

الآية

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

وَقُلْ رَبِّنَا رَبِّ الْعِزَّةِ
لَمَّا حَلَّمَ

صَدَقَ اللَّهُ الْعَظِيمُ

سورة طه الآية 114

ACKNOWLEDGMENT

Praise is to Allah for his mercy and guidance with strength to complete this thesis. I would like to thanks my supervisor: Dr.Mudathir AbdAllah Osman Fagiri for his support, guidance and advices. I will never forget his kindness in helping me to finish my thesis. I would like to thanks the staff Almashreq University for their support and providing the required logistics. Special thanks to my friends and colleagues whom stood beside me near or far and their support in all aspect of life. Finally, I would like to thanks anyone who that helped me take the high step in life.

DEDICATION

**To my family
with love**

ABSTRACT

The use of cars has become an important necessity in people's lives, which led the widespread and growing use this led to the emergence of the problem of congestion and traffic congestion, especially in major cities. So as to increase and frequently used the automotive industry and in return, we find there are slow in the construction of paved roads.

This led to the emergence of the phenomenon of congestion and traffic congestion. Previous studies have provided solutions to this phenomenon. In thesis we are trying to provide a solution to this problem by using bulbs and light emitting binary lighted by solar energy. Also the use of wireless sensor to send a signal from the sensor to the

المستخلص

إن إستخدام السيارات أصبح ضرورة مهمة في حياة الناس مما أدى لانتشار الواسع و المتنامي في استخدامها أدى هذا إلى ظهر مشكلة الازدحام و الاختناق المروري خاصة في المدن الكبri. وذلك لازدياد صناعة السيارات وأستخدامها بكثرة وبالمقابل نجد هناك بطئ في تشبييد الطرق المسفلته. هذا أدى لظهور ظاهرة الازدحام و الاختناق المروري. قدمت دراسات سابقة حلولاً لهذه الظاهرة. في هذا البحث نحاول تقديم حل لهذه المشكلة باستخدام لمبات ثانية الباخت الصوئي و انارتها عن طريق الطاقة الشمسية، أيضاً تم إستخدام شبكة الاستشعار اللاسلكية لارسال الاشارة من الحساسات لوحدة التحكم. نتائج المحاكاة باستخدام بروتوكول بروتوكول بينت أن أداء النظام جيد تحت ظروف التشغيل المختلفة .

TABLE OF CONTENTS

	Page No.
الآية	i
ACKNOWLEDGEMENT	ii
DEDICATION	iii
ABSTRACT	iv
المستخلص	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	x
LIST OF ABBREVIATIONS	xi

CHAPTER ONE: INTRODUCTION

1.1 overview	1
1.2 Problem Statement	2
1.3 Objectives	2
1.4 Methodology	3
1.5 Thesis Outline	3

CHAPTER TWO: BACKGROUND AND LITREATUR REVIEW

2.1 Smart Street Lighting System	4
2.2 Wireless Sensor Network	4
2.3 Wireless Sensor Network Architecture	5
2.3.1 Node architecture	5
2.3.2 Sink or gateway architecture	7
2.4 Light-Emitting Diodes	7
2.5 Solar Energy	8
2.6 Previous Works	9

CHAPTER THREE: SIMULATION MODEL

3.1 Introduction.....	16
3.2 IR Sensor Modules.....	17
3.3 Object Detection Using IR Sensor.....	18
3.4 Processing and Storing Unit.....	19
3.5 Wireless Communication Unit (Based on ZigBee).....	20
3.5.1 IEEE 802.15.4/ZigBee standard overview.....	21
3.5.2 ZigBee specifications.....	21
3.5.3 Network components.....	22
3.5.4 ZigBee topologies.....	22
3.6 RGB Light-Emitting Diodes.....	24
3.7 Solar Street Lighting System.....	26
3.7.1 Working of solar street lights.....	27
3.7.2 Solar led lights.....	27
3.7.3 Centralized solar systems.....	28
3.7.4 Type of solar street lighting system.....	29
3.8 Control Unit.....	31

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Introduction.....	32
4.2 Flowchart.....	32
4.3 Operation of System.....	34
4.3.1 Case one (sleep case).....	34
4.3.2 Case two (stop case).....	36
4.3.3 Case three (normal case).....	36

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion.....	40
5.2 Recommendations	40

REFERENCES.....	42
------------------------	----

APPENDICES

Appendix A.....	45
Appendix B.....	50
Appendix C.....	54
Appendix D.....	67

LIST OF FIGURES

Figure	Title	Page
2.1	Architecture of a sensor node	6
3.1	Block diagram of the system	17
3.2	Object detection using IR sensor	18
3.3	Design of sender and receiver IR sensor	19
3.4	ZigBee network topologies	22
3.5	RGB led	26
3.6	Solar street lighting system	27
4.1	The flow chart	33
4.2	LED off (sleep case)	34
4.3	LED ON gradually 1	35
4.4	LED ON gradually 2	35
4.5	LED ON gradually 3	36
4.6	System off (stop case)	37
4.7	Normal case	37
4.8	Normal case1	38
4.9	Crowded road (normal case)	39

LIST OF TABLES

Table	Title	Page
3.1	Basic ZigBee specifications	21
3.2	Comparison available communications technology	24
3.3	Selection matrix for standalone (built in batteries) street light system-sunway	30
3.4	Selection matrix for standalone (external battery) street light system-sunway	30

LIST OF ABBREVIATIONS

AC	Alternative Current
DC	Direct Current
EEPROM	Electrically Erasable Programmable Read Only Memory
GPRS	General Packet Radio Services
GSM	Global System Mobile Communication
GUI	Graphical User Interface
HID	High Intensity Discharge
IEEE	Institute of Electrical and Electronic Engineering
IR	Infra Red
LDR	Light Detect Resistor
LCD	Liquid Crystal Display
LED	Light-Emitting Diode
LR-WPAN	Low-Rate Wireless Personal Area Networks
MCU	Micro Controller Unit
PC	Personal Computer
PIR	Passive Infrared Sensors
PLC	Programmable Logic Controller
PSDU	Parking Status Display Unit
PV	Photovoltaic Electricity
RGB LED	Red, Green and Blue Light-Emitting Diode
RISC	Reduced Instruction Set Computing
SRAM	Static Random Memory
STE	Solar Thermal Electricity
VANET	Vehicular Ad-Hoc Networks
VIPs	Very Important Persons
WPANs	Wireless Personal Area Networks
WSN	Wireless Sensor Network
ZC	ZigBee Coordinator
ZED	ZigBee End Device
ZR	ZigBee Router