Chapter(1)
Parallelograms, Fractals and Fractional Dimension

Section (1.1):Parallelograms, parametrizations and arc length

We specify a k-parallelogram in IR" by the point x where it is anchored, and
the k vectors which span it.

Definition( 1-1-1):

A k-parallelogram in IR" is the subset of IR".

N
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where x IR" is a point and Vi,...W « arek vectors. The corner X is part of
the data, but the order in which the vectors are listed is not.

For example,
(1) p, (\7) is the line segment joining x to X + .

(2) p, (\7 WV 2) 1s the (ordinary) parallelogram with its four vertices
X, X 4V, X +V, X +V, 4V,

(3) p, (\71,\72,\73) is the (ordinary) parallelepiped with its eight vertices at.

X, X+Vy, X +V2, X +V3, X +V1+V2

X+Vi1+V3, ,X+V1+V3, , X +V1i+V2+Vs

Now we will discuss the volume of k-parallelograms.

Clearly the k-dimensional volume of a k-parallelogram px(\71 ...... v «) does

not depend on the position of x in IR". But it isn't obvious how to compute
this volume. Already the area of a parallelogram in IR® is the length of the
cross product of the two vectors spanning it , and the formula is quite messy.
How will we compute the area of a parallelogram in IR*, where the cross
product does not exist, never mind a 3-parallelogram in IR>?

It comes as a nice surprise that there is a very pretty formula that covers all
cases. The following proposition, which seems so innocent, is the key.



Proposition (1-1-2):
(Volume of a k-parallelogram in IR*) Let V1.V« be k vectors in IR, so

that T = [\71 ...... Vv «] IS asquare k x k matrix. Then

VOl P(1,...V ) = /det(T 'T) (1-1)

Proof:
We have
\Jdet(T 'T ) = \[detdet(T ) det det(T )/(detT )* =[det T ] (1-2)
T
. Vi Vo .. Vg
Vi [ P L ]
=T — - - - -
Vo | TIVLR VY, L VLV (1-3)
vr 71 72 |71|2 72 7K
K .
TT - - — .—) s
Vi.Vk Vy.Vg [Val?
TTT

The point of this is that the entries of T'T are all dot products of the vectors
vi . In particular, they are computable from the lengths of the vectors vi......V
and angles between these vectors; no further information about the vectors is
needed.

Example (1-1-3):
(Computing the volume of parallelograms in IR? and IR®) When k = 2, we
have

Vi vivg

Vive |v2f

det(T T )—de‘{ }Nz V2|2 <V2V2)? (1-4)

If you write v, . V,= | V4|* .| ¥5|* (1- cos®8), this becomes

det(TTT):}le.Fzz 2.F22|sin2¢9| (1- 5)

so that the area of the parallelogram spanned by v; . v, is

(1-cos20)= }‘/41




VOLp[1V2 ) =+/detT 'T) =vi.|v2 [Ising] (1- 6)

Of course, this should come as no surprise; But exactly the same
computation in the case n = 3 leads to a much less familiar formula. Suppose
T = [v1, Vo . V3], and let us call 8, the angle between Vv, and V5 , 8, the angle
between v, and Vs, and 8, the angle between v, and v,. Then

Vi ViVa ViVs
T'T=ViV2: [Vof VoV (1-7)

ViVis VoVis Vaf

and det T'T is given by

| VA2 | Vo2 | Vo + 2(V1 . Vo) (Vo Va) (V1. V) - | Vi (Vs . Va)2 - | Vo]
(V. V) - | Vo (V1. V) (1- 8)

= | 71|2| 172|2 | 173|2(1+2 cos 0, cos 8, .cos 05 - Cos’0;+ Cos® 0,+ Cos°65))

For instance, the volume of a parallelepiped spanned by three unit vectors,
each making an angle of /4 with the others, is

J1+ 2c0s3% —3c0s27Z = \/_2—_1 (1-9)
4 4 2

Thus we have a formula for the volume of a parallelogram that depends only
on the lengths and angles of the vectors that span it; we do not need to know
what or where the vectors actually are. In particular, this formula is just as
good for a k-parallelogram in any IR", even (and especially) if n > k.

This leads to the following theorem.

Theorem (1- 1- 4):(Volume of a k-parallelogram in IR")

Let V..., Vi be k vectors in IR", and T be the n x k matrix with these
vectors as its columns:

T 171 17k]. Then the k-dimensional volume of PX(I71 I7k) IS

VOLP W 1V 2) =+/det(T 'T) (1-10)



Proof:
If we compute T'T, we find

2

V1 Vi.V2 ... Vi.Vp

TT =|vive v V2.Vi (1-11)

Vi.Van  V2.Vpn

which is precisely our formula for the k-dimensional volume of
a k-parallelogram in terms of lengths and angles.
Example (1- 1- 5):

What is the volume of the 3-parallelogram in IR* spanned by

1 0 0
vi=|0|,va=|1]|,vs=|0
0 0 1
1] 1] 1]
SetT=(v,,V,,Vs)then
2 1 1
TTT={1 2 1 and det T'T =4
1 1 2

so the volume is 2.

Now in the following in this section we are going to relax our
definition of a parametrization. In we said that a parametrization of a
manifold M is a C' mapping ¢ from an open subset U = IR" to M, which is
one to one and onto, and whose derivative is also one to one.
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The problem with this definition is that most manifolds do not admit a
parametrization. Even the circle does not; neither does the sphere, nor the
torus. On the other hand, our entire theory of integration over manifolds is
going to depend on parametrizations, and we cannot simply give up on most
examples.

Let us examine what goes wrong for the circle and the sphere. The most

obvious parametrization of the circle is y : t — (5°) The problem is
choosing a domain: If we choose (0, 2r), then y is not onto. If we choose
(0, 2m), the domain is not open, and y is not one to one. If we choose
(0, 2m), the domain is not open.
For the sphere, spherical coordinates
cos@cosé
y:(Zj—) cospsin g (1-12)

sing

present the same sort of problem. If we use as domain
(-m/2, m/2) x (0, 2m) , then y is not onto; if we use [-1t/2, /2] X [0, 2m],
then the map is not one to one, and the derivative is not one to one at points
where ¢ = +m/2, ...

The key point for both these examples is that the trouble occurs on
sets of volume 0, and therefore it should not matter when we integrate. Our
new definition of a parametrization will be exactly the old one, except that
we allow things to go wrong on sets of k-dimensional volume O when
parametrizing k-dimensional manifolds.

Now we will study sets of k-dimensional volume 0 in IR"

Let X be a subset of IR". We need to know when X is negligible as far as
k-dimensional integrals are concerned. Intuitively it should be fairly clear
what this means: points are negligible for 1-dimensional integrals or higher,
points and curves are negligible for 2-dimensional integrals, etc.

It is possible to define the k-dimensional volume of an arbitrary subset
X < IR". That definition is quite elaborate; it is considerably simpler to say
when such a subset has k-dimensional volume 0.

Definition (1- 1- 6):
A bounded subset of IR" has k-dimensional volume O if

lim > (2—N =0 (1-13)



An arbitrary subset X has k-dimensional volume O if for all R, the bounded
set XNB, (0) has k-dimensional volume O.

Definition (1- 1-7):( parametrization of manifold )

Let McIR"be a k-dimensional manifold and U be a subset of IR with
boundary of k-dimensional volume O;
let X< U have k-dimensional volume 0, and let U — X be open. Then a
continuous mapping y:U —IR" parametrizes M if

1)y(U)o>M;
(2) (U - X) = M;
(3) »(U - X) —» M is one to one, of class C', with locally Lipschitz

derivative;
(4) the derivative [D ¥ (u)] isonetoone foralluin U — X;
(5) y(X) has k-dimensional volume 0.
Often condition (1) will be an equality; for example, if M is a sphere and U
a closed rectangle mapped to M by spherical coordinates, then y (U) = M. In
that case, X is the boundary of U, and y(X) consists of the poles and half a
great circle (the international date line, for example), giving (U — X) = M
for condition (2).
Example(1-1-8):(Parametrization of a cone)

The subset of IR® of equation x*+ y*=2z?, shown in Figure(1-1) , is not a

manifold in the neighborhood of the vertex, which is at the origin. However,
the subset

Figure(1-1)
Parametriztion of a cone

X
M =4y |X,+Yy,-2,=0,0<z<1 (1- 14)
z



is a manifold. Consider the map »: [0, 1] x [0, 2] >IR® given by

rcosé

v [;j rsinsiné (1- 15)
r

If we let U = [0,1] x[0, 27], and X =oU , then y is a parametrization of M.
Indeed, y : ([0.1] x[0, 2z])>M (it contains the vertex and the circle of
radius 1 in the plane z = 1, in addition to M), and y does map ([0,1] x [0, 27])
into M (this time, it omits the line segmentx = z, y = 0). The map is one to
one on([0,1] x [0, 2z]), and so is its derivative.
Now we will discuss a small catalog of parametrizations.
As we will see below, essentially all manifolds admit parametrizations with
the new definition. But it is one thing to construct such a parametrization
using the implicit function theorem, and another to write down a
parametrization explicitly.
Below we give a few examples, which frequently show up in applications
and exam problems.
If U is an open subset of IR" with boundary all of k-dimensional volume 0,

and f : U—IR"™ is a C' mapping, then the graph of f is a manifold inIR" |
and the map .

X
X —>(f (X)j (1- 16)
IS a parametrization.

There are many cases where the idea of parametrizing as a graph still
works, even though the conditions above are not satisfied: those where you
can "solve" the defining equation for n — k of the variables in terms of the
other k.

Example (1-1-9): (Parametrizing as a graph)
Consider the surface in IR®of equation x*+ y*+ z°= 1. In this case you
can "solve" for x as a functionof y and z:

X =Ffl-y?-z° 1-17)

You could also solve for y or for z, as a function of the other variables, and
the three approaches give different views of the surface, as shown in Figure
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(1-2). Of course, before you can call any of these parametrizations, you
have to specify exactly what the domain is. When the equation is solved for
X, the domain is the subset of the (y, z)-plane wherel — y*- z°> 0. When
solving for y, remember that every number has a unique cube root, so the
function y = (1 - x*-2°)" is defined at every point, but it is not
differentiable when x*+ 2°= 1, so this curve must be included in the

set X of trouble points that can be ignored (using the notation of Definition
(1-1-7))

-
g T e e SRRag="C
--a-—-"--_-.__;-_-—.-
T
e~

Figure(1-2)
Parametrization of agraph

Now we will illustrate Surfaces of revolution. The graph of a function f (x) is
the curve C of equationy = f (x).

Let us suppose that f takes only positive values, and rotate C around the
X-axis, to get the surface of revolution of equation

y*+2° = (f(2))" (1-18)
This surface can be parametrized by:

X

& (X j — | f(x)cos@ (1-19)
f(x)sin 0

Again, to be precise one must specify the domain of y. Suppose that f



(a, b)—IRis defined and continuously differentiable on (a, b). Then the
domain of y is (a, b) x (0, 2z) and -y is one to one, with derivative also one
to one on (a, b) x (0, 27)

If C is a parametrized curve, (not necessarily a graph), say parametrized by
t— (Zgg) , the surface obtained by rotating C can still be parametrized by:

‘ u(t)
[ j—) u(t)cos @ (1-20)
u(t)sing

Spherical coordinates on the sphere of radius R are a special case of this
construction: If C is the semi-circle of radius R in the (X, z)-plane,
parametrized by:

(x =R cos¢

_ ]—7[/237[/2 (1-21)
Z =Rsing

then the surface obtained by rotating this circle is precisely the sphere of
radius R centered at the origin in IR?, parametrized by:

R cosgcosé

(Hj — | Rcosgsin @ (1-22)
? Rsing

the parametrization of the sphere by latitude and longitude
Example (1-1-10):
Consider the surface obtained by rotating the curve of equation (1 - x)* = z*
in the (X, z)-plane around the z-axis. This surface has the equation
(1 =X 24Y 2)* = 22,

The curve can be parametrized by:

(X jt —1-t*=t% (1-23)



so the surface can be parametrized by

, (1-t*)cosé
( ]—) (1-t*)sin@ (1-24)

Figure(1-3)
Represent the image of parametriztion
Figure(1-3) represents the image of the parametrization|t|< 1, 0<6<3z/2.

It can be guessed from the picture (and proved from the formula) that the
subset of [-1, 1] x [0, 3z /2]where t = +1 are trouble points (they correspond

to the top and bottom "cone points™), and so is the subset {0} x [0, 37/2],
which corresponds to a "curve of cusps."

Now we will discuss the existence of parametrizations.

Since our entire theory of integrals will be based on parametrizations, it
would be nice to know that manifolds, or at least some fairly large class of
manifolds, actually can be parametrized.

Remark (1-1-11):

There is here some ambiguity as to what "actually” means. In the above
examples, we came up with a formula for the parametrizing map, and that is
what you would always like, especially if you want to evaluate an integral.
Unfortunately, when a manifold is given by equations (the usual situation), it
is usually impossible to find formulas for parametrizations. the
parametrizing mappings only exist in the sense that the implicit function
theorem guarantees their existence. If you really want to know the value of
the mapping at a point, you will need to solve a system of nonlinear
equations, presumably using Newton's method; you will not be able to find a
formula .
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Theorem (1-1-12): (What manifolds can be parametrized)
Let M < IR"be a manifold, such that there are finitely many open subsets
U, = Mcovering M, corresponding subsets v < IR*all with boundaries of k-

dimensicnal

volume 0, and continuous mappings y; : v.— M which are one to one on V; ,
with derivatives which are also one to one. Then M can be parametrized.

It is rather hard to think of any manifold that does not satisfy the hypotheses
of the theorem, hence be parametrized. Any compact manifold satisfies the
hypotheses, as does any open subset of a manifold with compact closure. We
will assume that our manifolds can all be parametrized. The proof of this
theorem is technical and not very interesting.

Now we will study change of parametrization.

Our theory of integration over manifolds will be set up in terms of
parametrizations, but of course we want the quantities computed (arc length,
surface area , fluxes of vector fields, etc.), to depend only on the manifold
and the integrand, not the chosen parametrization. We show that the length
of a curve, the area of a surface and, more generally, the volume of a
manifold, are independent of the parametrization used in computing the
length, area or volume. In all three cases, the tool we use is the change of
variables formula for improper integrals, we set up a change of variables
mapping and apply the change of variables formula to it. We need to justify
this procedure, by showing that our change of variables mapping is
something to which the change of variables formula can be applied.

Suppose we have a k-dimensional manifold M and two parametrizations

v1:U; > M and  y,:U, > M (1-25)

where U; and U, are subsets of IR*. Our candidate for the change of
variables
mappingis @ =y, oy, i.e.,

U——M——>U (1-26)

1 I'{
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Example (1-1-13):(Problems when changing parametrizations)

Let y, and ¥, be two parametrizations of S* by spherical coordinates, but
with different poles. Call P, , P ( the poles for y, and P,, P’, the poles for
y, . Then ¥, 0y, is not defined at y,™* ({P,, P',}). Indeed, some one point in
the domain of y; maps to P,.' But as shown in Figure(1-4) , y, maps a whole
segment to P,, so that ¥, 0y, maps a point to a line segment, which is
nonsense. The only way to deal with this is to remove y,™* ({P,, P',}) from
the domain of 0, and hope that the boundary still has k-volume 0. In this case
this is no problem: we just removed two points from the domain, and two
points certainly have area 0.

'
1l
S
H
i

ST ) s
Figure(1-4)
Changing parametrization
Let us set up our change of variables with a bit more precision. Let U; and
U, be subsets of IR*. Following the notation of Definition (1-1-7 ), denote by
X the negligible "trouble spots" of ¥4, and by X, the trouble spots of y,. In
Example (1-1-11) , X; and X, consist of the points that are mapped to the
poles
(i.e., the lines marked in bold in Figure(1-4) , 'If P, happens ables to be on
the date line with respect to y;, two points map to P,: in Figure, a point on
the right-hand boundary of the rectangle, and the corresponding point on the
left-hand boundary

Yy, = (71_1071)()(1) and Y, = (7{1072)(X 2) (1_27)
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In Figure(1-5) , the dark dot in the rectangle at left is y,, which is mapped by
y1 to a pole of y, and then by yz'l to the dark line at right; y; is the
(unmarked) dot in the right rectangle that maps to the pole of y;.
Set

UX=U,-(XUy,) and U} =U,-(XUY),) (1-28)

I.e., we use the superscript "ok" to denote the domain or range of a change of
mapping with any trouble spots of volume 0 removed

Theorem (1-1-14):
Both U, and U,’*are open subsets of IR* with boundaries

of k-dimensional volume 0, and
P: Ulok - Uzok :72_1074
is a C' diffeomorphism with locally Lipschitz inverse.

Theorem (1-1-14) says that @ is something to which the change of variables
formula applies.
Now we will study integrand\dlx\, called the element of arc length, is an

integrand to be integrated over curves. As such, it should take
a 1-parallelogram P, ¢)in IR"(i.e., a line segment) and return a number,

and that is what it does:
[ (.0 )= | (1-29)

More generally, if f is a function on IR", then the integrand f ‘dlx‘ is defined
by the formula

el (. ) =F (O | (1-30)
If C<IR"is a smooth curve, the integral

J|a*x] (1-31)

C

is the number obtained by the following process: approximate C by little line

segments as in Figure(1-5), apply | d'x | to each to get its length, and add.
Then let the approximation become infinitely fine; the limit is by definition
the length of C. We carried out this computation when | is the interval [a, b],
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and Cc IR® is a smooth curve parametrized by y: | - IR®, and showed that
the limit is given by

[la*x]p,, (' ®Ot =[ ') ot (1-32)

In particular, the integral

[7' ) |dt] (1-33)
|

depends only on C and not on the parametrization.
Example (1-1-15):
The graph of a C' function f(x), for a<x<b, is parametrized by

: %[f ?x)] (1-34)

and hence its arc length is given by the integral

sl

[20]
Because of the square root, these integrals tend to be unpleasant or
impossible to calculate in elementary terms. The following example, already
pretty hard, is still one of the simplest. The length of the arc of parabola
y = ax* for 0<x <A is given by

b

dx | = [L+(F'(x))°dx (1-35)

a

A
j\/1+ 4a®x 2dx (1-36)
0]

A table of integrals will tell you that

Area of y(C NU )VOIZ(C)\/det[Dy(u)]T [Dy(u)] (1-37)
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Setting 2ax = u, this leads to

A
I\/1+ 4a’x *dx = i[2&1x\/1+ 4a’x * +log ‘Zax ++/1+4a°x?
0

4a

]

) (1-38)

- Zi(ZaA\/1+ 4a?A’ +log log ‘ZaA L+ 4a?A?
a

Moral: if you want to compute are length, brush up on your techniques of
integration and dust off the table of integrals.

Curves in IR" have lengths even when n > 3, as the following example
ilustrates.

Example (1-1-16) :

Let p, g be two integers, and consider the curve in IR parametrized by

cos pt

y(t)=| sinpt |,0<t<2x (1-39)
cosqt

sinsinqt

Its length is given by

2
J'\/(—P sinsin pt)? + (pcospcospt )? + (—q sinsingt)* + (g cos cosqt )*dt
0

=27\p*+q° (1-40)

can also measure data other than pure arc lenth, using the integal

[ GOl |)eef [t Gen17 @) 1jt] (1- 41)

c

for instance if f (x) gives the density of a wire of variable density, the
integral above would give the mass of the wire. In other contexts
(particularly surface area), it will be much harder to define the analogs of
"arc length™ independently of a parametrization. So here we give a direct
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proof that the are length given by Equation (1- 33) does not depend on the
chosen parametrization; later we will adapt this proof to harder problems.
Proposition (1-1-17):(Arc length independent of parametrization)
Suppose y,: I,—»>IR*and  y,: I,— IR® are two parametrizations of the

same curvecC <IR®. Then

7, (t,)

[[eenl=]

74 ()
I I

Example (1-1-18 ): (Parametrizing a half-circle)
We can parametrize the upper half of the unit circle by

X cost
x—{ﬁj,—léx <1, orhy t—)(sint],OStSﬂ' (1- 43)

In both cases we get length 7r. With the first parametrization we get

dt,| (1- 42)

1 2
I{ X Jldxlj 1+ o (1-44)

=14 1_x 2 [-11] —X

[ st sinc = /2 (12
-1 V4~

The second gives
J. —sinsint
coscost

[0.7]

Proof of Proposition (1-1- 17):

Denote by @ =y, * 0 yq: I2% - I9% the "change of parameters map" such
that @ (t;) =t,. This map @ goes from an open subset of I, to an open subset
of 1, by way of the curve; y, takes a point of 1, to the curve, and then y; !
takes it "backwards" from the curve to I,. Substituting y, for f, 4i for g and
T, for a in Equation of the chain rule gives

dt| = I \sin’t +cos’t [dt| = _[ jdx | =7 (1- 45)

[0,7] [0,7]

‘D (7/2O CD) (tl)‘ :‘D (72 (q)(tl))‘ O‘Dq)(tl)‘ (1' 46)
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—

7,00 =7, 7,07, =7, (1- 47)

we can substitute y, for (y; 0 @) in Equation (1- 46) to get

|D71(t1)|:‘D72(q)(t1))HDCD(t1)‘ (1- 48)
%/_J A ~ J o\ ~ J
7t (t) 72t (ty) 72°0n

‘D7/1(t1)‘ = 751(t1) and ‘D72(q)(t1))‘ :7/2_1CD('[1) :7z_1(t2) (1- 49)

are really column vectors (they go from IR toIR®) and that [D@(t;)], which
goes from IRto IR, isa 1 x 1 matrix, i.e., really a number. So when we take
absolute values,

Dy (t,)]=[[Dy, (@, |[DD ()] (1- 50)

det|[D@(t )]

it = [0 (.° @) )] - [P ¢ et

I

7,(t,)

J

I

7;l1(t1) ‘dtl‘ (1-51)

:IH[D71 (tl)]Hdtl‘:I

Iy

Section (1.2) :Surface , Manifolds and Fractional Dimension
The integrand |d?x| takes a parallelogram PX(\71,\72)and returns its area. In

IR3, this means .

142 | (P, 1 2) =F v (1- 52)

the general formula, which works in all dimensions, and which is a special
case of Theorem (1- 1- 4), is
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p WV 2] (1- 53)
To integrate |d?x| over a surface, we wish to break up the surface into little
parallelograms, add their areas, and take the limit as the decomposition
becomes fine. Similarly, to integrate f |d?x| over a surface, we go through
the same process, except that instead of adding areas we add f (x) x area of
parallelogram.
But while it is quite easy to define arc length as the limit of the length of
inscribed polygons, and not much harder to prove that Equation (1-33)
computes it, it is much harder to define surface area. In particular, the
obvious idea of taking the limit of the area of inscribed triangles as the
triangles become smaller and smaller only works if we are careful to prevent
the triangles from becoming skinny as they get small, and then it isn't
obvious that such inscribed polyhedral exist at all . The difficulties are not
insurmountable, but they are daunting.
Definition(1-2-1):(Surface area)

Let S — IR*be a smooth surface parametrized by : U — S, where U is an
open subset of IR*. Then the
area of S'is
[|e*X|(P,,,,(D;7 (u), D" 7@))|du] = [ {det(D y (u)

U

U

|d2x [ (P, V 1V 2)) = \/det(det(}\/ LV 2

‘T

Dy@))|du]  (1-54)

Let us see why this ought to be right. The area

lim Y. Areaof y(C nU) (1-55)

© 2
ceD(R7)

That is, we make a dyadic decomposition of IR* and see how y maps to S
the dyadic squares C that are in U or straddle it. We then sum the areas of
y(C n U), which, for C c U, is the same as y(C); for C that straddle U, we
add to the sum the area of the part of C that is in U. The side length of a
square C is 1/2", so at least when C c U, the set y(C n U) is, as shown in
Figure (1-5) , approximately the parallelogram .
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Figure (1-5)
Surface area

1 2 1 2>
pﬂu)-(ﬁ Duy(u), 55Dz v(u)j (1-56)
where u is the lower left hand corner of C.
That parallelogram has area
1 T
N Jaet[Dy(u)] [Py ()] (1-57)

So it seems reasonable to expect that the error we make by replacing

Area of y(C NU) by volz(c)\/det[Dy(u)]T[Dy(u)] (1-58)

Will disappear in the limit as N — co .And the area given by Equation(1-58)
Is precisely a Riemann sum for the integral giving surface area:

j- \5+9y* +1+9y4 log log 2+/5+9y* dy
0 2 4 J1+9y*

j\/detl:Dy(u)]T I:Dy(u):l ‘dzu‘ (2-59)

area of surface by Eq(1-54

Unfortunately, this argument isn't entirely convincing. The parallelograms
above can be imagined as some sort of tiling of the surface, gluing small flat
tiles at the corners of a grid drawn on the surface, a bit like using ceramic
tiles to cover a curved counter. It is true that we get a better and better fit
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by choosing smaller and smaller tiles, but is it good enough? Our definition
involves a parametrization ry; only when we have shown that surface area is
independent of parametrization can we be sure that Definition (1-2-1) is
correct. We will verify this after computing a couple of examples of surface
integrals.

Example (1-2-2): (Area of a torus)

ChooseR >r > 0. We obtain the torus shown in Figure (1-6) by taking the
circle of radius r in the (x, z)-plane that is centered at x =R, z = 0, and
rotating it around the z-axis.

This surface is parametrized by

Figure (1-6)
Area of a torus

(R +rcosu)cosv
} (1- 60)

y[uj = {(R+rcosu)sinv
\"

rsinu
Then the surface area of the torus is given by the integral

D,y D,y

—rsinucosv | | (R+rcosu)sinv

—rsinucosv |x| (R +rcosu)cosv

202l reosu 0
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2727
r.[ I(R+rcosu)dudv=4n2rR (1-61)

00

Example (1-2-3): (Surface area: a harder problem)

What is the area of the graph of the function x* + y* above the unit square
QcIR??
Applying Equation (1-16), we parametrize the surface by

X
y(x ] —| , and apply Equation(1-54)
y x2+y?

(an)

lj1Y lsz

1 0 1
J' 0 x| 1 |||dxdy|= J.J'~/1+ 4x * +9y “dxdy (1-62)
el 2x | |3y? 00

The integral with respect to x is one we can calculate (just barely in our
case, checking our result with a table of integrals). First we get

2 2 2 2 2
J~ /—u2+a2du:u\/u2+a L2 Iog(u+2\/u +a°) (1-63)

This leads to the integral

_1[le+ 4x * +9y “dxdy
00

1
j‘{xw/l+4x T+9y* | 1+9y*loglog(x+ L+ 4x*+9y ) &y
- 2 4
0

0
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j 5+9y 1+9y4loglogz+«/5+9y4 dy
; 4 J1+9y* (1-64)

It is hopeless to try to integrate this mess in elementary terms: the first term
requires elliptic functions, and we don't know of any class of special
functions in which the second term could be expressed. But numerically, this
IS no big problem; Simpson's method with 20 steps gives the
approximation1.93224957......

Now we will illustrate surface area is independent of the choice of
parametrization., it is quite difficult to give a rigorous definition of surface
area that does not rely on a parametrization. In Definition (1-2-1) we defined
surface area using a parametrization; now we need to show that two different
parametrizations of the same surface give the same area. Like Proposition
(1-1-15 ) (the analogous statement for curves), this is an application of the
change of variables formula .
Proposition (1-2-4):(Surface area independent of parametrization)

Let S be a smooth surface in IR® andy,: U—=IR® , »:V—IR® be two

parametrizations. Then

J Jaet[ Dy, (u)] [Dy, (u)][d%|= j Jdet[Dy, (v)T [y, (v)][d%] (1-65)

Proof :
We begin as we did with the proof of Proposition (1-2-4 ) . Define
¢ =7,'0v,: U™ - V°* to be the "change of parameters" map such that
v=0ao (u).
Notice that the chain rule applied to the equation y; = y;loy, oy; =y, 0 @
Gives

[D(v,00) )| =[Dy,@)]=[Dy,(@w)][D(@w)] (1- 66)

if we apply the change of variables formula, we find

\/det[Dyz [Dyz ‘dzv‘
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=| \/ det(( D (v,00) @) ] [ D (v,00)@)])|det[D(@w)]||d|

= \/det([[Dyz((D(u)]]T [[D7, ((D(u)]])\/det([D @W)] [D@@)])|d*]

:j\/dEIdEt(I:[D]/Z(@(u)]:IT [[D;/Z(cb(u)]][D @w)] [D(@(u)])‘dZU‘

= [ Jdet( D (v,00) )] [D (v,00)@)|d%]

- e 0 (0)] [0 )] a6

Now we will study areas of surfaces in IR" , n >3. A surface (i.e., a two-
dimensional manifold) embedded in IR" should have an area for any n, not
just for n = 3.

A first difficulty is that it is hard to imagine such surfaces, and perhaps
impossible to visualize them. But it isn't particularly hard to describe them
mathematically.

For instance, the subset of IR* given by the two equations

x? +x% =rf, x5+ x7 = v/, is a surface; it corresponds to two equations in
four unknowns. This surface is discussed in Example (1-2-5). More
generally, we saw in Section(1-1) that the set X< IR"defined by the n - k
equations in n variables

fol o =0 . ful & [=0 (1- 68)

defines a k-dimensional manifold if [Df (x)] : IR" »IR"is onto for each
X € X.
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Example (1-2-5) : (Area of a surface in IR*)
The surface descrlbed above, the subset of IR given by the two equatlons

xt+xZ=rf and x2+ xZ =1} IS
parametrized by
I COSCosu
u .
7/( ]: rsinsinu |,0 <u,yv <2rx (1- 69)
v
I COS COSV
rsinsinv
and since
-
D - D -
v (v
—r,sinr;sinu 0
—r,sinr;sinur, coscosu 0 0 r,coscosu 0
0 0 —r,sinr,sinvr, coscosv 0 —r,sinr,sinv
0 r, COSCOSV
¥ 0
= 1-70
5 o )

Equation (1-54 ) tells us that its area is given by

-
_[ det| | D, [(UD D, [(un du dv |
[0,27}[0,21] v v

_ J Jr2r? du dv]| w7

[0 27I 0 27t]
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Another class of surfaces in IR*which is important in many applications, and
which leads to remarkably simpler computations that one might expect, uses
complex variables. Consider for instance the graph of the function

f (z) = 2%, where z is complex. This graph has the equation z, = z, in C?, or

X* = x2 -y2 Y, = 2%y, in IR%. (1-72)

Equation (1-54) tells us how to compute the areas of such surfaces, if we
manage to parametrize them. If S c IR" is a surface, U c IR? is an open
subset, and y : U - IR"is aparametrization of S, then the area of S is given

by

flox|= | \/det([Dy(u)]T Dy @73
: i

0,2x],[0,2x]

Example (1-2-6 ): (Area of a surface in C?)

Let us tackle the surface in C? of Equation
(1-73 ). More precisely, let us compute the area of the part of the surface of
equation z;= zZ , where |z;| < 1. Polar coordinates for z, give a nice way
to parametrize the surface:

; r cos@
y[@j: rsind |,0<r<10<60<2n (1-74)

r’cos26

rsin 26

Again we need to compute the area of the parallelogram spanned by the two

partial derivatives. Since
T
D ' D '
o) o)
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coso —1sind

cos0 sinO 2rcos20 2rsin260 sin© rcoso
- {—rsin@ rcosO —r” sin 20 2r° cos 26} 2rcos20  —r?sin 20
2rsin20  2r%cos 260

| 1+4r? 0
10 rP@A+4rd) (1-75)

oitoen \/ deﬂD 7@} {D y[;m drao]  (1-76)

2 3
j JrP(@+4r?)|du dv| = 27Z'|:r—+ r“} =37
N 2 o

[0.1]x[0,2x]

aquare root of
a perfect square

Now we will express volume of manifolds . Everything we have done so far
In this chapter works for a manifold M of any dimension k, embedded in any
IR" . The k-dimensional volume of such a manifold is written

[l
M

where |d¥x| is the integrand that takes a k-parallelogram and returns its k
dimensional volume. Heuristically, this integral is defined by cutting up the
manifold into little k-parallelograms, adding their k-dimensional volumes
and taking the limits of the sums as the decomposition becomes infinitely
fine.

The way to do this precisely is to parametrize M. That is, we find a subset.
UcIR*and a mapping y: U— M which is differentiable, one to one and
onto, with a derivative which is also one to one.

Then the k-dimensional volume is defined to be

I\/det([D;/(u)]T [Dy(u)])‘d"u‘ (1-77)
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The independence of this integral from the chosen parametrization also goes
through without any change at all.
Proposition  (1-2-7) :(Volume of manifold independent of
parametrization)

If U, U, are subsets of IR andy,: U>M , »,: V—>M are two

parametrizations of M, then

J\/det([Dy(u)]T [Dy(u)])\dku\:j\/det([Dy(v)]T [D7)])[d*]

Example (1-2-8) : (Volume of a three-dimensional manifold in IR*)

Let U c IR® be an open set, and f : U — IR be a C* function. Then the
graph of f is a three-dimensional manifold in IR*, and it comes with the
natural parametrization

N N (1-78)
Iy |= Yy
z z
X
fly
y4
We then have
.
X X
det| | Dyl y Dyly
y4 z
100Df] 1 0 0O
det[[{0 1 0 Df| O 1 0O (1-79)
0 0 1 D.f 0 0 1
|Df D,f D,f |
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1+(D,f )*  (Df )(D,f ) (Dsf )(Dsf )
det|(Df )(D,f) 1+(D,f)? (D,f )(Dsf )
(Df )(Dsf ) (D,f )(Df) 1+(Dsf )2

=1+(D,f )? +(D,f )* +(D,f )’
So the three-dimensional volume of the graph of fis

[+ (D,f ) +(D,f ) +(D,f ) d | (1-80)

U

It is a challenge to find any function for which this can be integrated in
elementary terms. Let us try to find the area of the graph of

:%(X2+y2+22) (1_81)

—h
N < X

above the ball B;(0) of radius R centered at the origin.Using spherical
coordinates, this leads to.

27 wl2 R

J \/1+x2+y2+22‘d3x‘:j jj\/1+r2r2003003¢dr dpdé

Bo(R) 0 -7/20
R

= 47r_|\/1+ r2rdr (1-82)
(o]

:;{R (1+R2)3/2—%Iog Iog(R +\/1+R2)—%R 1+R2j

Now we will discuss fractals and fractional dimension . In 1919, Felix
Hausdorff showed that dimensions are not limited to length,area, volume, . .
we can also speak of fractional dimension. This discovery acquired much
greater significance with the work of Benoit Mandelbrot showing that many
objects in nature (the lining of the lungs, the patterns of frost on windows,
the patterns formed by a film of gasoline on water, for example) are fractais,
with fractional dimension
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Example (1-2-10) :(Koch snowflake)

We construct the Koch snowflake curve K as follows. Start with a line
segment, say 0 < x <1,y = 0 in IR% Replace its middle third by the top of
an equilateral triangle, as shown in Figure (1-8) This gives four segments,
each one-third the length of the original segment.

Now replace the middle third of each by the top of an equilateral triangle,
and 1, soon.

Figure (1-7)
Koch snowflake

What is the length of this "curve"? At resolution N = 0, we get length 1. At
resolution N = 1, when the curve consists of four segments, we get length
4 . 1/3. At the next resolution, the length is 16.1/9. As our decomposition
"Length" is the wrong word to apply to the Koch snowflake, which is neither
a curve nor a surface. It is a fractal, with fractional dimension: the Koch
snowflake has dimension log 4/ log 3 = 1.26

Let us see why this might be the case. Call A the part of the curve
constructed on (0,1/3), and B the whole curve, as in Figure (1-8) . Then B
consists. The first five steps in construct- of four copies of A. (This is true at
any level, but it is easiest to see at the firsting the Koch snowflake. Its length
level, the top graph in Figure (1-7). Therefore, in any dimension d, it should
Is infinite, but length is the wrong be true that voly(B) = 4voly(A).

A B
—

Figure (1-8)

However, if you expand A by a factor of 3, you get B. (This is true in the
limit, after the construction has been carried out infinitely many times.)
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According to the principle that area goes as the square of the length, volume
goes as the cube of the length, etc., we would expect d-dimensional volume
to go as the dth power of the length, which leads to

voly(B) = 3%vol,(A). (1-83)

If you put this equation together with vol;(B) =vol;(A) , you will see that
the only dimension in which the volume of the Koch curve can be different
from 0 or oo is the one for which 4 = 3%, i.e., d = log4/log3.

If we break up the Koch curve into the pieces built on the sides constructed
at the nth level (of which there are 4", each of length 1/3"), and raise their
side-lengths to the dth power, we find

nlog4/log3 logd , 1 n
n——(log>)
4" (%J —4"e log3 93 :4ne—nlog4 _ jn -1 (1_ 84)

(In Equation (1-85 ) we use the fact that a* = e*1°82 ) Although the terms
have not been defined precisely, you might expect the computation above to
mean

log4
dX log3

_1 (1-85)

J

K
Example (1-2-11) : (Sierpinski gasket)

While the Koch snowflake looks like a thick curve, the Sierpinski gasket
looks more like a thin surface. This is the subset of the plane obtained by
taking a filled triangle of side length 1, removing the central inscribed
subtriangle, then removing the central subtriangles from the three triangles
that are left, then removing the central subtriangles from the nine triangles
that are left, and so on; the process is sketched in Figure
(1-10). We claim that this is a set of dimension log 3/log 2: at the nth stage
of the construction, sum, over all the little pieces, the side-length to the

power p:
I p
3 (%j (1-86)
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v W W W,
Figure (1-9)
Sierpinski gasket

(If measuring length, p = 1; if measuring area, p = 2.) If the set really had a
length, then the sum would converge when p =1, as n — oo ; in fact, the sum
Is infinite. If it really had an area, then the power p = 2 would lead to a finite
limit; in fact, the sum is 0. But whenP =log 3/ log 2, the sum converges to
Lio¥ez 51 ¥ This is the only dimension in which the Sierpinski gasket has
finite, nonzero measure; in dimensions greater thanlog 3/ log 2, the measure

is 0, and in dimensions less than log 3/ log 2 it is infinite .
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