points defined by 

      (
  

 
)                                                                                                               (   ) 

with   being the number of collocation points used. Derivatives of the unknown 

function  ( ) at collocation points are obtained as powers of the Chebyshev 

spectral differentiation matrix   in the form 
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  (  )  ∑    
 

 (  ) 

 

   

                                                                                             (   ) 

where   is the order of differentiation. Entries of the differentiation matrix   are 

defined as follows 

    
     

 
                                                                                                            (   ) 

    
  (  )   

       
                                                                  (   ) 

    
  

 (    
 )

                                                                                  (   ) 

where 

   {
                                       

 
                               

 

 

2.1 Spectral relaxation method (SRM):- 

Consider a system of   non-linear ordinary differential equations in   unknowns 
functions   ( ) (          )  where          is the dependent variable. 
Define the vector   to be the vector ofthe derivatives of the variable    with 

respect to  , that is 
 

  ( )  *  
( )

   
( )

    
(  )+                                                                                    (   ) 

where   
( )

    and   
( )

is the     derivative of    with respect to   and   (   

        )is thehighest derivative order of the variable    appearing in the 
system of equations. The system can be written in terms of    as a sum of its 
linear ( ) and non-linear components ( ) as 
 
                                ( )                          (    ) 

where   ( ) is a known function of    For illustrative purposes, we assume that 
equation (    ) is to be solved subject to two-point boundary conditions which 
are expressed as 
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∑ ∑     
   

    

   

 

   

  
( )

( )                                                                 (    ) 

∑ ∑     
   

    

   

 

   

  
( )

( )                                                                        (    ) 

 

where     
   

    
    

are the constant coefficients of   
( ) in the boundary conditions, 

and   ,   are the total number of prescribed boundary conditions at      and 
    respectively. 
Starting from an initial approximation                        the iterative 

technique is obtained as 
 

  [                  ]          [                ]                                                   

  [                   ]       [                 ]                                                 

 
 
 
 

    [                      ]           [                             ]     

  [                         ]       [                      ]           (    ) 

where         and      are the approximations of    at the current and the 

previous iteration, respectively. We note that equation (    ) forms a system of 
  linear decoupled equations which can be solved iteratively for     
       starting from a given initial approximation      .The iteration is repeated 

until convergence is achieved. The desired convergence can be assessed by 
considering the error due to the decoupling of the governing equations. This 
decoupling error (  ) at the (   )   iteration is defined using the following 
formula 

       (‖           ‖ 
 ‖           ‖ 

   ‖           ‖ 
)       (    ) 

The idea used in the development of the iteration scheme (    ) is imported 
from the Gauss-Seidel relaxation method for solving large systems of algebraic 
equations. To solve the iteration scheme (    ), it is convenient to use the 
Chebyshev pseudo-spectral method. For this reason the method is referred to as 
the Spectral Gauss-Seidel relaxation method or simply Spectral Relaxation 
method (SRM) in this work. For brevity, we omit the details of the spectral 
methods, and refer interested readers to ([16, 24]). Before applying the spectral 



6 
 

method, it is convenient to transform the domain on which the governing 
equation is defined to the interval        on which the spectral method can be 

implemented. We use the transformation   
(   )(    ) 

 
 to map the interval 

      to       . The basic idea behind the spectral collocation method is the 
introduction of a differentiation matrix   which is used to approximate the 
derivatives of the unknown variables   ( ) at the collocation points as the 
matrix vector product 

   

  
 ∑      (  )

 

   

                                                                          (    ) 

where (   ) is the number of collocation points (grid points)      (   )  
and      (  )  (  )    (  )  is the vector function at the collocation 
points. Higher order derivatives are obtained as powers of  , that is 
 

  
( )

                                                                                                                     (    ) 

In order to apply the Chebyshev differentiation approach to the governing 
equation (2.9) and iteration scheme(    ), we observe that equation (2.9) is 
equivalent to 

∑ ∑     
   

  

   

 

   

  
( )

                                                                                (    ) 

Where      
   

 are the constant coefficients of   
( )

 the derivative of   (  

         ), that appears in the     equation for equation (           ) Thus, 
in terms of the notation used in equation(    ), the iteration scheme given in 
equation (2.13) can be expressed compactly 

∑ ∑     
   

  

   

 

   

      
( )

    ∑ ∑     
   

  

   

 

     

    
( )   [                       ]                    (    )  

 
for              . Applying the equation (2.16) on (2.18) and the corresponding 
boundary conditions we obtain the Spectral Gauss-Seidel relaxation method 
iteration scheme as 

∑ ∑     
   

  

   

 

   

        
( )

    ∑ ∑     
   

  

   

 

     

      
( )   [                       ]          (    ) 
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Subject to 

∑ ∑     
   

    

   

 

   

∑    
( )

      (  )

 

   

                                           (    ) 

∑ ∑     
   

    

   

 

   

∑    
( )

      (  )

 

   

                                           (    ) 

 
 
 
 
 
. 
. 
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Chapter3 

 
On the solution of the SRM for a boundary layer flow with a 
convective surface boundary condition 
 
 

3. 1 Mathematical Formulation:- 
 
We consider the problem of hydrodynamic and thermal boundary layer flow 
over a flat plate in a stream of cold fluid at temperature    moving over the top 
surface of the plate with a uniform velocity   . The continuity, momentum, 
energy and concentration equations describing the flow can be written as 
 
  

  
  

  

  
                                                                                                               (   ) 

 
  

  
  

  

  
  

   

   
 

   
 

 
(    )     (    )     (    ) (   ) 

 
  

  
   

  

  
   

   

   
                                                                                          (   ) 

 
  

  
   

  

  
   

   

   
                                                                                           (   ) 

 
where   and   are the   (along the plate) and the   (normal to the plate) 
components of the velocities, respectively,   and   are the fluid temperature 
and concentration across the boundary layer,   is the kinematic viscosity of the 
fluid, and    is the thermal diffusivity of the fluid,   is the free stream 
temperature,    is the free stream concentration,    is the mass diffusivity,    
is the thermal expansion coefficient,    is the solutal expansion coefficient,   is 
the fluid density,   is gravitational acceleration and   is the fluid electrical 
conductivity and   is the applied transverse magnetic field. The velocity 
boundary conditions can be expressed as 
 
 (   )   (   )                                                                                                               
  (   )                                                                                                                    (   ) 
 
We assume that the bottom surface of the plate is heated by convection from a 
hot fluid at temperature    which provides aheat transfer coefficient   . The 
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boundary conditions at the plate surface and far into the cold fluid may be 
written as 
 

  
  

  
    [     ]                                                                     (   ) 

                                                                                                             (   ) 
where           are temperature and concentration at the plate surface 
respectively,   is the thermal conductivity coefficient. To satisfy the continuity 
equation(   ), we define the stream function   in terms of the velocity by 
 

   
  

  
     

  

  
                                                                                 (   ) 

 
and introduce the following dimensionless variables 
 

   √
  

  
  ( )   

 

  √
  

  

    
    

     
   

    

     
   (   ) 

 
Equations (3.2) - (3.7) reduced to the coupled system of nonlinear differential 
equations 
 

     
 

 
        ( 

   )                                                         (3.10) 

    
 

 
       ,                                                                                                 (3.11) 

    
 

 
       ,                                                                                      (3.12) 

 
where the prime symbol represent the derivative with respect to   subject to 
the boundary conditions 
 
 ( )      ( )       ( )       ( )                                                         (    ) 

 ( )      ( )     ( )   ( )                                                               (    ) 

where  ( )  ( ) and  ( ) are the dimensionless velocity temperature and 
concentration. The parameters of primary interest are the Magnetic field 
parameter     the thermal Grashof number      the solutal Grashof 
number     , the convective heat transfer parameter       the Prandtl 
number   , the Schmidt number    given by 
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   (     ) 

  
 

      
   (     ) 

  
 

              

      
  

 
√

  

  
     

 

  
     

 

  
   

 

3.2 Numerical solution:- 

In this section we present the numerical method used to solve the governing 
nonlinear system of ODEs (3.10)–(3.12). The spectral Relaxation method (SRM) 
approach is used to decouple the equations leading to a linear system which is 
subsequently solved using the Chebyshev spectral collocation method. The basic 
idea behind the SRM scheme from the Gauss-Seidel method for decoupling 
equations. In this regard, the momentum equation (3.10) is solved only for one 
unknown function; hence the technical is applied only in terms 
involving  ( ) and its derivatives. All other terms are assumed to be known 
from previous iterations especially the nonlinear terms which involve  ( ) and 
its higher derivatives if exist. In the energy equation (3.11), scheme is applicable 
only to terms involving   ( ) and its derivatives. The terms involving 
 ( ) together with the nonlinear terms come from  ( ) and its higher 
derivatives (if exist) are assumed to be known from the previous iteration while 

the updated solution for  ( ) at the current iteration is used. Similarly, in the 
mass transfer equation (3.12), but terms in  ( ) and  ( ) are as summed to be 
now known at the current iteration (denoted by (   )). Starting from reducing 
the order of equation (3.10) by assuming    ( )   ( )  together with the 
chosen initial guesses 

 ( )                        ( )   
   

(     )
      ( )                    (    ) 

which are satisfied the boundary conditions (3.13) and (3.14). The subsequent 
solutions for                are obtained by the following iterative technique 
 

    
         ( )                                                                                        (    ) 

    
   

 

 
        

     (      )                                           (    ) 

    
   

 

 
          

                                                                                              (    ) 

    
   

 

 
          

                                                                                             (    ) 



11 
 

subject to 

    ( )        
 ( )       ( )       or       ( )        ( )                                                                                                                                    

(3.20) 

     ( )           ( )          ( )= 0.                                                       (3.21) 

Applying the chebyshev pseudo-spectral method on (3.16) – (3.19) together with 

the boundary conditions (3.20) and (3.21), we obtained 

 

                        (  )                                                                                (    ) 

                      (  )            (  )                                                  (    ) 

                      (  )             (  )                                                 (    ) 

                     (  )            (  )                                                 (    ) 

 

where 

                                                                                                          (    ) 

          *
 

 
    +               (               )        (    )  

          *
 

 
      +                                                                          (    ) 

          *
 

 
      +                                                                          (    )  

 

3.3 Results:- 

The system of equations governing the thermo-hydrodynamic boundary layer 

flow has been solved using the spectral relaxation method. The effects of the 

governing fluid parameters such as the Magnetic field parameter    , the 

thermal Grashof number    , the solutal Grashof number    , the convective 

heat transfer parameter    , the Prandtl number   , the Schmidt number   , 

etc. on the velocity, temperature and concentration profiles has been 

determined and shown in Fig. 1 - 15. In the absence of the Magnetic field and 

the buoyancy forces, the problem reduces to that considered by Aziz [25] who 

solved the governing equations using Runge–Kutta–Fehlberg fourth–fifth 

(RKF45) method. 
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Table 1: Computations showing comparison with Aziz [25] and Makinde [26] 

results for                                       

         ( )         ( )   

Bi  It  L  Aziz[25]  Makinde[26]  Present  [25]  [26]  Present 

0.05  21  11  0.1447  0.14466  0.1446612005  0.0428  0.04276 0.0427669400 

0.10  _  _  0.2528  0.25275  0.2527581095  0.0747  0.07472 0.0747241891 

0.20  _  _  0.4035  0.40352  0.4035226075  0.1193  0.11929 0.1192954785 

0.40  _  _  0.5750  0.57501  0.5750140473  0.1700  0.16999 0.1699943811 

0.60  _  _  0.6699  0.66991  0.6699156239  0.1981  0.19805 0.1980506257 

0.80  _  _  0.7302  0.73016  0.7301700557  0.2159  0.21586 0.2158639555 

1.00  _  _  0.7718  0.77182  0.7718222042  0.2282  0.22817 0.2281777958 

5.00  _  _  0.9441  0.94417  0.9441738017  0.2791  0.27913 0.2791309913 

10.0  _  _  0.9713  0.97128  0.9712853870  0.2871  0.28714 0.2871461297 

20.0  _  _  0.9854  0.98543  0.9854335587  0.2913  0.29132 0.2913288270 

 

The problem would also be in the same line with the study by Makinde [26] who 

used the Runge–Kutta integration scheme with a modified version of the 

Newton–Raphson shooting method to solve the governing equations. The 

results from these previous studies are used as a benchmark to verify the 

accuracy of our solution. 

 

 

 

 

 

 

 



13 
 

Table 2: Computations showing comparison with Aziz [25] and Makinde [26] 

results for                                       

 

 

             

                       ( )    ( )     ( )  

     [27]  present [27]  present [27]  present 

              

0.1 0.1 0.1 0.1 0.24 0.07707  0.0770723 0.22929  0.2292762 0.21859  0.2182949 

1.0 0.1 0.1 0.1 0.24 0.25501  0.2550363 0.74498  0.7449636 0.22169  0.2214094 

1.0 0.1 0.1 0.1 0.24 0.33335  0.3333849 0.96666  0.9666615 0.22296  0.2226845 

0.1 0.5 0.1 0.1 0.24 0.07760  0.0776081 0.22393  0.2239183 0.22381  0.2235437 

0.1 1.0 0.1 0.1 0.24 0.07815  0.0781513 0.21849  0.2184864 0.22937  0.2291265 

0.1 0.1 0.5 0.1 0.24 0.07969  0.0796957 0.20306  0.2030420 0.24852  0.2484029 

0.1 0.1 1.0 0.1 0.24 0.08143  0.0814392 0.18562  0.1856079 0.27339  0.2733431 

0.1 0.1 0.1 0.5 0.24 0.07875  0.0787560 0.21244  0.2124392 0.23452  0.2342787 

0.1 0.1 0.1 1.0 0.24 0.08034  0.0780936 0.19652  0.2190636 0.25077  0.2278222 

0.1 0.1 0.1 0.1 0.62 0.07677  0.0767781 0.23221  0.2322182 0.31232  0.3123209 

0.1 0.1 0.1 0.1 0.78 0.07671  0.0767128 0.23287  0.2328712 0.33955  0.3395512 

0.1 0.1 0.1 0.1 2.62 0.07641  0.0764175 0.23582  0.2358246 0.52053  0.5205280 
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

         Fig. 1: Effect of parameter    on the Logarithm of the SRM error. 
 



 
       Fig. 2: Effect of parameter    on the Logarithm of the SRM error. 
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  Fig. 3: Effect of parameter    on the Logarithm of the SRM error. 
 

Fig.1-3 show the variation of the residual error against the number of iterations. 
As the number of iterations increases, the norm of the residual error of the SRM 
can be seen to decrease until a point where convergence of the norm is 
attained. At that point, optimal residual error is said to have been obtained. 
 

 
Fig.4: Effect of the convective heat transfer parameter    on the velocity profile for     
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The comparison of the plate surface temperature and heat transfer coefficients 

obtained by the SRM with those reported by Aziz [25] and Makinde [26] is 

shown in Table 1 and Table 2. It is clear that the SRM results in a good 

agreement in order of accuracy and convergence. 

 

Fig.5: Effect of the magnetic field parameter     on the velocity profile for             

                 and          

Fig. 4 shows the effect of heat convective parameter     on the velocity profile 

when the other parameters are held constant. It is clear that the momentum 

boundary layer thickness decreases with     that is why the velocity profile 

increases as the heat transfer parameter increases.   

Fig.5 depicts the effect of increasing the magnetic field strength on the 
momentum boundary-layer thickness. It is now a well-established fact that the 
magnetic field presents a damping effect on the velocity field by creating a drag 
force that opposes the fluid motion, causing the velocity to decrease. However, 
in this case an increase in the     only slightly slows down the motion of the 
fluid away from the vertical plate surface toward the free stream velocity, while 
the fluid velocity near the vertical plate surface increases. Similar trend of slight 
increase in the fluid velocity near the vertical plate is observed with an increase 
in convective heat transfer parameter. 
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Fig.6: Effect of the convective heat transfer parameter     on the temperature profile 

for                               and          

           

Fig.7: Effect of the magnetic field parameter    on the temperature profile for     
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Fig.6 demonstrates the effect of     on temperature profile. It is evident that 
the heat convective parameter contributes to increasing the thickness of the 
thermal boundary layer; consequently, enhance the temperature in the 
boundary layer. 

 
 
Fig.8: Effect of the magnetic field parameter    on the concentration profile for         

                                   
 

 
Fig.7 and Fig.8 illustrate the effect of magnetic field     on both the 
temperature and concentration profiles respectively.  It can be seen easily that 
the thermal boundary layer thickness increases when the magnetic field 
increases, thus decreasing the reduced temperature in the boundary layer. On 
the other hand, as     increasing the fluid velocity decreases as results of 
increasing the damping force on the velocity, hence decreasing the mass. 
 
Fig.9 shows the effect of heat convective parameter on the concentration 
profile. It is clear that increasing     has no significant effect on the mass and its 
effect can be neglected. 
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Fig.9: Effect of the convective heat transfer parameter    on the concentration profile for 

                                           

 
 

Fig. 10 – 12 have been plotted in order to see the effect of     on the velocity, 
temperature and concentration profiles. It is clear that the velocity increases by 
increasing      Effects     on the temperature and concentrations are totally 
opposite, we noted that both the temperature and concentration are increasing 
functions on Grashof. 
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Fig.10: Effect of the Grashof number     on the velocity profile for             

                                 

   

Fig.11: Effect of the Grashof number     on the temperature profile for             
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Fig.12: Effect of the Grashof number     on the concentration profile for             

                                  
 

Fig.13 shows the effects of solutal Grashof number      on the velocity 
field   ( ).It can be seen that the momentum boundary layer thinness increases 
when the the solutal Grashof number      increases, thus increasing the 
velocity   ( ). 
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Fig.13: Effect of the solutal Grashof number      velocity profile for                  

                 and          

 

Fig. 14 and 15 show the variation of the temperature and concentration profiles 
for difference values of the solutal Groshof number    . It is clear that when 
    increases, both the temperature and concentration distributions decrease 
thus diminishing the thicknesses of both the thermal and concentration 
boundary layers. 

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Fig.14: Effect of the solutal Grashof number    concentration profile for             

                                  
 

             

Fig. 15: Effect of the solutal Grashof number   temperature profile             
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Chapter 4 

Dufour and Soret effects on incompressible Newtonian fluid 
flow over a vertical down-pointing cone 

 

4-1.Mathematical Function:- 

                                     
 

                                 Fig. 1: Schematic sketch of a spinning vertical cone 
 

Consider resulting ordinary differential equations obtained by Narayna et al. [28] 
which governing an incompressible Newtonian fluid flow over a vertical down-
pointing cone. The  -axis assume to be along the surface of the cone and  -axis 
along the outward normal surface of the cone with origin being the vortex of the 
cone (see Fig. 1). Assume that the cone rotate about its axis of symmetry with 
angular velocity  , moreover an external magnetic field is applied along the  -
axis. The surface of the cone is subject to either a linear surface temperature 
(LST) or the linear surface heat flux (LSHF) for more details see Narayana et al. 
[28]. The momentum, energy and concentration governing equations can be 
presented in the following form. 
 

                                                                                (   ) 

                                                                                                      (   ) 

      (        )     
                                                                              (   ) 

      (        )                                                                                   (   ) 
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subject to the boundary conditions 

 ( )    ( )     ( )     ( )     or   ( )      ( )     

  ( )     ( )     ( )     ( )                                                          (   ) 

 

4-2.Numaracal solution:- 

To apply the SRM on the system (4.1) – (4.4) along with the boundary conditions 

(4.5), we have to reduce the order of equation (4.1) by assuming   ( )   ( )  so 

the iteration scheme can be written in following form 

                          ( )                                                                                     (   ) 

    
            

           
     

                                                (   ) 

    
            

                                                                        (   ) 

    
              

                                                                          (   ) 

    
              

                    
                                                  (    ) 

subject to the boundary conditions 

    ( )          ( )          ( )         ( )          ( )                   

or      
 ( )            ( )           ( )        ( )                       (    ) 

Applying the chebyshev pseudo-spectral method on (4.1 – 4.4) we obtain 

                        (  )                                                                                (    ) 

                       (  )            (  )                                                 (    ) 

                       (  )           (  )                                                 (    ) 

                       (  )            (  )                                                 (    ) 

                      (  )           (  )                                               (    ) 
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where 

                                                                                                         (    ) 

                               
     

                             (    ) 

                                                                       (    ) 

                                                     
                (    ) 

                                                   
                     (    ) 

 

4-3.Results:- 

As the exact solution is not feasible for equations (4.1) – (4.4) because of their 
high nonlinearly, we solved them numerically by using the spectral relaxation 
method. The proposed SRM method is strongly depends on the length of the 
governing domain (     ) and the number   of collocation points (grid points). 
In particular, since the problem considered in this chapter is defined on the 
semi-infinite interval     ), a crucial factor of the SRM iteration scheme is to 
find the appropriate finite value (  ) which must be selected to be large enough 
to numerically approximate infinity and the behaviour of the governing flow 
parameters at infinity. In order to select the appropriate value of   , we start 
with an initial guess which is relatively small and solve the governing SRM 
scheme equations over        to obtain the solutions of flow parameters 
 ( )  ( )  ( )  ( )  etc., the values of the derivatives of these functions 
at       , such as     ( )    ( )    ( )   ( )  etc., are also obtained. The 
current value of    is increased by one and the solution process is repeateduntil 
the difference in the values of    ( )  ( )    ( )   etc., between the current 
and previous solution is less than a specified accuracy tolerance level. Once the 
optimal value of    has been identified for a set of governing physical constants, 
the minimum value of the number of grid points required to give solutions that 
do not depend on the grid size is obtained using a similar process. Starting from 
a small value of   , say       , the SRM scheme is solved for the governing 
flow parameters. The value of   is increased by 10 and the solution is solved 
until the results do not change, to with in a certain accuracy tolerance level, with 
any further increase in  . In order to check the accuracy and validity of the 
proposed method, the results presented in this study were compared with those 
of previously published literature for selected values of the governing physical 
parameters. 
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In order to verify the accuracy of our solution, the comparison of skin friction 
coefficient obtained by the SRM with those reported by Ece[27] and Narayana 
[28] is shown in Table1. It is clear that the SRM results are in a good agreement 
in order of accuracy. 
Analysis has been carried out for different Dufour and Soret parameter values 

and for several values of the Hartmann number  , the Prandtl number   , the 

Schmidt number   and the spin parameter  . The results for the skin friction, 

heat and mass transfer coefficients and the tangential velocity are summarized 

in Tables 1 - 4. Table 1 give a comparison between the current results and those 

of Ece [27] and Narayana[28] for a spinning cone in the absence of Dufour and 

Soret effects. The comparison is given for case of LST. From this table one 

observes an excellent agreement between the present results and those of 

Ece[27] and Narayana[28].Fig. 1- 10 show the effects of the various fluid 

parameters on the axial velocity, temperature and concentration profiles. 

 

Fig. 2(a) - 2(d) show that the effects of the Dufour and Soret parameter with spin 

parameters on the axial velocity profile are similar in both the LST and LSHF 

cases the velocity increases as the rate of spin increases. 
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     (a)Effect of    on   (  )(LST)                                                    (b) Effect of    on   (  )(LSHF) 

      
  (C) Effect of   on   ( ) (LST)                                                       (d) Effect of   on   ( ) (LSHF) 

Fig. 2: Variation of axial velocity profiles with Dufour and Soret numbers for different values 

of spin parameter  . 
 

The axial velocity   ( ) is plotted in Fig. 2(a) and (b) for different values of the 
Dufour and spin parameters in both the LST and LSHF cases. It can be observed 
that with an increase in the both Dufour and spin parameters the velocity profile 
increase in the boundary layer.  
Fig. 2(c) and (d) show the effect of the Soret parameter on   ( )for different 
values of the spin parameter. The velocity increases with increasing the Soret 
parameter. Increasing the diffusion-thermo and thermal-diffusion effects and 
the spin parameter leads to an increase in the velocity. 
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    (a)Effect of    on  (  )(LST)                                                                    (b) Effect of     on  ( )(LSHF

  

   
                                (C) Effect of   on  (  )(LST)                                                   (d) Effect of   on  ( ) (LSHF) 

Fig. 3: Variation of temperature profiles with Dufour and Soret numbers for different values 

of spin parameter    

 
 
Fig. 3 show Dufour and Soert on the temperature for different spin parameter 
values. We observe firstly that the temperature decreases as the rate of spin 
increases. Secondly, the temperature increases with the Dufour parameter. 
However, an increase in the Soret parameter causes a thinning of the thermal 
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boundary layer causing a drop in the temperature. The temperature profiles are 
broader for large spin values than in the case of no spin. 
 

 

                            (a)Effect of   on  (  )(LST)                                                   (b) Effect of   on  (  )(LSHT) 

           

                                     (C)Effect of    on  (  )(LST)                                                     (d) Effect of   on  (  )(LSHF) 

Fig. 4: Variation of axial velocity profiles with Dufour and Soret numbers for different values 

of spin parameter    
 
 
Fig.4 (a)–(d) show the variation of the concentration profile with Dufour and 

Soret parameters in both the LST and LSHF cases for a stationary and a spinning 

cone. Spinning the cone and reducing the Dufour number both lead to a 
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reduction in the solute concentration whereas increasing the Soret parameter 

enhances the concentration boundary layer profile in both the LST and LSHF 

cases. The effect of the magnetic parameter   on the velocity is shown in Fig. 5 

in the presence of Dufour and Soret effects. The tangential velocity of the fluid 

decreases with the Hartmann number due to the presence of a resistive Lorentz 

force which acts against the flow if the magnetic field is applied in the normal 

direction. The effect of the magnetic parameter   on temperature and 

concentration profiles is shown in Fig. 6 and 7 respectively. The slowing down in 

the motion of the electrically conducting fluid leads to a build-up of heat and 

solute concentration, and consequently, both temperature and solute 

concentration increase with increasing Hartmann numbers in the boundary layer 

region (see Al-Odat and Al-Azab [29]).Fig. 8 shows the effect of the Prandtl 

number on the axial velocity profile (and          for air is used in the present 

study).The Prandtl number has a significant effect on the axial velocity and it is 

clear that the boundary layer thickness reduces with     
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                                (a)Effect of   on   (  )(LST)                                                            (b) Effect of   on   (  )(LSHF) 

 

 

                                       (C)Effect of   on   ( ) (LST)                                                     (d) Effect of   on   (  )(LSHF) 

Fig. 5: Variation of axial velocity profiles with Dufour and Soret numbers for different values 

of magnetic parameter     
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          (a)Effect of   on  (  )(LST)                                                            (b) Effect of   on  (  )(LSHF) 

 

   

   (C)Effect of   on  (  )(LST)                                                              (d) Effect of    on  (  )(LSHF) 

Fig. 6: Variation of temperature profiles with Dufour and Soret numbers for different values 

of magnetic parameter    
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          (a)Effect of   on  (  )(LST)                                                                (b) Effect of   on  (  )(LSHF) 

           

       (C)Effect of   on  (  )(LST)                                                                     (d) Effect of   on  (  )(LSHF) 

Fig.7: Variation of concentration profiles with Dufour and Soret numbers for different values of 

magnetic parameter    
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                               (a)Effect of    on   (  )(LST)                                                              (b) Effect of    on   (  )(LSHF) 

 

                                     (C)Effect of   on   ( ) (LST)                                                     (d) Effect of   on   ( ) (LSHF) 

Fig. 8: Variation of axial velocity profiles with Dufour and Soret numbers for different values 

of Prandtl number     
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(a)Effect of   on  ( )(LST)                                                                                  (b) Effect of   on  ( )(LSHF) 

 
 

 
 
        (C)Effect of   on  (  )(LST)                                                                        (d) Effect of   on  (  )(LSHF) 
 

Fig. 9: Variation of temperature profiles with Dufour and Soret numbers for different values 

of Prandtl number     
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      (a)Effect of    on  (  )(LST)                                                                      (b) Effect of   on  (  )(LSHF) 

 

 

     (C)Effect of   on  (  )(LST)                                                                     (d) Effect of   on  (  )(LSHF) 

Fig. 10: Variation of concentration profiles with Dufour and Soret numbers for different 

values of Prandtl number     
 
 
Fig.9 shows the temperature distribution for several Dufour and Soret numbers 
and for two different Prandtl numbers. The effect of the Prandtl number is to 
reduce the thermal boundary-layer thickness and so reducing the fluid 
temperature. Qualitatively, the results are in agreement with the findings by 
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Hassanien et al. [30] and Salama [31]. The effect of Dufour and Soret numbers 
on the concentration distribution for two different values of Prandtl number is 
projected in Fig. 10. From the plots it is clear that concentration boundary layer 
thickness decreases with increasing values of    but increases with        
 

Table1 shows the effect of the of spinning  , Prandtl number    and magnetic 
parameter   on    ( ).The skin friction decreases as magnetic parameter   and 
Prandtl number    increasing, but skin friction increasing as  spinning    
increasing. 

Table 1: Values of    ( ) for double diffusive free convection boundary layer over a spinning 

cone with linear surface temperature spinning   (LST) and          . 

 

 

  Ece[27]     Narayana         Present   
       ( )       ( )       ( )   

                                        

            

 0 0.68150212  0.43327726  0.68148313  0.43327500 0.68148350  0.43327824 
 1 0.55975901  0.37927751  0.55976132  0.37926796 0.55976166  0.37926856 

0 2 0.48678916  0.34866381  0.48680621  0.34865824 0.48680709  0.34865879 
 5 0.37090743  0.29345341  0.37090631  0.29345092 0.37098554  0.29345142 
 10 0.28500344  0.24343322  0.28490901  0.24340957 0.28517056  0.24343242 

 
 

0 

 

0.84650616 


 
0.62601869 



 
0.84648787 

 
 
0.62601677 

  
0.84648834 

  
0.62601888 

 1 0.68547905  0.50300655  0.68548057  0.50299573  0.68548026  0.50299557 

0.5 2 0.59002983  0.44721675  0.59004683  0.44721244  0.59004564  0.44721086 

 5 0.44274371  0.36247167  0.44261206  0.36247730  0.44281939  0.36246950 
 10 0.33709053  0.29437077  0.33701033  0.29435123  0.33725604  0.29437009 

 
 

0 

 
1.00196008 



 
0.79828572 



 
1.00194246 

 
 
0.79828351 

  
1.00194310 

  
0.79828581 

 1 0.80819380  0.62583066  0.80819486  0.62582011  0.80819389  0.62581919 

1 2 0.69203710  0.54556916  0.69205422  0.54556604  0.69205094  0.54556228 

 5 0.51435738  0.43140288  0.51430770  0.43141680  0.51443063  0.43140067 
 10 0.38913125  0.34527676  0.38905224  0.34528362  0.38929515  0.34527619 

 
 

0 

 
1.29230021 



 
1.10990481 



 
1.29228372 

 
 
1.10990164 

  
1.29228491 

  
1.10990498 

 1 1.04586353  0.86705752  1.04586385  0.86704821  1.04586154  0.86704582 

2 2 0.89263261  0.74142462  0.89265068  0.74142554  0.89264320  0.74141738 

 5 0.65693141  0.56901873  0.65668889  0.56904825  0.65700000  0.56901605 

 10 0.49307448  0.44699636  0.49299748  0.44707960  0.49323504  0.44699601 
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Table2 shows the effect of the of Prandtl number    and magnetic parameter 
  of   ( ). It is clear that   ( ) increasing as Prandtl number    and spinning   
increasing, on the other hand side, the   ( ) decreases as magnetic parameter 
  increasing. 

Table 2: Values of   ( ) for double diffusive free convection boundary layer over a spinning 

cone with linear surface temperature (LST) and            

 

 

 

 

 

  Ece[27]    Narayana         Present   
      ( )      ( )      ( )   
                                        

 0 
 
0.63886614 

  
1.27552680 

  
0.63885452 

  
1.27551036 

  
0.63885451 

  
1.27552887 

 1 0.55869398  1.16243080  0.55869273  1.16241360  0.55869286  1.16242341 

0 2 0.50338419  1.09342644  0.50335401  1.09341925  0.50335303  1.09342808 

 5 0.40364781  0.95839216  0.40365259  0.95839333  0.40326525  0.95840020 

 10 0.32121113  0.82300420  0.32111032  0.82321999  0.31954917  0.82301296 

             

 0 0.67194897  1.47165986  0.67193791  1.47163361  0.67193847  1.47165967 

 1 0.58138075  1.27668867  0.58137979  1.27666747  0.58138029  1.27668617 

0.50.5 2 0.51966708  1.17427021  0.51963905  1.17425772  0.51963858  1.17427476 

00 5 0.41156185  1.00202092  0.41225166  1.00201529  0.41118914  1.00202989 

 10 0.32496333  0.84700807  0.32492777  0.84740344  0.32331625  0.84701735 

             

 0 0.70053401  1.60768499  0.70052364  1.60764538  0.70052454  1.60768443 

 1 0.60256486  1.37917914  0.60256408  1.37915342  0.60256496  1.37918227 

1 2 0.53536409  1.25082089  0.53533784  1.25080261  0.53533788  1.25082871 

 5 0.41940005  1.04490075  0.41922547  1.04488853  0.41903739  1.04491128 

 10 0.32870765  0.87088877  0.32869140  0.87125491  0.32707561  0.87089863 

             

 0 0.74869559  1.80575019  0.74868659  1.80568032  0.74868825  1.80574944 

 1 0.64120157  1.55413661  0.64120160  1.55409454  0.64120327  1.55414680 

2 2 0.56516379  1.39136129  0.56514198  1.39132746  0.56514300  1.39137399 

 5 0.43485365  1.12833102  0.43474318  1.12830846  0.43451072  1.12834580 

 10 0.33617261  0.91826049  0.33601006  0.91834129  0.33457189  0.91827167 
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Table 3 shows the effect of the of spinning   , Prandtl number     and magnetic 
parameter   of    ( ) in (LSHF). The skin friction decreases as magnetic 
parameter   and Prandtl number    increasing, the skin friction increasing as 
spinning parameter    increasing. 

Table 3: Values of    ( ) for double diffusive free convection boundary layer over a spinning 

cone with linear surface heat flux (LSHF) and          . 

 
 
 
 
 
 
 
 
 
 
 
 
 

  Ece[27]    Narayana    Present   
       ( )       ( )       ( )   

                                        

            

 
 
0 

 
1.02528815 

 
 
0.54034324 



 
1.02528846 

 
 
0.54034478 

  
1.20380200 

  

0.54034369 

 1 0.91396740  0.44894055  0.91397087  0.44894428  1.00100109  0.44894127 
0.5 2 0.84705897  0.41308367  0.84706994  0.41308823  0.86657410  0.41308381 

 5 0.73956968  0.36208114  0.73941838  0.36209154  0.74358378  0.36208095 
 10 0.65637278  0.32257763  0.65665182  0.32257591  0.66213006  0.32257795 
             
 0 1.15592069  0.70152323  1.15592094  0.70152541  1.15992680  0.70152351 
 1 1.01801957  0.55685195  1.01802313  0.55685648  1.01801942  0.55685171 

1 2 0.93528733  0.49866389  0.93530115  0.49867213  0.93529705  0.49866445 
 5 0.80425828  0.42301336  0.80411729  0.42303388  0.80433122  0.42301369 
 10 0.70499584  0.36873528  0.70461085  0.36874442  0.70529014  0.36873543 

 
 

0 

 
1.40918891 

 
 
1.00454785 



 
1.40918904 

 
 
1.00455073 

  
1.40915668 

  
1.00454811 

 1 1.22378434  0.77976551  1.22378969  0.77977382  1.22378640  0.77976598 
2 2 1.11082540  0.67497148  1.11084268  0.67498553  1.11083392  0.67497161 
 5 0.93347602  0.54621284  0.93329155  0.54625325  0.93354713  0.54621396 
 10 0.80220839  0.46141862  0.80247495  0.46148692  0.80250032  0.46141938 
             
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Table 4 show the effect of the of, Prandtl number   , magnetic parameter    
and spinning    of temperature. The            decreases as magnetic 
parameter   and Prandtl number    increasing, the temperature increasing as 
spinning  increasing 
 
Table 4: Values of  ( )for double diffusive free convection boundary layer over a spinning 

cone with linear surface heat flux (LSHF) and          . 

 

 

 

 

 

 

 

 

 

  Ece[27]    Narayana         Present   

     ( )     ( )     ( )   

                                        

             
 0 1.38894767  0.71105509  1.38894717  0.71106459  1.40314505  0.71105493 

 1 1.52981611  0.81758101  1.52981913  0.81759066  1.50992370  0.81758183 

0.5 2 1.64436103  0.87959567  1.64437370  0.87960493  1.65426039  0.87959541 

 5 1.90546365  0.99845553  1.90512227  0.99846631  1.91455983  0.99845523 

 10 2.21366623  1.12994754  2.18322818  1.12990015  2.19862155  1.12994836 

             

 0 1.35170142  0.64668404  1.35170181  0.64669668  1.35455554  0.64668419 

 1 1.49881386  0.75819441  1.49881764  0.75820720  1.49881727  0.75819484 

1 2 1.61850659  0.83103877  1.61852096  0.83105287  1.61851869  0.83103941 

 5 1.88831408  0.96637696  1.88797632  0.96639248  1.88847081  0.96637629 

 10 2.20246048  1.10846998  2.20269483  1.10840939  2.20337841  1.10846934 

             

 0 1.28865472  0.57034570  1.28865664  0.57036447  1.28861016  0.57034594 

 1 1.44243526  0.66976417  1.44243956  0.66978298  1.44243628  0.66976409 

2 2 1.56988106  0.74969417  1.56989579  0.74971411  1.56989198  0.74969339 

 5 1.85491898  0.90700260  1.85444889  0.90702971  1.85507268  0.90700390 

 10 2.18032917  1.06718780  2.18074652  1.06713404  2.18124048  1.06718746 

             



42 
 

Chapter5 
 

Overall conclusions:- 
 
This part of the thesis outlines the main findings in each chapter. We highlight 
some of the general results that were found and the conclusions that have been 
drawn from this work. 
 
Chapter 3. To solve the nonlinear equations governed the hydrodynamic and 
thermal boundary layer flow over a flat plate we used spectral relaxation 
method developed by Motsa [1]. The solution obtained through the use of the 
SRM compared with those in the literature review to determine the accuracy 
and computational efficiency.  We also determined the effects of the flow 
parameters on the fluid properties. Our specific findings were that: 

 Both the plate surface temperature and heat transfer coefficients 
increased with the heat convective parameter. 

 As the number of iterations increases, the norm of the residual error of 
the SRM decreases.  

  The SRM takes a few iterations to give accurate. 

 

Chapter 4. We also studied the incompressible Newtonian fluid flow over a 

vertical down-pointing cone subject to either a linear surface temperature (LST) 

or the linear surface heat flux (LSHF). The governing equations were solved using 

the SRM. In both cases LST and LSHF, the effects of the governing parameters 

have been presented graphically and have also been tabulated. Comparison 

between the solutions obtained using the SRM, Ece[27] and Narayana[28] 

showed that the convergence of the SRM was rapid.  

 The temperature decreases as the rate of spin increases while the 
temperature increases with the Dufour parameter. 

 The Soret parameter causes a thinning of the thermal boundary layer. 

 Increasing the Soret parameter enhances the concentration boundary 
layer profile in both the LST and LSHF cases. 
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