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CHAPTER ONE 

INTRODUCTION 

1.1 General Review 

 

The importance of PID controllers in process industry can not be over emphasized 

because more than half of the industrial controllers in use today utilize PID or 

modified PID control schemes. PID controller has a simple control structure that is 

easily understood by the operators which help them in tuning the PID   

satisfactorily. Tuning of PID is therefore an important aspect of its implementation.  

Fuzzy logic is used to represent qualitative knowledge, and provides interpretability 

to system models. By this it means that a system model is explicit and is 

understandable to a knowledge or systems engineer. This facilitates inspection of 

the model, and therefore simplifies and encourages its validation and    

maintenance. Zadeh has summarized fuzzy logic as a body of concepts and 

techniques for dealing with imprecision, information granulation, approximate 

reasoning and computing with words rather than numbers. 

On the other hand, neural networks and fuzzy logic are two bio-mimetic techniques 

that are used to provide approximations to real-world problems. While for some 

people this biological plausibility provides some justification for their use, for 

others the important point is that, regardless of their origins, both approaches are 

known to be robust alternatives to conventional deterministic and programmed 

models. However, the two paradigms have distinct application domains. Neural 

networks are used to induce knowledge or functional relationships from instances of 

sampled data. This is useful when it is not possible to develop analytic models from 

first principles but the system is observable. However, in contrast to fuzzy systems, 

this knowledge is not readily understandable to the system designer because it is 

encapsulated in the so called black box [1].  

1.2 Problem Statement 

The flow control system has nonlinear and time varying behaviours thus it is 

difficult to derive and identify an appropriate dynamic model for traditional 

controllers. In addition, it is very difficult to get an accurate and linearized 
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mathematical model for such system. With PID controller it is difficult to obtain the 

desired response due to fixed parameters of PID after been calculated when change 

occurs in environment or operation conditions.   

1.3 Objectives 

The main aims of this study are 

 Design and simulation of flow control system using PID controller.   

 Design and simulation of flow control system using fuzzy logic. 

 Design and simulation of flow control system using neuro-fuzzy network. 

 Comparison of all proposed controllers. 

1.4 Methodology 

In this study the type of fuzzy inference systems that can be implemented in the 

fuzzy logic toolbox: Mamdani-type. The mathematical model of the flow control 

will be developed and simulated using MATLAB toolbox programming. Back 

Propagation (BP) algorithm is used to learn the neural network. The BP algorithm 

learns the weights for a multilayer network, given a network with a fixed set of 

units and interconnections. Finally, evaluate the performance of the three 

controllers, based on simulation results.  

1.5 Layout 

This research consists of five chapters. Chapter one contains of background, 

research problems, objective, and methodology. While chapter two consists of an 

introduction flow system, The PID controller overview, general background of 

fuzzy logic and neural networks. Chapter three covers the controller’s designs in 

MATLAB /SIMULINK. Chapter Four contains the simulation rustles and all 

proposed controllers. Chapter five consists of conclusion and recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW  

2.1 Flow Control System   

In many industrial processes control of liquid level is required. It was reported that 

about 25% of emergency shutdowns in the nuclear power plant are caused by poor 

control of the steam generator water level. Such shutdowns greatly decrease the 

plant availability and must be minimized water level control system is a very 

complex system because of the nonlinearities and uncertainties of a system need for 

performance improvement in existing water level regulators is therefore needed [2]. 

2.1.1 Fluids characteristic   

Fluids are divided into liquids and gases. A liquid is hard to compress. It changes its 

shape according to the shape of its container with an upper free surface. Gas on the 

other hand is easy to compress and fully expands to fill its container. Consequently 

an important characteristic of a fluid from the viewpoint of fluid mechanics is its 

compressibility. Another characteristic is its viscosity.  Fluid increases its pressure 

against compression trying to retain its original volume. This characteristic is called 

compressibility. Furthermore, a fluid shows resistance whenever two layers slide 

over each other. This characteristic is called viscosity [3]. 

2.1.2 Mechanics of fluids 

The mechanics of fluids is the field of study in which the fundamental principles of 

general mechanics are applied to liquids and gases. These principles are the 

conservation of matter, the conservation of energy Newton’s laws of motion and 

laws of thermodynamic. By the use of these principles it is able to explain observed 

phenomena but also to predict the behaviour of fluids under specified         

conditions [4]. 

2.1.3 Classification and description of fluid flow  

There are certain different types of fluid flow as flow : 
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i-Internal and external flows 

The distinction between internal and external flows often needs to be made when 

the motion of a fluid is between bounding surfaces the flow is described as internal 

flow. Airflow management systems are widely used to control the quality of air 

within buildings and vehicles the movement of air within the ducting which forms 

part of such a system is an example of an internal flow. Conversely when a body is 

surrounded by a fluid in motion the flow around the immersed body is described as 

external flow. Examples of external flows are the flows surrounding an aircraft 

wing. 

 ii- Steady and unsteady flows 

Steady flow is defined as the various parameters at any point do not change with 

time. When the various parameters change with time the flow is termed unsteady. In 

practice absolutely steady flow is the exception rather than the rule but many 

problems may be studied effectively by assuming that the flow is steady. A 

particular flow may appear steady to one observer but unsteady to another this is 

because all movement is relative any motion of one body can be described only by 

reference to another body [4]. 

2.2 Servo Control System 

A servo control system is one of the most important and widely used forms of 

control system. Any machine or piece of equipment that has rotating parts will 

contain one or more servo control systems. The job of the control system may 

include:  

• Maintaining the speed of a motor within certain limits even when the load might 

vary. This is called regulation.  

• Varying the speed of a motor and load according to an externally set programme 

of values. This is called set point tracking [4]. 

2.2.1 Fundamentals of servo motion control 

The basic reasons for using servo systems in contrast to open loop systems include 

the need to improve transient response times, reduce the steady state errors and 

reduce the sensitivity to load parameters. Improving the transient response time 

generally means increasing the system bandwidth. Faster response times mean 

quicker settling allowing for higher machine throughput. Reducing the steady state 
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errors relates to servo system accuracy. Finally, reducing the sensitivity to load 

parameters means the servo system can tolerate fluctuations in both input and 

output parameters. An example of an input parameter fluctuation is the incoming 

power line voltage. Examples of output parameter fluctuations include a real time 

change in load inertia or mass and unexpected shaft torque disturbances. Servo 

controlling general can be broken in to two fundamental classes of problems. The 

first class deals with command tracking. It addresses the question of how well does 

the actual motion follow what is being commanded. The typical commands in 

rotary motion control are position, velocity, acceleration and torque. For linear 

motion force is used instead of torque. The part of servo control that directly deals 

with this is often referred to as “Feed forward” control. It can be thought of as what 

internal commands are needed such that the user’s motion commands are followed 

without any error, assuming of course a sufficiently accurate model of both the 

motor and load is known. The second general class of servo control addresses the 

disturbance rejection characteristics of the system. Disturbances can be anything 

from torque disturbances on the motor shaft to incorrect motor parameter 

estimations used in the feed forward control [5]. 

2.2.2 Modelling a simple servo system  

The basic form of a Directs Current (DC) servo system is made of an electric motor 

with an output shaft that has an inertial load (J) on it and friction (f) in the bearings 

of the motor and load.  There will be an electric drive circuit where an input voltage 

u(t) is transformed by the motor into a torque t(t) in the motor output shaft. Using 

systems modelling ideas for mechanical systems a torque balance can be written 

between the input torque from the motor and the torque required to accelerate the 

load and overcome friction. This is shown in the Equation (2.1).  

Y(s) = 
𝑘

𝑠(𝑇𝑠+1)
𝑈(𝑠)                                                                                                 (2.1)                                               

Where Y(s) is the output shaft position and U(s) is the motor input. 𝑘 is the system 

gain and T the time constant. The transfer function model can be decomposed into 

the transfer function from the motor input to the motor speed V(s) and the transfer 

function from the motor speed to the output shaft position [4]. 

V(s) = 
𝑘

(𝑇𝑠+1)
𝑈(𝑠)                                                                                                  (2.2) 
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2.3 The Proportional Integral Derivative Algorithm 

The PID algorithm is the most popular feedback controller used within the process 

industries. It has been successfully used for over 50 years. It is a robust easily 

understood algorithm that can provide excellent control. The transfer function of the 

PID controller looks like the following:  

 

𝑘𝑝 +   
𝐾𝑖

𝑠
  + 𝑘𝑑 s = 

𝑘𝑝𝑠+𝐾𝑖+𝑘𝑑𝑠2

𝑠
                                                                      (2.3) 

 

Where : 

•𝑘𝑝 = Proportional gain  

•𝐾𝑖 = Integral gain  

•𝑘𝑑  = Derivative gain  

  

 

Figure 2.1: PID controller 

The PID controller works in a closed-loop system as shown in Figure 2.1 the 

variable (e) represents the tracking error the difference between the desired input 

value (R) and the actual output (Y). This error signal will be sent to the PID 

controller and the controller computes both the derivative and the integral of this 

error signal. The PID controller time domain equation as: 

U=𝑘𝑝e + ki∫ 𝑒𝑑𝑡 + 𝑘𝑑
𝑑𝑒

𝑑𝑡
                                                                                       (2.4) 

The signal (u) just past the controller is now equal to the proportional gain times the 

magnitude of the error plus the integral gain times the integral of the error plus the 

derivative gain times the derivative of the error. This signal (u) will beset to the 

plant and the new output will be obtained. This new output will be sent back to the 

sensor again to find the new error signal. The controller takes this new error signal 

and computes its derivative and its integral again this process goes on and on [6].  
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2.3.1 The characteristics of P, I and D controllers 

A proportional controller (𝑘𝑝) will have the effect of reducing the rise time and will 

reduce but never eliminate the steady-state error. An integral controller will have 

the effect of eliminating the steady-state error (ess) for a constant or step input, but it 

may make the transient response slower. A derivative controller will have the effect 

of increasing the stability of the system reducing the overshoot, and improving the 

transient response. The effects of each of controller parameters, 𝑘𝑝,𝑘𝑑 and 𝐾𝑖  on a 

Closed Loop (CL) system are summarized in the Table 2.1. 

Table2.1: The effect of P, I and D controller for time response   

CLRESPONSE RISE TIME OVERSHOOT SETTLING 

TIME 

S-S ERROR 

kp Decrease Increase Small Change Decrease 

Ki  Decrease Increase Increase Eliminate 

kd Small Change Decrease Decrease No Change 

Note that these correlations may not be exactly accurate because 𝑘𝑝, 𝐾𝑖   and 𝑘𝑑 are 

dependent on each other. In fact changing one of these variables can change the 

effect of the other two. For this reason the table should only be used as a reference 

when you are determining the values for  𝑘𝑝 and 𝑘𝑑 [6].  

2.3.2 Tuning ruled for PID controller 

The mathematical model of the plant can be derived then it is possible to apply 

various design techniques for determining parameters of the controller that will 

meet the transient and steady-state specifications of the closed-loop system. 

However, if the plant is so complicated that its mathematical model cannot be easily 

obtained then an analytical approach to the design of a PID controller is not 

possible. Then we must resort to experimental approaches to the tuning of PID 

controllers. The process of selecting the controller parameters to meet given 

performance specifications is known as controller tuning. Ziegler and Nichols 

suggested rules for tuning PID controllers (meaning to set values Kp, Td and Ti) 

based on experimental step responses or based on the value of K that results in 

marginal stability when only proportional control action is used. Ziegler-Nichols 

rules which are useful when mathematical models of plants are not known. Such 



8 
 

rules suggest a set of values of Kp, Ti and Td that will give a stable operation of the 

system. However the resulting system may exhibit a large maximum overshoot in 

the step response which is unacceptable. In such a case series of fine tunings until 

an acceptable result is obtained. In fact the Ziegler-Nichols tuning rules give an 

educated guess for the parameter values and provide a starting point for fine tuning, 

rather than giving the final settings for Kp, Ti and Td in a single shot [6].    

2.3.3 Ziegler Nichols rules for tuning PID controllers 

Ziegler and Nichols proposed rules for determining values of the proportional gain 

integral time and derivative time based on the transient response characteristics of a 

given plant. Such determination of the parameters of PID controllers or tuning of 

PID controllers can be made by engineers on-site by experiments on the plant. 

There are two methods called Ziegler-Nichols tuning rules 

I-First method  

In the first method the response of the plant is obtain due  to a unit-step input as 

shown in Figure 2.2. If the plant involves neither integrator (s) nor dominant 

complex-conjugate poles then such a unit-step response curve may look S-shaped as 

shown in Figure 2.3. This method applies if the response to a step input exhibits an 

S-shaped curve. Such step response curves may be generated experimentally or 

from a dynamic simulation of the plant. The S-shaped curve may be characterized 

by two constants delay time L and time constant T. The delay time and time 

constant are determined by drawing a tangent line at the inflection point of the S-

shaped curve and determining the intersections of the tan gent line with the time 

axis and line c(t) = K. Ziegler and Nichols suggested to set the values of Kp, Ti and 

Td according to the formula shown in Table 2.2.  

 

Figure 2.2: Unit-step response of a plant 
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Figure 2.3: S-shaped response curve 

  

Table 2.2: Ziegler-Nichols tuning rule based on step response of plant  

Type of controller KP Ti Td 

P 𝑇

𝐿
 

∞ 0 

PI 0.9
𝑇

𝐿
 𝐿

0.3
 

0 

PID 1.2
𝑇

𝐿
 2L 0.5L 

 

Notice that the PID controller tuned by the first method of Ziegler-Nichols rules 

gives 

GC(S) =KP (1+  
1

𝑇𝐼𝑆
 +TDS)                                                                                      (2.5) 

= 1.2
𝑇

𝐿
(1 +

1

2𝐿𝑆 
+ 0.5𝐿𝑆)                                                                                            (2.6) 

=0.6T
(𝑆+

1

𝐿
)2

𝑆
                                                                                                            (2.7) 

Thus the PID controller has a pole at the origin and double zeros at s = -1/L 

ii-Second Method   

In the second method first set Ti = ∞ and Td = 0 using the proportional control 

action only increase Kp from 0 to a critical value Kcr at which the output first 

exhibits sustained oscillations. Thus the Kcr and the corresponding period Pcr are 

experimentally determined as shown in Figure 2.4. Ziegler and Nichols suggested 

that we set the values of the parameters Kp, Ti and Td according to the formula 

shown in Table 2.3.  
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Figure 2.4: Sustained oscillation with period Pcr 

 

Table 2.3: Ziegler-Nichols tuning rule based on Kcr, and pcr  

Type of controller Kp Ti Td 

P 0.5Kcr ∞ 0 

PI 0.45 Kcr 1

1.2
Pcr 0 

PID 0.6Kcr 0.5Pcr 0.125Pcr 

 

Notice that the PID controller tuned by the second method of Ziegler-Nichols rules 

gives:  

GC(S) =KP (1+  
1

𝑇𝐼𝑆
 +TdS)                                                                                       (2.8) 

GC(S) = 0.6KCR(1 +
1

0.5𝑃𝐶𝑅𝑆
+ 0.125𝑃𝐶𝑅𝑆)                                                           (2.9) 

0.075KCRPCR

(𝑆+
4

𝑃𝐶𝑅
)2

𝑆
                                                                                                      (2.10) 

Thus the PID controller has a pole at the origin and double zeros at s = -4/pcr [7]. 

2.4 Fuzzy Logic Fundamentals 

Over the past few years the use of fuzzy set theory or fuzzy logic in control systems 

has been gaining widespread popularity. Fuzzy logic-based control systems or 

simply Fuzzy Logic Controllers (FLCs) can be found in a growing number of 

products from washing machines to speedboats from air condition units to hand-

held autofocus cameras. Fuzzy logic is exemplified in the speed governing system 

of a synchronous generator set. The success of fuzzy logic controllers is mainly due 

to their ability to cope with knowledge represented in a linguistic form instead of 

representation in the conventional mathematical framework. Control engineers have 

traditionally relied on mathematical models for their designs. However, the more 

complex a system, the less effective and the mathematical model this is the 

fundamental concept that provided the motivation for fuzzy logic and is formulated 
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by Lofti Zadeh, the founder of fuzzy set theory as the principle of      

incompatibility [8]. 

2.4.1 Fuzzy sets and fuzzy logic 

Classical set theory was founded by the German mathematician Georg Cantor. In 

the theory a universe of discourse U is defined as a collection of objects all having 

the same characteristics. A classical set is then a collection of a number of those 

elements. The member elements of a classical set belong to the set 100 percent. 

Other elements in the universe of discourse which are non-member elements of the 

set are not related to the set at all. A definitive boundary can be drawn for the set as 

depicted in Figure 2.5. 

 

 

Figure (2.5): Classical/crisp set and fuzzy set boundary 

 

A classical set can be denoted by A = {x ∈U | P(x)} where the elements of A have 

the property P and U. The characteristic function µ𝐴(x): U → {0, 1} is defined as 

‘0’ if x is not an element of A and ‘1’ if x is an element of A. Here U contains only 

two elements ‘1’ and ‘0’. Therefore an element x in the universe of discourse is 

either a member of set A or not a member of set A there is ambiguity about 

membership. In fuzzy set theory the concept of characteristic function is extended 

into a more generalized form known as membership function  µ𝐴(x): U → {0, 1} 

While a characteristic function exists in a two-element set of {0, 1} a membership 

function can take up any value between the unit interval [0, 1]. The set which is 

defined by this extended membership function is called a fuzzy set. In contrast a 

classical set which is defined by the two-element characteristic function. Fuzzy set 

theory essentially extends the concept of sets to encompass vagueness. Membership 

to a set is no longer a matter of ‘true’ or ‘false’, ‘1’ or ‘0’ but a matter of degree. 

The exact nature of the relation depends on the shape or the type of membership 

function used in the system [8]. 
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2.4.2 Types of membership functions 
 

Figure 2.6 shows various types of membership functions which are commonly   

used in fuzzy set theory. The choice of shape depends on the individual application.   

 

Figure 2.6: Types of membership functions 

2.4.3 Linguistic variables 

The concept of a linguistic variable a term which is later used to describe the inputs 

and outputs of the FLC is the foundation of (FLC) systems. A conventional variable 

is numerical and precise. It is not capable of supporting the vagueness in fuzzy set 

theory. By definition a linguistic variable is made up of words sentences or artificial 

language which is less precise than numbers. It provides the means of approximate 

characterization of complex or ill-defined phenomena. [8] 

2.4.4 Fuzzy logic implementation 

  Fuzzy implication is an important connective in fuzzy control systems because the 

control strategies are embodied by sets of IF-THEN rules. There are various 

different techniques in which fuzzy implication may be defined. These relationships 

are mostly derived from multivalued logic theory. The following are some of the 

common techniques of fuzzy implication found in literature 

i-Mamdani system 

 This method is widely accepted for capturing expert knowledge. It allows us to 

describe the expertise in more intuitive, more humanlike manner. However, 

Mamdani type FIS entails a substantial computational burden.  

ii-Takagi-Sugeno 

 This method is computationally efficient and works well with optimization and 

adaptive techniques, which makes it very attractive in control problems particularly 
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for dynamic nonlinear systems. These adaptive techniques can be used to customize 

the membership functions so that fuzzy system best models the data. The most 

fundamental difference between Mamdani type FIS and Sugeno type FIS is the way 

the crisp output is generated from the fuzzy inputs. While Mamdani type FIS uses 

the technique of defuzzification of a fuzzy output Sugeno type FIS uses weighted 

average to compute the crisp output. The expressive power and interpretability of 

Mamdani output is lost in the Sugeno FIS since the consequents of the rules are not 

fuzzy. But Sugeno has better processing time since the weighted average replace the 

time consuming defuzzification process. Due to the interpretable and intuitive 

nature of the rule base Mamdani type FIS is widely used in particular for decision 

support application. Other differences are that Mamdani FIS has output membership 

functions whereas Sugeno FIS has no output membership functions. Mamdani FIS 

is less flexible in system design in comparison to Sugeno FIS as latter can be 

integrated with ANFIS tool to optimize the outputs [8]. 

 2.4.5 Fuzzy control systems 

In typical fuzzy logic controller there are five principal elements as shown in  

Figure 2.7 

 
Figure 2.7: Block diagram of a typical fuzzy logic controller 

 

 Fuzzification module (fuzzifier). 

 Knowledge base. 

 Rule base. 

 Inference engine. 

 Defuzzification module (defuzzifier). 

Automatic changes in the design parameters of any of the five elements create an 

adaptive fuzzy controller. Fuzzy control systems with fixed parameters are non-

adaptive. Other non-fuzzy elements which are also part of the control system 

include the sensors the analogue–digital converters the digital–analogue converters 
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and the normalisation circuits. There are usually two types of normalisation circuits 

one maps the physical values of the control inputs onto a normalised universe of 

discourse and the other maps the normalised value of the control output variables 

back onto its physical domain. 

 Fuzzifier 

The fuzzification module converts the crisp values of the control inputs into fuzzy 

values so that they are compatible with the fuzzy set representation in the rule base. 

The choice of fuzzification strategy is dependent on the inference engine i.e. 

whether it is composition based or individual-rule-firing based. 

 Knowledge base 

The knowledge base consists of a database of the plant. It provides all the necessary 

definitions for the fuzzification process such as membership functions, fuzzy set 

representation of the input–output variables and the mapping functions between the 

physical and fuzzy domain. 

 Rule base 

The rule base is essentially the control strategy of the system. It is usually obtained 

from expert knowledge or heuristics and expressed as a set of IF-THEN rules. The 

rules are based on the fuzzy inference concept and the antecedents and consequents 

are associated with linguistic variables.  

 Defuzzifier 

The diagram in Figure 2.8 shows the membership functions related to a typical 

fuzzy controller’s output variable defined over its universe of discourse. The FLC 

will process the input data and map the output to one or more of these linguistic 

values (LU1 to LU5). Depending on the conditions the membership functions of the 

linguistic values may be clipped. The union of the membership functions forms the 

fuzzy output value of the controller [9]. 

 

 

Figure 2.8: Membership functions of the output linguistic values 
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2.5 Artificial Neural Network 

Neural control is a branch of the general field of intelligent control which is based 

on the concept of Artificial Intelligence (AI). AI can be defined as computer 

emulation of the human thinking process. The AI techniques are generally classified 

as Expert Systems (ES), Fuzzy Logic (FL) and Artificial Neural Networks (ANN). 

The classical ES are based on Boolean algebra and use precise calculations while 

FL systems involve calculations based on an approximate reasoning. The use of 

ANNs is the most powerful approach in AI. ANNs are information processing 

structures which emulate the architecture and operational mode of the biological 

nervous tissue. Any ANN is a system made up of several basic entities named 

neurons which are interconnected and operate in parallel transmitting signals to one 

another in order to achieve a certain processing task. One of the most outstanding 

features of ANNs is their capability to simulate the learning process. They are 

supplied with pairs of input and output signals from which general rules are 

automatically derived so that the ANN will be capable of generating the correct 

output for a signal that was not previously used. The neural approach can be 

combine with the fuzzy logic generating neuro – fuzzy system that combine the 

advantages of the two control paradigm [8]. 

2.5.1 Neural networks architectures 

Artificial neural networks differ by the type of neurons they are made of and by the 

manner of their interconnection. There are two major classes of neural networks 

feed-forward ANNs and recurrent ANNs. Feed-Forward Artificial Neural Networks 

(FFANNs) are organized into cascaded layers of neurons. Each layer contains 

neurons receiving input signals from the neurons in the previous layer and 

transmitting outputs to the neurons in the subsequent layer. The neurons within a 

layer do not communicate to one another. The first network layer is named the input 

layer, while the last one is named the output layer. All the other neuron layers are 

known as the hidden layers of the neural network. FFANNs do not have any 

memory of the past inputs so that they are used for applications where the output is 

only a function of the present inputs. Therefore, each input vector is simply 

associated with an output vector. If step activation functions are used several 

analogue or discrete input vectors can be associated with a single discrete output 
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vector. Such neural networks are used to solve classification problems. In a 

classification problem the set of all possible input vectors is divided into several 

arbitrary subsets. Each subset is a class. The problem consists of finding out to 

which class a given input vector belongs. The neural network associates each class 

with a binary vector and generates the corresponding code for any input vector. 

Recurrent artificial neural networks include architectures where neurons in the same 

layer communicate cellular neural networks or architectures where some of the 

outputs of a FFANN are used as inputs. These neural architectures can be described 

either by continuous time models or by discrete time models. Figure 2.9 shows the 

neural network architecture [8]. 

 

 

Figure 2.9: Neural network architectures  

2.5.2 Training algorithms   

One of the most important features of neural networks is their ability to learn and 

improve their operation using a set of examples named training data set the training 

process is controlled by mathematical algorithms that fall in two main classes 

constructive and non-constructive. The non-constructive training algorithms adapt 

only the connection weights and the threshold levels. The constructive algorithms 

modify all the network features including its architecture. All the algorithms modify 

the neuron weights and thresholds based on calculations that analyze the network 

response to particular inputs. The modifications are performed in a manner that 

brings the network outputs closer to the expected ones. Depending on the nature of 

the training data set there are two categories of algorithms supervised and 
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unsupervised. The supervised algorithms use a training data set composed of input–

output pairs. The unsupervised algorithms use only the input vectors. In the case of 

supervised algorithms, the training process is controlled by an external entity (the 

teacher) that is able to establish whether the network outputs are adequate to the 

inputs and what is the size of the error. Then the network parameters are modified 

according to the particular correction method defining each training algorithm. In 

case of unsupervised methods (the Hebbian rule, the ‘winner takes all’ algorithm, 

etc.), there are no means to know what the expected outputs are. The network 

evolves as a result of the experience gained from the previous input vectors. The 

weight values converge to a set of final values dictated by the input values used as 

training data set in conjunction with the particular training algorithm. The 

unsupervised family of training algorithms is mainly used for signal and image 

processing, where pattern classification, data clustering or compression algorithms 

are involved. The control engineering problems are better tackled by supervised 

training methods, as the relationship between inputs and desired outputs is better 

defined and easier to control [10]. 

i-The error back-propagation algorithm 

The most popular supervised training algorithm is the one named ‘error back 

propagation’ or simply ‘back-propagation’. It involves training a FFANN structure 

made up of sigmoidal activation function neurones. The back propagation algorithm 

is a gradient method aiming to minimise the total operation error of the neural 

network. The total error is a function defined by equation (2.11) where Oi ref is the 

column vector of the reference outputs and Oi is the column vector of the actual 

network outputs corresponding to the input pattern number ‘i’. The total error Err is 

the sum of the errors corresponding to all np input patterns. 

 

Err =∑ (𝑜𝑖𝑒𝑟𝑓 − 𝑜𝑖)𝑇𝑛𝑝

𝑖=1
. (𝑜𝑖𝑒𝑟𝑓 − 𝑜𝑖) = ∑ ‖(𝑜𝑖𝑒𝑟𝑓 − 𝑜𝑖)2‖

𝑛𝑝

𝑖=1
                               (2.11) 

 

For each training step the vector of all neurone weights and threshold weights (W) is 

updated in such a way that the total error Err is decreased. The vector W can be 

associated to a point in a NW-dimensional space where NW is the total number of 

weights and thresholds in the neural network. The most efficient way to perform the 
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update is to shift the point W along the curve indicated by the gradient of the total 

error. This principle is illustrated by Equation (2.12) where W (t) is the parameter 

vector during the current training cycle W(t + 1) is the parameter vector for the next 

training cycle and Ƞ is the learning-rate constant. The algorithm stops when the 

total error is zero. In practice it is stopped when the error is considered negligible 

 

W (t + 1) = W (t) – Ƞ·∇Err=W (t) – Ƞ · [ 
𝜕𝐸𝑟𝑟

𝜕𝑤1

𝜕𝐸𝑟𝑟

𝜕𝑤1

𝜕𝐸𝑟𝑟

𝜕𝑤1
… . .

𝜕𝐸𝑟𝑟

𝜕𝑤1
]                           (2.12) 

 

For the practical calculation of the error gradient ∇Err the components in the vector 

W are usually rearranged as a three-dimensional matrix. The matrix has a number of 

rectangular layers equal to the number of neurone layers in the neural network. 

Each rectangular layer is a two-dimensional matrix containing one line for each 

neurone in the corresponding layer of the neural network. Each line includes the 

input weights and its threshold level of a neurone. Therefore, the element wjkm in the 

three-dimensional matrix is the weight ‘m’ of the neurone ‘k’ situated in the layer ‘j’ 

inside the neural network. The threshold level corresponds to the last element in 

each line and is not treated any differently to the input weights because it can be 

considered as an extra weight supplied with a constant input signal –1. the back-

propagation algorithm is not guaranteed to generate a satisfactory solution for all 

input output association problems and FFANN architectures. The training result 

depends on several factors as follow: 

 Network architecture (number of layers, number of neurones in each layer). 

 Initial parameter values W(0). 

 The details of the input–output mapping. 

 Selected training data set (pairs of inputs and corresponding desired outputs). 

 The learning-rate constant Ƞ. 

Back-propagation is not a constructive algorithm the network architecture has to be 

chosen in advance. Unfortunately, there is no clearly defined set of rules to be 

followed in order to decide which the most appropriate architecture for a problem is 

choosing the architecture is a result of a trial and error process supported by 

previous experience. However, it has been mathematically demonstrated that any 

input–output mapping can be learned by a FFANN with only one hidden layer 
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provided that the number of neurones in the hidden layer is large enough for the 

problem to be solved. This means that if a neural network proves incapable of 

learning how to perform a certain task the one possible solution is to increase the 

number of neurones in the hidden layer or layers. A different solution is to restart 

the algorithm with another set of initial parameters W(0). This solution is based on 

the assumption that the previous failure was generated by stopping at a local 

minimum. The trajectory of vector W in the parameter space is dependent on its 

starting point W(0), therefore the situation may be avoided by changing the initial 

weights and thresholds. Another important aspect is choosing an adequate training 

data set, so that if the number of different input values is finite the training data set 

covers all the possibilities. Nevertheless, if this number is infinite or if the number 

is too large then only a selection of input combinations will be used to train the 

neural network. The quality of the training process is influenced by the way the 

training data set is generated [10]. 

ii-Training algorithms for neurones with step activation functions 

If the activation functions of the neurons in FFANN are not sigmoidal the back 

propagation algorithm cannot be used because the error function cannot be derived. 

However, other recursive methods presented in (2.13) and (2.14) are applicable to 

the FFANNs with only one layer. These are recursive methods like the back-

propagation algorithm but in this case the training process always has a finite 

number of cycles provided that the desired input–output relation can be learned by a 

one layer network. 

𝑊𝐽𝐾
𝑇+1 =  𝑊𝐽𝐾

𝑇 + Ƞ. ∑ 𝑋𝐾− 
𝑁𝑃
𝐼=1 (𝑂𝑖𝑗

𝑟𝑒𝑓
− 𝑓𝑖𝑗)                                                           (2.13) 

𝑊𝐽𝐾
𝑇+1 =  𝑊𝐽𝐾

𝑇 + Ƞ. ∑ 𝑋𝐾− 
𝑁𝑃
𝐼=1 (𝑂𝑖𝑗

𝑟𝑒𝑓
− 𝑛𝑒𝑡𝑖𝑗)                                                      (2.14) 

 

Finding the correct weights for a multilayer FFANN with step activation functions 

is a complicated problem. The two previous methods cannot be generalized for such 

networks and either constructive methods or genetic algorithms need to be used 

instead. There are many other training algorithms than the ones presented here. 

However, the algorithms presented are used in the vast majority of control 

applications [9]. 
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2.6 Adaptive Neuro-Fuzzy Inference Systems  

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a hybrid network which 

consists of a combination of two controllers Fuzzy logic and neural network. These 

both controllers result in a single entity which enhances the features of controlling 

machine than using single controller alone. The main idea of fuzzy logic control is 

to build a model of a human control expert capable of controlling the plant without 

thinking in terms of a mathematical model. These control rules are translated into 

the framework of fuzzy set theory providing a calculus which can simulate the 

behaviour of the control expert. The specification of good linguistic rules depends 

on the knowledge of the control expert, but the translation of these rules into fuzzy 

set theory framework is not formalized and arbitrary choices concerning. The 

quality of fuzzy logic controller can be drastically affected by the choice of 

membership functions. Thus, methods for tuning fuzzy logic controllers are 

necessary.  

Neural networks offer the possibility of solving the problem of tuning. Although a 

neural network is able to learn from the given data the trained neural network is 

generally understood as a black box. Neither it is possible to extract structural 

information from the trained neural network. On the other hand, a fuzzy logic 

controller is designed to work with the structured knowledge in the form of rules 

and nearly everything in the fuzzy system remains highly transparent and easily 

interpretable. However, there exists no formal framework for the choice of various 

design parameters and optimization of these parameters generally is done by trial 

and error. A combination of neural networks and fuzzy logic offers the possibility 

of solving tuning problems and design difficulties of fuzzy logic. The resulting 

network will be more transparent and can be easily recognized in the form of fuzzy 

logic control rules or semantics. This new approach combines the both methods and 

avoids the drawbacks of both [11]. 
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CAPTER THREE 

METHODOLOGY  

3.1 System Description  

The coupled tank system consists of two vertical tanks interconnected by a flow 

channel as shown in Figure 3.1 which causes the levels of the two tanks to interact. 

Each tank has an independent pump for inflow of liquid. The sectional area of the 

outlets present and the base of each tank and the channel connecting the two tanks 

can be varied with rotary valves. The amount of water which returns to the reservoir 

is approximately proportional to the head of water in the tank since the return tube 

is made of flexible tubing which aids in varying the hydraulic resistance. 

 

Figure 3.1: Layout of the interacting tanks system 

 
The level of water in each tank is monitored by a capacitive – type probe signal 

conditioning circuits convert the measured capacitance to electrical signals in the 

range of 0 to +5 volt DC. The zero level has been calibrated to represent the rest 

point of the water level that is when tank is nearly empty (about 20 mm in the scale) 

while the full state (+5 volt) is calibrated at the level of the opening to the rear over 

flow stand pipes with scale showing 300mm approximately an internal baffle 

controls leakage between the two tanks to simulate interacting tank arrangement. 

The baffle is raised by a small amount by turning the wing nut on the top of the tank 

assembly in order to provide a useful range of inter tank resistance .A spring returns 

the baffle to the closed position when the wing nut is released [12].  
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3.1.1 Fundamental control principle of coupled tank system  

Process variable or controlled variable for this system that is the variable which 

quantifies performance is actually the water level in the coupled tank system to 

maintain and control the water level at specified desired value. The inlet flow rate is 

adjusted the adjustment is made or actuated by pump voltage. The input flow rate is 

known as manipulated variable i.e. the variable that is used to maintain the process 

variable at its set point. The important characteristic of the system, the level will be 

maintained as long as the outflow rate, the pump flow rate and the outflow rate 

remained unchanged. 

However, if any disturbance occurs which results in the change in either the inflow 

rate or the outflow rate or changes that maybe necessary for process then the liquid 

level in the tank would change and settle at different steady –state level. If the 

outflow rate is greater than the inflow rate, the liquid level will settle at the lower 

level than before. Assuming that a steady state condition had already been achieved 

before the tank is empty. Similarly if the inflow rate is higher than the liquid level 

will settle at a higher level, assuming that the steady state condition achieved before 

the tank is overflow. The control objective is that the input flow rate has to be 

adjusted in order to maintain the level at the previous condition. In the case where 

the out flow rate is greater than the inflow rate, the inflow rate has to be adjusted so 

that the liquid level in the tank increased and settled [12]. 

 

 

Figure 3.2: Schematic diagram of interacting tanks apparatus 
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Table 3.1: Parameters of the coupled –tank system  

Name Expression Value 

Cross sectional area of the 

coupled tank reservoir  

A1 and A2 1 m2 

Proportionality α constant 

that depend on discharge 

coefficient orifice cross 

sectional area and 

gravitational constant  

αI 

subscript I denotes 

which tank it refers 

α1 α2 α3 

14.30 

Cm 

14.30 

cm 

20.00 

cm 

Elevation of coupled tank  H1 60 cm 

H2 50 cm 

 

3.1.2 Mathematical modelling of the coupled tank system  

It is vital to understand the mathematical of how the coupled tank system behaves. 

System modelling involve devolving mathematical model by applying the 

fundamental physical laws of science and engineering in this system nonlinear 

dynamic model with time varying parameters are observed and steps are taken to 

drive each of the cross ponding linearized perturbation from the nonlinear model. A 

simple nonlinear mathematical model is derived with a help of Figure 3.2. Let H1 

and H2 be the liquid level in each tank measured with respect to the corresponding 

outlet considering a simple mass balance the rate of change of liquid into the tank. 

Thus for each of tank 1 and tank 2 the dynamic equation is developed as follows: 

A1
𝑑𝐻1

𝑑𝑡
 = Qi1 – Q01 –Q03                                                                                           (3.1) 

A2
𝑑𝐻2

𝑑𝑡
 = Qi2 – Q02 –Q03                                                                                           (3.2) 

Where are: 

   H1, H2: are heights of liquid in tank 1 and tank 2, respectively. 

  A1, A2: are cross-sectional areas of tank 1 and tank 2. 

  Q03  : is the flow rate between tanks. 

  Qi1, Qi2: are pump flow rate into tank 1 and tank 2, respectively. 

  Q01, Q02: are the flow rate of liquid out of tank 1 and tank 2, respectively. 

Each outlet drain can be modelled as a simple orifice Bernoulli’s equation for 

steady a non-viscous incompressible fluid shows that the outlet flow in tank2 is 
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proportional to the square root of the head of the water in the tank similarly the flow 

between the two tanks is proportional to the square root of the head differential  

  Q01 = α1√𝐻1                                                                                                         (3.3) 

  Q02 = α2√𝐻2                                                                                                         (3.4) 

  Q03 = α3√𝐻1 − 𝐻2                                                                                               (3.5) 

Where: 

 α1, α2 and α3 are proportionality constants which depend on the coefficients of 

discharge the cross sectional area of each area and gravitational constant. By using 

Equations from (3.3) to (3.5) in (3.1) and (3.2) the nonlinear equations that describe 

the dynamics of the multi-input and multi output system are derived as: 

A1
𝑑𝐻1

𝑑𝑡
 = Qi1 – α1√𝐻1– α3√𝐻1 − 𝐻2                                                                      (3.6)  

A2
𝑑𝐻2

𝑑𝑡
 = Qi2 – α2√𝐻2– α3√𝐻1 − 𝐻2                                                                      (3.7) 

 

Suppose that for set inflows Qi1and Qi2 the liquid level in the tanks is at some steady 

state levels H1and H2 consider small variations in each inflow, q1 in Qi1 and q2 in 

Qi2. Let the resulting perturbation in level be h1 and h2 respectively. From  

Equations (3.6) and (3.7) the following equations can be derived for tank1 and 

tank2 respectively.  

A1
𝑑(𝐻1+ℎ)

𝑑𝑡
 = (Qi1+q1) – α1√𝐻1 + ℎ1– α3√𝐻1 − 𝐻2 + ℎ1 − ℎ2                                (3.8) 

A2
𝑑(𝐻2+ℎ)

𝑑𝑡
 = (Qi2+q2) – α2√𝐻2 + ℎ2– α3√𝐻1 − 𝐻2 + ℎ1 − ℎ2                            (3.9)  

In (3.8) and (3.9) note that the coefficients of the perturbations in the level are 

function of steady state operating points H1 and H2 .the two equations can also be 

written in the form (3.10) and (3.11) where q01 and q02 represent perturbation in the 

outflow at the drain pipes this would be appropriate in the case where outflow is 

controlled by attaching external clamp for instance based on the developed 

linearized model. Subtracting Equations (3.6) and (3.7) from Equations (3.8) and 

(3.9) the equations obtained are: 

A1
𝑑𝐻1

𝑑𝑡
 = q1– α1(√𝐻1 + ℎ1–√ℎ1) −α3(√𝐻1 − 𝐻2 + ℎ1 − ℎ2 -√ℎ1 − ℎ2 )      (3.10) 

A2
𝑑𝐻2

𝑑𝑡
 = q2– α2(√𝐻2 + ℎ2–√ℎ2) −α3(√𝐻1 − 𝐻2 + ℎ1 − ℎ2 -√ℎ1 − ℎ2 )      (3.11) 
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For small perturbations 

√𝐻1 + ℎ1 =√𝐻1(1 +
𝐻1

2𝐻1
)                                                                                 (3.12) 

Therefore consequently 

 

√𝐻1 + ℎ1   - √𝐻1  = 
ℎ1

2√𝐻1
                                                                                     (3.13) 

Similarly 

√𝐻2 + ℎ2-√𝐻2 = 
ℎ2

2√𝐻2
                                                                              (3.14) 

And: 

√𝐻1 − 𝐻2 + ℎ1 − ℎ2 – √𝐻2 − 𝐻1 = 
ℎ2−ℎ1

2√𝐻2−𝐻1
                                               (3.15) 

The configuration is achieved by having the baffle raised at as small height this a 

allows flow of water from tank1 to tank2 and with this second order configuration h2 

will be the process variable that is to be set whist q1 is the manipulated variable that 

is to be controlled. The other variable like q2 will be assumed zero as the model is 

derived under the circumstances of no disturbance abiding by this approximation 

(3.16) and (3.17) are established. 

A1
𝑑𝐻1

𝑑𝑡
=q1- α1

ℎ1

2√𝐻1
 - α3

ℎ2−ℎ1

2√𝐻2−𝐻1
                                                                            (3.16) 

A2
𝑑𝐻2

𝑑𝑡
=q2 - α1

ℎ1

2√𝐻1
 - α3

ℎ2−ℎ1

2√𝐻2−𝐻1
                                                                           (3.17) 

Performing Laplace transforms on (3.16) and (3.17) and assuming that initially all 

variables are at their steady state values.  

A1Sh1(s) = q1(s) – (
 α1

2√𝐻1
 + 

α3

2√𝐻2−𝐻1
) ℎ1 (s) + 

α3

2√𝐻2−𝐻1
h2(s)                                 (3.18) 

A2Sh2(s) = q2(s) – (
 α2

2√𝐻2
 + 

α3

2√𝐻2−𝐻1
)h2(s) + 

α3

2√𝐻2−𝐻1
h1(s)                                    (3.19) 

By rearranging and rewriting in abbreviated manners 

 

(T1S+1) ℎ1 (s) = k1q1(s) + k2q2(s)                                                                       (3.20) 

(T2S+1) ℎ2 (s) = k2q2(s) + k21q2(s)                                                                      (3.21) 

Step1: substitute all values in table (3.1) into (3.20) and (3.21) can be obtained as 
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τ1=   
𝐴1

𝛼1
2√𝐻1

+
𝛼3

2√𝐻1−𝐻2

                                                                                                              (3.22)                         

τ2=    
𝐴2

𝛼2
2√𝐻2

+
𝛼3

2√𝐻1−𝐻2

                                                                                                             (3.23) 

K1= 
1

𝛼1
2√𝐻1

+
𝛼3

2√𝐻1−𝐻2

                                                                                                  (3.24)                       

K2 =
1

𝛼2
2√𝐻2

+
𝛼3

2√𝐻1−𝐻2

                                                                                                        (3.25) 

K12 =  

𝛼3
2√𝐻1−𝐻2

𝛼1
2√𝐻1

+
𝛼3

2√𝐻1−𝐻2

                                                                                                           (3.26)                      

K21 =  

𝛼3
2√𝐻1−𝐻2

𝛼2
2√𝐻2

+
𝛼3

2√𝐻1−𝐻2

                                                                                              (3.27) 

Step2: Substitute all values from step 1 into Equations (3.20) and (3.21), relates 

between the manipulated variable q1 and presses variable h2 the final transfer 

function equation can be obtained as: 

 
ℎ2(𝑠)

𝑞1(𝑠)
   =   

𝑘1𝑘2

𝜏1𝜏2𝑠2+(𝜏1+𝜏2)𝑠+(1−𝑘12𝑘21)
                                                                     (3.28) 

By substituting the parameters in the plant model the transfer function of the plant 

Shown in Equation (3.29) [12]. 

τ1=3.47 

τ2=3.38 

k1=0.11 

k2=0.11 

k12=0.77 

k21=0.77 

𝐺(𝑠) =
0.0008

𝑠2+0.85𝑠+0.003
                                                                                           (3.29)     

Step3: for the servo system considering the time constant T=0.2 and substituting in 

equation (2.2) the transfer function for the servo system shown in equation (3.30)           

C(s) = 
50

𝑠+50
                                                                                                           (3.30) 
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3.2 PID Controller Design  

From the transfer function shown in Equation (3.29), PID controller has been 

designed using the second method of Ziegler-Nichols to get the exact values of 

proportional, integral and derivative gains the program written in m.file. 

Program 1 

Plant=tf(.0008,[1 .85 .003]); 

actuator=tf(50,[1 50]); 

sys=series(plant,actutor) 

g=feedback(sys,1); 

step(g) 

figure 

for k=100:5:100000 

    sys1=k*sys ; 

    sys2=feedback(sys1,1); 

    [num den]=tfdata(sys2,'v'); 

    r=roots(den); 

    m=max(real(r)); 

    if m>0 

        break 

    end 

end 

kcr=k 

w=sqrt(den(4)/den(2)); 

pcr=((2*pi)/w) 

kp=.6*kcr 

kd=.125*pcr 

ki=.5*pcr 

controller=tf([kd kp ki],[1 0]) 

sys3=series(sys,controller) 

g2=feedback(sys3,1) 

step(g2) 

 

 

The block diagram for tuned PID controller in MATLAB/SIMULINK is shown in 

Figure 3.3. 
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Figure 3.3: Model of PID controller 

 

3.3 Fuzzy Controller Design  

The  fuzzy controller in present work is a mamdani uses a rule base in linguistic 

terms There are two inputs the level and the change of liquid level and one output 

parameter the inlet valve control angle. The Gaussian membership functions are 

selected to fuzzify the inputs and the triangular is selected for output           

variables. There are set fuzzy sets taken (low, Ok and high) for level input and 

(negative, none and positive) for the rate input and five fuzzy sets for the output 

variable.   

3.3.1 The FIS editor  

The fuzzy logic controller makes use of two inputs and one output. The first input is 

the level of the tank denoted as level while the second is change of the level denoted 

as rate. According to the rules written in the rule editor the controller takes the 

action and governs the opening of the valve which is the output of the controller and 

is denoted by valve. In order to start the FIS editor, 'fuzzy' is typed in the MATLAB 

command window and the enter button is pressed. The FIS editor pops up with the 

mamdani style of fuzzyfication set as. The FIS editor opens with only one input and 

one output. Therefore in order to add a second input variable the 'add variable' 

option is selected from the edit option in the toolbar. The input and output blocks 

are selected and their names are written starting from the inputs as shown in    

Figure 3.4. 
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Figure 3.4: Fuzzy FIS editor 

3.3.2 The membership function editor 

The membership function editor is the tool that display and edit all of the 

membership function associated with all of the input and output variables for the 

entire fuzzy inference system. The second stage involves setting the membership 

functions of the two inputs and the output. Double clicking on level block found on 

the FIS editor opens the Membership function window. The name of the input is 

assigned by typing the name in the name box as seen in Figure 3.5.  

The membership function window for the rate input parameter is gotten by double 

clicking on the rate block found in the FIS editor shown in Figure 3.6. Function 

types for the output the range is set to (-1, 1) to cover the output range. The close 

fast membership function will have the parameters (-1, -0.9, -0.8). The close low 

membership function will be (-0.6, -0.5, 0.4) the no change membership function 

will be (-0.1, 0, 0.1), the open slow membership function will be (0.2, 0.3, 0.4) and 

the open fast membership function will be (0.8, 0.9, 1) which are shown in      

Figure 3.7. 
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Figure 3.5: Membership function editor for level 

 

 

Figure 3.6: Membership function editor for the rate 
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Figure 3.7: Membership function editor for the valve 

3.3.3 The rule editor 

Constructing rules using the graphical rule editor interface is fairly self-evident 

based on the descriptions of the input and output variables defined with the         

FIS. Editor the rule editor allows constructing the rule statements automatically by 

clicking and selecting one item in each input variable box one item in each output 

box and one connection item. Such as if (level is ok) then (valve is no change) the 

rest shown in Figure 3.8.  

 

Figure 3.8: The fuzzy rule for fuzzy controller 

The block diagram for fuzzy controller in MATLAB/SIMULINK and the rule 

viewer diagram are shown in Figure 3.9 and 3.10 respectively . 
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Figure 3.9: Model of fuzzy controller 

 

 

                                 Figure 3.10: Rule viewer of fuzzy logic  

Figure 3.11 shows the surface viewer indicating 3D graphical realization of the 

fuzzy rule base. 

 

 

Figure 3.11: Surface viewer 
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3.4 Adaptive Neural Fuzzy Inference Systems Design 

ANFIS editor window opens by typing “anfisedit” in MATLAB command window 

considering two inputs level and the rate and one output the valve. Among many 

FIS models the Sugeno fuzzy model is the most widely applied one for its high 

interpretability and computational efficiency and built in optimal and adaptive 

techniques. For a first order Sugeno fuzzy model a common rule set with two fuzzy 

if–then rules. Figure 3.13 shows the model of ANFIS controller.  

Figure 3.13: Model of ANFIS controller 

 

Figure 3.14: ANFIS model structure with two inputs and one output  

The number of epochs was 300 for training. The number of MFs for the input 

variables level and rate is 3 and 3 respectively. The number of rules is 9. The 

Gaussian MF is used for two input variables. The data is loaded from fuzzy 

controller result.  
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Figure 3.15: ANFIS editor training the rules using back-propagation algorithm 
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CHAPTER FOUR  

 RESULTS AND DISCUSSIONS 

 

4.1 Simulation Result of Uncontrolled System  

The SIMULINK model of the flow system without controller is shown in        

Figure 4.1. The time response with step input is shown in Figure 4.2. 

 

 

Figure 4.1: Module of flow system 

 

Figure 4.2: Result of uncontrolled system 
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4.2 Simulation Result of PID Controller  

After running program 1 in command window, the transfer function is obtained as:  

 

Transfer function: 

               4 

------------------------------- 

s^3 + 50.85 s^2 + 42.5 s + 0.15 

  

 

kcr = 54030 

pcr = 0.9637 

kp = 32418 

kd =0.1205 

ki =0.4819  

 

By applying the above parameters values, the time response for the PID controller 

before tuning is shown in Figure 4.3. 

 

 

Figure 4.3: The response of PID controller before tuning 

 

More tuning for the PID is applying using trial-and-error method the best values of 

kp, ki and kd as shown in Figure 4.4. 
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Figure 4.4: The value of kp, kd and ki after tuning the PID 

 

Figure 4.5 shows the response of the tuned PID controller when simulated with the 

given parameters. The graph shows that the controller has an overshoot and takes 

time to settle to the desired value of 1m. Figure 4.6 shows the comparison between 

the uncontrolled system and when using PID as a controller.  

 

Figure 4.5: PID response 
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Figure 4.6: Comparison between PID response and uncontrolled system 

Figure 4.7 shows the control signal of PID controller. 

 

Figure 4.7: The control signal for PID controller 
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of fuzzy controller. The controller settles at the desired water level very          

quickly (50 sec). 

Figure 4.8: Fuzzy controller response 

Figure 4.9 shows the control signal for fuzzy controller. 

 

Figure 4.9: Control signal for fuzzy controller 
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4.3 Simulation Result of ANFIS Controller 

Two inputs and one output system is simulated with fuzzy logic toolbox in 

MATLAB. Figure 4.10 shows the result of ANFIS controller when using step input 

and it settle at desired value (1m) at time (20 sec). 

 

Figure 4.10: The result of ANFIS controller 
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Figure 4.11: The response of PID, Fuzzy and ANFIS 

Table 4.1: Performance of the controllers  

Type of 

Controller 

Overshoot Rise Time 

(Second) 

Settling Time 

(Second) 

Steady State 

Value  

Un controlled 0% 489 800 0.211 

PID 10 % 40 120 1 

Fuzzy 0% 30 50 1 

ANFIS 0% 18 20 1 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Fuzzy controllers have the advantage that can deal with nonlinear systems and 

implementation of human operator knowledge .fuzzy controller has to be compared 

it with classical PID controller. PID controller has three parameters require an 

adjustment. Controlled system shows good results in terms of response time and 

precision when these parameters are well adjusted. Fuzzy controller has a lot of 

parameters. The most important is to make a good choice of rule base and 

parameters of membership functions. Once a fuzzy controller is given the whole 

system can actually be considered as a deterministic system. When the parameters 

are well chosen, the response of the system has very good time domain 

characteristics. The fuzzy controlled system is very sensitive to the distribution of 

membership functions but not to the shape of membership functions. 

PID controller can not be applied with the systems which have a fast change of 

parameters, because it would require the change of PID constants in the time. It is 

necessary to further study the possible combination of PID and fuzzy controller. It 

means that the system can be well controlled by PID which is supervised by a fuzzy 

system. According to the results of the MATLAB simulation the Adaptive     

Neuro-Fuzzy controller efficiently is better than the traditional fuzzy logic control 

(no overshoot, minimal rise time, Steady state error = 0). The performance of    

neuro–fuzzy is better because it determines the number of rules automatically 

reduces the computational time, learns faster and produces lower errors.  

5.2 Recommendations 

 As a future scope of this work the fuzzy logic controller can be implemented 

in a microcontroller with additional set of rules for more accurate control. 

 The controllers can also be tested with periodically varying liquid level 

tracking applications.  
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