CHAPTER ONE

INTRODUCTION

1.1 General Review

The importance of PID controllers in process industry can not be over emphasized
because more than half of the industrial controllers in use today utilize PID or
modified PID control schemes. PID controller has a simple control structure that is
easily understood by the operators which help them in tuning the PID
satisfactorily. Tuning of PID is therefore an important aspect of its implementation.
Fuzzy logic is used to represent qualitative knowledge, and provides interpretability
to system models. By this it means that a system model is explicit and is
understandable to a knowledge or systems engineer. This facilitates inspection of
the model, and therefore simplifies and encourages its validation and
maintenance. Zadeh has summarized fuzzy logic as a body of concepts and
techniques for dealing with imprecision, information granulation, approximate
reasoning and computing with words rather than numbers.

On the other hand, neural networks and fuzzy logic are two bio-mimetic techniques
that are used to provide approximations to real-world problems. While for some
people this biological plausibility provides some justification for their use, for
others the important point is that, regardless of their origins, both approaches are
known to be robust alternatives to conventional deterministic and programmed
models. However, the two paradigms have distinct application domains. Neural
networks are used to induce knowledge or functional relationships from instances of
sampled data. This is useful when it is not possible to develop analytic models from
first principles but the system is observable. However, in contrast to fuzzy systems,
this knowledge is not readily understandable to the system designer because it is

encapsulated in the so called black box [1].
1.2 Problem Statement

The flow control system has nonlinear and time varying behaviours thus it is
difficult to derive and identify an appropriate dynamic model for traditional

controllers. In addition, it is very difficult to get an accurate and linearized
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mathematical model for such system. With PID controller it is difficult to obtain the
desired response due to fixed parameters of PID after been calculated when change

occurs in environment or operation conditions.
1.3 Objectives

The main aims of this study are
» Design and simulation of flow control system using PID controller.
» Design and simulation of flow control system using fuzzy logic.
> Design and simulation of flow control system using neuro-fuzzy network.

» Comparison of all proposed controllers.
1.4 Methodology

In this study the type of fuzzy inference systems that can be implemented in the
fuzzy logic toolbox: Mamdani-type. The mathematical model of the flow control
will be developed and simulated using MATLAB toolbox programming. Back
Propagation (BP) algorithm is used to learn the neural network. The BP algorithm
learns the weights for a multilayer network, given a network with a fixed set of
units and interconnections. Finally, evaluate the performance of the three

controllers, based on simulation results.
1.5 Layout

This research consists of five chapters. Chapter one contains of background,
research problems, objective, and methodology. While chapter two consists of an
introduction flow system, The PID controller overview, general background of
fuzzy logic and neural networks. Chapter three covers the controller’s designs in
MATLAB /SIMULINK. Chapter Four contains the simulation rustles and all

proposed controllers. Chapter five consists of conclusion and recommendations.



CHAPTER TWO

LITERATURE REVIEW

2.1 Flow Control System

In many industrial processes control of liquid level is required. It was reported that
about 25% of emergency shutdowns in the nuclear power plant are caused by poor
control of the steam generator water level. Such shutdowns greatly decrease the
plant availability and must be minimized water level control system is a very
complex system because of the nonlinearities and uncertainties of a system need for
performance improvement in existing water level regulators is therefore needed [2].

2.1.1 Fluids characteristic

Fluids are divided into liquids and gases. A liquid is hard to compress. It changes its
shape according to the shape of its container with an upper free surface. Gas on the
other hand is easy to compress and fully expands to fill its container. Consequently
an important characteristic of a fluid from the viewpoint of fluid mechanics is its
compressibility. Another characteristic is its viscosity. Fluid increases its pressure
against compression trying to retain its original volume. This characteristic is called
compressibility. Furthermore, a fluid shows resistance whenever two layers slide
over each other. This characteristic is called viscosity [3].

2.1.2 Mechanics of fluids

The mechanics of fluids is the field of study in which the fundamental principles of
general mechanics are applied to liquids and gases. These principles are the
conservation of matter, the conservation of energy Newton’s laws of motion and
laws of thermodynamic. By the use of these principles it is able to explain observed
phenomena but also to predict the behaviour of fluids under specified

conditions [4].
2.1.3 Classification and description of fluid flow

There are certain different types of fluid flow as flow :



I-Internal and external flows

The distinction between internal and external flows often needs to be made when
the motion of a fluid is between bounding surfaces the flow is described as internal
flow. Airflow management systems are widely used to control the quality of air
within buildings and vehicles the movement of air within the ducting which forms
part of such a system is an example of an internal flow. Conversely when a body is
surrounded by a fluid in motion the flow around the immersed body is described as
external flow. Examples of external flows are the flows surrounding an aircraft
wing.

Ii- Steady and unsteady flows

Steady flow is defined as the various parameters at any point do not change with
time. When the various parameters change with time the flow is termed unsteady. In
practice absolutely steady flow is the exception rather than the rule but many
problems may be studied effectively by assuming that the flow is steady. A
particular flow may appear steady to one observer but unsteady to another this is
because all movement is relative any motion of one body can be described only by

reference to another body [4].
2.2 Servo Control System

A servo control system is one of the most important and widely used forms of
control system. Any machine or piece of equipment that has rotating parts will
contain one or more servo control systems. The job of the control system may
include:

» Maintaining the speed of a motor within certain limits even when the load might
vary. This is called regulation.

 Varying the speed of a motor and load according to an externally set programme

of values. This is called set point tracking [4].

2.2.1 Fundamentals of servo motion control

The basic reasons for using servo systems in contrast to open loop systems include
the need to improve transient response times, reduce the steady state errors and
reduce the sensitivity to load parameters. Improving the transient response time
generally means increasing the system bandwidth. Faster response times mean

quicker settling allowing for higher machine throughput. Reducing the steady state
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errors relates to servo system accuracy. Finally, reducing the sensitivity to load
parameters means the servo system can tolerate fluctuations in both input and
output parameters. An example of an input parameter fluctuation is the incoming
power line voltage. Examples of output parameter fluctuations include a real time
change in load inertia or mass and unexpected shaft torque disturbances. Servo
controlling general can be broken in to two fundamental classes of problems. The
first class deals with command tracking. It addresses the question of how well does
the actual motion follow what is being commanded. The typical commands in
rotary motion control are position, velocity, acceleration and torque. For linear
motion force is used instead of torque. The part of servo control that directly deals
with this is often referred to as “Feed forward” control. It can be thought of as what
internal commands are needed such that the user’s motion commands are followed
without any error, assuming of course a sufficiently accurate model of both the
motor and load is known. The second general class of servo control addresses the
disturbance rejection characteristics of the system. Disturbances can be anything
from torque disturbances on the motor shaft to incorrect motor parameter
estimations used in the feed forward control [5].

2.2.2 Modelling a simple servo system

The basic form of a Directs Current (DC) servo system is made of an electric motor
with an output shaft that has an inertial load (J) on it and friction (f) in the bearings
of the motor and load. There will be an electric drive circuit where an input voltage
u(t) is transformed by the motor into a torque t(t) in the motor output shaft. Using
systems modelling ideas for mechanical systems a torque balance can be written
between the input torque from the motor and the torque required to accelerate the

load and overcome friction. This is shown in the Equation (2.1).

k
s(Ts+1)

Y(s) =

U(s) (2.1)

Where Y(s) is the output shaft position and U(s) is the motor input. k is the system
gain and T the time constant. The transfer function model can be decomposed into
the transfer function from the motor input to the motor speed V(s) and the transfer

function from the motor speed to the output shaft position [4].

k
(Ts+1)

V(s) =

U(s) (2.2)



2.3 The Proportional Integral Derivative Algorithm

The PID algorithm is the most popular feedback controller used within the process
industries. It has been successfully used for over 50 years. It is a robust easily
understood algorithm that can provide excellent control. The transfer function of the

PID controller looks like the following:

K; k,s+Ki+kgs?
L +kys = p>T iTRd” (2.3)
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Where :
*k,, = Proportional gain
*K; = Integral gain

*k 4 = Derivative gain
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Figure 2.1: PID controller

The PID controller works in a closed-loop system as shown in Figure 2.1 the
variable (e) represents the tracking error the difference between the desired input
value (R) and the actual output (Y). This error signal will be sent to the PID
controller and the controller computes both the derivative and the integral of this
error signal. The PID controller time domain equation as:

U=kye + kif edt + kg = (2.4)
The signal (u) just past the controller is now equal to the proportional gain times the
magnitude of the error plus the integral gain times the integral of the error plus the
derivative gain times the derivative of the error. This signal (u) will beset to the
plant and the new output will be obtained. This new output will be sent back to the
sensor again to find the new error signal. The controller takes this new error signal

and computes its derivative and its integral again this process goes on and on [6].



2.3.1 The characteristics of P, | and D controllers

A proportional controller (k,) will have the effect of reducing the rise time and will

reduce but never eliminate the steady-state error. An integral controller will have
the effect of eliminating the steady-state error (ess) for a constant or step input, but it
may make the transient response slower. A derivative controller will have the effect
of increasing the stability of the system reducing the overshoot, and improving the

transient response. The effects of each of controller parameters, k,,,k; and K; on a

Closed Loop (CL) system are summarized in the Table 2.1.

Table2.1: The effect of P, | and D controller for time response

CLRESPONSE | RISE TIME OVERSHOOT | SETTLING S-S ERROR
TIME
kp Decrease Increase Small Change | Decrease
K; Decrease Increase Increase Eliminate
Kq Small Change | Decrease Decrease No Change

Note that these correlations may not be exactly accurate because k,, K; and k are

dependent on each other. In fact changing one of these variables can change the
effect of the other two. For this reason the table should only be used as a reference

when you are determining the values for k, and k [6].

2.3.2 Tuning ruled for PID controller

The mathematical model of the plant can be derived then it is possible to apply
various design techniques for determining parameters of the controller that will
meet the transient and steady-state specifications of the closed-loop system.
However, if the plant is so complicated that its mathematical model cannot be easily
obtained then an analytical approach to the design of a PID controller is not
possible. Then we must resort to experimental approaches to the tuning of PID
controllers. The process of selecting the controller parameters to meet given
performance specifications is known as controller tuning. Ziegler and Nichols
suggested rules for tuning PID controllers (meaning to set values Kp, Tq and Ti)
based on experimental step responses or based on the value of K that results in
marginal stability when only proportional control action is used. Ziegler-Nichols

rules which are useful when mathematical models of plants are not known. Such
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rules suggest a set of values of K,, Tiand Tq that will give a stable operation of the
system. However the resulting system may exhibit a large maximum overshoot in
the step response which is unacceptable. In such a case series of fine tunings until
an acceptable result is obtained. In fact the Ziegler-Nichols tuning rules give an
educated guess for the parameter values and provide a starting point for fine tuning,
rather than giving the final settings for Ky, Tiand Tq in a single shot [6].

2.3.3 Ziegler Nichols rules for tuning PID controllers

Ziegler and Nichols proposed rules for determining values of the proportional gain
integral time and derivative time based on the transient response characteristics of a
given plant. Such determination of the parameters of PID controllers or tuning of
PID controllers can be made by engineers on-site by experiments on the plant.
There are two methods called Ziegler-Nichols tuning rules

I-First method

In the first method the response of the plant is obtain due to a unit-step input as
shown in Figure 2.2. If the plant involves neither integrator (s) nor dominant
complex-conjugate poles then such a unit-step response curve may look S-shaped as
shown in Figure 2.3. This method applies if the response to a step input exhibits an
S-shaped curve. Such step response curves may be generated experimentally or
from a dynamic simulation of the plant. The S-shaped curve may be characterized
by two constants delay time L and time constant T. The delay time and time
constant are determined by drawing a tangent line at the inflection point of the S-
shaped curve and determining the intersections of the tan gent line with the time
axis and line c(t) = K. Ziegler and Nichols suggested to set the values of Kp, Ti and

Tq according to the formula shown in Table 2.2.
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Figure 2.2: Unit-step response of a plant
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Figure 2.3: S-shaped response curve

Table 2.2: Ziegler-Nichols tuning rule based on step response of plant

Type of controller Kp Ti Tq
P T o0 0
L
Pl 0.9~ L 0
k 0.3
PID 1.2% 2L 0.5L

Notice that the PID controller tuned by the first method of Ziegler-Nichols rules
gives

Ge(S) =Kp (1+ — +ToS) (2.5)
IS
N 1
=1.27(1+ =+ 05LS) (2.6)
12
=0.6 T2 2.7

S

Thus the PID controller has a pole at the origin and double zeros at s = -1/L
1i-Second Method

In the second method first set Ti = o and Tq = O using the proportional control
action only increase K, from 0 to a critical value K at which the output first
exhibits sustained oscillations. Thus the K¢ and the corresponding period P are
experimentally determined as shown in Figure 2.4. Ziegler and Nichols suggested
that we set the values of the parameters K, Ti and Tq according to the formula

shown in Table 2.3.
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Figure 2.4: Sustained oscillation with period Pcr

Table 2.3: Ziegler-Nichols tuning rule based on Ker, and per

Type of controller Ko T, T
P 0.5Ker - 0
Pl 0.45 Ker 1—2% 0

PID 0.6Kcr 0.5P¢r 0.125P¢r

Notice that the PID controller tuned by the second method of Ziegler-Nichols rules

gives:

Gc(S) =Kp (1+ TlTs +T4S) (2.8)
Ge(S) = 0.6Kcr(1 + O.S;CRS + 0.125P3S) (2.9)
0.075KCRPCR(5+I:%)2 (2.10)

Thus the PID controller has a pole at the origin and double zeros at s = -4/pcr [7].
2.4 Fuzzy Logic Fundamentals

Over the past few years the use of fuzzy set theory or fuzzy logic in control systems
has been gaining widespread popularity. Fuzzy logic-based control systems or
simply Fuzzy Logic Controllers (FLCs) can be found in a growing number of
products from washing machines to speedboats from air condition units to hand-
held autofocus cameras. Fuzzy logic is exemplified in the speed governing system
of a synchronous generator set. The success of fuzzy logic controllers is mainly due
to their ability to cope with knowledge represented in a linguistic form instead of
representation in the conventional mathematical framework. Control engineers have
traditionally relied on mathematical models for their designs. However, the more
complex a system, the less effective and the mathematical model this is the

fundamental concept that provided the motivation for fuzzy logic and is formulated
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by Lofti Zadeh, the founder of fuzzy set theory as the principle of
incompatibility [8].

2.4.1 Fuzzy sets and fuzzy logic

Classical set theory was founded by the German mathematician Georg Cantor. In
the theory a universe of discourse U is defined as a collection of objects all having
the same characteristics. A classical set is then a collection of a number of those
elements. The member elements of a classical set belong to the set 100 percent.
Other elements in the universe of discourse which are non-member elements of the
set are not related to the set at all. A definitive boundary can be drawn for the set as

depicted in Figure 2.5.

(a) classical /crisp set (b) fuzzy set boundery

Figure (2.5): Classical/crisp set and fuzzy set boundary

A classical set can be denoted by A = {x €U | P(x)} where the elements of A have
the property P and U. The characteristic function p,(x): U — {0, 1} is defined as
‘0’ if X is not an element of A and ‘1’ if x is an element of A. Here U contains only
two elements ‘1’ and ‘0’. Therefore an element X in the universe of discourse is
either a member of set A or not a member of set A there is ambiguity about
membership. In fuzzy set theory the concept of characteristic function is extended
into a more generalized form known as membership function p,(x): U — {0, 1}
While a characteristic function exists in a two-element set of {0, 1} a membership
function can take up any value between the unit interval [0, 1]. The set which is
defined by this extended membership function is called a fuzzy set. In contrast a
classical set which is defined by the two-element characteristic function. Fuzzy set
theory essentially extends the concept of sets to encompass vagueness. Membership
to a set is no longer a matter of ‘true’ or ‘false’, ‘1’ or ‘0’ but a matter of degree.
The exact nature of the relation depends on the shape or the type of membership

function used in the system [8].
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2.4.2 Types of membership functions

Figure 2.6 shows various types of membership functions which are commonly

used in fuzzy set theory. The choice of shape depends on the individual application.
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Figure 2.6: Types of membership functions

2.4.3 Linguistic variables
The concept of a linguistic variable a term which is later used to describe the inputs
and outputs of the FLC is the foundation of (FLC) systems. A conventional variable
iIs numerical and precise. It is not capable of supporting the vagueness in fuzzy set
theory. By definition a linguistic variable is made up of words sentences or artificial
language which is less precise than numbers. It provides the means of approximate
characterization of complex or ill-defined phenomena. [8]
2.4.4 Fuzzy logic implementation

Fuzzy implication is an important connective in fuzzy control systems because the
control strategies are embodied by sets of IF-THEN rules. There are various
different techniques in which fuzzy implication may be defined. These relationships
are mostly derived from multivalued logic theory. The following are some of the
common techniques of fuzzy implication found in literature
iI-Mamdani system

This method is widely accepted for capturing expert knowledge. It allows us to
describe the expertise in more intuitive, more humanlike manner. However,
Mamdani type FIS entails a substantial computational burden.
li-Takagi-Sugeno

This method is computationally efficient and works well with optimization and

adaptive techniques, which makes it very attractive in control problems particularly
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for dynamic nonlinear systems. These adaptive technigques can be used to customize
the membership functions so that fuzzy system best models the data. The most
fundamental difference between Mamdani type FIS and Sugeno type FIS is the way
the crisp output is generated from the fuzzy inputs. While Mamdani type FIS uses
the technique of defuzzification of a fuzzy output Sugeno type FIS uses weighted
average to compute the crisp output. The expressive power and interpretability of
Mamdani output is lost in the Sugeno FIS since the consequents of the rules are not
fuzzy. But Sugeno has better processing time since the weighted average replace the
time consuming defuzzification process. Due to the interpretable and intuitive
nature of the rule base Mamdani type FIS is widely used in particular for decision
support application. Other differences are that Mamdani FIS has output membership
functions whereas Sugeno FIS has no output membership functions. Mamdani FIS
Is less flexible in system design in comparison to Sugeno FIS as latter can be
integrated with ANFIS tool to optimize the outputs [8].

2.4.5 Fuzzy control systems

In typical fuzzy logic controller there are five principal elements as shown in
Figure 2.7

Knowledge
base

¥ L'l

Scaling fac 5 - - Defuzzification
Input | Scaling factors Furzification Inference Plant Output

normalisation denormalisation
Dutput-scaling

factors
normalisation

Rule base

Sensors

Figure 2.7: Block diagram of a typical fuzzy logic controller

e Fuzzification module (fuzzifier).

e Knowledge base.

e Rule base.

¢ Inference engine.

o Defuzzification module (defuzzifier).
Automatic changes in the design parameters of any of the five elements create an
adaptive fuzzy controller. Fuzzy control systems with fixed parameters are non-
adaptive. Other non-fuzzy elements which are also part of the control system

include the sensors the analogue—digital converters the digital-analogue converters
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and the normalisation circuits. There are usually two types of normalisation circuits
one maps the physical values of the control inputs onto a normalised universe of
discourse and the other maps the normalised value of the control output variables
back onto its physical domain.

e Fuzzifier
The fuzzification module converts the crisp values of the control inputs into fuzzy
values so that they are compatible with the fuzzy set representation in the rule base.
The choice of fuzzification strategy is dependent on the inference engine i.e.
whether it is composition based or individual-rule-firing based.

e Knowledge base
The knowledge base consists of a database of the plant. It provides all the necessary
definitions for the fuzzification process such as membership functions, fuzzy set
representation of the input—output variables and the mapping functions between the
physical and fuzzy domain.

e Rule base
The rule base is essentially the control strategy of the system. It is usually obtained
from expert knowledge or heuristics and expressed as a set of IF-THEN rules. The
rules are based on the fuzzy inference concept and the antecedents and consequents
are associated with linguistic variables.

o Defuzzifier
The diagram in Figure 2.8 shows the membership functions related to a typical
fuzzy controller’s output variable defined over its universe of discourse. The FLC
will process the input data and map the output to one or more of these linguistic
values (LU1 to LUS). Depending on the conditions the membership functions of the
linguistic values may be clipped. The union of the membership functions forms the

fuzzy output value of the controller [9].
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Figure 2.8: Membership functions of the output linguistic values
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2.5 Artificial Neural Network

Neural control is a branch of the general field of intelligent control which is based
on the concept of Artificial Intelligence (Al). Al can be defined as computer
emulation of the human thinking process. The Al techniques are generally classified
as Expert Systems (ES), Fuzzy Logic (FL) and Artificial Neural Networks (ANN).
The classical ES are based on Boolean algebra and use precise calculations while
FL systems involve calculations based on an approximate reasoning. The use of
ANNs is the most powerful approach in Al. ANNs are information processing
structures which emulate the architecture and operational mode of the biological
nervous tissue. Any ANN is a system made up of several basic entities named
neurons which are interconnected and operate in parallel transmitting signals to one
another in order to achieve a certain processing task. One of the most outstanding
features of ANNSs is their capability to simulate the learning process. They are
supplied with pairs of input and output signals from which general rules are
automatically derived so that the ANN will be capable of generating the correct
output for a signal that was not previously used. The neural approach can be
combine with the fuzzy logic generating neuro — fuzzy system that combine the
advantages of the two control paradigm [8].

2.5.1 Neural networks architectures

Artificial neural networks differ by the type of neurons they are made of and by the
manner of their interconnection. There are two major classes of neural networks
feed-forward ANNs and recurrent ANNs. Feed-Forward Artificial Neural Networks
(FFANNSs) are organized into cascaded layers of neurons. Each layer contains
neurons receiving input signals from the neurons in the previous layer and
transmitting outputs to the neurons in the subsequent layer. The neurons within a
layer do not communicate to one another. The first network layer is named the input
layer, while the last one is named the output layer. All the other neuron layers are
known as the hidden layers of the neural network. FFANNs do not have any
memory of the past inputs so that they are used for applications where the output is
only a function of the present inputs. Therefore, each input vector is simply
associated with an output vector. If step activation functions are used several

analogue or discrete input vectors can be associated with a single discrete output
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vector. Such neural networks are used to solve classification problems. In a
classification problem the set of all possible input vectors is divided into several
arbitrary subsets. Each subset is a class. The problem consists of finding out to
which class a given input vector belongs. The neural network associates each class
with a binary vector and generates the corresponding code for any input vector.
Recurrent artificial neural networks include architectures where neurons in the same
layer communicate cellular neural networks or architectures where some of the
outputs of a FFANN are used as inputs. These neural architectures can be described
either by continuous time models or by discrete time models. Figure 2.9 shows the

neural network architecture [8].

Figure 2.9: Neural network architectures

2.5.2 Training algorithms

One of the most important features of neural networks is their ability to learn and
improve their operation using a set of examples named training data set the training
process is controlled by mathematical algorithms that fall in two main classes
constructive and non-constructive. The non-constructive training algorithms adapt
only the connection weights and the threshold levels. The constructive algorithms
modify all the network features including its architecture. All the algorithms modify
the neuron weights and thresholds based on calculations that analyze the network
response to particular inputs. The modifications are performed in a manner that
brings the network outputs closer to the expected ones. Depending on the nature of

the training data set there are two categories of algorithms supervised and
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unsupervised. The supervised algorithms use a training data set composed of input—
output pairs. The unsupervised algorithms use only the input vectors. In the case of
supervised algorithms, the training process is controlled by an external entity (the
teacher) that is able to establish whether the network outputs are adequate to the
inputs and what is the size of the error. Then the network parameters are modified
according to the particular correction method defining each training algorithm. In
case of unsupervised methods (the Hebbian rule, the ‘winner takes all’ algorithm,
etc.), there are no means to know what the expected outputs are. The network
evolves as a result of the experience gained from the previous input vectors. The
weight values converge to a set of final values dictated by the input values used as
training data set in conjunction with the particular training algorithm. The
unsupervised family of training algorithms is mainly used for signal and image
processing, where pattern classification, data clustering or compression algorithms
are involved. The control engineering problems are better tackled by supervised
training methods, as the relationship between inputs and desired outputs is better
defined and easier to control [10].

I-The error back-propagation algorithm

The most popular supervised training algorithm is the one named ‘error back
propagation’ or simply ‘back-propagation’. It involves training a FFANN structure
made up of sigmoidal activation function neurones. The back propagation algorithm
is a gradient method aiming to minimise the total operation error of the neural
network. The total error is a function defined by equation (2.11) where Oi ™ is the
column vector of the reference outputs and Oi is the column vector of the actual
network outputs corresponding to the input pattern number ‘i’. The total error Err is

the sum of the errors corresponding to all np input patterns.
_«n , , , N , ,
Err=X.7 (0i — oi)". (0i®f — 0i) = %, P [ (0i" — 0i)?|| (2.11)

For each training step the vector of all neurone weights and threshold weights (W) is
updated in such a way that the total error Err is decreased. The vector W can be
associated to a point in a NW-dimensional space where NW is the total number of

weights and thresholds in the neural network. The most efficient way to perform the
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update is to shift the point W along the curve indicated by the gradient of the total
error. This principle is illustrated by Equation (2.12) where W (t) is the parameter
vector during the current training cycle W(t + 1) is the parameter vector for the next
training cycle and I] is the learning-rate constant. The algorithm stops when the

total error is zero. In practice it is stopped when the error is considered negligible

OErr OErr OETT OErT

W (t+1)=W ()~ T-VErr=W () - 1] - [ ] (2.12)

an an an R an

For the practical calculation of the error gradient VErr the components in the vector
W are usually rearranged as a three-dimensional matrix. The matrix has a number of
rectangular layers equal to the number of neurone layers in the neural network.
Each rectangular layer is a two-dimensional matrix containing one line for each
neurone in the corresponding layer of the neural network. Each line includes the
input weights and its threshold level of a neurone. Therefore, the element wijm in the
three-dimensional matrix is the weight ‘m’ of the neurone ‘k’ situated in the layer ‘j’
inside the neural network. The threshold level corresponds to the last element in
each line and is not treated any differently to the input weights because it can be
considered as an extra weight supplied with a constant input signal —1. the back-
propagation algorithm is not guaranteed to generate a satisfactory solution for all
input output association problems and FFANN architectures. The training result
depends on several factors as follow:

o Network architecture (number of layers, number of neurones in each layer).

e [Initial parameter values W(0).

e The details of the input—output mapping.

o Selected training data set (pairs of inputs and corresponding desired outputs).

e The learning-rate constant IJ.
Back-propagation is not a constructive algorithm the network architecture has to be
chosen in advance. Unfortunately, there is no clearly defined set of rules to be
followed in order to decide which the most appropriate architecture for a problem is
choosing the architecture is a result of a trial and error process supported by
previous experience. However, it has been mathematically demonstrated that any

input—output mapping can be learned by a FFANN with only one hidden layer
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provided that the number of neurones in the hidden layer is large enough for the
problem to be solved. This means that if a neural network proves incapable of
learning how to perform a certain task the one possible solution is to increase the
number of neurones in the hidden layer or layers. A different solution is to restart
the algorithm with another set of initial parameters W(0). This solution is based on
the assumption that the previous failure was generated by stopping at a local
minimum. The trajectory of vector W in the parameter space is dependent on its
starting point W(0), therefore the situation may be avoided by changing the initial
weights and thresholds. Another important aspect is choosing an adequate training
data set, so that if the number of different input values is finite the training data set
covers all the possibilities. Nevertheless, if this number is infinite or if the number
is too large then only a selection of input combinations will be used to train the
neural network. The quality of the training process is influenced by the way the
training data set is generated [10].

1i-Training algorithms for neurones with step activation functions

If the activation functions of the neurons in FFANN are not sigmoidal the back
propagation algorithm cannot be used because the error function cannot be derived.
However, other recursive methods presented in (2.13) and (2.14) are applicable to
the FFANNs with only one layer. These are recursive methods like the back-
propagation algorithm but in this case the training process always has a finite
number of cycles provided that the desired input—output relation can be learned by a

one layer network.

Wit = Wk +1N.30% Xe- (0] = £) (2.13)

Wi = Wi + 11207 Xk (0] — nety;) (2.14)
Finding the correct weights for a multilayer FFANN with step activation functions
is a complicated problem. The two previous methods cannot be generalized for such
networks and either constructive methods or genetic algorithms need to be used
instead. There are many other training algorithms than the ones presented here.
However, the algorithms presented are used in the vast majority of control

applications [9].
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2.6 Adaptive Neuro-Fuzzy Inference Systems

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a hybrid network which
consists of a combination of two controllers Fuzzy logic and neural network. These
both controllers result in a single entity which enhances the features of controlling
machine than using single controller alone. The main idea of fuzzy logic control is
to build a model of a human control expert capable of controlling the plant without
thinking in terms of a mathematical model. These control rules are translated into
the framework of fuzzy set theory providing a calculus which can simulate the
behaviour of the control expert. The specification of good linguistic rules depends
on the knowledge of the control expert, but the translation of these rules into fuzzy
set theory framework is not formalized and arbitrary choices concerning. The
quality of fuzzy logic controller can be drastically affected by the choice of
membership functions. Thus, methods for tuning fuzzy logic controllers are
necessary.

Neural networks offer the possibility of solving the problem of tuning. Although a
neural network is able to learn from the given data the trained neural network is
generally understood as a black box. Neither it is possible to extract structural
information from the trained neural network. On the other hand, a fuzzy logic
controller is designed to work with the structured knowledge in the form of rules
and nearly everything in the fuzzy system remains highly transparent and easily
interpretable. However, there exists no formal framework for the choice of various
design parameters and optimization of these parameters generally is done by trial
and error. A combination of neural networks and fuzzy logic offers the possibility
of solving tuning problems and design difficulties of fuzzy logic. The resulting
network will be more transparent and can be easily recognized in the form of fuzzy
logic control rules or semantics. This new approach combines the both methods and
avoids the drawbacks of both [11].
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CAPTER THREE

METHODOLOGY

3.1 System Description

The coupled tank system consists of two vertical tanks interconnected by a flow
channel as shown in Figure 3.1 which causes the levels of the two tanks to interact.
Each tank has an independent pump for inflow of liquid. The sectional area of the
outlets present and the base of each tank and the channel connecting the two tanks
can be varied with rotary valves. The amount of water which returns to the reservoir
is approximately proportional to the head of water in the tank since the return tube

is made of flexible tubing which aids in varying the hydraulic resistance.

EU o , ’F

Pumpl H2 | | Pump 2

03¢ 7 )

S
Qos
|]=[$ Qo1 Qo2 g:H]

Figure 3.1: Layout of the interacting tanks system

The level of water in each tank is monitored by a capacitive — type probe signal
conditioning circuits convert the measured capacitance to electrical signals in the
range of 0 to +5 volt DC. The zero level has been calibrated to represent the rest
point of the water level that is when tank is nearly empty (about 20 mm in the scale)
while the full state (+5 volt) is calibrated at the level of the opening to the rear over
flow stand pipes with scale showing 300mm approximately an internal baffle
controls leakage between the two tanks to simulate interacting tank arrangement.
The baffle is raised by a small amount by turning the wing nut on the top of the tank
assembly in order to provide a useful range of inter tank resistance .A spring returns

the baffle to the closed position when the wing nut is released [12].
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3.1.1 Fundamental control principle of coupled tank system

Process variable or controlled variable for this system that is the variable which
quantifies performance is actually the water level in the coupled tank system to
maintain and control the water level at specified desired value. The inlet flow rate is
adjusted the adjustment is made or actuated by pump voltage. The input flow rate is
known as manipulated variable i.e. the variable that is used to maintain the process
variable at its set point. The important characteristic of the system, the level will be
maintained as long as the outflow rate, the pump flow rate and the outflow rate
remained unchanged.

However, if any disturbance occurs which results in the change in either the inflow
rate or the outflow rate or changes that maybe necessary for process then the liquid
level in the tank would change and settle at different steady —state level. If the
outflow rate is greater than the inflow rate, the liquid level will settle at the lower
level than before. Assuming that a steady state condition had already been achieved
before the tank is empty. Similarly if the inflow rate is higher than the liquid level
will settle at a higher level, assuming that the steady state condition achieved before
the tank is overflow. The control objective is that the input flow rate has to be
adjusted in order to maintain the level at the previous condition. In the case where
the out flow rate is greater than the inflow rate, the inflow rate has to be adjusted so

that the liquid level in the tank increased and settled [12].

F3altle

[
.

11 |

Iank 1 .
lank 2

L A

A

ha [ Oz

Figure 3.2: Schematic diagram of interacting tanks apparatus
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Table 3.1: Parameters of the coupled —tank system

Name Expression Value
Cross sectional area of the Arand Az 1m?
coupled tank reservoir
Proportionality o constant | a oy a, a5
that depend on discharge | subscript | denotes
coefficient  orifice  cross | which tank it refers 14C?r)r(1) 14('5’:]) ZO.COrg
sectional area and
gravitational constant
Elevation of coupled tank H: 60 cm

H> 50 cm

3.1.2 Mathematical modelling of the coupled tank system

It is vital to understand the mathematical of how the coupled tank system behaves.
System modelling involve devolving mathematical model by applying the
fundamental physical laws of science and engineering in this system nonlinear
dynamic model with time varying parameters are observed and steps are taken to
drive each of the cross ponding linearized perturbation from the nonlinear model. A
simple nonlinear mathematical model is derived with a help of Figure 3.2. Let H;
and Hz be the liquid level in each tank measured with respect to the corresponding
outlet considering a simple mass balance the rate of change of liquid into the tank.

Thus for each of tank 1 and tank 2 the dynamic equation is developed as follows:

Al% = Qi1 — Qo1 —Qos (3.1)
Az% = Qi2— Qo2—Qos (3.2)
Where are:

Hi, Ho: are heights of liquid in tank 1 and tank 2, respectively.
A1, Az: are cross-sectional areas of tank 1 and tank 2.
Qos : is the flow rate between tanks.
Qi1, Qiz: are pump flow rate into tank 1 and tank 2, respectively.
Qo1, Qo2: are the flow rate of liquid out of tank 1 and tank 2, respectively.
Each outlet drain can be modelled as a simple orifice Bernoulli’s equation for

steady a non-viscous incompressible fluid shows that the outlet flow in tank: is
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proportional to the square root of the head of the water in the tank similarly the flow

between the two tanks is proportional to the square root of the head differential
QOl = H1 (33)
Qo2 = a2/ H, (3.4)

Qosz = as\/m (3.5)
Where:

a1, o2 and as are proportionality constants which depend on the coefficients of
discharge the cross sectional area of each area and gravitational constant. By using
Equations from (3.3) to (3.5) in (3.1) and (3.2) the nonlinear equations that describe

the dynamics of the multi-input and multi output system are derived as:

1%— Qir— al\/ﬁl— o3/H; — H, (3.6)
Azd—::QiZ—az HZ_ (13,/1‘11 _H2 (37)

Suppose that for set inflows Qiizand Qi2 the liquid level in the tanks is at some steady
state levels Hiand H> consider small variations in each inflow, g1 in Qi1 and g2 in
Qi2. Let the resulting perturbation in level be hy and hy respectively. From
Equations (3.6) and (3.7) the following equations can be derived for tankl and

tank2 respectively.

Ald(Hl +h) _

= (Qi+q1) — 0‘1\/1'11 + hy— 0‘3\/H1 Hy, + hy — h, (3.8)

d(H2+h)

A - (Q|2+q2) aZ\/HZ + hz a3\/H1 H2 + hl - hz (39)

In (3.8) and (3.9) note that the coefficients of the perturbations in the level are
function of steady state operating points Hi and H> .the two equations can also be
written in the form (3.10) and (3.11) where go: and o2 represent perturbation in the
outflow at the drain pipes this would be appropriate in the case where outflow is
controlled by attaching external clamp for instance based on the developed
linearized model. Subtracting Equations (3.6) and (3.7) from Equations (3.8) and

(3.9) the equations obtained are:

dH
A= Q- oa(yHy + hihy) —as(JHy — H; + hy —hy /by —hy ) (3.10)

A= o oy Hy + hp—hp) —0a(JVHy = Hy + by = hy Ay —hy)  (3.11)
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For small perturbations

JH, ¥ by = /H1(1 + (3.12)
2H,;

Therefore consequently

\/H1 + hy- \/H1 = 2;;1—1 (3.13)
Similarly

JHz + hy-H; = 2;;_2 (3.14)

And:

hy—h4

\/Hl_HZ-I_hl_hZ_\/HZ_Hl:Z\/ﬁ

(3.15)

The configuration is achieved by having the baffle raised at as small height this a
allows flow of water from tank; to tank, and with this second order configuration h;
will be the process variable that is to be set whist g1 is the manipulated variable that
is to be controlled. The other variable like g2 will be assumed zero as the model is
derived under the circumstances of no disturbance abiding by this approximation
(3.16) and (3.17) are established.

dHy _ Ry hp—hy
Al_dt =01 alzJH_l aazm (3.16)
R hp=hy
—2 =Qp 0(12\/1_1—1 a;zm (3.17)

Performing Laplace transforms on (3.16) and (3.17) and assuming that initially all

variables are at their steady state values.

A1Shi(s) = qu(s) — ( ————h(s) (3.18)

zJ_ zﬂ) hy (5) + J—

AxSha(s) = g2(s) — (

- J_ - ﬂ)hz(s) \/—hl(S) (3.19)

By rearranging and rewriting in abbreviated manners
(T1S+1) hy (S) = kuqu(s) + k202(S) (3.20)
(T2S+1) h, (S) = k2g2(s) + k2102(S) (3.21)

Stepl: substitute all values in table (3.1) into (3.20) and (3.21) can be obtained as
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— Ay
L e (3.22)
2Hq1 2/H1—-Hjy
Az

(i (3.23)
AN

2\ H

1

Ki= o —a— (3.24)
2/H; 2H,-H2

Ke=—g7—a— (3.25)

Kio= - (3.26)
2\/H_1 2,/H1—H»
as
Kot = —m i (3.27)

P
2Hy 2,/H1—Hy

Step2: Substitute all values from step 1 into Equations (3.20) and (3.21), relates
between the manipulated variable q: and presses variable h, the final transfer

function equation can be obtained as:

n2(s) _ k1k2 (3.28)

q1(s) 17252+ (71+712)s+(1-k12k21)

By substituting the parameters in the plant model the transfer function of the plant
Shown in Equation (3.29) [12].

t1=3.47
12=3.38
k1=0.11
k2=0.11
k12=0.77
k21=0.77

G(s) = —220% (3.29)

52+0.855+0.003

Step3: for the servo system considering the time constant T=0.2 and substituting in

equation (2.2) the transfer function for the servo system shown in equation (3.30)

C(s) = -~ (3.30)

s+50
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3.2 PID Controller Design

From the transfer function shown in Equation (3.29), PID controller has been
designed using the second method of Ziegler-Nichols to get the exact values of
proportional, integral and derivative gains the program written in m.file.

Program 1

Plant=tf(.0008,[1 .85 .003]);
actuator=tf(50,[1 50]);
sys=series(plant,actutor)
g=feedback(sys,1);
step(9)
figure
for k=100:5:100000
sysl=k*sys ;
sys2=feedback(sys1,1);
[num den]=tfdata(sys2,v');
r=roots(den);
m=max(real(r));
if m>0
break
end
end
ker=k
w=sqrt(den(4)/den(2));
per=((2*pi)/w)
kp=.6*kcr
kd=.125*pcr
Ki=.5*pcr
controller=tf([kd kp ki],[1 O])
sys3=series(sys,controller)
g2=feedback(sys3,1)
step(g2)

The block diagram for tuned PID controller in MATLAB/SIMULINK is shown in
Figure 3.3.
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To Workspace

Figure 3.3: Model of PID controller

3.3 Fuzzy Controller Design

The fuzzy controller in present work is a mamdani uses a rule base in linguistic
terms There are two inputs the level and the change of liquid level and one output
parameter the inlet valve control angle. The Gaussian membership functions are
selected to fuzzify the inputs and the triangular is selected for output
variables. There are set fuzzy sets taken (low, Ok and high) for level input and
(negative, none and positive) for the rate input and five fuzzy sets for the output

variable.
3.3.1 The FIS editor

The fuzzy logic controller makes use of two inputs and one output. The first input is
the level of the tank denoted as level while the second is change of the level denoted
as rate. According to the rules written in the rule editor the controller takes the
action and governs the opening of the valve which is the output of the controller and
Is denoted by valve. In order to start the FIS editor, 'fuzzy' is typed in the MATLAB
command window and the enter button is pressed. The FIS editor pops up with the
mamdani style of fuzzyfication set as. The FIS editor opens with only one input and
one output. Therefore in order to add a second input variable the ‘add variable'
option is selected from the edit option in the toolbar. The input and output blocks
are selected and their names are written starting from the inputs as shown in

Figure 3.4.
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Figure 3.4: Fuzzy FIS editor

3.3.2 The membership function editor

The membership function editor is the tool that display and edit all of the
membership function associated with all of the input and output variables for the
entire fuzzy inference system. The second stage involves setting the membership
functions of the two inputs and the output. Double clicking on level block found on
the FIS editor opens the Membership function window. The name of the input is
assigned by typing the name in the name box as seen in Figure 3.5.

The membership function window for the rate input parameter is gotten by double
clicking on the rate block found in the FIS editor shown in Figure 3.6. Function
types for the output the range is set to (-1, 1) to cover the output range. The close
fast membership function will have the parameters (-1, -0.9, -0.8). The close low
membership function will be (-0.6, -0.5, 0.4) the no change membership function
will be (-0.1, 0, 0.1), the open slow membership function will be (0.2, 0.3, 0.4) and
the open fast membership function will be (0.8, 0.9, 1) which are shown in

Figure 3.7.
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Figure 3.5: Membership function editor for level
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Figure 3.6: Membership function editor for the rate
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Figure 3.7: Membership function editor for the valve

3.3.3 The rule editor

Constructing rules using the graphical rule editor interface is fairly self-evident
based on the descriptions of the input and output variables defined with the
FIS. Editor the rule editor allows constructing the rule statements automatically by
clicking and selecting one item in each input variable box one item in each output
box and one connection item. Such as if (level is ok) then (valve is no change) the

rest shown in Figure 3.8.

" : = | | E—
Bl Rule Editor tank P — -
File Edit Wieww Cpticons
1. 1F (leweal is okaw) and (rate is posithva) then (wahee is close__slowr )y (13 .
Z.IF (leweal is okay) and (rate is negative) then (vahve is open_slow )y (1)
3. If (lewel is okaw) and (rate is none) then (vabre is no__change) (13
4 IF (lewsl is loww ) then (wabre is close  fasty (13

If Jlewel is high) then (wablre is open_fastk (1)

T and Then
level is rate i= ealve is

okay none

high Fositive no_change
none none cpen_slows
open_ fast
L i€ o 1
[ e [ ot |:| not

— CTonnsction wwreicibt:
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@ and 1 Delete rule Audd rule | change ruie | == ==

FRenamsd FIS to "tank” Help | Close I |
=

Figure 3.8: The fuzzy rule for fuzzy controller

The block diagram for fuzzy controller in MATLAB/SIMULINK and the rule

viewer diagram are shown in Figure 3.9 and 3.10 respectively .
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Figure 3.9: Model of fuzzy controller
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Figure 3.10: Rule viewer of fuzzy logic

Figure 3.11 shows the surface viewer indicating 3D graphical realization of the
fuzzy rule base.
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Figure 3.11: Surface viewer
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3.4 Adaptive Neural Fuzzy Inference Systems Design

ANFIS editor window opens by typing “anfisedit” in MATLAB command window
considering two inputs level and the rate and one output the valve. Among many
FIS models the Sugeno fuzzy model is the most widely applied one for its high
interpretability and computational efficiency and built in optimal and adaptive
techniques. For a first order Sugeno fuzzy model a common rule set with two fuzzy
if—then rules. Figure 3.13 shows the model of ANFIS controller.

animtank
S-Function
Comparison
—{ |
To Workspace
Figure 3.13: Model of ANFIS controller
[ BN Anfis Model Structure u—— ' e
input inputmf rule outputmf output
L]
-
|
| |
| ]
|
]
Logical Operations
1 and
[ or
| | not
| Click on each node to see detailed information | | | Update | | Help | | Close | |
b y

Figure 3.14: ANFIS model structure with two inputs and one output

The number of epochs was 300 for training. The number of MFs for the input
variables level and rate is 3 and 3 respectively. The number of rules is 9. The
Gaussian MF is used for two input variables. The data is loaded from fuzzy

controller result.
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Figure 3.15: ANFIS editor training the rules using back-propagation algorithm
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CHAPTER FOUR
RESULTS AND DISCUSSIONS

4.1 Simulation Result of Uncontrolled System
The SIMULINK model of the flow system without controller is shown in

Figure 4.1. The time response with step input is shown in Figure 4.2.
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Figure 4.1: Module of flow system
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Figure 4.2: Result of uncontrolled system
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4.2 Simulation Result of PID Controller

After running program 1 in command window, the transfer function is obtained as:

Transfer function:

"3 +50.85s"2 +425s+0.15

Ker = 54030
Per = 0.9637
ko = 32418
kq =0.1205
ki =0.4819

By applying the above parameters values, the time response for the PID controller

before tuning is shown in Figure 4.3.

15 15 1 F
RESPONCE OF PID CONTROLLER
1.8 hl

: ”H | :

1.2

1

o
o P
1 1

Figure 4.3: The response of PID controller before tuning

More tuning for the PID is applying using trial-and-error method the best values of

kp, ki and kqas shown in Figure 4.4.
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W Function Block Parameters: PID Controller |

FPID Controller <

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as
anti-windup, external reset, and signal tracking. You can tune the PID gains automatically using the "Tune...' button
(requires Simulink Control Design).

Controller: [F’]:D

Time-domain:
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Figure 4.4: The value of kp, kq and k; after tuning the PID

Figure 4.5 shows the response of the tuned PID controller when simulated with the
given parameters. The graph shows that the controller has an overshoot and takes
time to settle to the desired value of 1m. Figure 4.6 shows the comparison between

the uncontrolled system and when using PID as a controller.
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Figure 4.5: PID response
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Figure 4.6: Comparison between PID response and uncontrolled system

Figure 4.7 shows the control signal of PID controller.
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This system begins with high cost and decreased rapidly to zero which indicates the

control signal of PID controller {

(o]

200 400 600 800 1000 1200
time (Sec)

Figure 4.7: The control signal for PID controller

low cost of operation.

4.3 Simulation Result of Fuzzy Logic Controller

Two inputs and one output system is simulated with fuzzy logic toolbox in
MATLAB. As explained in chapter three fuzzy levels are considered for each of the
two inputs and five levels for the output parameter. Rule base consisting of five

rules is activated to follow-up the desired liquid level. Figure 4.8 show the response
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of fuzzy controller. The controller settles at the desired water level very
quickly (50 sec).
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Figure 4.8: Fuzzy controller response

Figure 4.9 shows the control signal for fuzzy controller.
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Figure 4.9: Control signal for fuzzy controller

Ti is clear from the graph that fuzzy controller has no offset
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4.3 Simulation Result of ANFIS Controller

Two inputs and one output system is simulated with fuzzy logic toolbox in
MATLAB. Figure 4.10 shows the result of ANFIS controller when using step input

and it settle at desired value (1m) at time (20 sec).
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Figure 4.10: The result of ANFIS controller

Figure 4.11 shows the comparison of fuzzy and PID controller transient response
for 1m desired level. It is clear from the graph that the PID controller has a large
overshoot compared to the fuzzy controller and also takes a lot of time to settle at
the desired level. Fuzzy logic on the other hand has little overshoot and steady state
error and settles quickly providing accurate level control. The advantages and
disadvantages of PID control and fizzy control just offset each other. The fuzzy
controller can be used for rapid control and PID controller for accurate control The
comparative shown that ANFIS controller is much better than fuzzy controller as it

gives less rise time and settle faster than fuzzy controller.
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Figure 4.11: The response of PID, Fuzzy and ANFIS

Table 4.1: Performance of the controllers

Type of Overshoot Rise Time Settling Time Steady State
Controller (Second) (Second) Value
Un controlled 0% 489 800 0211
PID 10 % 40 120 1
Fuzzy 0% 30 50 1
ANFIS 0% 18 20 1
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Fuzzy controllers have the advantage that can deal with nonlinear systems and
implementation of human operator knowledge .fuzzy controller has to be compared
it with classical PID controller. PID controller has three parameters require an
adjustment. Controlled system shows good results in terms of response time and
precision when these parameters are well adjusted. Fuzzy controller has a lot of
parameters. The most important is to make a good choice of rule base and
parameters of membership functions. Once a fuzzy controller is given the whole
system can actually be considered as a deterministic system. When the parameters
are well chosen, the response of the system has very good time domain
characteristics. The fuzzy controlled system is very sensitive to the distribution of
membership functions but not to the shape of membership functions.

PID controller can not be applied with the systems which have a fast change of
parameters, because it would require the change of PID constants in the time. It is
necessary to further study the possible combination of PID and fuzzy controller. It
means that the system can be well controlled by PID which is supervised by a fuzzy
system. According to the results of the MATLAB simulation the Adaptive
Neuro-Fuzzy controller efficiently is better than the traditional fuzzy logic control
(no overshoot, minimal rise time, Steady state error = 0). The performance of
neuro—fuzzy is better because it determines the number of rules automatically

reduces the computational time, learns faster and produces lower errors.
5.2 Recommendations

e As a future scope of this work the fuzzy logic controller can be implemented
in a microcontroller with additional set of rules for more accurate control.
e The controllers can also be tested with periodically varying liquid level

tracking applications.

42



References

[1] Philip A. Adewuy, ”Paper on DC Motor Speed Control: A Case between PID
Controller and Fuzzy Logic Controller”, Bells University of Technology, Ota,
Nigeria, Vol. 4,No. 4, May 2013.

[2] Harshdeep Singh, ” Design of Water Level Controller Using Fuzzy Logic
system”, National Statute of Technology Rourkela, 109MEQ0422.

[3] Y. Nakayama, ” Introduction to Fluid Mechanics”, Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford, 2000.

[4] Bernard Massey, ”Mechanics of Fluids™, Tavlor and Francis, London and New
york, 2006.

[5] David Kaise, ” Fundamentals of Servo Motion Control”, Parker Compumotor,
Vol. 64, 1942.

[6] Katsuhiko Ogata, “Modern Control Engineering”, University of Minnesota,
Prentice-Hal, Fourth Edition, 2002.

[7] 1an C. Bruce, ” Control System Design”, Goodwin, Graebe, Salgado Prentice
Hall 200, March 29, 2004.

[8] M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, “Neural and Fuzzy Logic
Control of Drives and Power Systems”, Newnes, Jordan Hill, Oxford, 2002.
[9] Kevin M. Passino, Stephen Yurkovich, ” Fuzzy Control”, Addison-Wesle,1998.

[10] Ra'ul Rojas, ” Neural Networks “, Springer-Verlag, Berlin, 1996.

[11] Gurpreet S. Sandhu and Kuldip S. Rattan, ”Paper On Design of a Neuro Fuzzy
Controller”, Department of Electrical Engineering, Wright State University Dayton,
Ohio 45435.

[12] Ama Albagul, ”Paper on Performance Comparison between Pl and MRAC for
Coupled Tank System”, Journal of Automation and Control Engineering, Vol. 2,
No. 3, September 2014.

43



