

Sudan University of Science & Technology College of Engineering School of Mechanical Engineering Department of Power

PRODUCTION AND CHARACTERISTICS ANALYSIS OF BIODIESEL DERIVED FROM USED COOKING OIL

إنتاج وتحليل خصائص الوقود الحيوي المنتج من مخلفات زيت الطهي

A Project Submitted in Partial Fulfilment for the Requirements of B.Sc. Degree (Honors) in Mechanical Engineering (Power)

Prepared by:

- 1. AbduAllah Husien Ahmed Mohammed
- 2. Hazim Ali Elhaj Mohammed
- 3. Samah Osama Merghani Mohammed

Supervised by:

Dr. Hazir Farouk Abdelraheem Elhaj

(October 2015)

بسم الله الرحمن الرحيم

قال تعالى:

﴿ لِلَّهِ مَا فِي السَّمَاوَاتِ وَمَا فِي الأَرْضِ وَإِن تُبُدُواْ مَا فِي أَنفُسِكُمْ أَوْ تُخْفُوهُ يُحَاسِبُكُمْ بِهِ اللَّهُ فَيَغْفِرُلِمَن يَشَاء وَيُعَذِّبُ مَن يَشَاء وَاللَّهُ عَلَى كُلِّ شَيْءِقَدِيرٌ (284) آمَنَ اللَّهِ وَمَلا مِكَتِهِ وَكُتْبِهِ وَرُسُلِهِ لاَ الرَّسُولُ بِهَا أُنزِلَ إِلَيْهِ مِن رَّبِهِ وَالْمُؤْمِنُونَ كُلُّ آمَنَ بِاللّهِ وَمَلا مِكَتِهِ وَكُتْبِهِ وَرُسُلِهِ لاَ النَّسُولُ بِهَا أُنزِلَ إِلَيْهِ مِن رَّبِهِ وَالْمُؤْمِنُونَ كُلُّ آمَنَ بِاللّهِ وَمَلا مِكَتِهِ وَرُسُلِهِ لاَ النَّهِ مَن رُسُلِهِ وَقَالُواْ سَمِعْنَا وَأَطَعْنَا غُفْرَانَكَ رَبَّنَا وَالْيَكَ الْمَصِيرُ (285) لاَ فَيْنَ اللّهُ نَفْسَا إلاَّ وَسُعَهَا لَهَا مَا كَسَبَتْ وَطَلْيًا مَا اكْتَسَبَتْ رَبَّنَا لاَ تُوَاخِذُنَا إِن نَسِينَا عَلَى اللّهِ نَفْسَا إلاَّ وَسُعَهَا لَهَا مَا كَسَبَتْ وَطَلْيًا مَا اكْتَسَبَتْ رَبِنَا لاَ تُوَاخِذُنَا إِن نَسِينَا مُورِلاً فَانصُرْنَا عَلَى اللّهِ وَاعْفُ عَنَّا وَاغْفِرُ لَنَا وَارْحُمْنَا أَنتَ مَوْلانَا فَانصُرْنَا عَلَى الْقَوْمِ الْكَافِرِينَ لاَ طَاقَةً لَنَا بِهِ وَاعْفُ عَنَّا وَاغْفِرْ لَنَا وَارْحُمْنَا أَنتَ مَوْلانَا فَاضُرْنَا عَلَى اللّهُ مِ الْكَافِرِينَ (286) ﴾

صدق الله العظيم

(البقرة)

DEDICATION

To the people who are in our hearts, we dedicate this effort

ACKNOWLEDGMENT

First of all, our gratitude and thanks goes to *ALLAH*, for helping us to finish this work. We wish to express our deepest gratitude and sincere appreciation to our project supervisor, Dr. *Hazir Farouk Abdelraheem Elhaj* for her continuous guidance

We also thanks and acknowledge the people at the thermodynamics laboratory at school of mechanical engineering and laboratory of chemistry at faculty of science, Sudan university of science and technology for their guidance and support through the experimental process and properties testing.

We also express our acknowledgement to our families, colleagues and all those who contributed to the support of this project. We are really thankful and consider ourselves fortunate to work and share thoughts with such wonderful people.

ABSTRACT

There is increasing interest on Used cooking oils as cost effective feedstock for biodiesel production. In this study, biodiesel was produced from used cooking oil (Acid value 1.09 mgKOH/g), collected from one of the restaurants at faculty of engineering, Sudan University of Science and Technology, using an alkaline base transsterfication process. The maximum biodiesel yield obtained was 85.3% in combination of process parameters of 25% (v/v) methanol to oil ratio, 0.8% (w/w) of KOH, at maintained reaction time of 120 min, reaction temperature of 60 °C and steering peed of 400 rpm. Optimizing the process parameters such as alcohol to oil molar ratio and catalyst concentration, the results show that the biodiesel yield decreases with the increase in methanol to oil molar ration, and reduces if the alkali catalyst is added above its optimum concentration. The basic physicochemical properties of the biodiesel produced were found to be in agreement within the ASTM D6751 specified limits. Mainly, these parameters were acid value, density, viscosity and flash point. Moreover, the calorific value was found to be 41.05 Mj/kg.

.

الملخص

هنالك إهتمام متزايد لإستخدام مخلفات زيت الطهي كمصدر منخفض التكلفة لانتاج الوقود الحيوي. في هذه الدراسة تم إنتاج الوقود الحيوي من مخلفات زيت الطهي بمستوي حمضية 1.09 mgKOH/g والذي تم جمعه من إحدي مطاعم كلية الهندسة، جامعة السودان للعلوم والتكنولوجيا وذلك عن طريق عملية الأسترة التحويلية بإستخدام كحافز قلوي أساسي. تم الحصول علي أعلي معدل إنتاج للوقود الحيوي 85.3% عند إستخدام 25% (حجم) ميثانول و 8.0% (وزن) هيدروكسيد بوتاسيوم وذلك بإجراء التفاعل عند درجة حرارة 60 درجة مئوية, 120 دقيقة و 400 لفة في الدقيقة لسرعة الدوران. كذلك أظهرت النتائج أن معدل إنتاج الوقود الحيوي يتناقص مع زيادة نسبة الميثانول والمحفز القلوي فوق القيمة المثلي. كذلك تم إختبارالخصائص الأساسية للوقود الحيوي المنتج مثل الكثافة, اللزوجة, مستوي الحمضية وونقطة الوميض. وأظهرت النتائج أن جميع القيم المتحصل عليها لتلك الخصائص تتوافق في المدي المحدد لمواصفات الوقود الحيوي طبقا للمواصفة الأمريكية رقم ASTM D6751. إضافة الي

TABLE OF CONTENTS

CHAPTER	TITLE					
	الآية		I			
	DEDICATION ACKNOWLEDGEMENT					
	ABSTRAC		IV			
	الملخص		V			
	TABLE O	F CONTENT	VI			
	LIST OF T		VIII			
	LIST OF F	TIGURES	IX			
	LIST OF A	ABBREVIATIONS	X			
	LIST OF A	APPENDICES	XII			
1	INTRODU	CTION	1			
	1.1 Gen	eral Overview	1			
	1.2 Project Background					
	1.3 Problem Statement					
	1.4 Project Goals and Aim					
	1.5 The Scope of project					
		ect Significance	4			
	1.7 Project Layout					
2	LITERAT	URE REVIEW	5			
	2.1 Intro	oduction	5			
	2.2 The	energy profile worldwide	5			
	2.3 Defi	inition of Biodiesel	6			
	2.4 Biod	diesel Feedstocks	6			
	2.4.1	Used cooking oil	8			
	2.5 Biod	diesel Production process	9			
	2.5.1	Blending process	10			
	2.5.2	Micro-emulsification	10			
	2.5.3	Cracking	11			
	2.5.4	Transesterification	11			
	2.5.	4.1 Parameter affecting Transesterification	12			
	Rea	ction				
	2.6 Prop	perties and Qualities of Biodiesel	13			
	2.6.1	Acid Value	14			
	2.6.2	Density	14			
	2.6.3	Kinematic Viscosity	14			
	2.6.4	Cetane Number	15			
	2.6.5	Heating Value	15			
	2.6.6	Flash Point	15			
	2.6.7	Cloud Point and Pour Point	16			

CHAPTER	TITLE	Page
	2.6.8 Oxidation Stability	16
	2.7 Biodiesel Specification and Policy	17
	2.8 Benefits of Biodiesel Uses	21
3	METHODOLOGY	23
	3.1 Introduction	23
	3.2 Biodiesel Production	24
	3.2.1 Material and Chemicals	24
	3.2.2 Experimental Procedure	24
	3.2.2.1 Alkaline Base-catalyzed Step	5
	3.2.2.2 Sample Treatment	25
	3.3 Properties analysis and equipment	26
	3.3.1 Determination of Acid Value	26
	3.3.1.1 Procedure to prepare	26
	phenolphthalein indicator (phph)	
	3.3.1.2 Titration Procedure	26
4	RESULTS AND DISCUSSION	29
	4.1 Introduction	29
	4.2 Production of Biodiesel	30
	4.3 Alkaline Base-catalyzed Step	30
	4.3.1.1 Effect of Alcohol Molar Ratio	30
	4.3.1.2 Effect of Catalyst Concentration	31
	4.4 Biodiesel properties specifications	32
5	CONCLUSION AND RECOMMENDATIONS	34
	5.2 Conclusions	34
	5.3 Recommendation	35
	REFERENCES	36
	APPENDICES	38

LIST OF TABLES

TABLE NO.	TITLE					
Table 2.1	Main biodiesel feedstock	7				
Table 2.2	Current potential feedstock for biodiesel production worldwide	8				
Table 2.3	Comparison of fuel properties for UCO biodiesel and diesel fuel	9				
Table 2.4	Optimized parameters for Alkaline- catalyzed process	13				
Table 2.5	ASTM D975, ASTM 6751 and EN 14214specifications of diesel and biodiesel	18				
Table 3.1	Physiochemical properties of used cooking oil (UCO)	24				
Table 3.2	Levels of alkaline base catalyst process variables	25				
Table 3.3	Equipment and apparatus used in the biodiesel production	25				
Table 3.4	Equipment list for analysing biodiesel properties	28				
Table 4.1	Effect of alcohol molar ratio in biodiesel yield	30				
Table 4.2	Effect of catalyst concentration in biodiesel yield	31				
Table 4.3	Physiochemical properties of the produced biodiesel	33				

LIST OF FIGURES

FIGURE NO.	TITLE	Page
Figure 2.1	General cost breakdown for biodiesel production	10
Figure 2.2	Stoichiometric transesterification of triglycerides	11
Figure 3.1	Flow chart of the research methodology	23
Figure 3.2	Experimental setup of acid value titration	27
Figure 3.3	Equipment list for analysing biodiesel properties	28
Figure 4.1	Transesterfication process steps of used cooking oil	29
Figure 4.2	Effect of alcohol molar ratio in biodiesel yield	31
Figure 4.3	Effect of catalyst concentration in biodiesel yield	32

LIST OF ABBREVIATIONS

ASTM - American Standard of Testing Materials

ASTM D6751 - American Standard Specification for biodiesel

AV - Acid Value

B0 - Petroleum Diesel

B100 - 100% UCO Biodiesel

CFPP - Cold filter plug point

DI - Direct Ignition

°C - Degree Celsius

CSOME - <u>Cottonseed Oil Methyl Ester</u>

CME - Canola Methyl Ester

CN - Cetane Number

CO - Carbon Monoxide

CO2 - Carbon Dioxide

DIN - German Institute for Standardization

EN14214 - European Standard Specification for biodiesel

FAME - Fatty Acid Methyl Ester

FN - Flow Number

FFA - Free Fatty Acid

GHG - Greenhouse Gases

HC - Hydrocarbons

IC - Internal Combustion

Kg - Kilogram

KOH - Potassium Hydroxide

MeOH - Methanol

Min - Minutes

NaOH - Sodium Hydroxide

NO - Nitrogen Oxide

NO2 - Nitrogen Dioxide

N2 - Nitrogen

NOx - Nitrogen Oxides

O₂ - Oxygen

pmm - Parts Per million

SG - Specific Gravity
SCM - Supercritical Methanol

SO - Sulphur Oxide

SO2 - Sulphur Dioxide

UCO - Used Cooking Oil

UHC - Unburned Hydrocarbons

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
NO.		
A	Calculations of Biodiesel Conversion Parameters	38

CHAPTER ONE

INTRODUCTION

1.1 General Overview

Fossil fuel resources are being used up, and the scarcity of known petroleum reserves will make renewable energy resources more attractive. As one of the most promising fossil fuel alternatives, biofuels have been given priority for development in many countries around the world, with their potential advantages of greatly reduced greenhouse gas (GHG) emissions, and they are generally seen as more environmentally sustainable. Researchers found that the most feasible way to meet this growing demand is by utilizing alternative fuels such as biodiesel which can be produced from vegetable oils or animal fats [1].

Biodiesel gained a lot of interest worldwide, not just because it's a renewable fuel source; it's also an economically feasible one and can be produced in an environmentally friendly way. In most of the developed countries, biodiesel is produced from edible oils from plants such as Soybean, Rapeseed, Sunflower, Cotton and Peanuts. Non-edible oils from plants such as Castor, Pongamia, Jatropha and, Karanja and animal fats are increasingly seen as better options for large scale production of biodiesel because edible oils are already in high demand and are too expensive to be economic feedstocks for making biodiesel [2].

In 2009 European Union (EU) issued a directive for renewable energy which requires that biofuels must supply at least 10% of transportation fuels by 2020. The US Renewable Fuel Standard (RFS) mandates the minimum use of 36 billion gallons of ethanol by 2022. Malaysia, Indonesia, Thailand, and many other countries applied the concept of B5 and B10 (5 and 10% of biodiesel blended with fossil diesel) and developed their own roadmaps for biofuel utilization over the coming decades [3].

1.2 Project Background

Sudan is one of the largest countries in Africa with a total area of 1,882,000 km², and it has a population of about 33.5 million (growth rate of 2.84% per year) [4]. Sudan's energy demand has significantly grown through the past 20 years from 6.8 million tonnes of oil-equivalent (MTOE) to more than 11.MOTE [5]. Crude oil is the main source of fossil energy and its consumption has rapidly increased in recent years owing to the increase in the country's economic and population growth. The transportation sector is the largest user of the refined fuel products, consuming about 61% from the total crude oil volume presently produced. The major fuel form used is diesel. It represents about 50% of the total fuel consumption, whilst gasoline and jet A1 represent 23% [5, 6].

The secession of South Sudan in 2011 with most of the productive oil fields has left Sudan with sharply reduced oil volumes to export (previously the main source of export revenue). Petroleum product subsidies accounted for about 75% of tax revenues in 2011 and have been on the rise as a consequence of this secession and the related rise in petroleum products in the international market. Imports of oil products account for about 20 percent of Sudan's total fuel consumption. Diesel, jet fuel, and LPG are imported to cover the shortfall in domestic production. In 2011, the volume of imports accounted for about 25, 20 and 50 percent respectively of the total consumption of these products, but the share of imports are likely to rise following the secession of South Sudan and the recent events in crude oil production sites [7].

Sudan, while a developing country, has much obvious positive strength that have the potential, if harnessed, for providing great economic benefits. In this context, Sudan's potential for the development of an industrial scale biofuels supply needs to be assessed. These biofuels development actually fits within the development of bioenergy in Sudan – covering the use of biomass of all types, including forest and agricultural residues and biowastes from industry and urban centres, to produce energy. This energy produced may be in the form of heat, electricity, liquid and gaseous transport fuels, or gas or liquid fuels for use in industry and households.

1.3 Problem Statement

Development of a large-scale biodiesel production industry in Sudan with aim to reduce dependency on petroleum-sourced diesel fuel requires proper management as well as solution of many critical issues. One significant problem in the production of biodiesel is the availability and cost of feedstock. Optimizing the amounts of the chemicals needed for the production process of biodiesel along with other parameters indicate that real savings can be made in terms of time and chemical cost, which can significantly improve operating economics. However, the use of bidiosel in the transportation system requires meeting the international standards of fuel specification. Thus; the properties of the biodiesel produced and its blend need to be tested to ensure they are within the limits of international standards.

1.4 Project Goals and Aim

The aim of this project is to assess the potential of biodiesel production from used cooking oil available from restaurants. The specific objectives are summarized in:

- To produce biodiesel from used cooking oil (UCO) in lab scale.
- To optimize the process parameters of biodiesel production from used cooking oil by using the conventional transesterification method.
- To characterize the basic physicochemical properties of the UCO biodiesel and compare with the ASTM D6751 specification limits.

1.5 The Project Scope

The scope of this project is limited to optimizing the main parameters of biodiesel production process from used cooking oil via transesterification reaction. This includes the alcohol-to-oil molar ratio, and concentration of catalyst. The scope also included determination of physical and chemical fuel properties of the produced biodiesel such as acid value, kinematic viscosity, density, calorific value, and flash point.

1.6 Project Significance

Sudan has a steadily increasing requirement for fossil diesel for both transport and electricity generation in regional areas beyond the national electricity grid. There is a growing

awareness that biodiesel produced in Sudan could be blended with the available fossil diesel, resulting in many positive economic, social and environmental benefits. However, using non-food biomass feedstock could help to achieve sustainable, very low emission and cost-effective bio fuels production through successful development of advanced bio fuels technologies. Use of low cost feed stocks such as used cooking oil (UCO) will increase the competency of biodiesel against petroleum diesel. Moreover, production of biodiesel from used cooking oil is providing alternative opportunity for the management of fats and oils that get put into the city sewage system.

1.7 Project Layout

This project is divided into five chapters. Chapter 1 discusses the background of the research, the problem statement and declares the objectives as well as the scope of this study and the significance. Literature review is presented in chapter 2, mainly drawing similar studies by other researchers. The sources are journals, articles and other established sources in internet. Researches done by others are compared in this chapter and several reviews are included. Chapter 3 outlines detailed methods in attaining the objectives of this research including a detailed explanation of the material and process used. The results obtained are analyzed and discussed in chapter 4. Chapter 5 conclude the findings of this report and recommendations are suggested for future research.

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter presents a detailed literature review with aim to provide a general overview of the potential of uses of biodiesel as a fuel blended with diesel in diesel engine. It includes a detailed review of biodiesel feedstocks, biodiesel production processes, biodiesel standards and policies, properties and qualities of biodiesel and the benefits of using biodiesel. Moreover, this chapter reviews the previous work in the research topic area, and reveals the limitations which are related to the biodiesel industry worldwide.

2.2 The Energy Profile Worldwide

During the last Century, the consumption of energy has increased rapidly due to the change in the life style and significant growth population. This increase of energy demand has been supplied by the use of fossil resources. The demand for transport fuel has been increasing and expectations are that this trend will stay unchanged for the coming decades. In the fact, with a worldwide increasing number of vehicles and rising demand of emerging economies, demand will probably rise even harder. Transport fuel demand is traditionally satisfied by fossil fuel demand. However, resources of this fuel are running out, prices of fossil fuel are expected to rise and combustion of fossil fuels has detrimental affecting the climate [8].

The increasing awareness of the depletion of fossil fuel resources and the environmental benefits of biodiesel fuel has made it more attractive in recent times. Its primary advantages deal with it being one of the most renewable fuels currently available and it also non-toxic and biodegradable. It can also be used directly in most diesel engines

without requiring extensive engine modifications. However, the cost of biodiesel is the major hurdle to its commercialization in comparison to petroleum-based diesel fuel the high cost is primarily due to the raw material, mostly neat vegetable oil. Used cooking oil is one of the economical sources for biodiesel production. However, the products formed during frying, can affect the transesterification reaction and the biodiesel properties [9]:

2.3 Definition of biodiesel

Biodiesel is defined as the fatty acid alkyl monoesters derived from renewable feedstocks such as vegetable oils and animal fats [10]. It is a fuel resulting from mixing of vegetable oils with alcohol in the presence of a catalyst. Biodiesel is a biodegradable, nontoxic, almost sulfur-free and non-aromatic, environmentally-friendly alternative diesel fuel. When a diesel engine is operated with biodiesel, exhaust emissions decrease approximately 20% in CO, 30% in HC, 40% in particulate matter (PM), and 50% in soot emission, compared to fossil-diesel fuel. In contrast to these decreases, its nitrous oxides (NOx) emissions increase about 10–15 %. However, the high NOx problem can be overcome by retarding the injection timing. The lubrication effect or lubricity property of biodiesel is much better than that of diesel fuel and especially of low-sulfur diesel fuel [11].

2.4 Biodiesel Feedstock

The feedstock for biodiesel production is usually chosen according to the availability and cost in each region or country. Worldwide, there are more than 350 oil-bearing crops identified as potential sources for biodiesel production. The availability of feedstocks for producing biodiesel depends on some factors like the geographical locations and agricultural practices of the country. The more commonly-used feedstocks are soybean, palm, sunflower, safflower, cottonseed, rapeseed and peanut oils [3]. Vegetable oils have the potential to be considered as a possible alternative for petroleum diesel, as they possess fuel properties similar to that of diesel. In general these biodiesel feedstocks can be divided into four main categories; edible vegetable oils, non-edible vegetable oils, waste or recycled oils and animals' fats, and there are other resources available [12]. Some of these feedstocks are presented in Table 2.1.

Table 2.1: Main biodiesel feedstock [3]

Edible oils	Non-edible oils	Animal Fats	Other Sources	
Soybeans (Glycine max)	Jatropha curcas	Pork lard	Bacteria	
Rapeseed (Brassica napus L.)	Mahua (Madhuca indica)	Beef tallow	Algae (Cyanobacteria)	
Safflower	Pongamia (Pongamia pinnata)	Poultry Fat	Microalgae (Chlorellavulgaris)	
Rice bran oil (Oryza sativum)	Camelina (Camelina Sativa)	Fish oil	Tarpenes	
Barley	Cotton seed (Gossypium hirsutum)	Chicken fat	poplar	
Sesame (Sesamum indicum L.)	Cumaru		switchgrass	
Groundnut	Cynara cardunculus		miscanthus	
Sorghum	Abutilon muticum		Latexes	
Wheat	Neem (Azadirachta indica)		Fungi	
Corn	Jojoba (Simmondsia chinensis)			
Coconut	Passion seed (Passiflora edulis)			
Canola	Moringa (Moringa oleifera)			
Peanut	Tobacco seed			
Palm and palm kernel (Elaeis	rubber seed tree (Hevca			
guineensis)	brasiliensis)			
Sunflower (Helianthus annuus)	Salmon oil			

Most of the oils used for the production of biodiesel by various researchers were soybean, sunflower, safflower, cotton, rapeseed and palm oil. The production of these has been well established in many countries around the world such as Malaysia, USA and Germany. Currently, more than 95% of the world biodiesel is produced from edible oils such as rapeseed (84%), sunflower oil (13%), palm oil (1%), soybean oil and others (2%) [3]. However the edible oil are in increasing demand, their use is rising and prices increased dramatically during the 10 last years with consequent effect on the biodiesel production industries [13].

One of the possible solutions to reduce the utilization of the edible oil for biodiesel production is by exploiting non-edible oils, waste oils or animal fats. These resources are gaining worldwide attention because they are easily available in many parts of the world. Several studies have been done on the production of biodiesel from waste oils or animal fats such as beef tallow, chicken fat, pork lard and fish oil. They describe the feasibility of making quality biodiesel from this feedstock while identifying the problems with the free fatty acids present in the raw materials. The advantages of using waste cooking oils to produce biodiesel

are the potentially lower feedstock cost and prevention of environmental pollution (due to the high cost of disposal, many individuals dispose waste cooking oils directly to the environment especially in rural area [14]. The current feedstocks used for biodiesel production are shown in Table 2.2.

Table 2.2: Current Potential Feedstocks for Biodiesel Worldwide [10]

Country	Feedstock
USA	Soybeans / waste oil / Peanut
Canada	Rapeseed / Animal fat / Soybeans / Yellow grease and Tallow / Mustard
Mexico	Animal fat/ Waste oil
Germany	Rapeseed
Italy	Rapeseed / Sunflower
France	Rapeseed / Sunflower
Spain	Linseed oil / Sunflower
Greece	Cottonseed
UK	Rapeseed / Waste cooking oil
Sweden	Rapeseed
Ireland	frying oil / animal fats
India	Jatropha / Pongamia pinnata (karanja) / Soybean / Rapeseed / Sunflower / Peanut
Malaysia	Palm oil
Indonesia	Palm oil / Jatropha/ Coconut
Singapore	Palm oil
Philippines	Coconut / Jatropha
Thailand	Palm / Jatropha / Coconut
China	Jatropha / Waste cooking oil / Rapeseed
Brazil	Soybeans / Palm oil / Castor / Cotton oil
Argentina	Soybeans
Japan	Waste cooking oil
New Zealand	Waste cooking oil / Tallow

2.4.1 Used Cooking Oil

Used cooking oil is a possible low cost feedstock for biodiesel production. The main sources of used cooking oil are household, restaurants, hotels, catering, and camps. This collected wasted cooking oil has variety of qualities and posses properties different from neat vegetable oil [15]. Thus, neat vegetable oil is the best starting material compare to waste

cooking oil because of the conversion of triylglycerides to fatty acid methyl ester is high and the reaction time is relatively short. Waste cooking oil contains higher free fatty acid than neat vegetable oil. Researchers reveal stated that the high temperature of typical cooking processes and water from the foods accelerate the hydrolysis of triglycerides and increase the free fatty acid content in the oil [16]. However, the properties of biodiesel produced from used cooking are nearly to that of conventional diesel fuel as shown in Table 2.3.

Table 2.3: Comparison of fuel properties for a UCO and diesel fuel [17]

Characteristics	UCO Biodiesel	Diesel Fuel	ASTM D6751Limits
Density at 15°C (kg/m ³)	875	820-860	880
Specific gravity at 15.5°C	0.893	0.825	-
Kinematic Viscosity at $40^{\circ}\text{C}(\text{mm}^2/\text{s})$	3.658	1.81	1.9-6.0
Flash point (°C)	160	53	130 minimum
Calorific value (MJ/kg)	39.77	42.35	Report
Cetane index	50.54	46.21	-
Cetane Number	55.45-56.10	46	47 minimum
Pour Point (°C)	-4 to -1	-20	-15 to -16
Distillation temperature (°C)			
10% recovery temperature	340	165	
50% recovery temperature	345	265	360
90% recovery temperature	320	346	

2.5 Biodiesel Production Processes:

The cost of biodiesel is mainly affected by the cost of feedstock, as shown in the Figure 2.1. Feedstock cost represents about 75% of the overall biodiesel production cost, and the rest - 25% - is the combination of the chemicals used, equipment depreciation, labour and other overhead costs. This indicates that selecting of the feed stock should meet two significant requirements: low production cost/unit volume and large production scale [3, 14].

There are four main methods of biodiesel production processes: blending, microemulsification, cracking and transesterification. Among these four ways, the most commonly preferred process to reduce the high viscosity of reaction is the transesterification process [18].

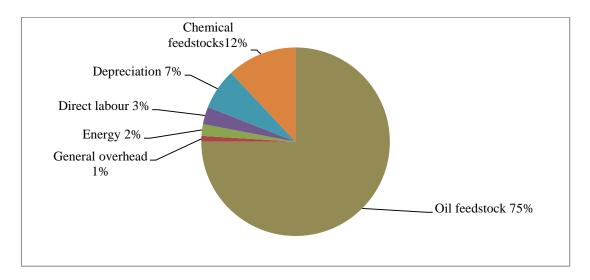


Figure 2.1: General cost breakdown for production of biodiesel [14]

2.5.1 Blending Process

Blending is the direct mixing of vegetable oil with diesel fuel. However, different chemical nature of biodiesel and diesel may cause differences in the physicochemical properties that will affect the engine performance and pollutant emissions produced [19].

2.5.2 Micro-emulsification

Micro-emulsification is another approach to reduce the viscosity of vegetable oils A micro-emulsion is defined as a colloidal equilibrium dispersion of optically isotropic fluid microstructure with dimensions in the 1–150 nm range, formed spontaneously from two normally immiscible liquids. They can improve spray characteristics by explosive vaporization of the low boiling constituents in the micelles [20].

2.5.3 Cracking Process

Thermal cracking is the conversion of one substance into another by means of heat in the presence of a catalyst. The thermal cracking material can be vegetable oil, animal fats, natural fatty acids or methyl esters of fatty acids. The thermal cracking of fats has been investigated for more than 100 years, especially in those areas of the world where there is lack of deposit of petroleum. Many investigators have studied thermal cracking of triglycerides to obtain products suitable for diesel engines. Thermal decompositions of triglycerides produce alkadines, alkenes, alkaline, aromatics, and carboxylic acids [21].

2.5.4 Transesterification Process

Transesterification is regarded as the best method among the alternative biodiesel production methods, due to its low cost and simplicity. Transesterification is the normal name given to the chemical reaction between triglycerides and alcohol to form an ester and glycerol with or without the presence of catalyst. This process is also called alcoholysis of ester. Generally, the reaction time and yield of transesterification can be enhanced by adding catalyst. The reaction can be represented as in Figure 2.2, where the mechanism of transesterification consists of three reversible reactions, in which the triglycerides are converted into diglycerides followed by conversion to monoglycerides, and then lastly converted into glycerol, producing one ester at each conversion stage [3]. Transesterification can be categorized into two main types, which are the catalytic and non-catalytic methods. Catalytic transesterification includes alkaline-catalyzed reaction, acid- catalyzed reaction and enzyme-catalyzed reaction.

Figure 2.2: Stoichiometric Transesterification of Triglycerides [3, 17]

2.5.4.1 Parameters Affecting Transesterification Reaction

The transesterification process is influenced by various parameters during the reaction. Some of the imperative factors are reaction temperature, molar ratio of alcohol to oil, concentration of catalyst and reaction time.

i. Reaction Temperature

The reaction temperature is limited by the boiling point of the alcohol as temperature beyond the boiling point of the alcohol will vaporize the alcohol, causing lower transesterification yield [18].

ii. Molar Ratio of Alcohol to Oil

Stoichiometric transesterification of triglycerides requires ratio of three moles of alcohol and one mole of triglyceride to produce three moles of fatty acid alkyl ester and one mole of glycerol. Normally, excess alcohol is used to transesterify the oil completely to the ester. Base-catalyzed transesterification of oil with FFA less than 1% requires molar ratio of methanol to oil of 6:1. Nevertheless, transesterification of oil with high FFA content by using acid catalyst will require molar ratio up to 24:1 [18].

iii. Concentration of Catalyst

Catalyst has an optimum range of concentration that will produce highest yield in transesterification process. Sulphuric acid is a common catalyst that works best in the range of 1.5-2.25 M concentration. Base catalysts, on the other hand, are more effective than acid catalyst as they react faster. High conversion rate of above 90 % for sodium hydroxide occurs at 1.0 to 1.4 % (w/w), whereas that for potassium hydroxide occurs at 0.55 to 2.0 % (w/w) [18].

iv. Reaction Time

The conversion rate of oil to alkyl ester increases with time until it reaches maximum yield rate. Usually, optimum reaction time of base-catalyzed reaction is shorter that of acid

catalyzed reaction. However, prolonged reaction time will cause backward reaction of transesterification, forming soap [18].

Moreover, there are other variables affecting transesterification process such as free fatty acid and water contents, mixing intensity, and effect of using organic co-solvents. Examples of alkaline- catalyzed process of vegetable oil under optimized reaction conditions are summarized in Table 2.4.

Table 2.4: Optimized parameters for Alkaline- catalyzed process (H.Farouk, *et al.* 2014)

Alkaline- catalyzed Process								
Catalyst amount	MeOH to oil ratio	Reaction condition	Biodiesel yield					
KOH, 2.0 wt%	9:1 mol	120 min, 60 °C	90-95 %					
NaOH, 1.4% w/w	24% w/w	120 min, 65±0.5 °C	90 %					
NaOH, 1.0% w/w	30% v/v	180 min, 50 °C	90.1 %					
KOH, 0.55% w/w	16% v/v	24 min, 60 °C	99 %					
KOH,0.55% w/w	5.41:1 mol	90 min, 60 °C	95.3%					
KOH, 8gm/l of oil	11% v/v	180 min, 66 °C	93%					
KOH, 1.0% w/w	6:1 mol	30 min, 60 ±0.3°C	86.2%					
KOH, 0.55% w/w	5.41:1 mol	90 min, 60 °C	93%					
KOH, 1.0% w/w	15% w/w	40 min, 30 °C	96%					
KOH, 0.5% w/w	6:1 mol	90 min, 60 °C	83%					

2.6 Properties and Qualities of Biodiesel

The successful commercialization of biodiesel around the world has led to the development of various national standards which describe the minimum requirement of important biodiesel properties to ensure its suitability for use in diesel engines [21]. The properties of biodiesel are characterized by physicochemical properties. Some of these properties include; cetane number, density (kg/m³), viscosity (mm²/s), cloud and pour points (°C), flash point (°C), acid value (mg KOH per g-oil), ash content (%), copper corrosion, carbon residue, water content and sediment, sulphur content, glycerine (% m/m), phosphorus (mg/kg) and oxidation stability. The physical and chemical fuel properties of biodiesel

basically depend on the type of feedstock and their fatty acids composition [22]. The following section gives explanations of some general properties of biodiesel.

2.6.1 Acid Value

The acid number or neutralization number is a measure of the amount of carboxylic acid groups in a chemical compound, such as a fatty acid, or in a mixture of compounds. Free fatty acids (FFAs) are the saturated or unsaturated monocarboxylic acids that occur naturally in fats, oils or greases but are not attached to glycerol backbones. Fatty acids vary in carbon chain length and in the number of unsaturated bonds (double bonds). Acid value is expressed as mg KOH required for neutralizing 1 gm of FAME. Higher acid content can cause severe corrosion in fuel supply system of an engine. The acid value is determined using the ASTM D664 and EN 14104. Both standards approved a maximum acid value for biodiesel of 0.50 mg KOH/g [23].

2.6.2 Density

The density of fuel has some effect on the break-up of the fuel injected into the cylinder. In addition, more fuel is injected by mass as the fuel density increases. Higher density of biodiesel allows use of splash blending by adding biodiesel on top of diesel fuel making biodiesel blends or else the fuel will not mix. ASTM Standard D1298 and EN ISO 3675/12185 test method are used to measure the density of the biodiesel. According to these standards, density should be tested at the temperature reference of 15 °C [24].

2.6.3 Kinematic Viscosity

Viscosity is defined as the resistance of liquid to flow. The viscosity of an engine fuel is one of the most critical fuel features. It plays a dominant role in the fuel spray, mixture formation and combustion process. The high viscosity interferes with the injection process and leads to insufficient fuel atomization. It was also stated that higher viscosity leads to poorer atomization of the fuel spray, which affects accuracy of the operation of fuel injectors. However the lower the viscosity of the biodiesel, the easier it is to pump, and it atomizes

better and achieves finer droplets. The maximum allowable limit according to ASTM D445 ranges are (1.9-6.0 mm²s⁻¹) and (3.5-5.0 mm²s⁻¹) in EN ISO 3104 [24].

2.6.4 Cetane Number

Satisfactory diesel combustion demands self-ignition of the fuel as it is sprayed near TDC into the hot swirling compressed cylinder gas. Long ignition delay is not acceptable as it leads to knock. The cetane number is the prime indicator of fuel ignition quality and the opposite of octane number of a gasoline fuel. It can be defined as the measure of knock tendency of diesel fuel. Therefore, the cetane number of the substitute fuel should be high enough, that the knock tendency of the fuel is minimal. Satisfactory fuels must have a cetane number between 40 and 60. Cetane number increases with increasing chain length of fatty acids and increasing saturation. A higher CN indicates shorter time between the ignition and the initiation of fuel injection into the combustion chamber. Fuels with low CN tend to cause diesel knocking and show increased gaseous and particulate exhaust emissions (PM) due to incomplete combustion. Moreover, excessive engine deposits are reported. Generally, biodiesel has higher CN than conventional diesel fuel, which results in higher combustion efficiency. The CN of diesel, specified by ASTM D613 is 47 min and EN ISO 5165 is 51.0 min [25].

2.6.5 Heating Value

Although the diesel combustion chamber system can accept wide variations in heating value, practical systems are only suitable when calorific value of the fuel is high. This helps to reduce the quality of fuel handled and maximizes the equipment operating range. It is always desirable for the vegetable oils to have a calorific value nearer to that of conventional diesel [26].

2.6.6 Flash Point

The flash point is the temperature at which the fuel will start to burn when it comes to contact with flame or spark. It is an important temperature from the safety point of view during storage and transportation. However, a fuel with high flash point may cause carbon

deposits in the combustion chamber. Flash point of biodiesel is higher than the petroleum based diesel fuel. Thus in storage, biodiesel and its blends are safer than conventional diesel. The limit of flash point ranges in ASTM D93 is 93 °C and in EN ISO 3679 is 120 °C [27].

2.6.7 Cloud Point and Pour Point

Cold-flow quality of a fuel is determined by the cloud point and pour point. The cloud point is defined as the temperatures at which when small solid crystal are initially observed as the fuel is being cooled. This is the most conservative measurements of cold flows properties and most fuel can be used without problems below the cloud point but above the cold filter plug point (CFPP). The pour point is the lowest temperature at which the fuel will still flow and can be pumped. All biodiesel regardless of its source have higher cloud and pour points than that of diesel fuel, and this poor cold flow property is one of the most critical obstacles against the widespread biodiesel usage, and particularly of higher blends or of pure biodiesel. In general, biodiesel has higher CP and PP than diesel fuel. Cloud and pour points are measured using ASTM D2500 EN ISO 23015 and D97 procedures [28].

2.6.8 Oxidation Stability

The oxidation of biodiesel fuel is one of the major factors that helps assess the quality of biodiesel. Oxidation stability is an indication of the degree of oxidation, potential reactivity with air, and can determine the need for antioxidants. Oxidation occurs due to the presence of unsaturated fatty acid chains and the double bond in the parent molecule, which immediately react with the oxygen as soon as it is being exposed to air [28]. The chemical composition of biodiesel fuels make it more susceptible to oxidative degradation than fossil diesel fuel. The Rancimat method (EN ISO 14112) is listed as the oxidative stability specification in ASTM D6751 and EN 14214. A minimum IP (110 °C) of 3 h is required for ASTM D6751, whereas a more stringent limit of 6 hours or greater is specified in EN 14214 [29].

2.7 Biodiesel Specifications and policy

Different countries having different mandates for biodiesel blends. In the EU it is a legal undertaking by each country to achieve an overall 10% biofuel use by 2020. The Federated States in place are Thailand B5, Argentina B7, Belgium B4, Columbia B20, Indonesia B2.5, Malaysia B5 (B7 last month), Philippines B2, Peru B5, Sth Korea B2.5, Spain B7, This is usually as a blending mandate or an overall biofuel use mandate. In the USA it is a state by state biofuel use or blending authorization (some states are up to B10. Some blending targets are raising to B20 in step with state production targets). The USA has an overall biofuel use target of over 100 billion liters by 2022. Thailand target is 6 million liters a day of biodiesel by 2022. Moreover many countries have additional national targets. This include Italy which targets 2,899 ktoe biodiesel uses in transport by 2020, Denmark targets 100% of transport by biofuels and electricity by 2050, France targets10.5% by 2020, Spain targets 2,313 ktoe of biodiesel uses by 2020, and Sweden targets 100% biofuels by 2030 [30].

The properties and qualities of biodiesel must adhere with the international biodiesel standard specifications. These specifications include the American Standards for Testing Materials (ASTM 6751-3) or the European Union (EN 14214) Standards. However, there are some other standards available globally such as in Germany (DIN 51606), Austria (ON) and Czech republic (CSN). Biodiesel (B100) specifications ASTM D6751 and EN 14214 standards are shown in Table 2.5 [30]

 Table 2.5:
 ASTM D975, ASTM 6751 and EN 14214 specifications of diesel and biodiesel

			iesel	Biodiesel			
Property specification	Unit	AST	M D975	ASTM D6751		J	EN 14214
Troporty specification		Test method	Limits	Limits	Test Method	Limits	Test Method
Flash point	°C	ASTM D975	60 to 80	130 minimum	ASTM D93	101 minimum	EN ISO 3679
Cloud point	°C	ASTM D975	-15 to 5	-3 to -12	ASTM 2500	-	-
Pour point	°C	ASTM D975	-35 to -15	-15 to -16	ASTM 97	-	-
Cold filter plugging point (CFFF)	°C	EN 590	-8	Max +5	ASTM D6371	-	EN 14214
Cetane number		ASTM D4737, EN 590	46	47 minimum	ASTM D613	51 minimum	EN ISO 5165
Density at 15°C	kg/m ³	ASTM D1298	820-860	880	D1298	860-900	EN ISO 3675/12185
Kinematic viscosity at 40°C	mm ² /s	ASTM D445	2.0 to 4.5	1.9-6.0	ASTM D445	3.5-5.0	EN ISO 3104
Iodine number	g I ₂ /100 g	-	-	-	-	120	EN 14111
Acid number	mg KOH/g	-	-	0.5 maximum	ASTM D664	0.5 maximum	EN 14104
Oxidation stability		ASTM D2274	25 mg/L maximum	-	-	3 hours minimum	EN 14112
Carbon residue	% m/m	ASTM D4530	0.2 maximum	0.050 maximum	ASTM D4530	0.3 maximum	EN ISO 10370
Copper corrosion		ASTM D130	Class 1 max	No.3 maximum	ASTM D130	class 1	EN ISO 2160
Distillation temperature	°C	ASTM D86	370 maximum	360	ASTM D1160	-	-
Lubricity (HFRR)		IP 450	0.460 mm (max)	520 maximum	ASTM D6079	-	-
Ash content	% mass	ASTM D482	100 maximum	-	-	-	-
Water and sediment		ASTM D2709	0.05 maximum	0.005 %v maximum	ASTM D2709	500 mg/kg maximum	EN ISO 12937

			iesel	Biodiesel			
Property specification	Unit	ASTM D975		ASTM D6751		EN 14214	
F. O.F.		Test method	Limits	Limits	Test Method	Limits	Test Method
Moisture	wt %	-	-	-	-	0.05 maximum	EN 1412
Monoglycerides	% mass	-	-	-	-	0.8 maximum	EN 14105
Diglycerides	% mass	-	1	-	-	0.2 maximum	EN 14105
Triglycerides	% mass	-	-	-	-	0.2 maximum	EN 14106
Free glycerine	% mass	-	-	0.02 maximum	ASTM D6584	0.02 maximum	EN 1405/14016
Total glycerine	% mass	-	-	0.24	ASTM D6548	0.25	EN 14105
Phosphorous	% mass	-	-	0.001 maximum	ASTM D4951	0.001 maximum	EN 14107
Calcium	% mass	-	-	-	-	-	-
Magnesium	% mass	-	-	-	-	-	-
Sulphur (S 10grade)		ASTM D5453	10 maximum	-	-	-	-
Sulphur (S 15 grade)	ppm	-	-	150 maximum	ASTM D5453	-	-
Sulphur (S 50 grade)	ppm	ASTM D5453	50 maximum	-	-	-	-
Sulphur (S 500 grade)	ppm	ASTM D5453	500 maximum	500 maximum	ASTM D5453	-	-
Carbon	wt%	ASTM D975	87	77	ASTM PS 121	-	-
Hydrogen	wt%	ASTM D975	13	12	ASTM PS 121	-	-
Oxygen	wt%	ASTM D975	0	11	ASTM PS 121	-	ı
Sodium and potassium	mg/kg	-	-	-	-	5 maximum	EN 14108, EN 14109
Methanol content	%mass	-	-	-	-	0.2 maximum	EN 14110
Ester content	% mass	-	-	-	-	96.5 minimum	EN 14103
Linolenic acid methyl ester	%mass	-	-	-	-	12 maximum	EN 14103
Polyunsaturated (3 4 double bonds) methyl esters	%mass	-	-	-	-	1 maximum	EN 14104
Alkaline metals (Na+ K)	mg/kg	-	-	-	-	5 maximum	EN 14108, EN 14109, EN 14538

		Diesel ASTM D975		Biodiesel			
Property specification	Unit			ASTM I	06751	EN 14214	
Troporty specification	Cint	Test method	Limits	Limits	Test Method	Limits	Test Method
Alkaline metals (Ca+ Mg)	mg/kg	-	-	-	-	5 maximum	EN 14538
BOCLE scuff	g	ASTM D975	2000 to 5000	>7000	ASTM PS 121	-	-
Conductivity @ ambient temp	pS/m	ASTM D2624	50 m minimum @ambient temp (all diesel held by a terminal or refinery for sale or distribution)	-	-	-	-
Polyaromatic hydrocarbons (PAHs)	% m/m	IP391	11 maximum	-	-	-	-
Total contamination	mg/kg	-	-	24	ASTM D 5452	24	EN 12662

2.8 Benefits of biodiesel uses

Biodiesel has several significant advantages over conventional diesel fuel. Biodiesel is available from many renewable sources which make it an environmentally friendly source of energy. It is easy to store and safer to transport compared to conventional diesel fuel, and can be used alone or blended in diesel engines.

Biodiesel as alternative fuel for petroleum can significantly reduce global warming emission gases such as carbon dioxide (CO2). The biofuels producing plants such as soybeans or palm oils breathe the CO2 from the air when they grow. Meanwhile the biodiesel during combustion releases CO2 and other emissions to atmosphere. This cycle ideally does not add the net CO2 concentration in the air because the next soybean or palm oil crop will reuse the CO2 in order to grow [31].

Biodiesel has higher combustion efficiency due to better homogeneity of oxygen/fuel during combustion and it will improve the lifespan of diesel engines owing to better lubricating properties as compared to diesel fuel. The combustion of biodiesel generally can reduce emissions and it charted 90% drop in total unburned hydrocarbons, and a 75–90% drop in polycyclic aromatic hydrocarbons. Low sulphur content of biodiesel apparently reduces the SO2 emissions [31].

Biodiesel is classified as biodegradable, meaning that it is easy to decompose. It is safer to transport and safe to handle because its biodegradability is the same as sugar as and ten times less toxic than table salt. Most importantly it is less flammable. Biodiesel is less flammable compared to regular petroleum diesel. This is because biofuels has a higher flash point compared to petroleum diesel. Theoretically, biodiesel has flash point of around 160°C whereas petroleum diesel has much lower flash point of near 55°C. This characteristic makes a vehicle fueled with neat biodiesel far safer in an accident than one powered by petroleum diesel [32].

If the features of biofuels are looked into profoundly, they are shown as able to create new markets for agricultural products that will be able to boost intense development in these sectors. It is because biodiesel feedstocks are mainly produced from agricultural or horticultural crops. For the developing countries where up to two-thirds of the economic growth is concentrated around agriculture, biodiesel would be an economical boost in the near future. At the national level, producing more biofuels will generate new industries, new technologies, new jobs and new markets.

CHAPTER THIRD

METHODOLOGY

3.1 Introduction

This chapter explains the method that was used in this project work. It details the procedure adopted for biodiesel production process and for determination of physical and chemical properties of biodiesel produced .The equipment and the apparatus used in this project are also shown in this chapter. The methodology flowchart of this project work is shown in Figure 3.1.

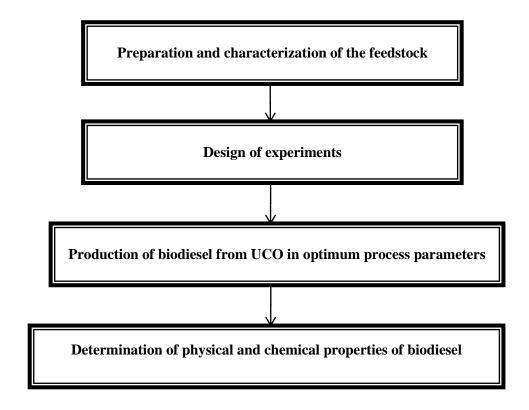


Figure 3.1: Flow chart of the research methodology

3.2 Biodiesel Production

3.2.1 Material and Chemicals

Used cooking oil (UCO) was used to produce biodiesel in this project work. The oil was provided from a restaurant located at Faulty of Engineering – Sudan University of Science and Technology. The oil was processed for experimentation in the Laboratory of chemistry, faculty of science. All chemicals used in the production process were obtained in their analytical grade. Potassium hydroxide (KOH) used to enhance the reaction for the transesterification process. 2-Propanol (iso-propyl alcohol), potassium hydroxide solution (0.1 N), and double rings qualitative filter paper of 125 mm size were also used in this project work. The main physiochemical properties of the UCO sample were determined as per standard methods and reported in Table 3.1.

Table 3.1: Physiochemical properties of used cooking oil (UCO)

Properties	Value
Acid value (mgKOH/g)	1.09
Density @ 20°C (g/ml)	964
viscosity@37°C (mm²/s)	44.6

3.2.2 Experimental Procedure

Alkaline-catalysed transesterification is the most widely used process for biodiesel production because it is very fast and yield high amount of biodiesel. However, to use alkaline catalysts, the free fatty acid (FFA) level should be below a desired limit (rang between 0.5% and 3%). Most of used cooking oils have high FFA values. Therefore, transesterification with alkali based catalyst yield a considerable amount of soap which are emulsifiers that make the separation of glycerol and ester phases very difficult. Acid-catalysed esterification was found to be a good solution to this problem. However the oil used for biodiesel production in this project was found to be with FFA value less than 3%. Therefore, Alkaline-catalysed process was used in one step. Refer to APPENDIX (A) for the sample calculation of reaction parameters like amount of methanol and catalyst.

3.2.2.1 Alkaline Base-catalyzed Step

The used cooking oil was poured into the round-bottomed flask, then (1% w/w) amount of catalyst KOH was weighed and dissolved completely in methanol (25 % v/v) to form potassium methoxide. Meanwhile, the oil was warmed up, and the prepared methoxide was added into the oil at 60 °C. The reaction conducted in vigorous mixing at 400 rpm and for 120 min then, it has been allowed to separate and settle in a funnel for 30 min to remove the glycerol layer which was formed in the bottom of the separation funnel. Levels of the two parameters optimized are shown in Table 3.2.

Table 3.2: Levels of the alkaline base-catalyst process variables

Variables	Low Level	High Level
MEOH Ratio (% v/v)	15	50
KOH Ratio (%w/w)	0.8	2

3.2.2.2 Sample Treatment

In this step, the produced methyl ester from the first step washed three times with warm water in 50 °C till the pH of the water was less than 8. To remove the moisture, the final product was heated up to 70 °C for 30 min then filtered with filter papers. This resulted in a clear light liquid which is biodiesel. Table 3.3 lists the equipment and apparatus used in the biodiesel production process.

Table 3.3: Equipment and apparatus used in the biodiesel production

No.	Equipment/ apparatus	Purpose	
1.	Hot plate magnetic stirrer	To provide heat and steering for the reaction	
2. Two-necked round-bottomed flask To hold the mix the reaction		To hold the mixture of oil and methoxide for the reaction	
3.	Thermometer with cork	To maintain the temperature of the reaction	
4.	Water-cooled Condenser	To condense the evaporated methanol back into two-necked round-bottomed flask	
5.	Separation funnel	To separate glycerol from biodiesel by gravity	
6.	P _H indicator papers	To measure the P _H of washing water of biodiesel	

3.3 Properties Analysis and Equipment

The quality of any fuel is expressed in terms of the fuel properties such as kinematic viscosity, calorific value, CCR, flash point and cold filter plugging point. In this project, the important physical and chemical properties of the biodiesel produced and blends were tested according to ASTM D 6751 standard. The properties determined for the UCO biodiesel produced include; acid value, viscosity, density, calorific value, and flash point.

3.3.1 Determination of Acid Value

Acid value defined as the quantity of potassium hydroxide (KOH) in milligrams which is required to neutralize the free acids in 1 gram of sample. The following sections explain in details the procedure conducted in this project to measure the acid values of UCO biodiesel.

3.3.1.1 Procedure to prepare phenolphthalein indicator (phph)

Phenolphthalein is a chemical compound with the formula $C_{20}H_{14}O_4$. In titration, it turns color less in acidic solutions and pink in basic solutions. To prepare titration solution, 0.5 g of phenolphthalein was dissolved in 50% ethanol (ethyl alcohol) solution consisting of 50ml ethanol and 50 ml water. The solution was stored in a stopper bottle.

3.3.1.2 Titration Procedure

Firstly, a measured amount of the biodiesel was poured into a beaker or Erlenmeyer flask. This was followed by adding 50 ml of 2-Propanol to the measured amount of crude oil. The mixture was then heated to around 50-55 °C to make sure that the oil was well diluted in 2-Propanol. Before the titration is started, 1-3 drops of phph indicator were then added to the mixture. The titration begins with adding the base titrant (KOH solution) with a known normality (0.1 N) from the burette drop by drop to the mixture until the indicator changes, reflecting arrival at the endpoint of the titration. Depending on the endpoint desired, single drops or less than a single drop of the titrant can make the difference between a permanent and temporary change in the indicator. When the endpoint of the reaction is reached, the

volume of reactant consumed is measured and used to calculate the acid value of the crude oil. Therefore, acid value can be calculated using the following equation:

$$AV = \frac{MW \times N \times V}{W} \tag{3.1}$$

Where

 $MW \equiv Molecular$ weight of potassium hydroxide.

 $N \equiv$ Normality of potassium hydroxide solution (0.1 N).

V≡ Volume of potassium hydroxide solution used in titration.

 $W \equiv Weight of oil sample.$

Figure 3.2 shows the procedure adopted for titration.

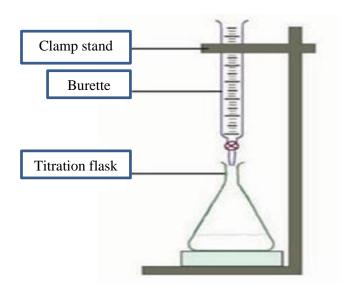


Figure 3.2: Experiment set up of acid value titration

Table 3.4: Equipment list for analyzing biodiesel properties

No.	Property	Equipment	
1.	Density	Pycnometer	
2.	Kinematic viscosity		
		Summi	
3.	Flash point	Pensky martens	
4.	Caloric value	Lab Calorimeter	

Figure 3.3: Shows the equipment used to analyze the biodiesel properties.

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the experimental results obtained using the apparatus and procedures described in chapter 3. The production process of biodiesel is discussed in section one. Section two analyzes the results obtained from the optimization of the alcohol to molar ratio and catalyst concentration and their effects on the biodiesel yield. The third section summarises the properties of UCO biodiesel produced compared to biodiesel standard specification ASTM D6751.

4.2 Production of Biodiesel

In the transesterification process, alkaline base catalyst was used for biodiesel production. The final product was a clear light liquid which is biodiesel with a viscosity close to conventional diesel fuel. The sequences of the biodiesel production steps are shown in Figure 4.1.

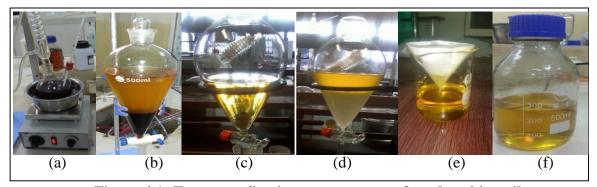


Figure 4.1: Transesterfication process steps of used cooking oil

(a) reaction of UCO with methoxide. (b) separation of glycerol (c) biodiesel clear from glycerol (d) washing of biodesel (e) filtration of biodiesel (f) final biodiesel

4.2.1 Alkaline Base-catalyzed Step

In this process, KOH was used as an alkaline base catalyst in order to enhance the reaction. The process parameters optimized were alcohol to oil molar ratio, and the catalyst concentration. However, the reaction temperature maintained to be less than the boiling point of alcohol which is between 60–70°C at atmospheric pressure, to ensure the alcohol will not be lost through vaporization.

4.2.1.1 Effect of Alcohol Molar Ratio

The alcohol to oil molar ratio is one of the most important factors that can affect the yield of esters. Thus, the effect of methanol molar ratio (15 - 50 % v/v) in biodiesel yield is investigated in this project. The other process parameters remain constant at 120 min of reaction time and 1% concentration of KOH. The results obtained are summarized in Table 4.1 and Figure 4.2. It observed from the Figure that the biodiesel yield is decreased with the increase in methanol to oil molar ration. Excess alcohol is used during transesterification to ensure that the oils will be completely converted to ester due to the forward reaction being more favorable. However, more alchole will negatively affect the reaction and lead to decrease the biodiesel yield. From this experiment, the maximum yield of biodiesel obtained was 83.7% for methanol/oil volume ratio of 25% after 120 min of reaction time.

Table 4.1: Effect of methanol to oil molar ratio in biodiesel yield

No.	Alchol to oil ratio (%v/v)	Volume of biodiesel (ml)	Volume of glycerol (ml)	Biodiesel yield (%)
1	15	244	50	81.33
2	25	251	70	83.70
3	40	249	80	83.00
4	50	216	100	72.00

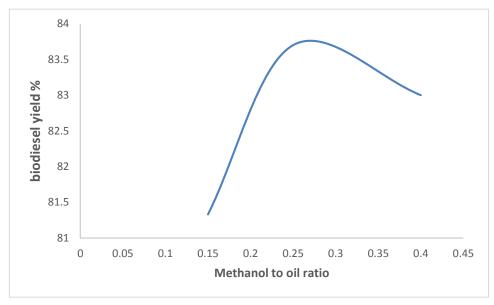


Figure 4.2: Effect of methanol to oil molar ratio on biodiesel yield

4.2.1.2 Effect of Catalyst Concentration

The effect of KOH concentration on the biodiesel yield is investigated in Table 4.2 and Figure 4.3 with its concentration varying from 0.8 to 2% w/w. The other process parameters were fixed at 120min of reaction time and alcohol to oil ratio of 25% v/v. As mentioned earlier, basic catalysts are usually preferred to acid catalysts in this transesterfication process, because of the higher reactivity and the lower process temperature required.

Table 4.2: Effect of KOH concentration in biodiesel yield

No.	Catalyst ratio (%w/w)	Volume of biodiesel (ml)	Volume of glycerol (ml)	Biodiesel yield (%)
1	0.8	256	50	85.33
2	1.0	251	70	83.70
3	1.5	238	90	79.33
4	2.0	202	125	67.33

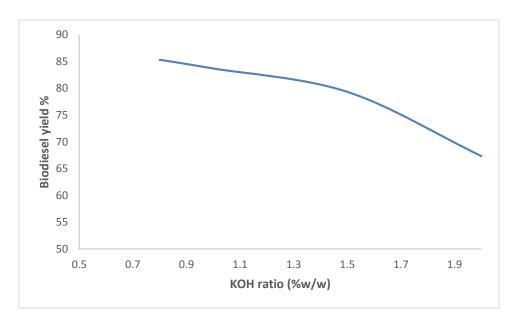


Figure 4.3: Effect of KOH concentration on biodiesel yield

As can be observed from Figure 4.3, the biodiesel yield is decreased with the increase in catalyst concentration to reach the minimum value at higher concentration of 2.0% of catalyst. However, the yield of biodiesel is reduced if the alkali catalyst is added above its optimum concentration as this causes more soap formation. The maximum biodiesel yield achieved in the experiment was 85.33% at catalyst concentration of 0.8%.

The optimum condition of the transesterfication process was found to be 25 % (v/v) methanol to oil ratio, 0.8% (w/w) of KOH, at maintained reaction of time 120 min and reaction temperature of 60°C. The results obtained from this process, was biodiesel free from glycerol.

4.3 Biodiesel Properties Specifications

The basic biodiesel parameters were tested to ensure the fuel quality according to the standard specification. Table 4.3 shows some of physical and chemical fuel properties of the produced biodiesels from used cooking oil in this project work. It can be observed that all properties are in agreement with the standard specification of biodiesel ASTM D6751.

Table 4.3: Physical and chemical properties of the produced biodiesel

Property	UCO Biodiesel	ASTM D6751 limit
Acid Value mg (KOH/g)	0.056	0.5 max
Viscosity at 40 °C (mm²/s)	2.15	1.9-6.0
Density at 20 °C (kg/m³)	875	880 at 15°C
Caloric value (MJ/kg)	41.05	Report
Flash point °C	186	130 min.

The kinematic viscosity at 40 °C of the UCO biodiesel produced found to be 2.15 mm²/s. This is an expected finding since biodiesel molecules are single, long chain fatty esters with higher mobility than the bigger and bulkier triglyceride molecules as revealed by some researcher like Sanford, *et al.*, 2009.

The flash point of the UCO biodiesel produced found to be 186 °C which is high compare to the flash point of diesel fuel is 55–66 °C. This means that biodiesel is safe for storage purpose, handling and transport. This high value flash point of biodiesel is due to the presence of unsaturated acid chain length of C18:1 and C18:2 in the vegetable oil (Silitonga *et al.*, 2013).

Moreover, the calorific value was found to be 41.05 Mj/kg which is more than that value of used cooking oil obtained by Enweremadu, *et al.*, 2010 which was 39.77 Mj/kg. The calorific value is not specified in ASTM D6751 and EN 14214 biodiesel standards but it is prescribed in EN 14213 (biodiesel for heating purpose) with a minimum value of 35 MJ/kg

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

This chapter summarizes the work done in this research with the set objectives and several recommendations that are stated for future research.

5.1 Conclusion

- i. Selection of a transesterification process steps depends on certain parameters including the amount of free fatty acid content of the feedstock. However, base alkaline catalyzed transesterification process is most effective in converting triglycerides into esters when free fatty acid level is less than 1%.
- ii. Adopting an alkaline base transsterfication process, the maximum final biodiesel yield of 85.3% was achieved from used cooking oil in combination of process parameters of 25% (v/v) methanol to oil ratio, 0.8% (w/w) of KOH, at maintained reaction time of 120 min, reaction temperature of 60 °C and steering peed of 400 rpm.
- iii. The biodiesel yield is decreased with the increase in methanol to oil molar ration. On other hand, the biodiesel yield is reduced if the alkali catalyst is added above its optimum concentration as this causes more soap formation.
- iv. The basic physicochemical properties of the UCO biodiesel produced in this project work were found to be in agreement within the ASTM D6751 specified limits. Mainly,

Acid value, density, viscosity and flash point. Moreover, the calorific value was found to be 41.05 Mj/kg.

v. Overall, the results obtained from this project reveal that biodiesel produced from used cooking oil is a promising alternative for Sudan energy sector.

5.2 Recommendations

Several recommendations are suggested, as following;

- Some other biodiesel properties should also be analysed against the ASTM D6751 specification limits. These include oxidation stability, cloud and pour point, free fatty acid composition and total glycerol and free glycerol,
- ii. The effects of other process parameters like reaction time and reaction temperature on the biodiesel yield should also be optimized.
- iii. Investigate the potential and the economics of producing biodiesel from used cooking oil with high level of free fatty acid.

REFERENCES

- 1. Ejaz M. Shahid, Younis Jamal, *Production of biodiesel: A technical review*, Renewable and Sustainable Energy Reviews, 2011.**15** (9): p. 4732-4745
- 2. A.E. Atabani, A.S. Silitonga, Irfan Anjum Badruddin, T.M.I. Mahlia, H.H. Masjuki, S. Mekhilef. *A comprehensive review on biodiesel as an alternative energy resource and its characteristics* 2012. **16** (4): p. 2070–2093.
- 3. Raghu, A., *Malaysia to help palm sector with new biodiesel blend rules*, in *The Star* 2013, Star Publications (M) Bhd: Kuala Lumpur.
- 4. Ministry of Information, "Sudan, the land of opportunities", July 2011, ISBN 233/2011
- 5. Ministry of petroleum, Sudanese Petroleum Corporation (SPC), Data of 2012.
- 6. International Monetary Fund, (2012). Sudan: *Selected Issues Paper. IMF Country Report No.* 12/299, Retrieved December 21, 2012 from the World Wide Web: http://www.imf.org/external/pubs/ft/scr/2012/cr12299.pdf
- 7. Andrew Lang, Hazir Farouk. (2013). *Jatropha oil production for biodiesel and other products a study of issues involved in production at large scale*. Aeronautical Research Center-Sudan, World Bioenergy Association, Stockholm, Sweden.
- 8. P.T. Vasudevan and M. S. Briggs, *Biodiesel production current state of the art and challenges*, J Ind Microb Technol, 35:421 (2008)
- 9. Hazir Farouk, Mohammad Nazri, Tirto Prakoso, Sabir Mohammed. 2013. *Biodiesel Production from Crude Jatropha Oil (CJO) in Pilot plant*. In Proceeding of Fourth International Graduate Conference. University Technology Malaysia, Johor, Malaysia. 16-17 April.
- 10. María Blanco Fonseca, et al., *Impacts of the EU biofuel target on agricultural markets and land use: a comparative modelling assessment*, ed. A. Burrell. 2010, Spain: Publications Office of the European Union.
- 11. U.S.Energy Information Administration, *International Energy Outlook 2013*, 2013, U.S. Energy Information Administration: Washington
- 12. Deng X, Fang Z, Liu Y, Yu C. *Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst*. Energy 2011, **36**(2):p.777–84.
- 13. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK. *Microalgae as a sustainable energy source for biodiesel production: a review*. Renew Sustain Energy Rev 2011; **15**(1):p. 584–93.
- 14. Kumar BP, Pohit S, Kumar R. *Biodiesel from jatropha: can India meet the 20% blending target?* Energy Policy, 2010. **38**(3):p. 1477–84.
- 15. Leung, D. Y. C.; Guo, Y., (2006). *Transesterification of neat and used frying oil: Optimization for biodiesel production*. Fuel Process Tech., 87 (10), 883–890.
- 16. A.A.Refat, Different techniques for the production of biodiesel from waste vegetable oil. International Journal of Environmental Science Technology, 7 (1), 183-213, 2010. ISSN: 1735-1472.
- 17. Enweremadu CC, Rutto HL (2010). Combustion, emission and engine performance characteristics of used cooking oil biodiesel-A review. Renew. Sustain. Energy Rev. 14:2863-2873.
- 18. Aziz Elbehri, Anna Segerstedt, Pascal Liu. *Biofuels and the Sustainability Challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks*. Food and Agriculture Organization of the United Nations, Rome, 2013.

- 19. Bryan R. Moser, *Biodiesel production, properties, and feedstock's*, In Vitro Cell.Dev.Biol.—Plant, 2009. **45**:p. 229–266
- 20. Jain S, Sharma MP. Prospects of biodiesel from Jatropha in India: a review.2010; 14:p.763–71.
- 21. ASTM, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, in D 6751 02. 2002: Pennsylvania.
- 22. Roundtable on Sustainable Biofuels, *Global principles and criteria for sustainable biofuels production Version Zero*, 2008 from the RSB Web Page: http://rsb.org/pdfs/standards/Version-Zero_RSB_Std_en.pdf
- 23. Balat, M., & Balat, H. (2010). Progress in biodiesel processing. *Applied Energy*, 87(6), 1815-1835. doi: DOI: 10.1016/j.apenergy.2010.01.012
- 24. British Standards, Automotive fuels —Fatty acid methyl esters (FAME) for diesel engines Requirements and test methods, in BS EN 14214:2008+A1:2009. 2009: United Kingdom.
- 25. Eria. (2011). Current status of biodiesel fuel in East-Asia and ASEAN Countries.
- 26. Lapuerta, M., Armas, O., & Rodríguez, F. J. (2008). Effect of biodiesel fuels on diesel engine emissions. *Progress in Energy and Combustion Science*, 34(2), 198-223. doi: DOI: 10.1016/j.pecs.2007.07.001
- 27. Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005b). Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. *Renewable Energy*, *30*(5), 795-803. doi: DOI: 10.1016/j.renene.2004.07.002
- 28. Fernando, S., Karra, P., Hernandez, R., & Jha, S. K. (2007). Effect of incompletely converted soybean oil on biodiesel quality. *Energy*, 32(5), 844-851. doi: DOI: 10.1016/j.energy.2006.06.019
- 29. Murugesan, A., Umarani, C., Chinnusamy, T. R., Krishnan, M., Subramanian, R., & Neduzchezhain, N. (2009). Production and analysis of bio-diesel from non-edible oils A review. *Renewable and Sustainable Energy Reviews*, 13(4), 825-834. doi: DOI: 10.1016/j.rser.2008.02.003
- 30. A.Silitonga, A.S., A.E. Atabani, T.M.I. Mahlia, H.H. Masjuki, Irfan Anjum Badruddin, S. Mekhilef. *A review on prospect of Jatropha curcas for biodiesel in Indonesia*. Renewable and Sustainable Energy Reviews, 2011. **15**(8): p. 3733-3756
- 31. Demirbas, A. *Importance of Biodiesel as Transportation Fuel. Energy Policy*. 2007. 35(9): 4661 4670.
- 32. Burke Anderson, Sara Keehfuss, and Brodie Pettit , *Biodiesel: Cost and reactant comparison* . The Evergreen State College , Energy Systems, Fall-Winter 2007-20081

APPENDIX A

Calculations of Biodiesel Conversion Parameters

Calculation of molar ratio and volume of methanol

From general stoichiometric of transesterification reaction,

1 mol of triglyceride reacts with 3 mol of methanol to produce 3 mol of biodiesel and glycerol.

$$\label{eq:volume} \mbox{volume}_{\mbox{ of MeOH}} = \frac{\mbox{No.of mol} \times \mbox{molar ratio} \times \mbox{MeOH molecular weight}}{0.7918}$$
 or 25% of oil volume used

Calculation of catalyst used

Concentration of catalyst to jatropha oil in wt% can be obtained by calculation mass of catalyst used in the reaction.

Catalyst wt% =
$$\frac{\text{Mass of catalyst} \times 100}{\text{Mass of uco oil}}$$