# بسم الله الرحمن الرحيم

قال تعالى: (وَوَصَّيْنَا الْإِنْسَانَ بِوَالِدَيْهِ إِحْسَانًا حَمَلَتْهُ أُمُّهُ كُرْهًا وَوَضَعَتْهُ كُرْهًا وَحَمْلُهُ وَلِمَانًا وَفِصَالُهُ ثَلَاثُونَ شَهْرًا حَتَّى إِذَا بَلَغَ أَشُدَهُ وَبَلَغَ أَرْبَعِينَ سَنَةً قَالَ رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ وَفِصَالُهُ ثَلَاثُونَ شَهْرًا حَتَّى إِذَا بَلَغَ أَشُدَهُ وَبَلَغَ أَرْبَعِينَ سَنَةً قَالَ رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ فِفِي ذُرِيَّتِي يَعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيَّ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَصْلِحْ لِي فِي ذُرِيَّتِي إِنِّي فِي ذُرِيَّتِي إِنِّي مِنَ الْمُسْلِمِينَ (15) [الاحقاف:15]

صدق الله العظيم

# Dedication

To ...

My father and my mother . . .

To . . .

My brothers and my sister . . .

To . . .

All whom I love . . .

### Acknowledgements

First of all, Thanks be to Al-mighty Allah; the most beneficial, the most Merciful.

I would like to thank Sudan University for their co-operation and for providing the facilities during my study.

I am very grateful to my supervisor D.Abusamra Awad Attaelmanan and express my heart-felt appreciation for his unreserved support in guiding me through this research from its start to the end with limitless help in giving valuable advice, providing supportive materials and constructive comments.

My thank fullness goes to my university, individuals, My friend

E.Abdelhameed Hamed Mohammed and all friends who have helped me in providing required data on the subject matter of the research work and in encouraging my effort in many aspects.

Also, my heartfelt thanks to my Dad, and all my family who have contributed the lions Share in the success of my life yet.

#### Abstract

This research is aimed to compare between experimental and numerical values of axial deformation and compressive strength of 12 concrete cubes. The numerical concrete models were analyzed using computer software (UDEC) and (Phase2). The concrete mix was prepared according to the British standard specifications.

The 12 concrete cubes were classified in to four groups, each group consists of 3 models that were tested at 7, 14, 21 and 28 days respectively by compressive machine to obtain the values of axial deformation and compressive strength.

It was found that concrete cubes which crushed at 7 day gave high values of axial deformation and low values of compressive strength. After 28 days the axial deformation were reduced to 57.7% and compressive strength increased by 78.6% in comparison with concrete cubes at 7 days

It was found that, the difference between experimental and numerical values of axial deformation was about 4.6%. in comparison with concrete cubes at 7 days

It may be concluded that, the computer software UDEC and Phase2 can be used for simulation of concrete models to obtain the axial deformation and compressive strength.

#### المستخلص

يهدف هذا البحث للمقارنة بين قيم التجارب المعملية والعددية للتشوه المحوري ومقاومة الانضغاط لاثنى عشر مكعب من الخرسانة و تم تحليل نماذج الخرسانية باستخدام برنامج (UDEC) و (Phase2). كما تم تصميم الخلطات الخرسانية وفقاً للمواصفات البريطانية.

تم تصنيف الاثني عشر مكعب لاربعة مجموعات في كل مجموعة ثلاث مكعبات وتم اختبارها بماكينة الضغط لاعمار 7, 14, 21, 28 يوم علي التوالى لايجاد قيم التشوه المحوري ومقاومة الضغط.

وجد ان المكعبات بعمر 7 ايام قد اعطت قيم كبيرة للتشوه المحورى وقيم اقل لمقاومة الانضغاط. بينما المكعبات بعمر 28 يوم قد أعطت قيم اقل للتشوه المحوري بنسبة %57.7 من نسبة سبعة أيام. وزيادة في مقاومة الانضغاط بنسبة %6.6 من نسبة سبعة أيام. كما وجد ان الفرق بين قيم النتائج المعملية والعدية للتشوه حوالي %4.6.

كما تم التوصل الى ان نتائج نمذجة مكعبات الخرسانة باستخدام برنامجي (UDEC) و (Phase2) متقاربة جدا لايجاد قيم التشوه المحوري ومقاومة الضغط للخرسانة.

# **List of Figures**

| Subject                                                                        | page |
|--------------------------------------------------------------------------------|------|
| 1.1 Research Methodology Flow Chart                                            | 3    |
| 2.1 Time of set test for paste using the Vicat needle                          | 10   |
| 2.2 Time of set as determined by the Gillmore needle.                          | 11   |
| 2.3 Normal consistency test for paste using the Vicat plunger.                 | 12   |
| 2.4 Consistency test for mortar using the flow table                           | 12   |
| 2.5 Close-up of fine aggregate (sand).                                         | 13   |
| 2.6 Course aggregate. Rounded gravel (left) and crushed stone                  | 13   |
| 2.7 Range of particle sizes found in aggregate for use in concrete.            | 15   |
| 2.8 Illustration of the dispersion of aggregates in cohesive                   | 16   |
| 2.9 Water that is safe to drink is safe to use in concrete.                    | 17   |
| 2.10 slump test                                                                | 21   |
| 2.11 Compacting Factor apparatus                                               | 22   |
| 2.12 Compressive Strength test devices.                                        | 23   |
| 2.13 Conceptual representation of support reaction and ground reaction curves. | 25   |
| 2.14 the overall view of the Model                                             | 28   |
| 2.15 General solution procedure for static analysis                            | 30   |
| 2.16 Linear displacement variation                                             | 31   |
| 2.17Determination of element types (mesh) to be used                           | 34   |
| 2.17The calculation process                                                    | 34   |
| 2.18 Distribution of which can be seen from the menu interpret                 | 35   |

| 3.1 result of Setting time test                                                                     | 38 |
|-----------------------------------------------------------------------------------------------------|----|
| 3.2 result of slump test                                                                            | 39 |
| 3.3 axial deformation test                                                                          | 39 |
| 3.4 The concrete cubes typical                                                                      | 40 |
| 3.5 The Overall View of the Model.                                                                  | 45 |
| 3.6 Numerical Axial Deformations for bending test for beam                                          | 46 |
| 4.1 Comparison between experimental and numerical axial deformations for 12 concrete cubes.         | 53 |
| 4.2 Comparison between experimental and numerical axial compressive strength for 12 concrete cubes. | 54 |
| 4.3 Comparison between experimental and numerical axial compressive                                 | 55 |

#### **List of Tables**

| 3.1 Setting time results                                             | 38 |
|----------------------------------------------------------------------|----|
| 3.2 Result of Compressive strength and axial deformation for         | 41 |
| 12 concrete cubes                                                    |    |
| 3.3 The program code.                                                | 42 |
| 3.4 Result of axial deformations using numerical models              | 43 |
| by software (UDEC)                                                   |    |
| 3.5Result of compressive strength using numerical models by software | 44 |
| (UDEC)                                                               |    |
| 4.1 Comparison of axial deformations between experimental and        | 47 |
| computer program (UDEC) at age (7days)                               |    |
| 4.2 Comparison of axial deformations between experimental and        | 48 |
| computer program (UDEC) at age (14days)                              |    |
| 4.3 Comparison of axial deformations between experimental and        | 48 |
| computer program (UDEC) at age (21days)                              |    |
| 4.4 Comparison of axial deformations between experimental and        | 49 |
| computer program (UDEC) at age (28days)                              |    |
| 4.5 Comparison of compressive strength between experimental and      | 49 |
| computer program (UDEC) at age (7days)                               |    |
| 4.6 Comparative between the maximum Stress in the Experimental       | 50 |
| program (UDEC) (28days)                                              |    |

| 4.7 Comparison of compressive strength between experimental and | 50 |
|-----------------------------------------------------------------|----|
| computer program (UDEC) at age (21days)                         |    |
| 4.8 Comparison of compressive strength between experimental and | 51 |
| computer program (UDEC) at age (28days)                         |    |
| 4.9 Summary of axial deformations between Experimental and      | 52 |
| Numerical concrete models                                       |    |

## TABLE OF CONTENTS

| CONTENTS                  | NO   |
|---------------------------|------|
| الأيــة                   | I    |
| Dedication                | II   |
| Acknowledgements          | III  |
| المستخلص                  | IV   |
| Abstract                  | V    |
| List of Figures           | VI   |
| List of Tables            | VIII |
| Contents                  | X    |
| CHAPTER ONE               |      |
| GENERAL INTRODUCTION      |      |
| 1.1General Introduction   | 1    |
| 1.2 Objective of research | 2    |
| 1.3 Research Methodology  | 2    |
| 1.4Flowchart Description  | 2    |
| 1.5 Thesis layout         | 5    |
| CHAPTER TWO               |      |
| LITERATURE REVIEW         |      |
| 2.1 Introduction:         | 6    |
| 2.2 previous studies      | 6    |
| 2.3 Cement:               | 7    |
| 2.3.1 Portland cement:    | 8    |

| 2.3.2 Tests on properties of cement                            | 8  |
|----------------------------------------------------------------|----|
| 2.3.2.1 Fineness                                               | 9  |
| 2.3.2.2 Soundness                                              | 9  |
| 2.3.2.3 Setting time                                           | 10 |
| 2.3.2.4 Consistency of stander past                            | 11 |
| 2.4 Aggregates for Concrete:-                                  | 12 |
| 2.4.1 Grading                                                  | 14 |
| 2.5 Mixing Water for concrete:                                 | 16 |
| 2.6 Mix design procedure                                       | 17 |
| 2.6.1 Selection of target water/cement ratio (w/c) (stage1)    | 17 |
| 2.6.2 Selection of free- water content (stage2)                | 18 |
| 2.6.3 Determination of cement content (stage3)                 | 18 |
| 2.6.4 Determination of cement content (stage4)                 | 18 |
| 2.6.5 Selection of fine and coarse aggregate content (stage 5) | 19 |
| 2.7 Concrete Tests                                             | 20 |
| 2.7.1 Fresh concrete                                           | 20 |
| 2.7.1.1 Slump test                                             | 20 |
| 2.7.1.2 Compacting Factor test                                 | 21 |
| 2.7.1.3 Compressive Strength test                              | 22 |

| 2.8 Universal Distinct Element Code program                          | 24 |
|----------------------------------------------------------------------|----|
| 2. 8.1 History of Universal Distinct Element Code program            | 24 |
| 2.8.2 Analytical Solution for the displacement of the concrete model | 25 |
| 2.8.2.1 Concrete Properties                                          | 26 |
| 2.8.2.2 Poisson's Ratio, v                                           | 26 |
| 2.8.2.3 Mechanics of Using UDEC                                      | 27 |
| 2.9 Numerical Modeling                                               | 28 |
| 2.9.1 Block Cutting                                                  | 28 |
| 2.9.2 Round (d)                                                      | 29 |
| 2.9.3 Crack:                                                         | 29 |
| 2.9.5 Applying Boundary and Initial Conditions                       | 29 |
| 2.10.2 Mechanics of Using Phase2 program                             | 30 |
| 2.10.1 Introduction:                                                 | 30 |
| CHAPTER THREE                                                        |    |
| EXPERIMENTAL AND NUMERICAL OF CONCRETE                               |    |
| CUBES                                                                |    |
| 3.1 Introduction:                                                    | 36 |
| 3.2 Material used in Experimental model                              | 36 |
| 3.3 Equipments used in tests                                         | 36 |
| 3.4 Experimental work                                                | 37 |
| 3.4.1 Fineness test                                                  | 37 |
| 3.4.2 Setting time test:                                             | 37 |

| 3.4.3 Fresh and hardened test:                     | 38 |
|----------------------------------------------------|----|
| 3.5 Mechanical properties of Concrete cubes        | 40 |
| 3.5.1 The models Geometry                          | 40 |
| 3.5.2.1 Compressive Strength of the models         | 40 |
| 3.6 Simulation of Concrete cube by software (UDEC) | 41 |
| 3.6.1 The Problem description                      | 41 |
| 3.7 Application Model                              | 45 |
| CHAPTER FOUR                                       |    |
| ANALYSIS OF THE RESULTS                            |    |
| 4.1 Comparison results                             | 47 |
| 4.2 Summary of Results                             | 51 |
| 4.3 Discussion of Results                          | 56 |
| CHAPTER FIVE                                       |    |
| CONCLUSIONS AND RECOMMENDATIONS                    |    |
| 5.1 Conclusions                                    | 57 |
| 5.2 Recommendations                                | 57 |
| References                                         | 58 |
| Appendices                                         | 59 |