
Sudan University of Science and Technology

College of Engineering

School of Electronics Engineering

Implementation of Distributive Authentication
System Using a Security Token.

A Research Submitted in Partial fulfillment for the Requirements of

the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

1- Hishameldeen Sharafeldeen Wd Easa Zeyada.

2- Mohammed Abdelwahid Ahmed Elmaleeh.

3- Mohammed Osman Ahmed Hassan.

4- Rabiee Alfatih Rabiee Mohammed.

Supervised By:
Dr. Rania Abdelhameed Mukhtar

September, 2015

I

DECLARATION

“An Investigation in Knowledge Pays the
Best Interest’’

II

DEDICATION

We Dedicate This Work to Our Families and

Many Friends Who Have Supported us Through-

out the Process.

III

ACKNOWLEDGEMENT

We would like to express our gratitude to our su-

pervisor Dr. Rania Abdelhameed Mukhtar

For the continuous support, for her patience, and her

motivation. Her guidance helped us in all the time of

research and writing of this thesis.

We would like also to take this opportunity to ex-

press our gratitude to many people who have been in-

strumental and gave us help, support and well wishes.

IV

ABSTRACT

Today, single factor authentication, e.g. passwords, is no longer con-

sidered secure in the internet and banking world. Easy-to-guess passwords,

such as names and age, are easily discovered by automated password-

collecting programs, In addition ,it’s exhausted and slow, especially on a

multiple devices (distributed) environment.

Two factor authentications have recently been introduced to meet the de-

mand of organizations for providing stronger authentication options to its

users. Using two identification factors require often an additional device.

In this project, a security token will be used, the token will gain access for

multiple devices by writing a single password, the Bluetooth is the method

selected for connecting the token and devices.

The proposed method guarantees that authenticating to services, is done in a

very fast and a secure manner. In this model we develop a token software

for laptop; design a Bluetooth communication model between the token

(laptop) and devices that will be authenticated; complete the development

of this token distributed authentication prototype system finally.

The proposed method has been implemented and tested. Initial results show

the success of the proposed method.

V

صالمستخل

) تعتبر آمنة في عالم الانترنت و لم تعد طرق التحقق ذات العامل الواحد (كلمة السر مثلاً

في التطبیقات التي تتطلب درجة عالیة من الأمان (المصارف و البنوك كمثال) , لعدة أسباب

لى كلمات سر ضعیفة قابلة للتخمین عن طریق برامج التخمین الآلي إأبرزھا لجوء المستخدمون

التي یستخدمھا المخترقون و لصوص المعلومات.

ا في الأنظمة المتوزعة التي تحتوي على نھا تعتبر طریقة مرھقة و بطیئة خصوصً ى ذلك أإلأضف

ى إلالكثیر من الأجھزة التي قد تحولك بدورھا الى أجھزة أخرى, فتصبح مسألة التحرك من جھاز

ا.ا و ذھنیً خر مرھقة جسدیً آ

كلمة السر,یضاف علیھ لھذه الأسباب تم استخدام الطرق ذات العاملین, حیث یكون العامل الأول ھو

عامل آخر محسوس فیكون بمثابة مفتاح. عندھا لا ینفع تخمین كلمة السر بدون وجود المفتاح

.الملموس و العكس صحیح, و بذلك تزید درجة الأمان بطریقة ھائلة

,و من خلال ھذا البحث تم استخدام طریقة التحقق ذات العاملین حیث یمثل ھذا المشروعفي

مسألة الأولى و ھيمعضلةالفتم حل ,صي المفتاح المادي الذي لابد من تواجدهالحاسوب الشخ

مكانیة تخمین كلمة السر .إ

أما بالنسبة لمشكلة الارھاق الجسدي و الذھني و البطء المصاحب لعملیة التحقق, فقد تم استخدام

دخال اسم إ, فعندھا سیتم تقنیة البلوتوث لربط الأجھزة المتعددة مع ذلك المفتاح المادي (الحاسوب)

المستخدم و كلمة السر مرة واحدة , ثم یتم التحقق في ثوان معدودة بعد أن ترسل (عبر البلوتوث

)البیانات الخاصة بكل جھاز .

ضافة خوارزمیة إو لمزید من الأمان, كان لابد من تشفیر البیانات المرسلة عبر البلوتوث, فتم

التشفیر.

حیث تم ربط المخدمات مع المفتاح أعلاه ,مع الحصول على النتائج المرجوةتم تطبیق كل ما ذكر

المادي .

VI

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION I

DEDICATIONT II

ACKNOWLEDGEMENT III

ABSTRACT IV

ABSTRACT IN ARABIC V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES X

LIST OF ABBREVIATIONS XI

1 INTRODUCTION

1.1 preface 2

1.2 Problem Statement 3

1.3 Proposed Solution 3

1.4 Research Aim And Objectives 4

1.5 Methodology 4

1.6 Thesis Outlines 5

VII

2 LITERATURE REVIEW

2.1 Overview 7

2.1.1 Distributive Authentication 7

2.1.2 Rivest, Shamir and Adleman (RSA) 8

2.1.3 Bluetooth 9

2.2 Related Work Covered 10

3 Distributive Authentication System

3.1 Overview Of Distributive Authentication System 14

3.2 System Description 14

3.3 Bluetooth Communication Module 15

3.3.1 Global Architecture 16

3.3.2 Connection Establishment at Server Side 17

3.3.3 Connection Establishment at Client Side 17

3.4 Software Implementation 18

3.4.1 Operating System 18

3.4.2 Java 19

3.4.3 Java Standard Edition 20

3.4.4 Eclipse 20

3.4.5 Structured Query Language 20

3.4.6 Java Database Connectivity Technology

(JDBC)

21

3.4.7 Terminal Session Connect (TSCON) 22

3.4.8 Terminal Session Disconnect (TSDISCON) 22

VIII

3.4.9 Code Explanation 23

3.5 Hardware Implementation 25

3.6 Model Setup 25

3.6.1 Prototype Developed 26

3.7 Expected Results 27

4 Results And Discussion

4.1 Results 31

4.1.1 Security Token 31

4.1.2 Server 33

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 37

5.2 Recommendations 37

6 REFERENCES 39

7 APPENDICES 42-63

IX

LIST OF TABLES

TABLE
NO

TITLE PAGE

3.1 Important Methods and Functions of the Server. 23

3.2 Important Methods and Functions of the Security To-

ken.

24

X

LIST OF FIGURES

FIGURE
NO

TITLE Page

2.1 Rivest, Shamir And Adelman. 9

3.1 System Description. 15

3.2 Client-Server Communication Using Bluetooth. 16

3.3 MYSQL Database. 21

3.4 TSCON Syntax And Parameters. 22

3.5 Bluetooth Circuit. 25

3.6 Model Setup. 26

3.7 How The Security Token Operate. 28

3.8 How The Server Interact With The Token. 29

4.1 Searching For Devices. 31

4.2 Searching For Services. 32

4.3 Adding Another Device. 32

4.4 Waiting For Incoming Connections. 33

4.5 Servers Profile Before “Login In”. 34

4.6 Servers Profile After “Login In”. 34

4.7 Servers Profile After “Log Out”. 35

XI

LIST OF ABBREVIATIONS

AS Authentication Server.

ATM Auto Teller Machine.

BTSPP Bluetooth Serial Port Protocol.

FTP File Transfer Protocol.

GSM

Global System For Mobile Communication, Originally Group

Special Mobile.

GUI Graphical User Interfaces.

HTTP Hypertext Transfer Protocol.

ID Identification.

IDE Integrated Development Environment.

IMAP Internet Message Access Protocol.

I/O Input/Output.

JDBC Java Database Connectivity.

JVM Java Virtual Machine.

LAN Local Area Network.

OS Operating System.

OTP One Time Password.

PC Personal Computer.

PIN Personal Identification Number.

PW Password.

RDMBS Relational Database Management System.

RSA Ron Rivest, Adi Shamir And Leonard Adleman.

SE Standard Edition.

XII

SMS Short Message Service.

SMIP Simple Mail Transfer Protocol.

SQL Structured Query Language.

TSCON Terminal Session Connect.

URL Uniform Resource Locator.

USB Universal Serial Bus.

CHAPTER ONE

INTRODUCTION

CHAPTER ONE INTRODUCTION

2

1.1 Preface

A common problem is verifying that a given artifact was produced by

a certain person or was produced in a certain place or period of history.

In computer science, verifying a person's identity is often required to secure

access to confidential data or systems.

Authentication can come in many forms; Knowledge factors ("something

only the user knows") are the most commonly used form of authentication.

In this form, the user is required to prove knowledge of a secret in order to

authenticate, another form is Possession factors ("something only the user

has") which have been used for authentication for centuries, in the form of a

key to a lock. A third form of authentication is the Inherence factors which

are "something only the user is”, or Biometric authentication. Biometric

authentication also satisfies the regulatory definition of true multi-factor

authentication [1].

Users may biometrically authenticate via their fingerprint, voiceprint, or iris

scan using provided hardware and then enter a PIN or password in order to

open the credential vault.

The usage of passwords for authentication is no longer sufficient and

stronger authentication schemes are necessary. Strong authentication

solutions require often two identification factors , in addition to the first

factor "something you know" represented by passwords it is introduced a

second factor "something you have" materialized by a security token [2].

CHAPTER ONE INTRODUCTION

3

1.1 Problem Statement

Most systems today rely on static passwords to verify the user’s

identity. For a system involving several devices, every device would have

its own Password as basic requirement for distributed authentication.

However, such passwords come with major management security concerns.

Users tend to use easy-to-guess passwords, use the same password in

multiple accounts, write the passwords or store them on their machines,

Furthermore, hackers have the option of using many techniques to steal

Passwords. Another issue is that if the user used a strong password but

Forgot to log out from any device, this problem would leave the system

Exposed to unauthorized users, and that is a security weakness.

1.2 Proposed Solution

In this research the following solution is proposed:

A security token will be used, the token will gain a distributive access for

multiple devices with a specific password, Bluetooth will be the responsible

for data communication, and the connection between the token and the

servers will be encrypted.

CHAPTER ONE INTRODUCTION

4

1.3 Research Aim and Objectives

The main aim of this project is to design and implement distributed

authentication system that relay on user associated token to provide an

authentication mechanism to multiple devices environment e.g. data center.

The detailed objectives of this project:

• To design and implement a prototype of the system that contains a
token based distributed authentication and two servers.

• To implement security mechanism that increases the security at
maintained usability level.

• To implement method for fast, easy and secure access, deny and lock
the server devices via distributed authentication in windows based
environment.

1.5 Methodology

In order to increase security, RSA algorithm had been used to encrypt

data.

In order to provide a wireless access between devices, a wireless technology

standard for exchanging data over short distances have been chosen, which

is Bluetooth. Also Java programming languages (java standard edition)

have been adopted as the main language to write codes of RSA algorithm

and Bluetooth. Eclipse is the used software to compile and test these codes;

Eclipse is an integrated development environment (IDE).it contains a

base workspace and an extensible plug-in system for customizing the

CHAPTER ONE INTRODUCTION

5

environment. Bluecove (additional java libraries) has been added to eclipse,

to work with Bluetooth classes.

1.6 Thesis Outlines

The thesis is divided into five chapters, Chapter one is an

introduction that gives a background about the project, its aims and

objectives, the problem statement and proposed solutions. It also gives a

brief description on how to achieve those goals in the methodology.

Chapter two is a literature review that gives a brief review of authentication

generally, and the timeline of using security tokens.

Chapter three is the system design (methodology) contains all the methods

and steps in details in order to achieve the project objectives. Chapter Four

presents the implementation procedure. Chapter five provides the

conclusion and recommendations.

CHAPTER TWO

LITERATURE REVIEW

CHAPTER TWO LITERATURE REVIEW

7

2.1 Overview

Authentication is one of the most important problems in security .it

accrues whenever users have to provide credentials to prove their identity in

order to access a computing resource. The goal of authentication is to

ascertain that only legitimate users are granted access.

2.1.1 Distributive Authentication

The classic way by which people authenticate to computers (and by

which computers authenticate to one another) is by supplying a Password.

There are a number of problems with existing password Based schemes

Which distributed authentication attempts to solve.

The goal of distributed authentication service is to provide authentication

services in a distributed environment which are both more secure (more

difficult for a bad guy to impersonate a good guy) and easier to use than

existing mechanisms. In a distributed environment, authentication is

particularly challenging. Users do not simply log on to one machine and

use resources there. Users start processes on one machine which may

request services on another. In some cases, the second system must request

services from a third system on behalf of the user. Further, given current

network technology, it is fairly easy to eavesdrop on conversations between

computers and pick up any passwords that might be going by Distributed

authentication service uses cryptographic mechanisms to provide strong,

mutual authentication.

CHAPTER TWO LITERATURE REVIEW

8

2.1.2 Rivest, Shamir and Adelman (RSA)

Data communication is an important aspect of our living. So,

protection of data from misuse is essential. A cryptosystem defines a pair of

data transformations called Encryption and decryption. Encryption is

applied to the plain text i.e. the data to be communicated to produce cipher

text i.e. encrypted data using encryption key.

Decryption uses the decryption key to convert cipher text to plain text i.e.

the original data. Now, if the encryption key and the decryption key is the

same or one can be derived from the other then it is said to be symmetric

cryptography. This type of cryptosystem can be easily broken if the key

used to encrypt or decrypt can be found. To improve the protection

mechanism Public Key Cryptosystem was introduced in 1976 by Whitfield

Diffe and Martin Hellman of Stanford University. It uses a pair of related

keys one for Encryption and other for decryption. One key, which is called

the private key, is kept secret and other one known as public key is

disclosed.

The message is encrypted with public key and can only be decrypted by

using the private key. So, the encrypted message cannot be decrypted by

anyone who knows the public key and thus secure communication is

possible. Rivest, Shamir and Adelman (RSA) introduced by Rivest, Shamir

and Adelman as pictured in figure (2.1) is the most popular public key

algorithm. In relies on the factorization problem of mathematics that

indicates that given a very large number it is quite impossible in today’s

aspect to find two prime numbers whose product is the given number. As

CHAPTER TWO LITERATURE REVIEW

9

we increase the number the possibility for factoring the number decreases

[3][4].

Figure 2.1: Rivest, Shamir and Adelman.

2.1.2 Bluetooth

Bluetooth is a wireless communication protocol which is use for

short Distances and in low power consumption devices. Bluetooth can be

used to Communicate to two are more other Bluetooth capable devices.

Bluetooth is like any other communication protocol that we use every day

like HTTP, FTP, SMTP, or IMAP. Bluetooth is also like these protocols in

that it has client server architecture [5][6].

CHAPTER TWO LITERATURE REVIEW

10

2 .2 Related Work Covered

In [7], the proposed system is a mobile-based software token system

that is supposed to replace existing hardware and computer-based software

tokens. The proposed system is secure and consists of three parts:

(1) Software installed on the client’s mobile phone.

(2) Server software.

(3) A GSM modem connected to the server.

The system will have two modes of operation:

• Connection-Less Authentication System: A onetime password (OTP) is

generated without connecting the client to the server. The mobile phone will

act as a token and use certain factors unique to it among other factors to

generate a one-time password locally. The server will have all the required

factors including the ones unique to each mobile phone in order to generate

the same password at the server side and compare it to the password

submitted by the client. The client may submit the password online or

through a device such as an ATM machine. A program will be installed on

The client’s mobile phone to generate the OTP.

• SMS-Based Authentication System: In case the first method fails to

work, the password is rejected, or the client and server are out of sync, the

mobile phone can request the one time password directly from the server

without the need to generate the OTP locally on the mobile phone. In order

for the server to verify the identity of the user, the mobile phone sends to

the server, via an SMS message, information unique to the user. The server

CHAPTER TWO LITERATURE REVIEW

11

checks the SMS content and if correct, returns a randomly generated OTP

to the mobile phone. The user will then have a given amount of time to use

the OTP before it expires. Note that this method will require both the client

and server to pay for the telecommunication charges of sending the SMS

Message.

The concept of this proposal is described .a user wants to use some Web

service on a mobile terminal, such as tablet or note PC, which do not hold a

SIM card inside. It is supposed that such terminals have a wireless local

area network (LAN) connection to the Internet. Usually, the service

provider authenticates the user by using ID/PW pair. Instead of using the

ID/PW pair, in our proposal, mobile phone is used as key device for user

authentication. So, the system requires a mobile phone by the user. Under

this concept, the SIM-based authentication can be used for any kind of

terminals. However, there are some problems. First, the mobile terminal and

mobile phone have to contact each other by some method. Second, service

providers cannot use SIM-based authentication directly [8].

In[9], on this model of authentication, a user uses his mobile phone which

works as an authentication token, that provide the authentication for laptop

over a short-range wireless link. The user authenticate to the token

infrequently. In tum, the mobile phone continuously authenticates to the

laptop by means of the short-range, wireless link. The system design

consists of three parts: laptop-cell phone authentication system, user

authentication system and communication module.

On this system, implementation of zero-interaction authentication consists

of two parts: an in-kernel encryption module and a user-level authentication

CHAPTER TWO LITERATURE REVIEW

12

system. The kernel portion provides cryptographic I/O, manages file keys,

and polls for the token's presence [10].

The authentication system consists of a client on the user's lap-top and a

server on the token, communicating via a secured channel.

In [11] a Challenge Token-based Authentication as a second authentication

factor is presented on this paper. This technique is based on two

authentication factors, which is in addition to the first factor "user name and

password", it also uses the client soft token that will be stored in a mobile

phone or USB. The soft token will be obtained during registration and will

never be transmitted during the authentication process. This token will be

used by a mobile Client Program to generate a secure Authentication

Server (AS) public key in order to respond to the AS's challenge. Finally

the strength of RSA algorithm is discussed in [12].

CHAPTER THREE

METHODOLOGY

CHAPTER THREE METHODOLOGY

14

3.1 Overview of Distributive Authentication System

The main aim of this thesis work is to provide an implementation of

distributive authentication system using a security token at maintained

usability level. Everything starting from communication module, software,

hardware implementation to the final prototype will be explained on this

chapter.

3.2 System Description

In order to increase security, RSA algorithm had been used to encrypt

data.

In order to provide a wireless access between devices, a wireless technology

standard for exchanging data over short distances have been chosen, which

is Bluetooth. Also Java programming languages (java standard edition)

have been adopted as the main language to write codes of RSA algorithm

and Bluetooth. Eclipse is the used software to compile and test these codes;

Eclipse is an integrated development environment (IDE).it contains a

base workspace and an extensible plug-in system for customizing the

environment. Bluecove (additional java libraries) has been added to eclipse,

to work with Bluetooth classes. Figure 3.1 below describes the system.

CHAPTER THREE METHODOLOGY

15

Figure 3.1: System Description.

3.3 Bluetooth Communication Module

Bluetooth is a cable-replacement technology or a means of wireless

communication using radio transmission. It scores over infra-red

transmission since it does not require line-of-sight contact and permits one-

to-many communication. It is a standard for a small, cheap radio chip to be

plugged into computers, printers, mobile phones, etc. Bluetooth chip

transmits information at a special frequency to a receiver Bluetooth chip,

which will then give the information received to the computer, phone

whatever. In short, the owner of a Bluetooth-equipped device can initiate a

search for all Bluetooth-equipped devices within the range of the device.

CHAPTER THREE METHODOLOGY

16

He/She can then request connection to the services of all or some of the

found devices. Thus, a local network, called a Personal Area Network gets

established and the devices in the network can freely exchange messages

and data.

3.3.1 Global Architecture

When using Bluetooth technology, a prototype for supporting a

service-oriented communication between a server and a client should be

developed. ‘The server provides a list of services that a client can access

interactively. The client retrieves the services desired through a process of

communication via messages. The Figure 3.2 shows the global architecture’

[13].

Figure 3.2: Client-Server Communication using Bluetooth.

Technically speaking, Bluetooth devices transmit at a frequency of 2.4 GHz

and have a maximum range of up to 100m. The data transfer rate on a

CHAPTER THREE METHODOLOGY

17

Bluetooth connection can go up to 700 kbps, but depends upon the device

and environmental factors. It can support both data and voice

communications.

3.3.2 Connection Establishment at Server Side

For a server and client to communicate using the Serial Port Profile,

each must perform a few simple steps. By the server, it must:

1. Construct a URL (Uniform Resource Locator) that indicates how to

connect to the service, and store it in the service record.

2. Make the service record available to the client.

3. Accept a connection from the client.

4. Send and receive data to and from the client.

The URL may look something like:

btspp://[Bluetooth device address]:[channel number],where “btspp” stands

for the Bluetooth Serial Port Protocol, Bluetooth device address is the

address of the Bluetooth USB adapter and channel number is a number

assigned dynamically by the server program.

3.3.3 Connection Establishment at Client Side

To set up an RFCOMM connection to a server the client must:

1. Construct a connection URL using the service record.

2. Initiate a service discovery to retrieve the service record.

3. Open a connection to the server.

4. Send and receive data to and from the server.

CHAPTER THREE METHODOLOGY

18

3.4 Software Implementation

In this part Operating system, important techniques, tools will be

explained.

3.4.1 Operating System

‘Microsoft windows (or simply windows) is a family of graphical

operating system developed, marketed and sold by Microsoft

Windows consist of several families of operating systems each of which

cater to certain sector of the computing industry. Microsoft introduced

an operating environment named Windows on November 20, 1985 as a

graphical operating system shell for MS-DOS in response to the growing

interest in graphical user interfaces. Microsoft Windows came

to dominate the world's personal computer market with over 90% market

share, overtaking Mac OS, which had been introduced in 1984’ [14]. There

are several advantages of using windows:

 Ease of use: Users are familiar with first versions of Windows will

probably also find the more modern ones easy to work with. This is

ascribable to everything from the standardized look and feel of almost

all programs written for Windows to the way the file system has been

presented ever since the time of MS-DOS .this is one of the main

reasons why Windows users are often refuse to switch operating

systems.

CHAPTER THREE METHODOLOGY

19

 Available software: There is a huge selection of software available for

Windows. This is both due to and the reason for Microsoft's dominance

of the world market for PC computer operating systems and office

software. If you're looking for an application to suit your business needs,

chances are that if it exists there will be a Windows version of it

available somewhere.

 Support for new hardware: Virtually all hardware manufacturers

will offer support for a recent version of Windows when they go to

market with a new product. Again, Microsoft's dominance of the

software market makes Windows impossible for hardware

manufacturers to ignore. So, if you run off to a store today any buy

some random new piece of computer hardware, you'll find that it will

probably work with the latest version of Windows.

3.4.2 Java

‘Java is a general-purpose computer programming language that

is concurrent, class-based, object-oriented, and specifically designed to

have as few implementation dependencies as possible. It is intended to let

application developers "write once, run anywhere" (WORA)’ [15], meaning

that compiled Java code can run on all platforms that support Java without

the need for recompilation. Java applications are typically compiled to byte

code that can run on any Java virtual machine (JVM) regardless

of computer architecture.

CHAPTER THREE METHODOLOGY

20

3.4.3 Java Standard Edition

Java platform, standard edition or java (SE) is widely

used platform for development and deployment of portable applications for

desktop and server environments. Java SE uses the object-oriented Java

programming language. It is part of the Java software platform family.

3.4.4 Eclipse

Eclipse is an integrated development environment (IDE).’It contains

a base workspace and an extensible plug-in system for customizing the

environment’ [16]. To work with Bluetooth classes, an additional java

libraries has been added to eclipse known as Bluecove.

3.4.5 Structured Query Language

‘MySQL is a freely available open source Relational Database

Management System (RDBMS) that uses Structured Query Language

(SQL)’ [17]. SQL is the most popular language for adding, accessing and

managing content in a database. It is most noted for its quick processing,

proven reliability, ease and flexibility of use. It will used to store MAC

addresses and a hashed password of each device as shown in figure 3.3.

CHAPTER THREE METHODOLOGY

21

Figure 3.3: MYSQL Database.

3.4.6 Java Database Connectivity Technology (JDBC)

JDBC is a Java database connectivity technology (Java Standard Edition

platform) this technology defines how a client may access a database. It

provides methods for querying and updating data in a database. MySQL

connecter is an additional library has been added to the code to provide Java

database connectivity.

CHAPTER THREE METHODOLOGY

22

3.4.7 Terminal Session Connect (TSCON)

TSCON command is used to connect to another Terminal Services

user session. If there is more than one session on a server there, this option

can be used to switch between the sessions. So in this case, TSCON

command will be used to switch from one session (user account) to another

session (administrator account). Figure 3.4 shows syntax and the parameters

of TSCON command.

Figure 3.4: TSCON Syntax and Parameters.

3.4.8 Terminal Session Disconnect (TSDISCON)

The TSDISCON command can be used to disconnect an active

Terminal Services session. The session remains attached to the Terminal

Services server in a disconnected state. TSDISCON command will be used

CHAPTER THREE METHODOLOGY

23

to disconnect from one session (administrator account) back to another

session (user account).

3.4.9 Code Explanation

In this section, important methods that has been used on java code

will be clarified, each with a description of result of using it. The important

functions of server will be explained in Table 3.1. Table 3.2 explains it on

side of the client (security token).

Table 3.1: Important Methods and Functions of the Server.

CHAPTER THREE METHODOLOGY

24

Table 3.2: Important Methods and Functions of the Security Token.

CHAPTER THREE METHODOLOGY

25

3.5 Hardware Implementation

The hardware part of the work comprises three devices; two pcs have

been chosen to represent the clients, and the third as a server. Each of those

three devices, each contains a Bluetooth circuit as shown in figure 3.7.

Figure 3.7 : Bluetooth Circuit.

3.6 Model Setup

As a prototype, three laptops have been used, two representing servers and

one acting as a security token. See figure 3.8.

CHAPTER THREE METHODOLOGY

26

Figure 3.8: Model Setup.

3.6.1 Prototype Developed

The prototype developed includes two programs, one for the Server,

and another for the token device. Server program runs on Windows 8.1 .It

creates a new service called RFCOMM_Server that is based on Serial Port

Profile. It registers this service in The Service Database, which normally

stores the default services. It then opens An Input Stream connection and

then blocks, waiting for a client to connect to it. Henceforth, the new

service becomes detectable and connectable for all Bluetooth devices. On

the token-side, the user starts client program also on Windows 8.1.

Automatically detects the Server. The user then type “start” command on

the console, in order to connect to the service.

CHAPTER THREE METHODOLOGY

27

If all goes well, the client program finds the service and connects to

it. The user can now send password to the server by writing the global

password in the text box displayed by client program, after that by typing

“send”, each server’s password will be retrieved from the database then it

will be distributed to the right device based on the MAC addresses saved on

the database.

3.7 Expected Results

As an expected result, figure 3.5 shows how the security token should

operate, and figure 3.6 shows how the server should interact with the token.

CHAPTER THREE METHODOLOGY

28

Figure 3.5: How the security token operates.

CHAPTER THREE METHODOLOGY

29

Figure 3.6: How the server interacts with the token.

CHAPTER FOUR

RESULTS AND DISCUSSION

CHAPTER FOUR RESULTS AND DISCUSSION

31

4.1 Results

By compiling the code, the following output has occurred.

4.1.1 Security Token

By compiling the code on the security token, the device will start

searching for devices, after that first device will be chosen as figure 4.1

shows.

Figure 4.1: Searching for Devices.

After choosing the wanted device, as a part of Bluetooth process,

service number will be decided and the connection will be established as the

figure below shows.

CHAPTER FOUR RESULTS AND DISCUSSION

32

Figure 4.2: Searching for Services.

Next, the user have to answer the question “Add another devices?” By

typing “Yes”, the discovered devices will be listed again to choose from,

figure 4.3 explains.

Figure 4.3 Adding another Devices.

Finally, typing “login in” will switch the profile on the client’s device, and

typing “logout” will sign out from the current profile.

CHAPTER FOUR RESULTS AND DISCUSSION

33

4.1.2 Server

By compiling the code on the server side, the device will wait for

incoming connections, then will execute the “login in” or “log out”

commands after the stream is opened with the token. Figure 4.4 below

shows a server on standby mode waiting for the connection.

Figure 4.4: Waiting for Incoming Connections.

Figure 4.5 shows user profile before the execution of “login in” command,

figure 4.6 shows administrator profile after the execution of “login in”

command on the token. Figure 4.7 shows the result of executing “log out”

command on the token.

CHAPTER FOUR RESULTS AND DISCUSSION

34

Figure 4.5: Servers Profile before “Login in”.

Figure 4.6: Servers Profile after “Login in”.

CHAPTER FOUR RESULTS AND DISCUSSION

35

Figure 4.7: Servers Profile after “Log Out”.

CHAPTER FIVE

CONCLUSION

AND RECOMMENDATIONS

CHAPTER FIVE CONCLUSION AND RECOMMENDATIONS

37

5.1 Conclusion

In order to implement method for fast, easy and secure access, deny

and lock the server devices via distributed authentication, this project has

suggested a token-based authentication scheme, which uses the user's

personal computer as a token, Bluetooth wireless communication

technology for data communication and RSA as a security algorithm. It can

join the existing password authentication system, solve the security

problems of static password authentication and can be used on multiple

devices authentication on a distributed environment.

5.2 Recommendations and Future Work

In future work, the following points can be taken under consider:

 Use a mobile phone as a security token since it’s commonly more

associate with the user.

 Biometric authentication could be used instead of passwords.

 Remote Access could be configured on the security token.

 Machine to machine authentication could be a great application of

distributive authentication, especially on supervisory control and data

acquisition (SCADA) systems.

REFERENCES

REFERENCES

39

[1] B. Schneier, “Two-Factor Authentication: Too Little, Too Late,” in

Inside Risks 178, Communications of the ACM, 48(4), April 2005.

[2] Mostarda, Leonardo; Dulay, Naranker; Dong, Changyu. "Place and

Time Authentication of Cultural Assets". Retrieved 13 June 2014.

[3]Adrian Perrig, Robet Szewczyk, Victor Wen, David Culler and J.D.

Tygar, SPINS. “Security protocols for sensor networks, Mobile

Computing and Networking”, Rome, Italy, 2001.

[4] David Pointcheval and Jacques Stern, “Security proofs for signature

schemes, EUROCRYPT ’96”, Zaragoza, Spain, 1996.

[5]David Meyer. "Bluetooth 3.0 released without ultra wideband".

Retrieved 22 April 2009.

[6] B. Hopkins and R. Antony, “Bluetooth for Java, First Edition”, Apress,

2003

[7] Fadi Aloul, Syed Zahidi “Two Factor Authentication Using Mobile

Phones”.2009.

[8] Ryun Watanabe and Yutaka Miyake”User Authentication Method with

Mobile Phone as Secure Token “2008.

[9] Rania Abdelhameed, Sabira Khatun, Borhanuddin Mohd Ali and

Abdul Rahman Ramli “Authentication model based Bluetooth enabled

mobile phone” .2005.

REFERENCES

40

[10] Mark D. Corner, Brian D. Noble “Zero Interaction Authentication.”

2002.

[11] Ghassan Kbar Associate Research Professor Riyadh Techno Valley,

King Saud University Riyadh, Saudi Arabia. “Challenge Token-based

Authentication – CTA”, 14/10/2011.

[12] Elichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval and Jacques

Stern, “RSAOAEP is secure under the RSA assumption, Journal of

Cryptology”, 2002.

[13] SHUYI LI “Mobile Business WS-04/05 Programming Bluetooth for

mobile devices in Java”, 2012.

[14] Microsoft Corporation “The Unusual History of Microsoft

Windows”. Retrieved April 22, 2007.

[15] Oracle. “ Design Goals of the Java Programming Language”. 1999-

01-01. Retrieved 2013-01-.

[16] Milinkovic, Mike. Innovation. “Building a Smarter Planet.” 3

November 2011.

[17] Ohloh. Black Duck Software. “MySQL: Project Summary”. 17

September 2012.

APPENDICES

APPENDICES

42

A. Client.java

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.security.PrivateKey;

import java.security.PublicKey;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.LocalDevice;

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnectionNotifier;

public class Client extends ClientServerApplication

{

StreamConnectionNotifier scn=null;

public void go()

{

write("Started..\n");

APPENDICES

43

try{ld=LocalDevice.getLocalDevice();} catch(Exception ex){ error(ex);

}

String address = ld.getBluetoothAddress();

System.out.println(address);

try{ld.setDiscoverable(DiscoveryAgent.GIAC);} catch(Exception ex){

error(ex); }

try{scn=(StreamConnectionNotifier)Connector.open("btspp://localhost:"+R

FCOMM_UUID+";name=rfcommtest;authorize=true");} catch(Exception

ex){ error(ex); }

write("Waiting for incoming connections...\n");

try{sc=scn.acceptAndOpen();} catch(Exception ex){ error(ex); }

write("Connection established... ");

try{is=new DataInputStream(sc.openInputStream());} catch(Exception

ex){System.out.println("hello");

error(ex); }

try{os=new DataOutputStream(sc.openOutputStream());}

catch(Exception ex){

System.out.println("hello");error(ex); }

write("Streams opened...\n");

APPENDICES

44

try {

// Check if the pair of keys are present else generate those.

if (!areKeysPresent()) {

// Method generates a pair of keys using the RSA algorithm and stores

it

// in their respective files

generateKey();

}

//final String originalText = "Text to be encrypted ";

// Encrypt the string using the public key

ObjectInputStream inputStream = new ObjectInputStream(new

FileInputStream(PUBLIC_KEY_FILE));

final PublicKey publicKey = (PublicKey)

inputStream.readObject();

sendPublickey(publicKey);

byte[] q = revebyte();

APPENDICES

45

inputStream = new ObjectInputStream(new

FileInputStream(PRIVATE_KEY_FILE));

final PrivateKey privateKey = (PrivateKey)

inputStream.readObject();

final String plainText = decrypt(q, privateKey);

System.out.println(plainText);

GoAdmin(plainText);

String l=recvText(is);

logout();

while(l=="kill"){

System.out.println("killed");

break;

}

try{os.close();} catch(Exception ex){ error(ex); }

try{sc.close();} catch(Exception ex){ error(ex); }

try{is.close();} catch(Exception ex){ error(ex); }

inputStream.close();

try{ld.setDiscoverable(DiscoveryAgent.NOT_DISCOVERABLE);}

catch(Exception ex){ error(ex); }

} catch (Exception e) {

e.printStackTrace(); }}}

APPENDICES

46

B. Server.java

import java.io.Console;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.security.PublicKey;

import java.sql.*;

import java.util.Scanner;

import java.util.Vector;

import javax.bluetooth.DeviceClass;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.DiscoveryListener;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.UUID;

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

APPENDICES

47

public class Server extends ClientServerApplication implements

DiscoveryListener

{

DiscoveryAgent da=null;

Vector<RemoteDevice> dev=null;

Vector<String> serv=null;

static int c = 0;

String sserv=null;

RemoteDevice sdev=null;

RemoteDevice sdev2=null;

boolean running=false;

boolean good;

int key;

boolean fs=false;

String name;

String MAC ;

String password ;

// JDBC driver name and database URL

static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

static final String DB_URL = "jdbc:mysql://localhost/bt";

APPENDICES

48

// Database credentials

static final String USER = "mhmd";

static final String PASS = "123456789";

private Scanner k;

private Scanner input;

public void deviceDiscovered(RemoteDevice btDevice,DeviceClass cod)

{

String name="";

try{name=btDevice.getFriendlyName(false)+" ";} catch(Exception ex){

error(ex); }

dev.addElement(btDevice);

write("["+dev.size()+"] "+name+"\n");

}

public void inquiryCompleted(int discType) {

}

public void servicesDiscovered(int transID,ServiceRecord[]

servRecord){

}

public void serviceSearchCompleted(int transID,int respCode){

APPENDICES

49

}

public String database(RemoteDevice sdev2) {

//STEP 1: Register JDBC driver

//STEP 2: Open a connection

//STEP 3: Execute a query to search for certain password based on

the MAC

//STEP 4: Extract data from result set

//STEP 5: Clean-up environment

}

}

public void go() {

write("Started... \n");

try {

ld = LocalDevice.getLocalDevice();

APPENDICES

50

} catch (Exception ex) {

error(ex);

}

System.out.println("enter password:");

Console console =System.console();

String text = new String(console.readPassword());

String address = ld.getBluetoothAddress();

String deko=database(address);

while(!(text.compareTo(deko)==0))

{

System.out.println("wrong password !!");

return;

}

da = ld.getDiscoveryAgent();

dev = new Vector<RemoteDevice>();

APPENDICES

51

while (dev.size() == 0) {

write("Searching for devices... \n");

running = true;

try {

da.startInquiry(DiscoveryAgent.GIAC, this);

} catch (Exception ex) {

error(ex);

}

while (running) {

}

}

good = false;

while (!good) {

key = waitNumKey();

good = true;

try {

sdev = (RemoteDevice) dev.elementAt(key - 1);

} catch (Exception e) {

good = false;

}

APPENDICES

52

}

serv = new Vector<String>();

UUID[] uuidSet = new UUID[1];

uuidSet[0] = RFCOMM_UUID;

while (serv.size() == 0) {

write("Searching for services... \n");

running = true;

try {

da.searchServices(null, uuidSet, sdev, this);

} catch (Exception ex) {

error(ex);

}

while (running) {

}

}

good = false;

while (!good) {

key = waitNumKey();

APPENDICES

53

good = true;

try {

sserv = (String) serv.elementAt(key - 1);

} catch (Exception e) {

good = false;

}

}

String URL = sserv;

write("Connecting to \"" + URL + "\"...\n");

try {

sc = (StreamConnection) Connector.open(URL);

} catch (Exception ex) {

error(ex);

}

write("Connection established... ");

try {

os = new DataOutputStream(sc.openOutputStream());

} catch (Exception ex) {

error(ex);

APPENDICES

54

}

try {

is = new DataInputStream(sc.openInputStream());

} catch (Exception ex) {

error(ex);

}

write("Streams opened...\n");

// conDev(sdev,is,os);

write("Add another Device?\n");

k = new Scanner(System.in);

String t = k.nextLine();

if (t.charAt(0) == 'y') {

c=c+1;

// conDev(sdev2,is1,os1);

write("Started... \n");

try {

ld = LocalDevice.getLocalDevice();

} catch (Exception ex) {

error(ex);

}

APPENDICES

55

da = ld.getDiscoveryAgent();

dev = new Vector<RemoteDevice>();

while (dev.size() == 0) {

write("Searching for devices... \n");

running = true;

try {

da.startInquiry(DiscoveryAgent.GIAC, this);

} catch (Exception ex) {

error(ex);

}

while (running) {

}

}

good = false;

while (!good) {

key = waitNumKey();

good = true;

try {

sdev2 = (RemoteDevice) dev.elementAt(key - 1);

} catch (Exception e) {

APPENDICES

56

good = false;

}

}

serv = new Vector<String>();

uuidSet[0] = RFCOMM_UUID;

while (serv.size() == 0) {

write("Searching for services... \n");

running = true;

try {

da.searchServices(null, uuidSet, sdev2, this);

} catch (Exception ex) {

error(ex);

}

while (running) {

}

}

good = false;

while (!good) {

APPENDICES

57

key = waitNumKey();

good = true;

try {

sserv = (String) serv.elementAt(key - 1);

} catch (Exception e) {

good = false;

}

}

String URL1 = sserv;

write("Connecting to \"" + URL1 + "\"...\n");

try {

sc = (StreamConnection) Connector.open(URL1);

} catch (Exception ex) {

error(ex);

}

write("Connection established... ");

try {

os1 = new DataOutputStream(sc.openOutputStream());

} catch (Exception ex) {

APPENDICES

58

error(ex);

}

try {

is1 = new DataInputStream(sc.openInputStream());

} catch (Exception ex) {

error(ex);

}

write("Streams opened...\n");

}

// System.out.println("checking the password...");

// System.out.println(" passwords loaded...");

password=database(sdev);

// System.out.println("distributive authentication sucessfuly");

System.out.println("");

PublicKey publicKey1 = recevPublicKey(is);

byte[] cipherText = encrypt(password, publicKey1);

sendbyte(cipherText,os);

APPENDICES

59

if (c==0){

return;

}

else{

password=database(sdev2);

publicKey1 = recevPublicKey(is1);

cipherText = encrypt(password, publicKey1);

sendbyte(cipherText,os1);

}

}

C. ClientServerApplication.java

import java.io.BufferedReader;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.File;

import java.io.FileNotFoundException;

APPENDICES

60

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.ObjectOutputStream;

import java.math.BigInteger;

import java.security.KeyFactory;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.KeySpec;

import java.security.spec.X509EncodedKeySpec;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.UUID;

import javax.crypto.Cipher;

import javax.microedition.io.StreamConnection;

public abstract class ClientServerApplication extends ConsoleApplication

{

static final UUID RFCOMM_UUID=new

UUID("6f4571008ba911dfa4ee0800200c9a66",false);

LocalDevice ld=null;

StreamConnection sc=null;

DataInputStream is=null;

APPENDICES

61

DataOutputStream os=null;

DataInputStream is1=null;

DataOutputStream os1=null;

DataInputStream is2=null;

DataOutputStream os2=null;

/**

* String to hold name of the encryption algorithm.

*/

public static final String ALGORITHM = "RSA";

/**

* String to hold the name of the private key file.

*/

public static final String PRIVATE_KEY_FILE = "C:/keys/private.key";

/**

* String to hold name of the public key file.

*/

public static final String PUBLIC_KEY_FILE = "C:/keys/public.key";

public static void generateKey() {

}

/**

APPENDICES

62

* The method checks if the pair of public and private key has been

generated.

*

* @return flag indicating if the pair of keys were .generated.

*/

public static boolean areKeysPresent() { }

public static byte[] encrypt(String text, PublicKey key) {

// get an RSA cipher object and print the provider

// encrypt the plain text using the public key

}

public static String decrypt(byte[] text, PrivateKey key) {

// get an RSA cipher object and print the provider

// decrypt the text using the private key

}

boolean available(){}

void sendText(String msg,DataOutputStream os) {}

public void GoAdmin(String ev) throws IOException {

}

public static void logout() throws IOException {

}

String recvText(DataInputStream is){

APPENDICES

63

}

byte[] revebyte(){

}

PublicKey recevPublicKey(DataInputStream is)

{

}

void sendbyte(byte[] r,DataOutputStream os)

{

}

void sendPublickey(PublicKey number)

{

}

}

	paper no one.pdf (p.1)
	first pages last copy 30102015.pdf (p.2-13)
	chapters_covers ch1.pdf (p.14)
	ch 1 (1).pdf (p.15-18)
	chapters_covers ch2.pdf (p.19)
	ch 2 (1).pdf (p.20-25)
	chapters_covers ch3.pdf (p.26)
	ch 3.pdf (p.27-42)
	chapters_covers ch4.pdf (p.43)
	ch 4.pdf (p.44-48)
	chapters_covers ch5.pdf (p.49)
	ch5.pdf (p.50)
	cover REfre.pdf (p.51)
	Refrencess.pdf (p.52-53)
	APPENDICES.pdf (p.54)
	Appendix (final) (1).pdf (p.55-76)

