الآيه

بسم الله ارحمن الرحيم

قال تعالي:

(قل هل يستوي الذين يعلمون والذين لايعلمون انما يتذكر أولوا الالباب) (الزمر 9)

صدق الله العظيم

Dedication

To the fountain of patience and optimism and

hope
To my dear mother and father
To those who have demonstrated to me what
is the most beautiful of my brother's life

To the people who paved our way of scienceand knowledge

To those who teach me and

show me the way of knowledge

To the taste of the most beautiful moments with my friend who endured this long process with me, always offering support and love

.....dear my best brother Kifah

Acknowledgment

I am using this opportunity to express my gratitude to everyone who supported me throughout the course of this MSc research. Thanks to them for their guidance, valuable criticism and friendly advice during the project work. This project would not have been possible without

the support of many people. Many thanks to my adviser

. Uz. Awadh Abdallah Adlan for his help and guidance

Table of contents

Title		Page No
الآيه القرانيه		I
	Dedication	П

Acknowledgment	Ш
Table of contains	IV
List of tables	VI
List of figures	VII
Abbreviation	VIII
Abstract	IX
(Abstract(Arabic	Х
Chapter one	
Introduction .1.1	1
Overview .1.1.1	1
Operator errors .1.1.2	2
Typical applications .1.1.3	3
Initial Calibration .1.1.4	3
Problem of the study .1.2	4
Rational and importance of this study .1.3	5
Objective .1.4	5
General objective .1.4.1	5
Specific objective .1.4.2	5
Chapter tow	
Literature review	
Introduction .2.1	7

Calibration and Traceability .2.2	8
Selection of Patient Dosages .2.3	9
Patient Dosages .2.3.1	9
Diagnostic Reference Levels .2.3.2	10
Nuclear Regulatory Commission .2.3.3	10
Food and Drug Administration .2.3.4	11
Requirements for Dosage Assay .2.4	11
Nuclear Regulatory Commission .2.4.1	11
Food and Drug Administration .2.4.2	12
Accuracy of Dosage Assay .2.5	13
Assay Accuracy .2.5.1	13
Nuclear Regulatory Commission .2.5.2	14
Responsibility for Accurate Dosage .2.5.3	14
Radionuclide Calibrator Manufacturer .2.6	15
Previous studies .2.7	16
Chapter three	
Materials and methods	
Materials .3.1	22
Dose calibrator .3.1.1	22

Construction .3.1.1.1	22
Type of radionuclide-dose calibrator .3.1.1.2	24
Characteristic of dose calibrator .3.1.1.3	24
Radionuclide source .3.1.2	25
Other tools .3.1.3	25
Methods .3.2	26
Physical Inspection .3.2.1	26
Background test .3.2.2	27
Precision test .3.2.3	27
Accuracy test .3.2.4	28
Constancy test .3.2.5	29
Linearity test .3.2.6	29
Geometrical dependence test .3.2.7	30
Area of study .3.3	31
Duration of research .3.4	31
Chapter four	
Results	
Results.4	33

Chapter five

Discussion and conclusion

Discussion .5.1	39
Conclusion .2 .5	40
Recommendation .5.3	41
References .5.4	42

List of tables

Table (1): Dose calibrator reading of Background	
test 33	
Table (2): Dose calibrator reading of precision	
test33	
Table (3): The dose calibrator reading of accuracy test	
34	
ble (4): The dose calibrator reading of reproducibility test	Table
34	

Table (5): The dose calibrator reading of linearity test
36
Table (6): The dose calibrator reading of Geometrical
dependence test37

List of figures

Figure (1): Dose calibrator construction
23
Figure (2): The Veenstar (Vik-202) 5051 radionuclide dose calibrator25
figure (3): Relation between time and dose caliber reading35
figure (4): Relation between activity and time36

Abbreviation

IAEA International Atomic Energy Agency

NRC Nuclear Regulation Commission

ANSI American National Standard Institute

NCRP National Council on Radiation

Protection

RDRC Radioactive Drug Research

Committee

FDA Food And Drug Administration

IND Investigational New Drug

USP-NF United State Pharmacopeia-National

Formulary

ICRP International Commission of Radiation

Protection

QA Quality Assurance

QC Quality Control

DRL Diagnostic Reference Level

PET Positron Emission Tomography

NM Nuclear Medicine

AAPM American Association of Physics in

Medicine

SPECT Single Photon Emission Computed Tomography

:Abstract

This study is concerned with quality control of the dose calibrator which is located in the Radiation Therapy and Nuclear Medicine Center of Khartoum .The objective of the study is to evaluate the dose calibrator performance .Quality control tests were performed in the period between Dec/ 2015 and Jan/2016 .They included general observations to the components of the device, background measurements, precision, accuracy, continuity, linearity and geometric dependency. Two standard radionuclide's Cs-137 and Tc-99m were utilized for the purpose of the study and has come to the following results, all the components of the device work properly and readings for background radioactivity were in the acceptable range (0.562+0.45). Concerning Precision testing the error of the reading was (0.39%), and it was within the accepted range. Concerning accuracy testing the error of the readings was within (0.27%), and it was within the

accepted range .For constancy test the error value of readings was (2.47%), and it was also within the accepted range and the error of readings concerning linearity testing was (3.7%), and it was within the accepted range and finally the results of geometric dependency showed that the correction factor was within the accepted range(0.95-1.05). All the results showed that the devise has good performance and there is no need for .any correction and maintenance

المستخلص:

هذه الدراسه تعني بضبط الجوده لجهاز قياس الجرعات الاشعاعيه المستخدم في مركز الخرطوم للعلاج بالاشعه والطب النووى .

تهدف الدراسه الي تقويم اداء جهاز قياس الجرعات الاشعاعيه وقد أجريت اختبارات ضبط الجوده في الفتره من ديسمبر 2015 الي يناير 2016 وقد وشملت الملاحظات العامه لمكونات الجهاز, قياسات الخلفيه الاشعاعيه, الصحه، الدقة, الاستمراريه الخطيه واالاعتماديه الهندسيه.

استخدمت اثنان من المصادر المشعه المعياريه لغرض الدراسه وهي السيزيوم استخدمت اثنان من المصادر المشعه المعيارية لغرض الدراسة الى النتائج التالية :

جميع مكونات الجهاز تعمل بشكل جيد وقراءات الخلفيه الاشعاعيه في المدي المسموح به ((0.39) 0.45+0.562) وفيما يختص باختبار الدقه فان الخطأ في القراءه كان ((%0.27 وهو في المدي المقبول اما اختبار الصحه فقد اظهر ان الخطأ في القراءه هو (%0.27) وهو ضمن المدي المقبول .فيما يختص باختبار الاستمراريه فان الخطأ في القراءه هو (%2.47) وهو في المدي المقبول اما اختبار الخطيه فقد اظهر ان الخطأ في القراءه بلغ نسبه 3.7%)) وهو كذلك ضمن المدي المقبول واخيرا اظهر الاختبار الهندسي ان معامل التصحيح هو ضمن المدي المدي المسوح به (\$1.05-0.5). وقد اظهرت نتائج الدراسه الناداء الجهاز جيد وليس هناك حاجه للتعديل والصيانه .

Chapter one