قال تعالى:

(قَالُووْ سَبْحَاتُكُ لَا عِلْمَ لَنَا إِلَا مَا عَلَمْتَنَا إِنَّكَ وَنْتَ الْعَلِيمُ الْكَيْمِ الْكَيمُ

سورة البقرة اللايه 32

DEDICATION

TO MY PARENTS

TO MY BRATHERS

TO MY TEATCHERS

TO MY COLLEAGUES

TO MY FRIENDS

Acknowledgment

Through his holy direction and his holy will i have accomplished this work.

We are grateful for the help receive from our supervisor Dr. Ikhlas Abd-alaziz and Mr. Suhaib Mohamed salih to whom always remain indebted. I want to thanks my friends who gives us his precious time and for his help and support during this research.

Abstract

Computed tomography (CT), is an x-ray procedure that generates high quality cross sectional images of the body, and by comparison to other radiological diagnosis, CT is responsible for higher radiation dose to patients.

The radiation dose was measured in three hospitals in Khartoum state during (April to September 2015) using different CT modalities.

In this study, the mean of dose for 64 slice was (924.5 \pm 81.12 mGy.cm). The mean of dose for 16 slice (689.1 \pm 92.5 mGy.cm). The mean of dose in 4 slice was (401.96 \pm 108.3 mGy.cm). The dose is median than that reported in previous studies.

The radiation dose higher in Al-zytoun hospital than Al-Fisal and Khartoum hospitals. MSCT scanners 64 slice exposed patients to a higher dose than MSCT scanners16 slice, and MSCT scanners16 slice exposed patients to a higher dose than MSCT scanners 4 slice.

The radiologists and CT technologists must be trained to adapt CT scanning techniques based on clinical indications and to assess associated radiation doses with different scanning parameters.

The results presented will serve as a baseline data needed for deriving reference doses for KUB examinations in Sudan.

ملخص البحث:

التصوير المقطعي (CT) هو عملية انتاج صور عالية الجودة في شكل مقاطع لجسم المريض بالأستخدام الأشعة الأخري المرضى.

تم قياس الجرعة الناشعاعية للمرضى في ثلاث مستشفيات في ولاية الخرطوم خلال الفترة (ابريل – سبتمبر 2015) بأستخدام اجهزة متعددة الشرئح للتصوير بالناشعة المقطعية . كان متوسط الجرعة لجهاز الناشعة المقطعية متعدد الشرائح ذو 64 شريحة (924.5 ±81.12 mGy.cm), متوسط الجرعة لجهاز الناشعة المقطعية متعدد الشرائح ذو 16 شريحة (689.1±92.5 mGy.cm) ،متوسط الجرعة لجهاز الناشعة المقطعية متعدد الشرائح ذو 4 شرئح (401.96±108.3 mGy.cm) والجرعات لهذه الدراسة متوسطة مقارنة بالدراسات السابقة وجدنا ان الجرعة الناشعاعية عائية في مستشفي الزيتونة مقارنة بالجرعة الناشعاعية لمستشفي الفيصل و مستشفي الخرطوم.

في هذه الدراسة جهاز الأشعة المقطعية ذو 64 شريحة يعطي جرعة أعلى للمريض من جهاز الأشعة المقطعية ذو 4 شريحة و جهاز الأشعة المقطعية ذو 4 شريحة.

في هذه الدراسة، يجب ان يتم تدريب التقنيين واطباء الاشعة على تقنيات الاشعة المقطعية بناء على نوع الاختبار و وزن وطول المريض ليتم تقييم الجرعة الاشعاعية عن طريق عوامل المرتبطة بالجرعة الاشعاعية . نتائج الجرعة للمرضي سيتم الاستفادة منها في وضع مستويات الجرعة الاشعاعية التوجيهية في السودان.

LIST OF CONTENTS

Topic	Page
الايــــة	I
Dedication	II
Acknowledgment	III
Abstract English	IV
Abstract Arabic	V
Contents	VI
List of Tables	IX
List of Figures	X
List of Abbreviation	XII
Chapter One: Introduction	,
1.1 Introduction	1
1.2 Problem of study	1
1.3 Objectives	2
1. 4 Research overview	2
Chapter Two: Literature Review	
2.1 Theoretical background	3
2.1.1 Principles of computed tomography	3
2.1.2 Spiral CT imaging principles	4
2.1.3 Multislice volumetric spiral CT	5
2.1.4 Detectors design in computed tomography	7
2.1.5 Single Slice CT verse Multi Slice CT detectors	7
2.1.6 Multi Slice CT data acquisition	9

2.1.7 Sub-millimeter slices and isotropic resolution		
2.1.8 16-channel (16-slice) scanners and more		
2.2 Multi Slice Computed Tomography concepts: differences between	15	
MSCT and SSCT		
2.2.1 Multi Slice CT slice thickness and x-ray beam collimation	15	
2.2.2 Cone beam effects in MSCT	16	
2.2.3 Helical Multi Slice Computed Tomography	18	
2.2.4 Definition of pitch revisited	18	
2.2.5 Pitch and z sampling in helical Multi Slice Computed Tomography	20	
2.2.6 Selection of helical Multi Slice Computed Tomography pitch and	23	
data interpolation		
2.2.7 Helical Multi Slice Computed Tomography pitch and mAs	24	
2.3 Multi Slice Computed Tomography radiation dosimetry	26	
2.3.1 Multi Slice Computed Tomography dose efficiency	27	
2.3.2 Variations within the scan plane	30	
2.3.3 Z-axis variations	33	
2.3.4 Factors that influence radiation dose from CT section	35	
2.3.5 Radiation dose units	38	
2.3.5.1 Common units (USA)	38	
2.3.5.2 Common units (SI) international	39	
2.3.6 CT dose measurements	40	
2.3.7 CT dose descriptors	40	
2.3.8 CT parameters that influence the radiation dose	41	
2.3.8.1 Computed tomography dose index	42	
2.3.8.2 Dose-length product	44	
2.4 KUB examination	46	

2.4.1 Purpose of the K	UB radiography	46
2.5 Anatomy of the up	rinary system	46
2.6 Physiology of the	urinary system	48
2.6.1 Maintenance of H	Iomeostasis	48
2.6.2 Filtration		49
2.6.3 Storage and Excre	etion of Wastes	49
2.7 Pathology of the u	urinary system	50
2.8 Previous studies		52
Chapter Three: Materi	als and Methods	
3.1 Materials		55
3.1.1 CT machine		55
3.1.2 Patient data		55
3.2 Methods		56
3.2.1 CT measurement		56
3.2.2 Data collection and	d analysis	56
Chapter Four: Results		
4.1 Results		58
Chapter Five: Discussion , Conclusion , Recommendations , References And		
Appendixes		
5.1 Discussion		63
5.2 Conclusion		67
5.3 Recommendations		68
References		
Appendixes		

LIST OF TABLES

Table	Title	Page
Table 2.1	Demonstrate The CTDI _w vs. Beam Collimation	30
Table 2.2	Demonstrate The Changes in CTDI _w in Head and Body Phantoms as a Function of Kilovolt Peak	36
Table 2.3	Demonstrate The Tissue weighting factors UNSCEAR 2008	38
Table 3.1	Demonstrate The Show hospitals and the types of the machines, models, date and numbers of detectors used in this hospitals	55
Table 3.2	Demonstrate The Patient population of the study classified per type of machine	55
Table 3.3	Demonstrate technique used in three machines:	56
Table 4.1	Demonstrate The Shows patient's kVp, mAs, Scan time, CTDIvol, DLP in three Hospitals	58
Table 5.1	Demonstrate The Show the previse studies in dose measurement	66

LIST OF FIGURES

Figure	Title	Page
Figure 2.1	Shows the step and shot technology	3
Figure 2.2	Shows the Spiral CT Continuous patient motion through the	4
	gantry	
Figure 2.3	Shows the Development from single-slice to dual-slice to quadrat-	6
	slice imaging	
Figure 2.4	Shows the SSCT arrays and MSCT arrays detector elements	8
Figure 2.5	Shows the Flexible use of detectors in 4-slice MSCT scanners	10
Figure 2.6	Shows the Diagrams of various 16-slice detector designs (in <i>z</i> -	12
	direction)	
Figure 2.7	Shows the Diagrams of various 64-slice detector designs (in <i>z</i> -	14
	direction)	
Figure 2.8	Shows the Section of 16-slice detector with scatter removal septa	15
Figure 2.9	Shows the Cone beam effects in SSCT and MSCT	17
Figure 2.10	Shows the <i>z</i> -Spacing in helical CT	22
Figure 2.11	Shows the z-filtering for MSCT scans	24
Figure 2.12	Shows the Geometric dose efficiency	29
Figure 2.13	Shows the Dose gradients resulting from a projectional	30
	radiographic exposure	
Figure 2.14	Shows the Dose gradient resulting from a full 360° exposure from	31
	a CT scan	
Figure 2.15	Shows the Typical dose measurements in a 32-cm-diameter	32
	(body) phantom	

Figure 2.16	Shows the Typical dose measurements in a 16-cm-diameter (head)	33
	phantom	
Figure 2.17	Shows the Radiation profile of a full-rotation CT scan measured at	33
	is center	
Figure 2.18	Shows the Illustration of the term 'Computed Tomography Dose	42
	Index	
Figure 2.19	Shows the Total dose profile of a scan series with n=15	43
	subsequent rotations (MSDA)	
Figure 2.20	Shows the Total dose profile of a scan series with n=15	44
	subsequent rotations, scanned with pitch 0.7	
Figure 2.21	Shows the Total dose profile of a scan series with n=15	45
	subsequent rotations. The dose- Length product (DLP) is the	
	product of the height	
Figure 2.22	Shows the Show Organs of the Urinary System	48
Figure 2.23	Shows the Show CT KUB scan demonstrates ureteric stone	50
Figure 2.24	Shows the Axial CT KUB scan shows massive hydronephrosis	51
Figure 2.25	Shows the Axial CT KUB scan shows vesical stone	51
Figure 4.1	Shows the comparison between Kvp and mAs in three hospitals	59
Figure 4.2	Shows the comparison between scan times in three hospitals	59
Figure 4.3	Shows the comparison between CTDIvol in three hospitals	60
Figure 4.4	Shows the comparison between DLP in three hospitals	60
Figure 4.5	Show the correlation between CTDIvol and mAs	61
Figure 4.6	Show the correlation between mAs and DLP	61
Figure 4.7	Show the correlation between CTDIvol and DLP	62

LIST OF ABBREVIATION

CT: Computed Tomography

CTU: Computed Tomography Urography

CTDIvol: Computed Tomography Dose Index volume

CTDIw: Computed Tomography Dose Index weighted

DAP: Dose Area Product

DLP: Dose Length product

ECG: Electrocardiography

EPO: Erythropoietin

KUB: Kidney Ureter Bladder

Kvp: Kilovolt penetration

MSCT: Multi Slice Computed Tomography

MDCT: Multi Detector Computed Tomography

mAs: milli Ampere second

RAS: Renin-Angiotensin System

SSCT: Single Slice Computed Tomography

Trot: Rotation Time