ACKNOWLEDGMENT

(رب اوزعني ان اشكر نعمتك التي انعمت علي وعلى والدي وان اعمل صالحا" ترضاه وادخلني برحمتك في عبادك الصالحين(19))

سورة النمل(اية:19)

First of all we would like to thank **GOD** for blessing us and giving us the power to work and complete this thesis.

We would like to thank

Our supervisor Dr. Ashraf Gsm Alseed.

Dr. Alaa Aldeen Awouda.

Dr. Rashd Abdelhaleem.

Engineer. Thwban Hassen Awad

For their advice and support during the writing of this thesis. Her knowledge and dedication and opinion were useful in completing this research.

We would also like to thank everyone who supported us academically regardless of that support.

Most important of all, thanks to our families for their great support all the time.

Abstract

Mobile IP allows a mobile node to maintain a continuous connectivity to the Internet when moving from one access point AP to another. However, due to the link switching delay and to the Mobile IP handover operations, packets designated to mobile nodes can be delayed or lost during the handover period. This project presents a new mechanism called the global mobile internet protocol version 6 (GMIPv6) in order to improve the handover performance and reducing the delay in the context of Mobile IPv6 over wireless networks. The GMIPv6 mechanism allows the mobile node (MN) to move from one AP t another without changing its current address (GMIPv6) and focusing on searching for a free channel on the AR/AP to path through. The MN can thus use this global address without engaging in the process of Address Auto-configuration or the procedure of Duplicate Address Detection (DAD). The GMIPv6 is implemented and simulated in OPNET simulation, the result provide low latency, less packet loss compared to the standard function of the mobile IPv6.

المستخلص

يسمح بروتوكول العنونه للهواتف النقاله باستمرارية الإتصال بشبكة الإنترنت عند الإنتقال من نقطة وصول الى أخرى. ومع ذلك بسبب التأخير في تبديل القنوات و عملية تسليم بيانات الهاتف المحمول الحاصة بالهاتف قد تتعرض للتأخر أو الضياع خلال فترة تسليم البيانات. هذا المشروع يقدم تقنية جديده تسمى بروتوكول العنونه العالميه النسخه السادسه لتحسين أدائية عملية تسليم البيانات و تقليل التأخر في محتوى الهاتف التابع لبروتوكول العنونه النسخه السادسة خلال الشبكة اللاسلكية. تقنية بروتوكول العنونه العالمية النسخه السادسة تسمح للهاتف النقال بالإنتقال من نقطة وصول إلى أخرى بدون الحوجه لتغيير عنوانه الحالي و التركيز فقط علي البحث عن قناة فارغه في جهاز التوجيه أو نقطة الوصول للمرور عبرها. الهاتف النقال يستطيع إستخدام هذه العناوين العالمية دون الحاجة للإرتباط بعملية التهيئة الذاتية للعنوان أو عملية إكتشاف العنوان المكرر. نفذت تقنية بروتوكول العنونه العالمية النسخه السادسه وتم تصويرها في برنامج الأوب نت, قدمت النتائج تأخر منخفض, وقلات من فقدان الحزم مقارنة مع الدالة الأساسية لبروتوكول العنونه النسخه السادسه للهاتف النقال.

Table of Contents

DECLARATION		1
DEDICATION		
ACF	KNOWLEDGEMENT	III
ABS	STRACT	IV
ABS	STRACT IN ARABIC	\mathbf{V}
LIST	Γ OF TABLES	VIII
LIS	Γ OF FIGURES	IX
ABE	BREVIATIONS	X
Cha	pter One: Introduction	
1.1 1.2 1.3 1.4 1.5 1.6	Proposed solution	3 3 4
2.1	Introduction	7
2.2	Related work	7
2.3	Fifth Generation Technology (5G)	9
2.4	IPv6 and IPv4	10
2.5	Mobile IPv6	13

2.6 Handover	14
2.7 Handover in MIPv6	18
2.7.1 The Processes of MIPv6 handover	20
2.7.1.1 Movement Detection	21
2.7.1.2 Candidate Access Router Selection (CARS)	24
2.7.1.3 Address Configuration.	25
2.7.1.4 Authentication and Authorization (A&A)	28
2.7.1.5 Binding Update	28
Chapter3: Methodology and Evaluation	
3.1 Introduction	31
3.2 Methodology	31
3.3 Evaluation	37
Chapter4: Simulation and Results	
4.1 Introduction	
4.2.1 Analysis of simulations	41
4.2.2 Result of the simulation	43
4.3 Numerical Result.	55
Chapter 5: Conclusions and Recommendation	
5.1 Conclusion	_
References	63

List of Tables

Table Number	Table Name	Page
3.1	Handover Standard Delay Time	32
4.1	Video conferencing-traffic received measurement	46
4.2	Video Conferencing-packet End-To-	48
	End Delay measurement	
4.3	MIPV6-control Traffic received measurement	50
4.4	Tunnel Delay measurement	52
4.5	Route optimization traffic received measurement	54
4.6	Comparison between MIPV6 and GLOBAL MIPV6	55

List of Figures

Figure	Figure Name	Page
number		
2.1	GlobalMIPV6 addresses	12
2.2	Horizontal Handover	16
2.3	Vertical Handover 1	17
2.4	Vertical Handover 2	17
2.5	Graphical Explanations of the MIPv6 Terminology	20
2.6	Basic Procedures of a MIPv6 Handover	21
2.7	State transitions during the execution of the Neighbor Unreachability Detection Procedure	23
2.8	Example of an Address Configuration Process	26
2.9	Sub-processes of the Address Configuration	27
3.1	Network Model	33
3.2	MIPV6 handover procedure	35
3.3	Global MIPV6 handover procedure	37
4.1	Simulation Network	41
4.2	Video Conferencing-Traffic Sent	44
4.3	Video Conferencing-Traffic Received	45
4.4	Video Conferencing-Traffic Received average	45
4.5	Video Conferencing-packet End-To-End Delay	47
4.6	Video Conferencing-packet End-To-End Delay average.	47
4.7	MIPV6-control Traffic received	49
4.8	MIPV6-control Traffic received average	50
4.9	Tunnel Delay	52
4.10	Route optimization traffic received	53
4.11	Route optimization traffic received average	54

Abbreviations

IEEE Institute of Electrical and Electronics Engineers

Wi-Fi Wireless Internet for Frequent Interface

AP Access Point

OSI Open System Interconnection

IP Internet Protocol

MIP Mobile Internet protocol

IETF Internet Engineering Task Force

VoIP Voice over Internet protocol

QOS Quality Of Service

MN Mobile Node
AR Access Router
HA Home Agent

CN Correspondent Node

GMIPv6 Global Mobile Internet Protocol Version 6

LTE Long Term Evaluation

UE Ultimate Ears

NGC Neighbor Graph Cache

L-HCF Lightweight Handover Control Function

DAD Duplicate Address Detection

G Generation

RAT Radio Access Technology

OFDMA Orthogonal Frequency Division Multiple Access
MC-CDMA Multi Carrier Code Division Multiple Access

LAS- Large Area Synchronized Code Division Multiple Access

CDMA

UWB Ultra wideband

LMDS Local Multipoint Distribution system

WWWW Worldwide Wireless WebOTP Open Transport Protocol

NAT Network Address Translation

FLC Flow Labeling CapabilityIPsec Internet protocol securityULA Unique local Address

NUD Neighbor Unreachability Detection

ND Neighbor Discovery

VPN Virtual Private Networks

ICMP Internet Control Message Protocol

ISP Internet Service Provider

HoA Home AddressHN Home NetworkCoA Care-of-Address

FAR Foreign Access Router

FN Foreign Network

MD Movement Detection

CARS Candidate Access Router Selection

AC Address Configuration

A&A Authentication & Authorization

BU Binding Update
RD Router Discovery
RS Router Solicitation

RA Router AdvertisementRFC Request For CommentsNS Neighbor Solicitation

CARD Candidate Access Router Discovery

TARS Target Access Router Selection

DHCP Dynamic Host Configuration ProtocolWISPs Wireless Internet Service Providers

BACK Binding AcknowledgementWLAN Wireless Local Area Network