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Abstract

In this thesis we solve systems of nonlinear ordinary differential equations by
applying the spectral relaxation method (SRM).The SRM is an efficient numerical
method that gives accurate results. First we give a historical idea and details of
the SRM method. Then we present a study of a boundary layer flow with a
convective surface boundary condition. The system of equations governing the
thermo-hydrodynamic boundary layer flow is solved using the spectral relaxation
method. The effects of the governing fluid parameters on the velocity,
temperature and concentration profiles are also studied .Dufour and Soret effects
on incompressible Newtonian fluid flow over a vertical down-pointing cone, are
investigated studied numerically by using the spectral relaxation method. Results
presented in this study are compared with those of previously published
literature for selected values of the governing physical parameters. We also
analysed the residual error and we investigate the accuracy of the method, and
then we compare the result against solutions obtained from published literature.
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Chapter 1

Overall introduction

The spectral relaxation method is a numerical technique based on simple
iteration schemes formed by reducing large systems of nonlinear equations into
smaller systems of linear equations, see Motsa [1]. The method has been
applied to various science and engineering problems described by coupled
nonlinear systems of ordinary or partial differential equations. The basic idea of
the SRM approach is simple decoupling and rearranging the governing nonlinear
equations in a Gauss-Seidel approach to obtain a linear system of equations. The
resulting SRM iterative scheme is then integrated using the chebyshev spectral
collocation method to obtain the numerical solution. The method was
introduced by Motsa and Makukula [2] for the solution of the steady von
Karman flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation.
The SRM approach gave accurate results and it was noted that the speed of
convergence of the SRM scheme can be significantly improved by using
successive over relaxation (SOR) techniques. Shateyi [3] used the SRM to solve
the magneto hydrodynamics (MHD) flow and heat transfer in a Maxwell fluid
over a stretching surface in a porous medium. The SRM was found to be
accurate and rapidly convergent to the numerical results.

Shateyi and Makinde [4] investigated the problem of steady stagnation point
flow and heat transfer of an electrically conducting incompressible viscous fluid
using the SRM. In Shateyi and Marewo [5], the SRM was applied to magneto-
hydrodynamic boundary layer flow with heat and mass transfer in an
incompressible upper-convicted Maxwell fluid over a stretching sheet with
viscous dissipation and thermal radiation. A generalized presentation of the
method was presented in [1] and implemented in three ODEs based systems of
boundary layer flow equations of varying complexity. The SRM was found to be
an efficient numerical method which gives accurate results, even with only a few
grid points. The method has also been successfully applied in obtaining
numerical solution of chaotic and hyper-chaotic systems see Motsa et al. [6],
Motsa et al. [7], Nik and Rebelo [8], and Dlamini et al. [9]. Motsa et al. [7]
extended the SRM to a multistage technique called multistage spectral
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relaxation method (MSRM) for solving complex nonlinear initial value problems
(IVPs) with chaotic properties. The MSRM was found to be an accurate, efficient,
and reliable method for solving very complex IVPs with chaotic behaviour.
Nikand Rebelo[8] applied the MSRM in solving hyper-chaotic complex systems
and the accuracy and validity of MSRM was tested against Matlab Runge-Kutta
based inbuilt solvers and against previously published results.

Motsa et al. [10] extended the application of SRM to systems of nonlinear partial
differential equations (PDEs) that model unsteady boundary layer flow. The
accuracy of SRM in solving nonlinear PDEs was determined by comparing the
computational performance of the SRM against the spectral quasi-linearisation
method (SQLM) and Keller-box finite difference scheme The SRM was found to
be more efficient in terms of computational accuracy and speed compared to
the SQLM and Keller-box method. Awad et al. [11] used the SRM to solve the
coupled highly nonlinear system of partial differential equations due to an
unsteady flow over a stretching surface in an incompressible rotating viscous
fluid in presence of binary chemical reaction and Arrhenius activation energy.
Recently, Haroun et al. [12] applied SRM to unsteady MHD mixed convection in a
nanofluid due to a stretching/shrinking surface with suction/injection. They
reported that SRM is an accurate technique for solving nonlinear boundary value
problems. In this course we will use the SRM to solve systems of highly nonlinear
ODEs that describe some fluids, flow, heat and mass transfer.



Chapter 2

The spectral method:-

The spectral methods are very powerful tools used to solve ordinary differential
equations defined on simple domain and having smooth solutions. They have
been widely used due to its high order of accuracy than other alternative
numerical methods such as the finite elements, finite differences and finite
volume methods. This means that a number of grid points needed to achieve the
desired precision is very low, thus spectral methods require less memory than
related numerical methods. Spectral methods approximate functions by means
of truncated series of orthogonal functions. These functions include the Fourier
series for periodic problems, the chebyshev and Legendre polynomials for non-
periodic polynomials. More details of spectral methods are found in studies by
Canuto et al. [13], Fornberg [14] and Trefethen [15]. The Chebyshev spectral
method which approximate functions by the Chebyshev polynomials will be used
in this study. We define the k*"order Chebyshev polynomials T}, (x) by

T, (x) = cos(k arccos(x)); k € N, (2.1)
in the interval [—1,1].

An unknown, continues function say u(x) can be approximated atx = x; by a

linear combination of Chebyshev polynomials

N
uN(xj) = Z U Ty (xj), j=20,1,..N, (2.2)
k=0

where uy are the coefficients of the expansion and xjare the Gauss- Lobatto
collocation points defined by

Xj = COS (%), (2.3)

with N being the number of collocation points used. Derivatives of the unknown
function u(x) at collocation points are obtained as powers of the Chebyshev
spectral differentiation matrix D in the form
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p
uP (x;) = z D} u(x;), (2.4)
k=0

where p is the order of differentiation. Entries of the differentiation matrix D are
defined as follows

2N? +1
Doo = ———, (2.5)
Ci(—1)/*k . .
Djy=-+-—""—, j#k j=k=012..N (2.6)
CkZ]' — Zy
Zk
D k=1,2,3.. 2.8
where
2 ifk=0,N
Ck -

lif—1<k<N-1

2.1 Spectral relaxation method (SRM):-

Consider a system of n non-linear ordinary differential equations in n unknowns
functions z;(n) (i = 1,2,3,...n) where n € [a,b] is the dependent variable.
Define the vector Z;to be the vector ofthe derivatives of the variable z; with
respect to 1, that is

Z,(n) _[ © @ ...zl.(‘“)], (2.9)

0) _ (r);

where z;” = z; and z; “is the rth derivative of z; with respect ton and q;(i =

1,2,. n)ls thehlghest derivative order of the variable z; appearing in the
system of equations. The system can be written in terms of z; as a sum of its
linear (£) and non-linear components (') as

L[Z1,Zg s 2ol + N2y, Zoy o Zn] = Gi(m),  i=123, .7, (2.10)

where G;(7) is a known function of 1. For illustrative purposes, we assume that
equation (2.10) is to be solved subject to two-point boundary conditions which
are expressed as



qi

n
z z P12 (@) = Ryyy  v=123,...74 (2.11)
i=0p

n qi—1
z Z 2P (b) = Ryy 0=123,. (2.12)
i=0 p=0
where Bvl Yo, l] are the constant coefficients of z;®) in the boundary conditions,

and n,,n, are the total number of prescribed boundary conditions at n =a and
n=>b respectively.

Starting from an initial approximation z, o, z, o, Z3 g, -.. ... . Zp o the iterative
technique is obtained as

Ll [Zl,r+1rZZ,rr -Zn,r] = Gl + ]\G[ZLr;Zz,r; et Zn,r] ’
L, [Zl,r+1»ZZ,r+1f Zn,r] =Gy + J\fz[Z1,r+1; Z25s e Zn,r];

£n—1[zl,r+1r e Zn—1r+1 Zn,r] =Gp_1 + Nn—l[zl,r+1» e Zn—2,r+1:Zn—1,r'Zn,r]J

Ly [Zl,r+1r nZn—l,r+1'Zn,r+1] =G+ N, [Zl,r+1' v Zn—1r+1) Zn,r]» (2.13)

where z;,,4 and z;,. are the approximations of z; at the current and the
previous iteration, respectively. We note that equation (2.13) forms a system of
n linear decoupled equations which can be solved iteratively for r =
1,2, ... starting from a given initial approximation z; , .The iteration is repeated
until convergence is achieved. The desired convergence can be assessed by
considering the error due to the decoupling of the governing equations. This
decoupling error (E,) at the (r + 1)%" iteration is defined using the following
formula

E; = Max (||Zl,r+1 - Zl,r”OO: ||Zz,r+1 - ZZ,r”ooi e ||Zn,r+1 - Zn,r”oo)- (2.14)

The idea used in the development of the iteration scheme (2.13) is imported
from the Gauss-Seidel relaxation method for solving large systems of algebraic
equations. To solve the iteration scheme (2.13), it is convenient to use the
Chebyshev pseudo-spectral method. For this reason the method is referred to as
the Spectral Gauss-Seidel relaxation method or simply Spectral Relaxation
method (SRM) in this work. For brevity, we omit the details of the spectral
methods, and refer interested readers to ([16, 24]). Before applying the spectral
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method, it is convenient to transform the domain on which the governing

equation is defined to the interval [—1,1] on which the spectral method can be

(b—a)(t +1)
2

[a,b] to [—1,1]. The basic idea behind the spectral collocation method is the

introduction of a differentiation matrix D which is used to approximate the
derivatives of the unknown variables Z;(7) at the collocation points as the
matrix vector product

d

implemented. We use the transformationn = to map the interval

Z
Z D;z(x) = DZ;, j=12,..,N (2.15)

where (N + 1) is the number of collocation points (grid points) D = 2D /(b — a)
and Z = [z(xq), z(x1),...,z(xN)]"is the vector function at the collocation
points. Higher order derivatives are obtained as powers of D, that is

z® = prz, (2.16)

In order to apply the Chebyshev differentiation approach to the governing
equation (2.9) and iteration scheme(2.13), we observe that equation (2.9) is
equivalent to

z Z [p] (p) + Nz, 25, ... 2] = G, (2.17)

j=0p=

Where a[zj] are the constant coefficients ofzj(p) the derivative of z;(j =

1,2,...,n), that appears in the i*" equation for equation (i = 1, 2,3, ..., n).Thus,
in terms of the notation used in equation(2.16), the iteration scheme given in
equation (2.13) can be expressed compactly

i n
ZZ @;j 1(1;11_ z Z @;j ](IT)') N[er+1w-JZk—l,r+1J---Zn,T]' (2.18)

j=0p=0 j=i+1p=0

fori = 1,2,...,n. Applying the equation (2.16) on (2.18) and the corresponding
boundary conditions we obtain the Spectral Gauss-Seidel relaxation method
iteration scheme as

i n
Zz lj Dpzj(zl—l = z Z L] DpZ(P)_N [Zl,r+1J v Zk—1,r+1 ---Zn,r]l (219)

j=0p=0 j=i+1p=0



Subject to

n 4i—

z z ﬁ]}] z D(p)Z] r+1(xk) - av;
j=0 p=

n qi—1
z z V(EZ'] Z D(p)Z] r+1(xk) - Hb a’
j=0 p=0 k=0

v=123,...n,

oc=123,...1

(2.20)

(2.21)



Chapter3

On the solution of the SRM for a boundary layer flow with a
convective surface boundary condition

3. 1 Mathematical Formulation:-

We consider the problem of hydrodynamic and thermal boundary layer flow
over a flat plate in a stream of cold fluid at temperature T,, moving over the top
surface of the plate with a uniform velocity U,. The continuity, momentum,
energy and concentration equations describing the flow can be written as

6u+6v_0 31
ox dy (3.1)
o 0 O 9B Uy 4GB (T = Tu) + 9Be(C — Cu), (32
U ”ay_vayz P u ) + 9B o) T gBc( ), (3.2)
or, T _ 0°T -
UGt Ve = g (3.3)
aC oC 0C

u—+ v—=D0p,-= (3.4)

0x dy ~ Moy?’

where u and v are the x (along the plate) and the y (normal to the plate)
components of the velocities, respectively, T and C are the fluid temperature
and concentration across the boundary layer, v is the kinematic viscosity of the
fluid, and «,, is the thermal diffusivity of the fluid, T is the free stream
temperature, C, is the free stream concentration, D,, is the mass diffusivity, S
is the thermal expansion coefficient, S is the solutal expansion coefficient, p is
the fluid density, g is gravitational acceleration and o is the fluid electrical
conductivity and Bgyis the applied transverse magnetic field. The velocity
boundary conditions can be expressed as

u(x,0) =v(x,0) =0,
u(x, ) = Uy. (3.5)

We assume that the bottom surface of the plate is heated by convection from a
hot fluid at temperature Tr which provides aheat transfer coefficient h;. The



boundary conditions at the plate surface and far into the cold fluid may be
written as

aT
—k@ = he|T;-Tyw], C=Cyat y=0, (3.6)
T =T, C =Ce. (3.7)
where T,, and C,, are temperature and concentration at the plate surface
respectively, k is the thermal conductivity coefficient. To satisfy the continuity

equation(3.1), we define the stream function i in terms of the velocity by
u= —,v= —— (38)

and introduce the following dimensionless variables

 |Uw () = Y 5T To _C=Co g
n=yl|-— [ _Uoo = =TT, d)—CW_COO-(-)
U

0

Equations (3.2) - (3.7) reduced to the coupled system of nonlinear differential
equations

7+ 2fF" = Hay(f' = 1) = Gref — Gegp = 0, (3.10)
0" + %Prfé?’ =0, (3.11)
¢ +35cf¢ =0, (3.12)

where the prime symbol represent the derivative with respect to 77 subject to
the boundary conditions

f(0)=0,f'(0) =0, 6(0) = Bi,[6(0) — 1], (3.13)
¢(0) =1, () = 1,6(e0) = ¢p(e0) =0, (3.14)

where f(7),0(n) and ¢(n) are the dimensionless velocity temperature and
concentration. The parameters of primary interest are the Magnetic field
parameter Ha,, the thermal Grashof number Gr,, the solutal Grashof
number Gc, , the convective heat transfer parameter Bi,, the Prandtl
number Pr, the Schmidt number Sc given by



O-ng _ .gﬁT(Tw - Too)x _ gﬁC(Cw - COO)X
Gr, = Ge, =

ax = pUOO ) X Ugo ) X Ugo )
B — hf VX Pr — v Sc = %
=% v, T a, T,

3.2 Numerical solution:-

In this section we present the numerical method used to solve the governing
nonlinear system of ODEs (3.10)—(3.12). The spectral Relaxation method (SRM)
approach is used to decouple the equations leading to a linear system which is
subsequently solved using the Chebyshev spectral collocation method. The basic
idea behind the SRM scheme from the Gauss-Seidel method for decoupling
equations. In this regard, the momentum equation (3.10) is solved only for one
unknown function; hence the technical is applied only in terms
involving f(n) and its derivatives. All other terms are assumed to be known
from previous iterations especially the nonlinear terms which involve f(n) and
its higher derivatives if exist. In the energy equation (3.11), scheme is applicable
only to terms involving 8(n) and its derivatives. The terms involving
¢(n) together with the nonlinear terms come from 8(n)and its higher
derivatives (if exist) are assumed to be known from the previous iteration while
the updated solution for f(n) at the current iteration is used. Similarly, in the
mass transfer equation (3.12), but terms in f(n) and 8(n) are as summed to be
now known at the current iteration (denoted by (r+1)). Starting from reducing
the order of equation (3.10) by assuming f'(7) = g(7) together with the
chosen initial guesses

.
fp=e +1-1,  B()=—"—e, Gl =e" (3.15)

X -
(Bi, + 1) ’

which are satisfied the boundary conditions (3.13) and (3.14). The subsequent
solutions for f,.,0,,, ¢, v = 1 are obtained by the following iterative technique

frl+1 = 9r fr+1(0) =0, (3.16)
144 1 !

Ir+1 t Efr+1gr+1 - Hax(gr+1 - 1) — Gr, 0, — Ge, ¢, = 0, (3'17)
" 1 ’

Ors1 + gprfr+19r+1 =0, (3.18)
124 1 !
r+1 T Escfr+1¢)r+1 =0, (3.19)
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subject to

9r+1(0) = 0, 6741(0) = Bi[6(0);41 — 1] or 6,11(0) =0, ¢r41(0) =0,
(3.20)

r1(©) =1, 0,11(0) =0, ¢pry1(0)=0. (3.21)

Applying the chebyshev pseudo-spectral method on (3.16) —(3.19) together with
the boundary conditions (3.20) and (3.21), we obtained

Aifrs1 =Ry, fr+1(T0) =0, (3.22)
Azgr+1 = Ry, Ir+1(to) =0 gry1(tn) =1, (3.23)
A30.,1 =R3, 6r+1(T0) =0 6r+1(TN) =0, (3.24)
Aypri1 = Ry, Gri1(10) =1 ¢rp1(n) =0, (3.25)
where

A,=D, R,=g, (3.26)
A; = D? + diag | f,,1| D — Ha,l R, = —(Gry6, + Geegpy + Hay),  (3.27)
Az = D? + diag|iPrf,.,| D, R, =0, (3.28)
A4 = D? + diag|IScf,.,| D, R, = 0. (3.29)
3.3 Results:-

The system of equations governing the thermo-hydrodynamic boundary layer
flow has been solved using the spectral relaxation method. The effects of the
governing fluid parameters such as the Magnetic field parameter Ha,, the
thermal Grashof number Gr,, the solutal Grashof number Gc,, the convective
heat transfer parameter Bi,, the Prandtl number Pr, the Schmidt number Sc,
etc. on the velocity, temperature and concentration profiles has been
determined and shown in Fig. 1 - 15. In the absence of the Magnetic field and
the buoyancy forces, the problem reduces to that considered by Aziz [25] who
solved the governing equations using Runge—Kutta—Fehlberg fourth—fifth
(RKF45) method.
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Table 1: Computations showing comparison with Aziz [25] and Makinde [26]
results for Ha, = 0, Gr, = Gc, = 0, Pr = 0.72 and Sc = 0.63.

6(0) —6'(0)

Bi It L Aziz[25] Makinde[26] Present [25] [26] Present
0.05 21 11 0.1447 0.14466 0.1446612005 0.0428 0.04276 0.0427669400
0.10 _ _ 0.2528 0.25275 0.2527581095 0.0747 0.07472 0.0747241891
0.20 _ _ 0.4035 0.40352 0.4035226075 0.1193 0.11929 0.1192954785
0.40 _ _ 0.5750 0.57501 0.5750140473 0.1700 0.16999 0.1699943811
0.60 _ _ 0.6699 0.66991 0.6699156239 0.1981 0.19805 0.1980506257
0.80 _ _ 0.7302 0.73016 0.7301700557 0.2159 0.21586 0.2158639555
1.00 _ _ 0.7718 0.77182 0.7718222042 0.2282 0.22817 0.2281777958
5.00 _ _ 0.9441 0.94417 0.9441738017 0.2791 0.27913 0.2791309913
10.0 _ _ 0.9713 0.97128 0.9712853870 0.2871 0.28714 0.2871461297
20.0 0.9854 0.98543 0.9854335587 0.2913 0.29132 0.2913288270

The problem would also be in the same line with the study by Makinde [26] who

used the Runge—Kutta integration scheme with a modified version of the

Newton—Raphson shooting method to solve the governing equations. The

results from these previous studies are used as a benchmark to verify the

accuracy of our solution.
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Table 2: Computations showing comparison with Aziz [25] and Makinde [26]

results for Ha,, = 0, Gr,, = Gc, = 0, Pr = 0.72 and Sc = 0.63.

Bi, Gr, Gc, Ha, Sc —6'(0) 0(0) —¢(0)
[27] present [27] present [27] present

0.1 01 01 01 0.24 0.07707 0.0770723  0.22929 0.2292762 0.21859 0.2182949
1.0 0.1 01 01 0.24 0.25501 0.2550363  0.74498 0.7449636 0.22169 0.2214094
10 01 01 01 024 0.33335 0.3333849  0.96666 0.9666615 0.22296 0.2226845
01 05 01 01 024 0.07760 0.0776081  0.22393 0.2239183 0.22381 0.2235437
0.1 1.0 01 0.1 0.24 0.07815 0.0781513  0.21849 0.2184864 0.22937 0.2291265
01 01 05 01 024 0.07969 0.0796957  0.20306 0.2030420 0.24852 0.2484029
01 01 10 01 024 0.08143 0.0814392  0.18562 0.1856079 0.27339 0.2733431
0.1 0.1 01 05 0.24 0.07875 0.0787560  0.21244 0.2124392  0.23452 0.2342787
0.1 01 0.1 1.0 0.24 0.08034 0.0780936  0.19652 0.2190636  0.25077 0.2278222
01 01 01 01 062 0.07677 0.0767781  0.23221 0.2322182 0.31232 0.3123209
01 01 01 01 0.78 0.07671 0.0767128  0.23287 0.2328712  0.33955 0.3395512
0.1 01 01 01 262 0.07641 0.0764175  0.23582 0.2358246  0.52053 0.5205280

13
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Fig. 1: Effect of parameter Bi,.on the Logarithm of the SRM error.
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Fig. 2: Effect of parameter Gr,on the Logarithm of the SRM error.
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Fig. 3: Effect of parameter Gc,on the Logarithm of the SRM error.

Fig.1-3 show the variation of the residual error against the number of iterations.
As the number of iterations increases, the norm of the residual error of the SRM
can be seen to decrease until a point where convergence of the norm is
attained. At that point, optimal residual error is said to have been obtained.

1} SR e P .e s |
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Fig.4: Effect of the convective heat transfer parameter Bi,on the velocity profile for Gr, =
Gc, = 0.1, Ha, = 0.1, Pr=0.72 and Sc = 0.24.
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The comparison of the plate surface temperature and heat transfer coefficients
obtained by the SRM with those reported by Aziz [25] and Makinde [26] is
shown in Table 1 and Table 2. It is clear that the SRM results in a good
agreement in order of accuracy and convergence.

Ha, = 0.1
Hax= 1
- — Hax= 3
------- Hax= 5
!
10 15

)

Fig.5: Effect of the magnetic field parameter Ha,, on the velocity profile for Bi, = 0.1, Gr,, =
Gc, = 0.1, Pr = 0.72 and Sc = 0.24.

Fig. 4 shows the effect of heat convective parameter Bi,, on the velocity profile
when the other parameters are held constant. It is clear that the momentum
boundary layer thickness decreases with Bi,, that is why the velocity profile
increases as the heat transfer parameter increases.

Fig.5 depicts the effect of increasing the magnetic field strength on the
momentum boundary-layer thickness. It is now a well-established fact that the
magnetic field presents a damping effect on the velocity field by creating a drag
force that opposes the fluid motion, causing the velocity to decrease. However,
in this case an increase in the Ha, only slightly slows down the motion of the
fluid away from the vertical plate surface toward the free stream velocity, while
the fluid velocity near the vertical plate surface increases. Similar trend of slight
increase in the fluid velocity near the vertical plate is observed with an increase
in convective heat transfer parameter.
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Fig.6: Effect of the convective heat transfer parameter Bi, on the temperature profile

for Hay, = 0.1, Gr, = Gc, = 0.1, Pr = 0.72 and Sc = 0.24.
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Fig.7: Effect of the magnetic field parameter Ha, on the temperature profile for Bi,

0.1,Gr, = Gc, = 0.1, Pr =0.72 and Sc = 0.24.
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Fig.6 demonstrates the effect of Bi, on temperature profile. It is evident that
the heat convective parameter contributes to increasing the thickness of the
thermal boundary layer; consequently, enhance the temperature in the
boundary layer.

1

o(1)

0.3

0.2

0.1

Fig.8: Effect of the magnetic field parameter Ha, on the concentration profile for Bi,, = 0.1,
,Gr, = Gc, = 0.1,Pr =0.72 and Sc = 0.24.

Fig.7 and Fig.8 illustrate the effect of magnetic field Ha, on both the
temperature and concentration profiles respectively. It can be seen easily that
the thermal boundary layer thickness increases when the magnetic field
increases, thus decreasing the reduced temperature in the boundary layer. On
the other hand, as Ha, increasing the fluid velocity decreases as results of
increasing the damping force on the velocity, hence decreasing the mass.

Fig.9 shows the effect of heat convective parameter on the concentration

profile. It is clear that increasing Bi, has no significant effect on the mass and its
effect can be neglected.
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Fig.9: Effect of the convective heat transfer parameter Bi,.on the concentration profile for
Ha, = 0.1,Gr, = Gc, = 0.1, Pr = 0.72 and Sc = 0.24.

Fig. 10 — 12 have been plotted in order to see the effect of Gr, on the velocity,
temperature and concentration profiles. It is clear that the velocity increases by
increasing Gr,.. Effects Gr,, on the temperature and concentrations are totally
opposite, we noted that both the temperature and concentration are increasing
functions on Grashof.
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Fig.10: Effect of the Grashof number Gr,, on the velocity profile for Ha,, = 0.1, Bi, =
0.1,Gc, = 0.1, Pr =0.72 and Sc = 0.24.
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Fig.11: Effect of the Grashof number Gr,, on the temperature profile for Ha, = 0.1, Bi, =
0.1, Gc, = 0.1, Pr = 0.72 and Sc = 0.24.
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Fig.12: Effect of the Grashof number Gr,, on the concentration profile for Ha,, = 0.1, Bi,
0.1, Gc, = 0.1, Pr=0.72 and Sc = 0.24.

Fig.13 shows the effects of solutal Grashof number Gc, on the velocity
field f'(n).1t can be seen that the momentum boundary layer thinness increases
when the the solutal Grashof number Gc, increases, thus increasing the

velocity f'(n).
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Fig.13: Effect of the solutal Grashof number Gc, velocity profile for Bi, = 0.1, Ha, = 0.1,
Gc, = 0.1, Pr = 0.72 and Sc = 0.24.

Fig. 14 and 15 show the variation of the temperature and concentration profiles
for difference values of the solutal Groshof number Gc,. It is clear that when
Gc, increases, both the temperature and concentration distributions decrease
thus diminishing the thicknesses of both the thermal and concentration
boundary layers.
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Fig.14: Effect of the solutal Grashof number Gc, concentration profile for Ha,, = 0.1, Bi, =
0.1,Gr, = 0.1, Pr =0.72 and Sc = 0.24.
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Fig. 15: Effect of the solutal Grashof numberGc,temperature profile Bi, = 0.1, Ha, =
0.1,Gr, = 0.1, Pr = 0.72 and Sc = 0.24.
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Chapter 4

Dufour and Soret effects on incompressible Newtonian fluid
flow over a vertical down-pointing cone

4-1.Mathematical Function:-

u () Q
Fig. 1: Schematic sketch of a spinning vertical cone

Consider resulting ordinary differential equations obtained by Narayna et al. [28]
which governing an incompressible Newtonian fluid flow over a vertical down-
pointing cone. The x-axis assume to be along the surface of the cone and y-axis
along the outward normal surface of the cone with origin being the vortex of the
cone (see Fig. 1). Assume that the cone rotate about its axis of symmetry with
angular velocity g, moreover an external magnetic field is applied along the y-
axis. The surface of the cone is subject to either a linear surface temperature
(LST) or the linear surface heat flux (LSHF) for more details see Narayana et al.
[28]. The momentum, energy and concentration governing equations can be
presented in the following form.

f42ff" = f +eg?+0+Np—Mf =0, (4.1)
g’ ' +2fg' —2f'g—Mg =0, (4.2)
0" + Pr(2f0' — f'0) + Degp” =0, (4.3)
¢" +Sc(2f¢p' — f'¢p) +Sr6” =0, (4.4)
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subject to the boundary conditions

f(0)=f'(0)=0, g(0) =1, 6(0) =1,0r6°(0) = -1, $(0) =1
f'(0) = 0,g(0) = 0,6(c0) = 0,p(e0) - 0. (4.5)

4-2.Numaracal solution:-

To apply the SRM on the system (4.1) — (4.4) along with the boundary conditions
(4.5), we have to reduce the order of equation (4.1) by assuming f'(n) = h(7), so
the iteration scheme can be written in following form

fre1=hr, fr+1(0) =0, (4.6)
hi'v1 + 2friahyes = Mheyy = hi —€gf + 6, + N¢,, (4.7)
9r+1 + 2fr+19r41 — 2hr419r11 —MGriq = 0, (4.8)
Ors1 + 2Prfry16r41 — Prhyy 16, = —Didpy, (4.9)

ri1 + 25¢fri1¢riq — Schyq1Pryq = =St (4.10)

subject to the boundary conditions

hy+1(0) =0, hyy1(0) =0, g,41(0) =1, gy41(0) =0, 6,4,(0) =1

or 8/,1(0) =—1, 6,41(0) =0, ¢41(0) = 1,¢,4,(0) = 0. (4.11)
Applying the chebyshev pseudo-spectral method on (4.1 — 4.4) we obtain

A1fr+1 =Ry, frs1(te) =0 (4.12)
Azhri1 = Ry, hr1(To) =0, hpyy(tn) =0, (4.13)
A3gr+1 = R3, 9r+1(T0) =1, gri1(tn) =0, (4.14)
A0 =Ry, 0r41(To) =1, Or41(tn) =0, (4.15)
Asdri1 = Rs, ¢ri1(t0) =1, ¢Prys(tn) =0, (4.16)
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where

A,=D, R;=h, (4.17)
A, = D? + 2diag[f,.,]D — MI, R, = h? —eg? — 6, — N¢,, (4.18)
A; = D? + 2diag[f,.,]D — 2diag[h,,,] — MI, R; =0, (4.19)
A, = D? + 2diag[Prf,,,]D — diag[Prh,,,], R, = —D¢p/ ., (4.20)
As = D? + 2diag[Scf,,,]D — diag[Sch,,,], Rs=—S6..,. (4.21)

4-3.Results:-

As the exact solution is not feasible for equations (4.1) — (4.4) because of their
high nonlinearly, we solved them numerically by using the spectral relaxation
method. The proposed SRM method is strongly depends on the length of the
governing domain (b — a) and the number N of collocation points (grid points).
In particular, since the problem considered in this chapter is defined on the
semi-infinite interval [0, 00), a crucial factor of the SRM iteration scheme is to
find the appropriate finite value (1.,) which must be selected to be large enough
to numerically approximate infinity and the behaviour of the governing flow
parameters at infinity. In order to select the appropriate value of n.,, we start
with an initial guess which is relatively small and solve the governing SRM
scheme equations over [0,17.] to obtain the solutions of flow parameters
fa), gn), 6(n), ¢(n), etc., the values of the derivatives of these functions
atn = 0, such as f"'(0), g'(0), 8'(0), ¢'(0) etc., are also obtained. The
current value of 17, is increased by one and the solution process is repeateduntil
the difference in the values of f(0), 8(0), 8'(0), etc., between the current
and previous solution is less than a specified accuracy tolerance level. Once the
optimal value of 1, has been identified for a set of governing physical constants,
the minimum value of the number of grid points required to give solutions that
do not depend on the grid size is obtained using a similar process. Starting from
a small value of N, say N = 30, the SRM scheme is solved for the governing
flow parameters. The value of N is increased by 10 and the solution is solved
until the results do not change, to with in a certain accuracy tolerance level, with
any further increase in N. In order to check the accuracy and validity of the
proposed method, the results presented in this study were compared with those
of previously published literature for selected values of the governing physical
parameters.
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In order to verify the accuracy of our solution, the comparison of skin friction
coefficient obtained by the SRM with those reported by Ece[27] and Narayana
[28] is shown in Tablel. It is clear that the SRM results are in a good agreement
in order of accuracy.

Analysis has been carried out for different Dufour and Soret parameter values

and for several values of the Hartmann number M, the Prandtl number Pr, the
Schmidt number Scand the spin parameter €. The results for the skin friction,
heat and mass transfer coefficients and the tangential velocity are summarized
in Tables 1 - 4. Table 1 give a comparison between the current results and those
of Ece [27] and Narayana[28] for a spinning cone in the absence of Dufour and
Soret effects. The comparison is given for case of LST. From this table one
observes an excellent agreement between the present results and those of
Ece[27] and Narayana[28].Fig. 1- 10 show the effects of the various fluid
parameters on the axial velocity, temperature and concentration profiles.

Fig. 2(a) - 2(d) show that the effects of the Dufour and Soret parameter with spin

parameters on the axial velocity profile are similar in both the LST and LSHF
cases the velocity increases as the rate of spin increases.
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Fig. 2: variation of axial velocity profiles with Dufour and Soret numbers for different values
of spin parameter €.

The axial velocity f'(n) is plotted in Fig. 2(a) and (b) for different values of the
Dufour and spin parameters in both the LST and LSHF cases. It can be observed
that with an increase in the both Dufour and spin parameters the velocity profile
increase in the boundary layer.

Fig. 2(c) and (d) show the effect of the Soret parameter on f'(n)for different
values of the spin parameter. The velocity increases with increasing the Soret
parameter. Increasing the diffusion-thermo and thermal-diffusion effects and
the spin parameter leads to an increase in the velocity.
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Fig. 3: Variation of temperature profiles with Dufour and Soret numbers for different values
of spin parameter €.

Fig. 3 show Dufour and Soert on the temperature for different spin parameter
values. We observe firstly that the temperature decreases as the rate of spin
increases. Secondly, the temperature increases with the Dufour parameter.
However, an increase in the Soret parameter causes a thinning of the thermal
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boundary layer causing a drop in the temperature. The temperature profiles are

broader for large spin values than in the case of no spin.

Fig. 4: Variation of axial velocity profiles with Dufour and Soret numbers for different values
of spin parameter €.

Fig.4 (a)—(d) show the variation of the concentration profile with Dufour an
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d

Soret parameters in both the LST and LSHF cases for a stationary and a spinning

cone. Spinning the cone and reducing the Dufour number both lead to
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reduction in the solute concentration whereas increasing the Soret parameter
enhances the concentration boundary layer profile in both the LST and LSHF
cases. The effect of the magnetic parameter M on the velocity is shown in Fig. 5
in the presence of Dufour and Soret effects. The tangential velocity of the fluid
decreases with the Hartmann number due to the presence of a resistive Lorentz
force which acts against the flow if the magnetic field is applied in the normal
direction. The effect of the magnetic parameter M on temperature and
concentration profiles is shown in Fig. 6 and 7 respectively. The slowing down in
the motion of the electrically conducting fluid leads to a build-up of heat and
solute concentration, and consequently, both temperature and solute
concentration increase with increasing Hartmann numbers in the boundary layer
region (see Al-Odat and Al-Azab [29]).Fig. 8 shows the effect of the Prandtl
number on the axial velocity profile (and Pr = 0.7 for air is used in the present
study).The Prandtl number has a significant effect on the axial velocity and it is
clear that the boundary layer thickness reduces with Pr.
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Fig. 10: Variation of concentration profiles with Dufour and Soret numbers for different
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Fig.9 shows the temperature distribution for several Dufour and Soret numbers
and for two different Prandtl numbers. The effect of the Prandtl number is to
reduce the thermal boundary-layer thickness and so reducing the fluid
temperature. Qualitatively, the results are in agreement with the findings by
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Hassanien et al. [30] and Salama [31]. The effect of Dufour and Soret numbers
on the concentration distribution for two different values of Prandtl number is
projected in Fig. 10. From the plots it is clear that concentration boundary layer
thickness decreases with increasing values of D¢ but increases with Sr.

Tablel shows the effect of the of spinning €, Prandtl number Pr and magnetic
parameter M on f''(0).The skin friction decreases as magnetic parameter M and
Prandtl number Pr increasing, but skin friction increasing as
increasing.

spinning €

Table 1: values of '/ (0) for double diffusive free convection boundary layer over a spinning

cone with linear surface temperature spinning € (LST) and N = D; = Sr = 0.

Ece[27] Narayana Present
e M _ f"(0) f"(0) f(0)
Pr=1 Pr =10 Pr=1 Pr=10 Pr=1 Pr=10
0 0.68150212 0.43327726 0.68148313 0.43327500 0.68148350 0.43327824
1 0.55975901 0.37927751 0.55976132 0.37926796 0.55976166 0.37926856
0 2 0.48678916 0.34866381 0.48680621 0.34865824 0.48680709 0.34865879
5 0.37090743 0.29345341 0.37090631 0.29345092 0.37098554 0.29345142
10 0.28500344 0.24343322 0.28490901 0.24340957 0.28517056 0.24343242
0 0.84650616 0.62601869 0.84648787 0.62601677 0.84648834 0.62601888
1 0.68547905 0.50300655 0.68548057 0.50299573 0.68548026 0.50299557
0.5 2 0.59002983 0.44721675 0.59004683 0.44721244 0.59004564 0.44721086
5 0.44274371 0.36247167 0.44261206 0.36247730 0.44281939 0.36246950
10 0.33709053 0.29437077 0.33701033 0.29435123 0.33725604 0.29437009
0  1.00196008 0.79828572 1.00194246 0.79828351 1.00194310 0.79828581
1 0.80819380 0.62583066 0.80819486 0.62582011 0.80819389 0.62581919
1 2 0.69203710 0.54556916 0.69205422 0.54556604 0.69205094 0.54556228
5 0.51435738 0.43140288 0.51430770 0.43141680 0.51443063 0.43140067
10 0.38913125 0.34527676 0.38905224 0.34528362 0.38929515 0.34527619
0 1.29230021 1.10990481 1.29228372 1.10990164 1.29228491 1.10990498
1 1.04586353 0.86705752 1.04586385 0.86704821 1.04586154 0.86704582
2 2 0.89263261 0.74142462 0.89265068 0.74142554 0.89264320 0.74141738
5 0.65693141 0.56901873 0.65668889 0.56904825 0.65700000 0.56901605
10 0.49307448 0.44699636 0.49299748 0.44707960 0.49323504 0.44699601
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Table2 shows the effect of the of Prandtl number Pr and magnetic parameter

M of 8'(0). It is clear that 8'(0) increasing as Prandtl number Pr and spinning €
increasing, on the other hand side, the 8'(0) decreases as magnetic parameter
M increasing.

Table 2: values of 8’(0) for double diffusive free convection boundary layer over a spinning

cone with linear surface temperature (LST) and N = D¢ = Sr = 0.

Ece[27] Narayana Present

€e M 6'(0) 6'(0) 6'(0)
Pr=1 Pr=10 Pr=1 Pr =10 Pr=1 Pr=10
0 0.63886614 1.27552680 0.63885452 1.27551036 0.63885451 1.27552887
1 0.55869398 1.16243080 0.55869273 1.16241360 0.55869286 1.16242341
0o 2 0.50338419 1.09342644 0.50335401 1.09341925 0.50335303 1.09342808
5 0.40364781 0.95839216 0.40365259 0.95839333 0.40326525 0.95840020
10 0.32121113 0.82300420 0.32111032 0.82321999 0.31954917 0.82301296
0 0.67194897 1.47165986 0.67193791 1.47163361 0.67193847 1.47165967
1 0.58138075 1.27668867 0.58137979 1.27666747 0.58138029 1.27668617
05 2 0.51966708 1.17427021 0.51963905 1.17425772 0.51963858 1.17427476
5 0.41156185 1.00202092 0.41225166 1.00201529 0.41118914 1.00202989
10 0.32496333 0.84700807 0.32492777 0.84740344 0.32331625 0.84701735
0 0.70053401 1.60768499 0.70052364 1.60764538 0.70052454 1.60768443
1 0.60256486 1.37917914 0.60256408 1.37915342 0.60256496 1.37918227
1 2 0.53536409 1.25082089 0.53533784 1.25080261 0.53533788 1.25082871
5 0.41940005 1.04490075 0.41922547 1.04488853 0.41903739 1.04491128
10 0.32870765 0.87088877 0.32869140 0.87125491 0.32707561 0.87089863
0 0.74869559 1.80575019 0.74868659 1.80568032 0.74868825 1.80574944
1 0.64120157 1.55413661 0.64120160 1.55409454 0.64120327 1.55414680
2 2 0.56516379 1.39136129 0.56514198 1.39132746 0.56514300 1.39137399
5 0.43485365 1.12833102 0.43474318 1.12830846 0.43451072 1.12834580
10 0.33617261 0.91826049 0.33601006 0.91834129 0.33457189 0.91827167
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Table 3 shows the effect of the of spinning €, Prandtl number Pr and magnetic
parameter M of f''(0)in (LSHF). The skin friction decreases as magnetic
parameter M and Prandtl number Pr increasing, the skin friction increasing as

spinning parameter € increasing.

Table 3: values of f"(0) for double diffusive free convection boundary layer over a spinning

cone with linear surface heat flux (LSHF) and N = D¢ = Sr = 0.

Ece[27] Narayana Present
e M__ f(0) £ (0) £ (0)
Pr=1 Pr=10 Pr=1 Pr =10 Pr=1 Pr=10
0 1.02528815 0.54034324 1.02528846 0.54034478 1.20380200 0.54034369
1 0.91396740 0.44894055 0.91397087 0.44894428 1.00100109 0.44894127
05 2 0.84705897 0.41308367 0.84706994 0.41308823 0.86657410 0.41308381
5 0.73956968 0.36208114 0.73941838 0.36209154 0.74358378 0.36208095
10 0.65637278 0.32257763 0.65665182 0.32257591 0.66213006 0.32257795
0 1.15592069 0.70152323 1.15592094 0.70152541 1.15992680 0.70152351
1 1.01801957 0.55685195 1.01802313 0.55685648 1.01801942 0.55685171
1 2 0.93528733 0.49866389 0.93530115 0.49867213 0.93529705 0.49866445
s 0.80425828 0.42301336 0.80411729 0.42303388 0.80433122 0.42301369
10 0.70499584 0.36873528 0.70461085 0.36874442 0.70529014 0.36873543
0 1.40918891 1.00454785 1.40918904 1.00455073 1.40915668 1.00454811
1 1.22378434 0.77976551 1.22378969 0.77977382 1.22378640 0.77976598
2 2 1.11082540 0.67497148 1.11084268 0.67498553 1.11083392 0.67497161
5 0.93347602 0.54621284 0.93329155 0.54625325 0.93354713 0.54621396
10 0.80220839 0.46141862 0.80247495 0.46148692 0.80250032 0.46141938
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Table 4 show the effect of the of, Prandtl number Pr, magnetic parameter M
and spinning € of temperature. The temperature decreases as magnetic
parameter M and Prandtl number Pr increasing, the temperature increasing as

spinninge increasing

Table 4: values of (0)for double diffusive free convection boundary layer over a spinning
cone with linear surface heat flux (LSHF) and N = D¢ = Sr = 0.

Ece[27] Narayana Present
e M 6(0) 6(0) 6(0)
Pr=1 Pr=10 Pr=1 Pr =10 Pr=1 Pr =10
0 1.38894767 0.71105509 1.38894717 0.71106459 1.40314505 0.71105493
1 1.52981611 0.81758101 1.52981913 0.81759066 1.50992370 0.81758183
05 2 1.64436103 0.87959567 1.64437370 0.87960493 1.65426039 0.87959541
5 1.90546365 0.99845553 1.90512227 0.99846631 1.91455983 0.99845523
10 2.21366623 1.12994754 2.18322818 1.12990015 2.19862155 1.12994836
0 1.35170142 0.64668404 1.35170181 0.64669668 1.35455554 0.64668419
1 1.49881386 0.75819441 1.49881764 0.75820720 1.49881727 0.75819484
1 2 1.61850659 0.83103877 1.61852096 0.83105287 1.61851869 0.83103941
5 1.88831408 0.96637696 1.88797632 0.96639248 1.88847081 0.96637629
10 2.20246048 1.10846998 2.20269483 1.10840939 2.20337841 1.10846934
0 1.28865472 0.57034570 1.28865664 0.57036447 1.28861016 0.57034594
1 1.44243526 0.66976417 1.44243956 0.66978298 1.44243628 0.66976409
2 2 1.56988106 0.74969417 1.56989579 0.74971411 1.56989198 0.74969339
5 1.85491898 0.90700260 1.85444889 0.90702971 1.85507268 0.90700390
10 2.18032917 1.06718780 2.18074652 1.06713404 2.18124048 1.06718746
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Chapter5
Overall conclusions:-

This part of the thesis outlines the main findings in each chapter. We highlight
some of the general results that were found and the conclusions that have been
drawn from this work.

Chapter 3. To solve the nonlinear equations governed the hydrodynamic and
thermal boundary layer flow over a flat plate we used spectral relaxation
method developed by Motsa [1]. The solution obtained through the use of the
SRM compared with those in the literature review to determine the accuracy
and computational efficiency. We also determined the effects of the flow
parameters on the fluid properties. Our specific findings were that:
e Both the plate surface temperature and heat transfer coefficients
increased with the heat convective parameter.
e As the number of iterations increases, the norm of the residual error of
the SRM decreases.
e The SRM takes a few iterations to give accurate.

Chapter 4. We also studied the incompressible Newtonian fluid flow over a
vertical down-pointing cone subject to either a linear surface temperature (LST)
or the linear surface heat flux (LSHF). The governing equations were solved using
the SRM. In both cases LST and LSHF, the effects of the governing parameters
have been presented graphically and have also been tabulated. Comparison
between the solutions obtained using the SRM, Ece[27] and Narayana[28]
showed that the convergence of the SRM was rapid.

e The temperature decreases as the rate of spin increases while the
temperature increases with the Dufour parameter.

e The Soret parameter causes a thinning of the thermal boundary layer.

e Increasing the Soret parameter enhances the concentration boundary
layer profile in both the LST and LSHF cases.
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