الآيـــة

نُورُ السَّمَ اوَ اتِ وَ الأَ ْ رَ ْضِ مَ ثَلُ نُورِ هِ كَمِشْ كَاةٍ فِيهَا مِصْدْبَاحٌ فَي اللَّهُ اللَّهُ ال اللَّهُ فِي زُهُ اللَّهُ الزُّجَاجَةُ كَأَنَّهَا كَوْ كَبُ دُرِّيُّ يُوقَدُ مِنْ شَجَرَةٍ فَي اللَّهُ اللَّهُ كَةٍ زَيْتُونَةٍ لاَ شَرَ ْقِيَّةٍ وَ لاَ غَكَابُرُ بِيَّةٍ يُثُهَا يُضِدِيءُ وَ لَوْ لَمْ تَمْ سَسَهُ اللَّهُ اللَّ

سورة النور الآية (35)

Dedication

I dedicated this thesis to my father, my mother, my brothers and sisters

To everyone who know me

Acknowledgement

I would like to express my gratitude to my supervisor D.Rawia Abdelgani for the useful comments, remarks and engagement through the learning process of this master thesis, supported me throughout entire process, both by keeping me harmonious and helping me putting pieces together Furthermore I would like to thank Mohamed Elagib for introducing me to the topic as well for the support on the way. Also, I like to thank the participants in my survey, who have willingly shared their precious time during the process of interviewing.

Abstract

It has been studied superconducting phenomenon in general , and some high-temperature connectors was studied .

Also copper oxide conductor was prepaid and observed the superconductivity at high temperature approximately equal 28 Celsius (83F, 301K).

ملخص

درست ظاهرة التوصيل الفائق بصفة عامة ، ودرست بعض الموصلات ذات الدرجات الحرجة المرتفعة .كما تم أيضا إعداد موصل أكسيد النحاس ووجد انه يقوم بالتوصيل الفائق عند درجة حرارة مرتفعة تساوي تقريبا 28 درجة مئوية (83 ف، 301 ك).

Contents

Contents	Page
Averse	I
Dedication	II
Acknowledgment	III
Abstract	IV
Abstract in Arabic	V
Contents	VI
Table of figures	IX
Table of curves	XI
Chapter One	
1.1 introduction	1
1.2 Research problem	1
1.3 Aim of research	2
1.4 Research Significance	2
1.5 Historical review	2
1.6 Research layout	6
Chapter Two	
2.1 Introduction	7
2.2 Uses for Superconductors:	8
2.3 Superconductor Terminology and the Naming Scheme	16
Chapter Three	
3.1 Introduction	26
3.2 London equations	26
3.2.1 London Penetration Depth	27
3.2.2 Rationale for the London Equations	28

3.2.3 Canonical momentum arguments	29
3.3 Coherence length	30
3.4 BCS theory	31
3.4.1 Underlying evidence	35
3.4.2 Successes of the BCS theory	36
3.5 Bardeen-Cooper-Schrieffer theory	38
3.5.1 Electron correlations that produce superconductivity	39
3.5.2 Thermodynamic properties of the ideal	40
superconductor	
3.6 Flux quantization	42
3.6.1 Persistent currents in superconductors:	44
3.6.2 Persistent currents in resistive conductors	44
Chapter Four	
4.1 Introduction	47
4.2 Crystal structures of high-temperature ceramic	49
superconductors	
4.3 YBaCuO superconductors	49
4.3 Bi-, Tl- and Hg-based high-T _c superconductors	50
4.4 Preparation of high-T _c superconductors:	53
4.5 Properties of high temperature superconductors	54
4.6 Cuprates	56
4.7 Other materials sometimes referred to as high-	60
temperature superconductors	
4.8 Ongoing research	61

4.9 Possible mechanism	61
4.10 Junction experiment supporting the d symmetry	62
4.11 Qualitative explanation of the spin-fluctuation mechanism	63
4.12 Superconductivity without cooling	64
4.13 New evidence for an exotic, predicted	65
superconducting state	
Chapter Five	
5.1 Introduction	70
5.2 Room-Temperature Superconductivity in a Copper-	70
oxide	
5.3 The below stoichiometric ratios were used for the ODD	74
layers	
5.4 first computer-designed superconductor	75
5.5 Milestone Superconductivity Above 100 Celsius	77
5.6 Discussion	79
5.7 Conclusion	80
5.8 Recommendation	80
References	81

Table of Figures

Chapter One	
Figure (1.1) Meissner effect	3
Chapter Two	
Fig (2.1) Super-Collider project planned for construction in	9
Ellis county, Texas	
Figure (2.2) Hypres Superconducting Microchip,	12
Incorporating 6000 Josephson Junctions	
Fig (2.3) ISIS projection	15
Chapter Three	
Fig (3.1) Meissner effect	26
Fig (3.2) Schematic representation of a superconducting ring	43
Fig (3.3) Persistent current schematic	44
Chapter Four	
Fig(4.1) YBCO unit cell	49
Fig (4.4) Superconductor timeline	61
Fig (4.5) The Meissner effect or a magnet levitating above a	62
superconductor (cooled by liquid nitrogen)	
Fig (4.6) evidence for an exotic superconducting state	66
Chapter Five	
Fig (5.1) result of efforts to reformulate the 18C	70
superconductor discovered in March 2011	
Fig (5.2) plots of two sequential magnetization tests	71
Fig(5.3) parent structures	71
Fig (5.4) Dots have been placed within the C1	72
Fig (5.6) A schematic free energy landscape for different	75
crystallographic configurations	

Fig (5.7) The above resistance plots confirm that the	77
associated diamagnetic transitions are Meissner transitions	

Table of curves

Chapter Four	
Curve (4.2) Simplified doping dependent phase diagram of	56
cuprate superconductors for both electron (n) and hole (p)	
doping	
Curve (4.3) Simplified doping dependent phase diagrams of	58
iron-based superconductors for both Ln-1111 and Ba-122	
materials	
Chapter Five	
Curve (5.5) As with prior discoveries that advanced high Tc	73
through asymmetry along the C axis	
Curve (5.8) high K compounds features transition	78
temperatures 60 to 70 degrees higher	