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Chapter(1) 

Parallelograms, Fractals and Fractional Dimension 

Section (1.1):Parallelograms, parametrizations and arc length  

We specify a k-parallelogram in IR
n
 by the point x where it is anchored, and 

the k vectors which span it.  

Definition( 1-1-1): 

 A k-parallelogram in nIR  is the subset of nIR . 

 

1
1 11( , ., ) { .. )sink kx kp V V x t V t V 

   
      

 

where nx  IR  is a point and  1, ., kV V
 

    are k vectors. The corner x is part of 

the data, but the order in which the vectors are listed is not. 

 

For example, 

(1)  ( )xp V


 is the line segment joining x to x +   . 

(2) 1 2, ( )xp V V
 

 is the (ordinary) parallelogram with its four vertices  

1 1 1 2x,  x ,  x ,  x v v v v                               

(3) 1 2 3 ( , ),xp V V V
  

 is the (ordinary) parallelepiped with its eight vertices at. 
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    

      
 

 

Now we will discuss the volume of k-parallelograms.  

Clearly the  k-dimensional volume of a k-parallelogram 1x , .,p ( )kV V
 

  does 

not depend on the position of x in nIR . But it isn't obvious how to compute 

this volume. Already the area of a parallelogram in 3IR  is the length of the 

cross product of the two vectors spanning it , and the formula is quite messy. 

How will we compute the area of a parallelogram in 4IR , where the cross 

product does not exist, never mind a 3-parallelogram in IR
5
? 

It comes as a nice surprise that there is a very pretty formula that covers all 

cases. The following proposition, which seems so innocent, is the key. 
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Proposition (1-1-2): 

 (Volume of a k-parallelogram in kIR ) Let 1, ., kV V
 

  be k vectors in IR
k
, so 

that 1,T [ ].,  kV V
 

  is a square k  k  matrix. Then 

                               1( , ., ) det( )T
kkVol P v v T T

 

                                     (1-1) 

Proof: 

        We have 

                    2det( ) det det det det( ) ( ) [  ]TT T T T detT det T                       (1-2) 

 

                           

     
  

     
  

 
 

 
    
 

 
 

 

         
  

 
    
             
    

 

 

      
                    

               
           

 
         

 
         

 
 

 
      

 

 

                   
 

                   
   

                        (1-3) 

The point of this is that the entries of T
T
T are all dot products of the vectors 

   i . In particular, they are computable from the lengths of the vectors    1......   k 

and angles between these vectors; no further information about the vectors is 

needed.  

 

Example (1-1-3): 

 (Computing the volume of parallelograms in IR
2
 and IR

3
) When k = 2, we 

have  

          

2
1 1 2 2 2 2

2 2 2 2

2
1 2 2

| | .
det( ) det | | . | | –( . )

. | |

T
v v v

T T v v v v

v v v

 
  
 
 

                     (1-4) 

If you write    1 .    2= |    1|
2
 .|    2|

2
  (1- cos

2 ), this becomes 

                 
   

2 2 2 2

1 2 1 2. 1 cos 2 . | sin 2 |Tdet T T v v v v                   (1- 5) 

so that the area of the parallelogram spanned by    1 .    2 is 
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2 2

1 2 1 22 ( , ) det( ) | | . | | | sin |Tvol p v v T T v v                                (1- 6) 

Of course, this should come as no surprise; But exactly the same 

computation in the case n = 3 leads to a much less familiar formula. Suppose 

T = [   1,    2 .    3], and let us call  2 the angle between    2 and    3 ,  2 the angle 

between    1 and    3 , and  2 the angle between    1 and    2 . Then   

 

                             

2
1 1 2 1 3

2
1 2 2 2 3

2
1 3 2 3 3

| | . .

. | | .

. . | |

T

V V V V V

T T V V V V V

V V V V V

 
 
 

  
 
 
 

                              (1-7) 

 

 

and Tdet T T  is given by 

 

|    1|
2
 .|    2|

2
. |    3|

2
   2(   1 .    2) (   2 .    3) (   1 .    3) - |    1|

2
 (   2 .    3)

2
 -  |    2|

2  
     

(   1 .    3)
2
 - |    3|

2
 (   1 .    2)

2
                                                         (1- 8) 

 

= |    1|
2
|    2|

2
 |    3|

2
(1+2             .      - Cos

2  + Cos
2
   + Cos

2      
 

For instance, the volume of a parallelepiped spanned by three unit vectors, 

each making an angle of  /4 with the others, is 

 

     
2 1

1 2cos3 3cos 2
4 4 2

  
                                              (1- 9) 

 

Thus we have a formula for the volume of a parallelogram that depends only 

on the lengths and angles of the vectors that span it; we do not need to know 

what or where the vectors actually are. In particular, this formula is just as 

good for a k-parallelogram in any IR
n
, even (and especially) if n > k. 

This leads to the following theorem. 

Theorem (1- 1- 4):(Volume of a k-parallelogram in IR
n
)  

    Let     1 ,...,    k be k vectors in IR
n
, and T be the n x k matrix with these 

vectors as its columns: 

T =[    1 ,...,    k]. Then the k-dimensional volume of Px(   1 ,...,    k) is 

                          1 22 ( , ) det( )Tvol P V V T T                         (1-10) 



 

4 
 

 

Proof: 

 If we compute T
T
T, we find 

 

                                            

2

1 1 2 1 n

2

1 2 1 2 n

2

n1 n 2 n

v v .v v .v

v .v v v .v

vv .v v .v

TT T

 
 
 
 
 
  
 
 
 
 
 
  

                   (1-11) 

  

which is precisely our formula for the k-dimensional volume of                     

a k-parallelogram in terms of lengths and angles. 

Example (1- 1- 5): 

  What is the volume of the 3-parallelogram in IR
4
 spanned by  

 

 

1 2 3

1 0 0

v 0 , v 1 , v 0

0 0 1

1 1 1

     
     
     
       
     
     
          

 

 

Set T = (     ,      ,     ) then 

 

2 1 1

1 2 1

1 1 2

TT T

 
 


 
  

         and        det T
T
T = 4 

 

 

so the volume is 2. 

 

 Now in the following in this section we are going to relax our 

definition of a parametrization. In we said that a parametrization of a 

manifold M is a C
1
 mapping   from an open subset nU  IR  to M, which is 

one to one and onto, and whose derivative is also one to one. 
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 The problem with this definition is that most manifolds do not admit a 

parametrization. Even the circle does not; neither does the sphere, nor the 

torus. On the other hand, our entire theory of integration over manifolds is 

going to depend on parametrizations, and we cannot simply give up on most 

examples. 

Let us examine what goes wrong for the circle and the sphere. The most 

obvious parametrization of the circle is   : t         
    

  The problem is 

choosing a domain: If we choose (0, 2 ), then   is not onto. If we choose  

(0, 2 ), the domain is not open, and   is not one to one. If we choose         

(0, 2 ), the domain is not open. 

For the sphere, spherical coordinates  

                                             

cos cos

cos sin:   

sin

 


 




 
   

   
    

                             (1-12) 

 

 present the same sort of problem. If we use as domain                         

(- /2,  /2)   (0, 2 ) , then   is not onto; if we use [- /2,  /2]   [0, 2 ], 

then the map is not one to one, and the derivative is not one to one at points 

where   =   /2, ...  

 The key point for both these examples is that the trouble occurs on 

sets of volume 0, and therefore it should not matter when we integrate. Our 

new definition of a parametrization will be exactly the old one, except that 

we allow things to go wrong on sets of k-dimensional volume 0 when 

parametrizing k-dimensional manifolds. 

Now we will study sets of k-dimensional volume 0 in IR
n
 

Let   be a subset of nIR . We need to know when X  is negligible as far as 

k-dimensional integrals are concerned. Intuitively it should be fairly clear 

what this means: points are negligible for 1-dimensional integrals or higher, 

points and curves are negligible for 2-dimensional integrals, etc. 

 It is possible to define the k-dimensional volume of an arbitrary subset
nX IR . That definition is quite elaborate; it is considerably simpler to say 

when such a subset has k-dimensional volume 0. 

 

Definition (1- 1- 6): 

 A bounded subset of nIR has k-dimensional volume 0 if 

 

                      
1

lim ( ) 0 
2

K

NN
C DN




                                               (1-13) 
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An arbitrary subset X has k-dimensional volume 0 if for all R, the bounded 

set  RX  B 0  has k-dimensional volume 0.  

Definition (1- 1-7):( parametrization of manifold )  

   Let nM IR be a k-dimensional manifold and U be a subset of KIR  with 

boundary of k-dimensional volume 0; 

 let X U  have k-dimensional volume 0, and let       be open. Then a 

continuous mapping   n:U  IR   parametrizes M if 

(1)  U   M  ; 

(2)  U  X   M   ; 

(3)  U  X   M    is one to one, of class C
1
, with locally Lipschitz 

derivative; 

(4) the derivative [D   (u)] is one to one for all u in      ; 

(5)  (X) has k-dimensional volume 0. 

Often condition (1) will be an equality; for example, if M is a sphere and U 

a closed rectangle mapped to M by spherical coordinates, then   (U) = M. In 

that case, X is the boundary of U, and  (X) consists of the poles and half a 

great circle (the international date line, for example), giving  U  X   M  

for condition (2). 

Example(1-1-8):(Parametrization of a cone) 

   The subset of 3IR  of equation 2 2 2x  y = z , shown in Figure(1-1) , is not a 

manifold in the neighborhood of the vertex, which is at the origin. However, 

the subset  

 

 
Figure(1-1) 

Parametriztion of a cone 

              

2 2 2x y z 0,0 z 1y

z

M

x  
  

      
  




 

                                       (1- 14) 
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is a manifold. Consider the map     3:  0,  1  x [0,  2]  IR   given by 

 

                                 sin si:   n  

rcos
r

r

r








 
   
   
    

                                                  (1- 15) 

If we let  U  0,1  x [0,  2 ],  and X U , then   is a parametrization of M. 

Indeed,   :  ( 0,1  x [0,  2 ]) M    (it contains the vertex and the circle of 

radius 1 in the plane z = 1, in addition to M), and   does map  ( 0,1  x [0,  2 ])

into M (this time, it omits the line segment x  z,  y  0  ). The map is one to 

one on  ( 0,1  x [0,  2 ]) , and so is its derivative. 

Now we will discuss a small catalog of parametrizations. 

As we will see below, essentially all manifolds admit parametrizations with 

the new definition. But it is one thing to construct such a parametrization 

using the implicit function theorem, and another to write down a 

parametrization explicitly. 

Below we give a few examples, which frequently show up in applications 

and exam problems. 

If U is an open subset of 
nIR  with boundary all of k-dimensional volume 0, 

and n k:  U  IRf   is a C
1
 mapping, then the graph of f is a manifold in

nIR  , 

and the map . 

 

                                                    
( )

 X
x

f x

 
  

 
                                    (1- 16) 

is a parametrization. 

     There are many cases where the idea of parametrizing as a graph still 

works, even though the conditions above are not satisfied: those where you 

can "solve" the defining equation for       of the variables in terms of the 

other k. 

Example (1-1-9): (Parametrizing as a graph) 

   Consider the surface in 3IR of equation  2 3 5x  y  z  1   . In this case you 

can "solve" for x as a functionof y and z: 

                                          3 51X y z                                 (1 - 17) 

 

You could also solve for y or for z, as a function of the other variables, and 

the three approaches give different views of the surface, as shown in Figure 
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(1-2). Of course, before you can call any of these  parametrizations, you 

have to specify exactly what the domain is. When the equation is solved for 

x, the domain is the subset of the (y, z)-plane where 3 51  y  z  0   . When 

solving for y, remember that every number has a unique cube root, so the 

function  
1/3

2 5y  1  x  z    is defined at every point, but it is not 

differentiable when      2 5x  z  1  ,       so this curve must be included in the 

set X of trouble points that can be ignored (using  the notation of  Definition 

( 1-1-7))  

 

 
Figure(1-2) 

Parametrization of agraph 

 

Now we will illustrate Surfaces of revolution. The graph of a function f (x) is 

the curve C of equation  y  f x .  

Let us suppose that f takes only positive values, and rotate C around the      

x-axis, to get the surface of revolution of equation 

 

                                                       y
2
 + z

2
 = (f(z))

2
.                               ( 1-18) 

 

This surface can be parametrized by: 

 

                                : f (x)cos

f (x)sin

x
x

 




 
   

   
    

                                   (1-19) 

 

Again, to be precise one must specify the domain of  . Suppose that f 
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 a,  b   IR is defined and continuously differentiable on (a, b). Then the 

domain of   is  a,  b  x (0,  2 )  and -y is one to one, with derivative also one 

to one on  a,  b  x (0,  2 )  

If C is a parametrized curve, (not necessarily a graph), say parametrized by 

t        
    

   , the surface obtained by rotating C can still be parametrized by: 

 

               

( )

u(t) cos

u(t)si

 

n

u t
t






 
   

   
    

               (1-20) 

 

Spherical coordinates on the sphere of radius R are a special case of this 

construction: If C is the semi-circle of radius R in the (x, z)-plane, 

parametrized by: 

 

 

                         
cos

/ 2 / 2
R s  

 
in

 
x R

z


 



 
  

 
                   (1-21) 

 

then the surface obtained by rotating this circle is precisely the sphere of 

radius R centered at the origin in IR
3
, parametrized by: 

 

 

                  

cos cos

R cos sin

s

 

i

 

n

R

R

 


 




 
   

   
    

                                      (1-22) 

 

the parametrization of the sphere by latitude and longitude 

Example (1-1-10): 

Consider the surface obtained by rotating the curve of equation  
3 21  x  z 

in the (x, z)-plane around the z-axis. This surface has the equation                              
3 22 2(1 – )  zX Y  . 

The curve can be parametrized by: 

 

                                                                 2 31
X

t t t z
 

   
 

                   (1-23) 
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so the surface can be parametrized by 

 

 

                                             

2

2

3

(1 t ) cos

(1 t )sin
t

t






 
   

    
   

 

                      (1-24) 

 

 
Figure(1-3) 

Represent the image of parametriztion 

Figure(1-3) represents the image of the parametrization  t  1 ,  0    3 / 2    . 

It can be guessed from the picture (and proved from the formula) that the 

subset of  1,  1  x [0,  3 / 2] where t = ±1 are trouble points (they correspond 

to the top and bottom "cone points"), and so is the subset {0} x [0, 3 /2], 

which corresponds to a "curve of cusps." 

Now we will discuss the existence of parametrizations. 

Since our entire theory of integrals will be based on parametrizations, it 

would be nice to know that manifolds, or at least some fairly large class of 

manifolds, actually can be parametrized. 

Remark (1-1-11): 

 There is here some ambiguity as to what "actually" means. In the above 

examples, we came up with a formula for the parametrizing map, and that is 

what you would always like, especially if you want to evaluate an integral. 

Unfortunately, when a manifold is given by equations (the usual situation), it 

is usually impossible to find formulas for parametrizations. the 

parametrizing mappings only exist in the sense that the implicit function 

theorem guarantees their existence. If you really want to know the value of 

the mapping at a point, you will need to solve a system of nonlinear 

equations, presumably using Newton's method; you will not be able to find a 

formula .  

 

 



 

11 
 

Theorem (1-1-12): (What manifolds can be parametrized) 

    Let n IRM  be a manifold, such that there are finitely many open subsets 

iU  M covering M, corresponding subsets kV  IR all with boundaries of k-

dimensicnal 

volume 0, and continuous mappings  i :           which are one to one on Vi , 

with derivatives which are also one to one. Then M can be parametrized. 

It is rather hard to think of any manifold that does not satisfy the hypotheses 

of the theorem, hence be parametrized. Any compact manifold satisfies the 

hypotheses, as does any open subset of a manifold with compact closure. We 

will assume that our manifolds can all be parametrized. The proof of this 

theorem is technical and not very interesting. 

 

Now we will study change of parametrization. 

Our theory of integration over manifolds will be set up in terms of 

parametrizations, but of course we want the quantities computed (arc length, 

surface area , fluxes of vector fields, etc.), to depend only on the manifold 

and the integrand, not the chosen parametrization.  We show that the length 

of a curve, the area of a surface and, more generally, the volume of a 

manifold, are independent of the parametrization used in computing the 

length, area or volume. In all three cases, the tool we use is the change of 

variables formula for improper integrals,  we set up a change of variables 

mapping and apply the change of variables formula to it. We need to justify 

this procedure, by showing that our change of variables mapping is 

something to which the change of variables formula can be applied. 

Suppose we have a k-dimensional manifold M and two parametrizations 

 

                        1 :        M           and         2 :   
     M                         (1-25) 

 

where U1 and U2 are subsets of IR
k
. Our candidate for the change of 

variables 

mapping is      = y2 
-1

  o  1, i.e., 

                                              1
2

1
   r r

MU U                                  (1-26) 
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Example (1-1-13):(Problems when changing parametrizations) 

  Let  l and  2 be two parametrizations of S
2
 by spherical coordinates, but 

with different poles. Call P1 ,   ʹ1 ( the poles for  1 and P2, Pʹ2 the poles for 

y2
-1

. Then  2
-1

 o  l is not defined at  2
-1

 ({P2,  ʹ2}). Indeed, some one point in 

the domain of y1 maps to P2.' But as shown in Figure(1-4) ,  2 maps a whole 

segment to P2, so that  2
-1

 o   maps a point to a line segment, which is 

nonsense. The only way to deal with this is to remove  2
-1

 ({P2,  ʹ2}) from 

the domain of 0, and hope that the boundary still has k-volume 0. In this case 

this is no problem: we just removed two points from the domain, and two 

points certainly have area 0. 

 

 

 
Figure(1-4) 

Changing parametrization 

Let us set up our change of variables with a bit more precision. Let U1 and 

U2 be subsets of IR
k
. Following the notation of Definition (1-1-7 ), denote by 

X1 the negligible "trouble spots" of  1, and by X2 the trouble spots of  2. In 

Example (1-1-11) , X1 and X2 consist of the points that are mapped to the 

poles 

(i.e., the lines marked in bold in Figure(1-4) ,  'If P2 happens ables to be on 

the date line with respect to   , two points map to P2: in Figure, a point on 

the right-hand boundary of the rectangle, and the corresponding point on the 

left-hand boundary 

                               1

1 1 1 1( )( )y o x   and 1

2 1 2 2( )( )y o X                     (1-27) 
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In Figure(1-5) , the dark dot in the rectangle at left is   , which is mapped by 

  1 to a pole of  2 and then by  2
-1

  to the dark line at right;  1 is the 

(unmarked) dot in the right rectangle that maps to the pole of  1. 

Set 

                             0

1 1 1 2( )kU U X UY         and   0

2 2 2 1( )kU U X UY            (1-28) 

 

i.e., we use the superscript "ok" to denote the domain or range of a change of 

mapping with any trouble spots of volume 0 removed 

 

Theorem (1-1-14): 

 Both ok

1U  and 0k

2U are open subsets of kIR with boundaries 

of k-dimensional volume 0, and 
0k  0k 1

1 2 2 l:  U  U  o     

is a C' diffeomorphism with locally Lipschitz inverse. 

 

Theorem (1-1-14) says that Φ is something to which the change of variables 

formula applies. 

Now we will study integrand 1d x , called the element of arc length, is an 

integrand to be integrated over curves. As such, it should take                        

a 1-parallelogram 
xP ( )V in nIR (i.e., a line segment) and return a number, 

and that is what it does: 

 

                                1

x    d x  (p (  ))V V                                      (1-29) 

 

More generally, if f is a function on IR
n
, then the integrand 1d xf is defined 

by the formula 

                              x   (p (  )) ( )Vf f x V                                               (1-30) 

 

If nC  IR is a smooth curve, the integral 

 

                                            
1d x

c

                                                  (1-31) 

is the number obtained by the following process: approximate C by little line 

segments as in Figure(1-5), apply  d
1
x  to each to get its length, and add. 

Then let the approximation become infinitely fine; the limit is by definition 

the length of C. We carried out this computation when I is the interval [a, b], 
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and 3C  IR  is a smooth curve parametrized by  : I   IR
3
, and showed that 

the limit is given by   

 

                                       
1

( )

1

( '( ) = ( '( ) t

I

d x P t dt t dt                           (1-32) 

 

In particular, the integral 

 

                                             
'(t) dt

I

                                             (1-33) 

 

depends only on C and not on the parametrization. 

Example (1-1-15):  
The graph of a C

1
 function f(x), for  a  x  b  , is parametrized by 

 

                                              
( )

x
X

f x

 
  

 
                                              (1-34) 

 

and hence its arc length is given by the integral 

 

                                 
 

' 2

'

,

1
1 ( ( ))

( )

b

a b a

dx f x dx
f x

 
  

 
                         (1-35) 

 

Because of the square root, these integrals tend to be unpleasant or 

impossible to calculate in elementary terms. The following example, already 

pretty hard, is still one of the simplest. The length of the arc of parabola 
2 y  ax  for 0  x  A   is given by 

 

                                
2 2

0

1 4

A

a x dx                                              (1-36) 

A table of integrals will tell you that 

 

                                   
T

2  ( )vol (c) det Dγ u Dγ uArea of C U                 (1-37) 
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Setting 2ax = u , this leads to 

 

2 2 2 2 2 2

0
0

2a
1

1 4 1 4 log 2 1 4x
4

A A

a x dx a x ax a x
a
      
    

 

                              2 2 2 22 1 4 log log 2
1

2
1 4aA a A aA A

a
a                   (1-38) 

 

Moral: if you want to compute are length, brush up on your techniques of 

integration and dust off the table of integrals.  

Curves in IRn
 have lengths even when n > 3, as the following example 

illustrates. 

Example (1-1-16) :  

 Let p, q be two integers, and consider the curve in IR parametrized by 

 

                                        

cos

sin ,0 2

cos

sin sin

pt

t pt t

qt

qt

 

 
 
 
   
 
 
 
 

                      (1-39) 

Its length is given by 

 

2 2

2

2

0

2( sin sin ) (pcospcos ) ( sin sin ) ( coscos )P pt pt q qt q qt dt



        

 
2 22 p q               ( 1- 40 ) 

 

  can also measure data other than pure arc lenth, using the integal 

 

                                 1

1

( ( )) | '( ) |
c

f x d x def f t t dt                 (1- 41) 

 

for instance if f (x) gives the density of a wire of variable density, the 

integral above would give the mass of the wire. In other contexts 

(particularly surface area), it will be much harder to define the analogs of 

"arc length" independently of a parametrization. So here we give a direct 
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proof that the are length given by Equation (1- 33) does not depend on the 

chosen parametrization; later we will adapt this proof to harder problems. 

Proposition (1-1-17):(Arc length independent of parametrization)       

Suppose 3

1 1:  I   IR  and    3

2 2:  I   IR   are two parametrizations of the 

same curve 3C   RI . Then 

 

                                       
1 1

1 1 2 21 2' ( ) ( )'
I I

t dt t dt 
 

                     (1- 42) 

Example (1-1-18 ): (Parametrizing a half-circle) 

    We can parametrize the upper half of the unit circle by 

                
2

, 1 1,
1

x
x

x
x

 
   

  

   or by   
cos

,
sin

 t
t

o t
t


 

  
 

          (1- 43) 

 

In both cases we get length  . With the first parametrization we get 

 

                                   
 

2

2

[ 1,1] 1,12

1

  1
1

1

x
dx dxx

x
x

 

 
 

    
 

                    (1-44) 

 

 

1

( 1)
2

1,1

1
[ ] / 2 ( / 2)

1
dx arcsinx

x
  



   


  

The second gives  

            
 

2 2

0, [0, ] [0, ]

sin sin
sin cos

coscos

t
dt t t dt dx

t
  


 

    
 

              (1- 45) 

 

 

Proof of Proposition (1-1- 17): 

 Denote by   =  2 
-1

  o  1:   
       

   the "change of parameters map" such 

that   (t1) = t2. This map   goes from an open subset of I1 to an open subset 

of I2 by way of the curve;  1 takes a point of  I1 to the curve, and then   
   

takes it "backwards" from the curve to I2. Substituting  2 for f, 4i for g and 

T1 for a in Equation of the chain rule gives 

 

                              2 1 2 1 1 ( ) ( ( ) ( )D t D t D t                         (1- 46) 
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1

2 2 2 1 1  o o



                                            (1- 47) 

 

we can substitute    for (    o   ) in Equation (1- 46) to get 

 

                       
1 1 1

1 1 2 2 2 1

1 1 2 1 1

( ) ( )

( ) ( )

t t

D t D t D t

   

 

   

                              (1- 48) 

 

               
1

1 1 1 1( ) ( )D t t     and    1 1

2 1 2 1 2 2( ) ( )D t t t              (1- 49) 

 

are really column vectors (they go from IR  to 3IR ) and that [D (t1)], which 

goes from IR to IR, is a 1 x 1 matrix, i.e., really a number. So when we take 

absolute values,  

 

                     1 1 2 1 1[ ] [ ( )] [ ]D t D t D t                              (1- 50) 

 

   

 1

2 1

det [ ]

2 2 2 2 1 1 2' ( ) [  ( )] [ ]

D t

I I

t dt D t D t dt 





          

 

 

               
1 1

1 1 1 1 1 1[ ] ' ( )
I I

D t dt t dt                                   (1- 51) 

 

Section (1.2) :Surface , Manifolds and Fractional Dimension  
  The integrand       takes a parallelogram  1 2XP v , v and returns its area. In 

IR
3
, this means .  

                                2
1 2 1 2| | ( ( , ))Xd x P V V V V

 

                               (1- 52) 

 

the general formula, which works in all dimensions, and which is a special 

case of Theorem (1- 1- 4), is 
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           2
1 2 1 2 1 2| | ( ( , )) det(det( , , )

T

Xd x P V V V V V V                (1- 53) 

 

To integrate       over a surface, we wish to break up the surface into little 

parallelograms, add their areas, and take the limit as the decomposition 

becomes fine. Similarly, to integrate f        over a surface, we go through 

the same process, except that instead of adding areas we add f (x) x area of 

parallelogram. 

But while it is quite easy to define arc length as the limit of the length of 

inscribed polygons, and not much harder to prove that Equation (1-33) 

computes it, it is much harder to define surface area. In particular, the 

obvious idea of taking the limit of the area of inscribed triangles as the 

triangles become smaller and smaller only works if we are careful to prevent 

the triangles from becoming skinny as they get small, and then it isn't 

obvious that such inscribed polyhedral exist at all . The difficulties are not 

insurmountable, but they are daunting. 

Definition(1-2-1):(Surface area) 

   Let 3S  IR be a smooth surface parametrized by  : U   S , where U is an 

open subset of 2IR . Then the 

area of S is  

         
     2 2 2

1 2d x ( ( , ( )) d u det( ( ) ) d u
T

u

U U

P D u D u D u D u


             (1- 54) 

 

Let us see why this ought to be right. The area  

 

                             
2( )

lim   ( )
N

c D R

Area of C U




                             (1-55) 

 

That is, we make a dyadic decomposition of IR
2
 and see how   maps to S 

the dyadic squares C that are in U or straddle it. We then sum the areas of  

 (C   U), which, for C ⊂ U, is the same as  (C); for C that straddle U, we 

add to the sum the area of the part of C that is in U. The side length of a 

square C is 1/2
N
, so at least when C ⊂ U, the set y(C   U) is, as shown in 

Figure (1-5) , approximately the parallelogram . 
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Figure (1-5) 

Surface area 

 

                                                           1 2γ u

1 1
p . D γ u , D γ u

2N 2N

  
 
 

                          (1-56) 

where u is the lower left hand corner of C. 

That parallelogram has area 

 

                                         
T

2

1
det Dγ u Dγ u

2 N
                             (1-57) 

 

So it seems reasonable to expect that the error we make by replacing 

 

            ( )Area of C U    by     
T

2vol (c) det Dγ u Dγ u                     (1-58) 

 

Will disappear in the limit as N    .And the area given by Equation(1-58) 

is precisely a Riemann sum for the integral giving surface area: 

 
1 4 44

4
0

5 9y 2 5 9y1 9y
log log dy

2 4 1 9y

   
 
  
  

 

 

                                     
T 2

area of surface by Eq(1 54

det Dγ u Dγ u d u
U



                              (1-59) 

 

Unfortunately, this argument isn't entirely convincing. The parallelograms 

above can be imagined as some sort of tiling of the surface, gluing small flat 

tiles at the corners of a grid drawn on the surface, a bit like using ceramic 

tiles to cover a curved counter. It is true that we get a better and better fit 
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by choosing smaller and smaller tiles, but is it good enough? Our definition 

involves a parametrization ry; only when we have shown that surface area is 

independent of parametrization can we be sure that Definition (1-2-1) is 

correct. We will verify this after computing a couple of examples of surface 

integrals. 

Example (1-2-2): (Area of a torus) 

   Choose  0R r  . We obtain the torus shown in Figure  (1-6) by taking the 

circle of radius r in the (x, z)-plane that is centered at ,  z  0x R  , and 

rotating it around the z-axis. 

This surface is parametrized by 

 

 
Figure (1-6) 

Area of a torus 

 

                     

(R r cos u)cos v
u

γ (R r cos u)sin v
v

r sin u

 
   

    
   

 

                                  (1-  60) 

Then the surface area of the torus is given by the integral 

 

  

1 2D γ D γ

0,2π 0,2π

r sin u cos v (R r cos u)sin v

r sin u cos v (R r cos u)cos v

r cos u 0

    
   
  
   
      

  
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                     
2 2

2

0 0

R r cos u dudv 4π r Rr

 

                                         (1-61) 

 

Example (1-2-3): (Surface area: a harder problem) 

   What is the area of the graph of the function x
2
 + y

3
 above the unit square

2Q  IR ? 

Applying Equation (1-16), we parametrize the surface by 

 

                        
2 3

x
x

y
y

x y



 
   

   
    

  , and apply Equation(1-54)   

p
l

3
2n

n  
 
 

                                         

 

                               

1 2D γ D γ

1 1

2 4

2 0 0

1 0

0 1 dxdy 1 4 9

2x 3yQ

x y dxdy

   
   

   
   
      

           (1-62) 

 

 

The integral with respect  to x is one we can calculate (just barely in our 

case, checking our result with a table of integrals). First we get 

 

              
2 2 2 2 2

2 2 u u a a log(u u a )
u a du

2 2

  
                      (1-63) 

 

 

This leads to the integral 
1 1

2 4

0 0

1 4 9x y dxdy   

 
1

1 2 4 4 2 4

0
0

x 1 4 9 1 9y log log(2x 1 4 9 )
dy

2 4

x y x y      
  

  
  
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1 4 44

4
0

5 9y 2 5 9y1 9y
log log dy

2 4 1 9y

   
 
  
               (1-64) 

 

It is hopeless to try to integrate this mess in elementary terms: the first term 

requires elliptic functions, and we don't know of any class of special 

functions in which the second term could be expressed. But numerically, this 

is no big problem; Simpson's method with 20 steps gives the 

approximation1.93224957…… 

 

Now we will illustrate surface area is independent of the choice of 

parametrization., it is quite difficult to give a rigorous definition of surface 

area that does not rely on a parametrization. In Definition (1-2-1) we defined 

surface area using a parametrization; now we need to show that two different 

parametrizations of the same surface give the same area. Like Proposition 

(1-1-15 ) (the analogous statement for curves), this is an application of the 

change of variables formula . 

Proposition (1-2-4):(Surface area independent of parametrization) 

   Let S be a smooth surface in 3IR  and 3

1  :  U  IR   , 3

1  :  V  IR   be two 

parametrizations. Then 

 

       
T T2 2

1 1 2 2det Dγ u Dγ u d u det Dγ v Dγ v d v
U U

                              (1-65) 

 

Proof : 

We begin as we did with the proof of Proposition (1-2-4 ) . Define  
1 ok ok

2 2 : =  U  γ Vγ      to be the "change of parameters" map such that 

  v =   (u). 

Notice that the chain rule applied to the equation    =   
            =        

Gives 

        
      2 1 2γ ( ) ( ) ( ( ) ( ( )D Ф u D u D Ф u D Ф u                                 (1- 66) 

 

if we apply the change of variables formula, we find 

 

   
T 2

2 2det Dγ v Dγ v d v
v

        
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      2

2 2det( γ ( ) γ ( ) ) det ( ( ) d u
T

U

D Ф u D Ф u D Ф u          

 

        2

2 2det( ( ( ) ( ( ) ) det( ( ( ) ( ( ) ) d u
T T

U

D Ф u D Ф u D Ф u D Ф u          

 

         2

2 2det det ( ( ) ( ( ) ( ( ) ( ( ) d u
T T

U

D Ф u D Ф u D Ф u D Ф u          

 

    2

2 2det( γ ( ) γ ( ) ) d u
T

U

D Ф u D Ф u          

                          
T 2

1 1det Dγ u Dγ v d u
v

                             (1-67) 

 

Now we will study areas of  surfaces in IRn   , n  3. A surface (i.e., a two-

dimensional manifold) embedded in IRn  should have an area for any n, not 

just for n = 3. 

A first difficulty is that it is hard to imagine such surfaces, and perhaps 

impossible to visualize them. But it isn't particularly hard to describe them 

mathematically. 

For instance, the subset of 4IR  given by the two equations 

   
  +  

  =   
 ,   

 +   
  =   

  , is a surface; it corresponds to two equations in 

four unknowns. This surface is discussed in Example (1-2-5). More 

generally, we saw in Section(1-1) that the set nX  IR defined by the n - k 

equations in n variables 

 

 

                                  

1

1 0

n

x

f

x

 
 

 
 
 

 , …….

1

0  m

n

x

f

x

 
 

 
 
 

                          (1- 68) 

 

defines a k-dimensional manifold if   n n( )  :  IR  IRDf x  is onto for each        

x   X. 

 

 



 

24 
 

Example (1-2-5 ) : (Area of a surface in 4
IR ) 

   The surface described above, the subset of IR
4
 given by the two equations  

                   
  +  

  =   
       ,                  and                      

 +   
  =   

        is 

parametrized by 

                              

coscos

sin sin , , 2

coscos

sin sin

r u
u

r u o u v
v

r v

r v

 

 
 
  
    
  
 
 
 

                              (1- 69) 

and since 

T

γ γ

u u
D D

v v

         
         
            

 

1 1

1 1 1 1

2 2 2 2 2

2

r sin r sin u 0

0 0 0r sin r sin u r cos cos u r cos cos u

r sin r sin v r cos cos v r sin r sin v0 0 0

r cos cos v0

 
 

   
    

 
 

 

 

                                            
2

1

2

2

r 0

0 r

 
  
 

                                                (1-70) 

Equation (1-54 ) tells us that its area is given by 

   

T

γ γ

0,2π , 0,2π

u u
det D D  

v v
du dv

          
          
              

  

                                    
   

2 2

1 2

0,2π , 0,2π

r .r  du dv               (1-71) 
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Another class of surfaces in 4IR which is important in many applications, and 

which leads to remarkably simpler computations that one might expect, uses 

complex variables. Consider for instance the graph of the function  

f (z) = z
2
, where z is complex. This graph has the equation z2 = z1 in C

2
, or 

 

                          x
2
 =   

  -   
  , y2 = 2x1yt  in IR

4
.                          (1-72) 

 

Equation (1-54)  tells us how to compute the areas of such surfaces, if we 

manage to parametrize them. If S ⊂ IR
n
 is a surface, U ⊂ IR

2
 is an open 

subset, and     : U   IR
n
 is  aparametrization of S, then the area of S is given 

by 

 

                 
   

2 2

0,2π , 0,2π
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Example (1-2-6 ): (Area of a surface in C
2
)  

    Let us tackle the surface in C
2
 of Equation  

(1-73 ). More precisely, let us compute the area of the part of the surface of 

equation    
   =   

  , where        1. Polar coordinates for z1 give a nice way 

to parametrize the surface: 
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Again we need to compute the area of the parallelogram spanned by the two 

partial derivatives. Since 
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Now we will express volume of manifolds . Everything we have done so far 

in this chapter works for a manifold M of any dimension k, embedded in any 

IRn . The k-dimensional volume of such a manifold is written 

k

M

d x  

 

where       is the integrand that takes a k-parallelogram and returns its k 

dimensional volume. Heuristically, this integral is defined by cutting up the 

manifold into little k-parallelograms, adding their k-dimensional volumes 

and taking the limits of the sums as the decomposition becomes infinitely 

fine. 

The way to do this precisely is to parametrize M. That is, we find a subset. 
kU IR and a mapping :  U  M   which is differentiable, one to one and 

onto, with a derivative which is also one to one. 

Then the k-dimensional volume is defined to be  
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The independence of this integral from the chosen parametrization also goes 

through without any change at all. 

Proposition (1-2-7) :(Volume of manifold independent of 

parametrization)  

   If Ul   , U2 are subsets of IR
k
 and 1 :  U  M   , 2 :  V  M   are two 

parametrizations of M, then 
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Example (1-2-8) : (Volume of a three-dimensional manifold in IR
4
) 

  Let U ⊂ IR
3
 be an open set, and f : U   IR be a C

1
 function. Then the 

graph of f is a three-dimensional manifold in IR
4
, and it comes with the 

natural parametrization 
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We then have  

 
T

x x

det D Dy y

z z

 

       
       
       
               

 

 

                               
1

2

3

31 2

1 0 0 1 0 0

det 0 1 0 0 1 0

0 0 1 10 0

D f

D f

D f

D fD f D f

  
  
   
   
   
     
    

                   (1-79) 

 



 

28 
 

     

     

     

2

1 1 2 1 3

2

1 2 2 2 3

2

1 3 2 3 3

1 ( )

et 1 ( )

1 ( )

D f D f D f D f D f

d D f D f D f D f D f

D f D f D f D f D f

 
 

 
  

 

 
2 2 2

1 2 21 ( ) ( ) ( )D f D f D f     

So the three-dimensional volume of the graph of f is 
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It is a challenge to find any function for which this can be integrated in 

elementary terms. Let us try to find the area of the graph of 
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above the ball   (0) of radius R centered at the origin.Using spherical 

coordinates, this leads to. 
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Now we will discuss fractals and fractional dimension . In 1919, Felix 

Hausdorff showed that dimensions are not limited to length,area, volume, . .     

we can also speak of fractional dimension. This discovery acquired much 

greater significance with the work of Benoit Mandelbrot showing that many 

objects in nature (the lining of the lungs, the patterns of frost on windows, 

the patterns formed by a film of gasoline on water, for example) are fractais, 

with fractional dimension  
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Example (1-2-10) :(Koch snowflake) 

   We construct the Koch snowflake curve K as follows. Start with a line 

segment, say 0 < x < 1 , y = 0 in IR
2
. Replace its middle third by the top of 

an equilateral triangle, as shown in Figure (1-8)  This gives four segments, 

each one-third the length of the original segment. 

Now replace the middle third of each by the top of an equilateral triangle, 

and 1, so on . 

 
Figure (1-7) 

Koch snowflake 

 What is the length of this "curve"? At resolution N = 0, we get length 1. At  

resolution N = 1, when the curve consists of four segments, we get length    

4 . 1/3. At the next resolution, the length is 16.1/9. As our decomposition 

"Length" is the wrong word to apply to the Koch snowflake, which is neither 

a curve nor a surface. It is a fractal, with fractional dimension: the Koch 

snowflake has dimension log 4/ log 3   1.26 

     Let us see why this might be the case. Call A the part of the curve 

constructed on (0,1/3), and B the whole curve, as in Figure (1-8) . Then B 

consists. The first five steps in construct- of four copies of A. (This is true at 

any level, but it is easiest to see at the firsting the Koch snowflake. Its length 

level, the top graph in Figure (1-7). Therefore, in any dimension d, it should 

is infinite, but length is the wrong be true that vold(B) = 4vold(A). 

 
Figure (1-8) 

 

However, if you expand A by a factor of 3, you get B. (This is true in the 

limit, after the construction has been carried out infinitely many times.) 
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According to the principle that area goes as the square of the length, volume 

goes as the cube of the length, etc., we would expect d-dimensional volume 

to go as the dth power of the length, which leads to 

 

                                             .                                          (1-83) 

 

If you put this equation together with           =        , you will see that 

the only dimension in which the volume of the Koch curve can be different 

from 0 or   is the one for which 4 = 3
d
, i.e., d = log4/log3. 

If we break up the Koch curve into the pieces built on the sides constructed 

at the nth level (of which there are 4
n
, each of length 1/3

n
), and raise their 

side-lengths to the dth power, we find 
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(In Equation (1-85 ) we use the fact that a
x
 =        .) Although the terms 

have not been defined precisely, you might expect the computation above to 

mean  
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Example (1-2-11) : (Sierpinski gasket) 

    While the Koch snowflake looks like a thick curve, the Sierpinski gasket 

looks more like a thin surface. This is the subset of the plane obtained by 

taking a filled triangle of side length 1, removing the central inscribed 

subtriangle, then removing the central subtriangles from the three triangles 

that are left, then removing the central subtriangles from the nine triangles 

that are left, and so on; the process is sketched in Figure 

 (1-10).  We claim that this is a set of dimension log 3/log 2: at the nth stage 

of the construction, sum, over all the little pieces, the side-length to the 

power p: 
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Figure (1-9) 

Sierpinski gasket 

 (If measuring length, p = 1; if measuring area, p = 2.) If the set really had a 

length, then the sum would converge when p = 1, as n    ; in fact, the sum 

is infinite. If it really had an area, then the power p = 2 would lead to a finite 

limit; in fact, the sum is 0. But when P = log 3 /  log 2 , the sum converges to 
3/ 2 1.58log logL L . This is the only dimension in which the Sierpinski gasket has 

finite, nonzero measure; in dimensions greater than log 3 /  log 2 , the measure 

is 0, and in dimensions less than log 3 /  log 2  it is infinite . 


