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                                    Abstract 
In this work, we try to set up a geometric setting for Lagrangian 

systems that allows to appreciate both theorems of Emmy Noether. 

We consistently use differential form and a geometric approach, in this 

research, we also discuss electrodynamics with gauge potentials as an 

instance of differential co-homology. Also we emphasize the role of 

observables with some examples and applications. 
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  الخلاصة                                              

الهندسي لأنظمة لاجرانج، والذي یسمح بتقدیر جمیع  اقامة الوضع،لقد حاولنا في هذا العمل 

وقد ضمنا في هذا العمل استخدام استمراریة التفاضل والمقاربة . إیمي نویثر مبرهنات

 الهومولوجیا المصاحبةالهندسیة، وناقشنا أیضاً الدینامیكا الكهربائیة مع قیاس الجهد كحالة 

 . بعض الأمثلة والتطبیقات مع وأكدنا أیضاً دور الملاحظات . التفاضلیة
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Introduction: 
It is true , of course, that physics chooses mathematical concepts for the 

formulation of the laws of nature, and surely only a fraction of all mathematical 

concepts is used in physics. It is true also that the concepts which were chosen 

were not selected arbitrarily from a listing of mathematical terms but were 

developed, in many if not most cases, independently by the physicist and 

recognized then as having been conceived be for by the mathematician.  

In this research our goal is to discuss the appropriate mathematics to 

studying physics, roughly familiar with all classes of theoretical physics, so it is 

organized as follows: 

Firstly, we discuss the general concepts of Newtonian mechanics, via our 

definition of affine space, with some remarks. Also we study the Gelilei space, 

and defined the equivalence class of a Galilean structure of Galilean coordinate, 

with some remarks, then we study the dynamics of Newtonian systems with 

some examples. 

In chapter 2, we deal with Lagrangian mechanics, because of this, we 

study the basic concepts of the variational calculus and system with constraints 

with some observations. We illustrate the definition of Lagrangian systems and 

Lagrangian dynamics, the kinematical system, and the concept of a Global 

trajectories. We discuss the symmetries. In different descriptions, Noether 

identities and natural Geometry with some examples and applications. 

In chapter 3, we give an explaining of Maxwell’s equations in terms of the 

exterior algebra. We study the Minkowski space with remarkable points. Also 

we discuss the electrodynamics, and investigate some of its comments on 

Minkowski space, and some applications in term of gauge theory. 
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Finally, we discuss some notions of the linear algebra, and the 

mathematical structures of the pre-symplectic manifolds. We study the Poisson 

manifolds, and Hamiltonain systems with some applications. Also, we describe 

the Hamiltonain dynamics and Lengendre transform with some examples and 

applications.                           
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Chapter (1) 

Newtonian mechanics 

Section (1-1): Galilei space 

In classical physics, the idea that there exists empty space should be 

accepted as central. 

Abasic postulate requires empty space to be specially homogeneous. Also, 

not direction should bedistinguished: space is required to be isotropic. A similar 

homogeneity requirement is imposedon time. 

The mathematical model for these requirements is provided by the notion 

of an affine space. 

We formulate it over an arbitrary field k . 

Definition (1-1-1): 

An affine space is a pair ( , )VA ,consisting of a set A and a k vector  

space V together with anaction of the abelian group ( , )V  underlying V on the 

set ८ that is transitive and free. 

We comment on terms used in the definition: 

Remarks (1-1-2): 

(1) In more detail, an action of the abelian group ( , )V  on the set A is a map 

    :V  A A  
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Such that  

      , , ( , )v a v a      for all , ,v V a  A  

(2) An action is called transitive, if for all ,p qA  existsv V such that 

 ,v p q  ; anaction is called free, if this v V is unique. 

(3) We call dimk V  the dimension of the affine space A and write dim dimk VA=  

We alsosay that the affine space  ,VA is modelled over the vector spaceV . 

(4) We introduce the notation  , .v p p v    If v is the unique vector in V such 

that q p v  ,we write q p v  . We also say that A is a ( , )V   Torsor or a 

principal homogenous spacefor the group ( , )V  . The group ( , )V  is also called 

the difference space of the affine space. 

(5) While a vector space has the zero vector as a distinguished element, there is 

no distinguishedelement in an affine space. 

In the application to classical mechanics, the field k is usually taken to be 

the field ofreal numbers, k R  the difference of three positions in space can be 

described by three realcoordinates. In fact, for all practical purposes, one might 

restrict to rational coordinates, butmathematically it is convenient to complete 

the field. The transitive action accounts for special homogeneity. The fact that an 

affine space does not have a distinguished element is a nontrivial feature of 

Newtonian mechanics: historically, there are many views of the world with 

adistinguished point in space, including the Garden of Eden, Rome, Jerusalem, 

the sun of oursolar system .  

We also need morphisms of affine spaces: 
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Definition (1-1-3):   

Let  1 1,VA  and  2 2,VA be affine spaces modelled over vector spaces 1 2,V V  

over the same fieldk. A morphism    1 1 2 2, ,V VA A or affine map is a map 

 1 2: A A  

for which there exists a k-linear map 1 2:A V V  such that 

       p q A p q      for all 1,p qA  

Remarks (1-1-4): 

(1) Note that the  ,V  -equivariantmorphisms are those morphisms for which 

A idV  . 

(2) Any two affine spaces of the same dimension over the same vector space are 

 isomorphic,but not canonically isomorphic. 

(3) The choice of any point pA  induces a bijection  ·, :p V  A  of sets. As 

 a finite-dimensional vectorR  space,V has a unique topology as a normed 

 vector space. By consideringpre-images of open sets in V as open in A , we 

get a topology on A that does notdepend on the choice of base point. We 

endow A with this topology. 

(4) We will see in the appendix that affine space nA  is an n-dimensional  

manifold. The choiceof a point p A provides a natural global coordinate  

chart. 
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Definitions(1-1-5): 

(1) A ray L in a real vector space V is a subset of the form 0L v R with 

\ {0}v V . 

(2) A halfplane in a real vector spaceV  is a subset H V  such that there are  

two linearlyindependent vectors ,v V with 0vH  R R . The 

 boundary of a halfplane is theonly line through the origin contained in it.  

(3) A rotation group for a real three-dimensional vector space V is a subgroup  

( )D GL V which acts transitively and freely on the set of pairs consisting  

of a halfplane and a rayon its boundary. 

Proposition (1-1-6): 

For any three-dimensional vector space, the map 

{Scalar products on V } 0/  R Rotation groups 

which maps the scalar product b to its special orthogonal group ( , )SO V b  is a 

bijection. 

Definitions(1-1-7): 

(1) Given a rotation group D , we call an orbit \ {0}l V a unit length. 

(2) Given a unit length, we define a norm on V as follows. We first remark that  

any rayintersects a given unit length l in precisely one point. If the ray 

 through V intersects l in v l and v   with 0   we define the 

 norm on W by | |  . 

  



5 
 

Definitions(1-1-8): 

(1) An n-dimensional Euclidean space nE is an n-dimensional affine space nA

together withthe structure of a Euclidean vector space on the difference  

vector space. 

(2) As morphisms of Euclidean spaces, we only admit those affine maps ߮ for  

which the linear mapA  is an isometry, i.e. an orthogonal map. 

(3) The group of automorphisms of a Euclidean space is called a Euclidean 

 group.  

Proposition (1-1-9): 

The Euclidean group of a Euclidean vector space nE  is a semi-direct 

product of the subgroup V of translations given by the action of V and the 

rotation group  ,O V b : 

   ,Aut V O V b E  

It is a non-compact Lie group of dimension
 1

2
n n

n


  

The Euclidean group is thus a proper subgroup of the affine group. 

Definitions(1-1-10): 

(1) A Galilei space ,, ·, ·,V tA  consists of 

(i) An affine space A over a real four-dimensional vector spaceV . The elements  

of A are called events or space time points. 
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(ii) The structure of a Euclidean vector space with positive definite scalar  

product ·,· on ker t . 

(2)  t a b R  is called the time difference between the events a, b ∈ ८. 

(3) Two events a, b ∈ ८ with   0t a b   are called simultaneous. This gives  

an equivalencerelation on Galilei space. The equivalence class 

 ( ) { | 0}Cont a b t b a   A  

is the subset of events simultaneous to aA . 

Remark(1-1-11): 

As the morphisms of two Galilei spaces  1 1 1, , · 1,, ·V tA and  2 2 2, , · 2,, ·V tA  we 

consider thoseaffine maps 

   1 2: A A  

which respect time differences 

   1 2 ( ) ( )t b a t b a     for all 1, ,a b A , 

and the Euclidean structure on space in the sense that the restriction 

1 2: ker kert t A  is anorthogonal linear map. 

Remarks(1.1.12): 

(1) The group of automorphisms of a Galilei space is a proper subgroup of the 

 affine group ofthe underlying affine space. 
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(2) Two Galilei spaces are isomorphic, but not canonically isomorphic. The 

automorphismgroup  Aut G  of the Galileian coordinate space G  is called 

 the Galilei group. 

(3)  We consider three classes of automorphisms in Aut(ॳ): 

(i)  Uniform motions with velocity 3v R : 

   1 , ,g t x t x vt   

(ii) Special translations by x0∈ ℝଷcombined with time translations by t0∈ ℝ: 

   2 0 0, ,g t x t t x x    

(iii) Rotations and reflections in space with  2O� : 

One can show that Aut(ॳ) is generated by these elements. It is a ten-dimensional 

non-compactLie group. 

Definitions(1-1-13): 

(1) Let X be any set and 

  : X  G  

be a bijection of sets. (On the right hand side, it would be formally more correct 

to write the set underlyingG .) We say that  provides a global Galilean 

coordinate system on X . 

(2)  We say that two Galilean coordinate systems 1 2, :X  G  are inrelative 

 uniform motion, if 

     1
1 2 Aut    G  . 
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Any global Galilean coordinate system  : X  G endows the set X  with the 

structure ofa Galilean space over the vector space 4� : 

we define on X  the structure of an affine space over 4� by requiring  to be an 

affine map: 

 1 ( )x v x v    for all 4,x X v � . 

Definitions(1-1-14): 

(1) A Galilean structure on a set X  is an equivalence class of Galilean 

coordinate systems. 

(2) Given a Galilean structure on a set X , any coordinate system of the defining  

equivalenceclass is called an inertial system or inertial frame for this Galilean 

 structure. 

Remarks (1-1-15): 

(1) By definition, two different inertial systems for the same Galilean structure 

 are in uniformrelative motion. 

(2) There are no distinguished inertial systems. 
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Section (1-2): Dynamics of Newtonian systems 

Definitions(1-2-1): 

(1) A trajectory of a mass point in ℝଷ is an (at least twice) differentiable map 

߮: I → ℝଷ 

with I ⊂ℝ an interval. To simplify our exposition, we will from now on restrict 

to smoothtrajectories, i.e. trajectories that are infinite-many times differentiable. 

(2) A trajectory of N mass points in ℝଷ is an N-tuple of (at least twice)  

differentiable maps 

  ߮(௜): I → ℝଷ 

with I ⊂ℝan interval. Equivalently, we can consider an (at least twice) 

differentiablemap 

ሬ߮⃗ : I → (ℝଷ)N . 

(3) The velocity in t0∈Iis defined as the derivative: 

    ߮̇(t0) = ௗఝ
ௗ௧

 | ௧బ   

(4) The acceleration in t0∈ I is defined as the second derivative: 

    ߮̈ (t0) = ௗ
మఝ

ௗ௧మ | ௧బ  

(5) The graph 

{(t, x(t)) | t ∈ I} ⊂ℝ × ℝଷ 
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of a trajectory is called the world line of the mass point. We consider a world 

line as asubset of Galilean coordinate space ॳ. 

The following principle is the basic axiom of Newtonian mechanics. It cannot be 

derivedmathematically but should rather seen as a deep abstraction from many 

observations in nature. 

We first discuss the situation in a fixed coordinate system: 

Definitions(1-2-2): [Newtonian determinism] 

(1) A Newtonian trajectory of a point particle 

 ߮: I → ℝଷ, with I = (t0, t1) ⊂ℝ 

is completely determined by the initial position (0߬)ߪ and the initial velocity 

   ௗ
ௗ௧

߮| ௧ୀ௧బ 

(2) In particular, the acceleration at t0 is determined by the initial position and 

 the initialvelocity. As a consequence, there exists a function, called the force 

field, 

F : ℝଷ୒ × ℝଷ୒ × ℝ → ℝଷ୒, 

where the first factor are the three special coordinates of N particles, the second 

aretheir velocities and the third is time, such that for all Newtonian trajectories 

theNewtonian equation 

   ௗమ

ௗ௧మ  i = 1, … ,N , (t ,ݔ̇,ݔ)i = F௜ݔ̈ = ௜ݔ
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Definition (1-2-3): 

Let ८ be a Galilei space, I an interval of eigentime and ߮: I → ८  a smooth 

function. Then ߮is called a physical motion if for all inertial frames  ߰: ८ → ॳ 

the function   ߰o ߮ : I → ॳisthe graph of a Newtonian trajectory. 

Remarks (1-2-4): 

(1) We immediately have the following consequences of the Newtonian principle  

of relativity. 

(i) Invariance under time translations: the force F does not depend on time t. 

(ii) Invariance under special translations: F depends only on the relative 

 coordinates    ߮௜ -  ߮ଵ. 

(2) We deduce Newton’s first law: a system consisting of a single point is 

described in aninertial system by a uniform motion (t, 0ݔ +t ࣰ0). In particular, the 

acceleration vanishes,̈0 = ݔ. 

In the following we will discuss some examples: 

Examples (1-2-5): 

(1) The harmonic oscillator is defined by the potential 

   V (x, y, z) =ଵ
ଶ 

 Dx 

The force experience by a particle with x-coordinate x is then in x-direction and 

equals−Dx, i.e. it is proportional to the elongation. The equations of motion in 

one-dimensionread 

m̈ݔ = −Dx 
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They have the general solution ߮(t) = Acos(߱t− ߮0) with that have to be 

determined from the initial conditions. 

(2)  We just assumed that a force F = F(x) depending only on coordinates is 

described as thegradient of a potential function U. One can investigate what 

force fields can be describedin this way. 

A force field is called conservative, if for any trajectory ߮: (ta, tb) → ℝ୒the so 

calledwork integral  

   F݀߮=          (߮(t))߮̇(t)dt 

only depends on the end points ߮(ta) and ߮(tb) and not on the particular choice of 

trajectoryconnecting them. Then, there exists a potential that is unique up to 

unique isomorphism. 

(3) To write down Newton’s law of gravity, we consider a potential energy 

depending only onthe distance r from the center of gravity: 

U(x1, x2, x3) = −௞
௥
  with  r = ඥݔଵ

ଶ + ଶݔ
ଶ ଷݔ + 

ଶ 

߮̈ = - grad U = ௞
௥య ߮ 

This potential is central for the description not only of macroscopic systems like 

a plane turning around the sun; in this case, the potential described the 

gravitational force exertedby the sun. It also enters in the description of 

microscopic systems like the hydrogen atomwhere the potential describes 

electrostatic force exerted on the electron by the proton thatconstitutes the 

nucleus of the atom. 

  

b

a
b

a

t

t
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Observation (1-2-6): 

Consider a mechanical system given by a force F(x,̇ݔ , t) which we suppose right 
away to begiven by a potential of the form 

V : ℝଷ → ℝ  

and thus independent of t and x˙ . We have to study the coupled system of 
ordinary differentialequations 

߮̈ = - grad V(߮)                               (1-1)  

of second order. For any trajectory ߮: I → ℝଷthat is a solution of (1-1) we 
consider the realvaluedfunction 

߳: I → ℝ  

߳(t) = ଵ
ଶ

||߮̇(t) ||ଶ + V(߮(t) 

For its derivative, we find 

ௗ
ௗ௧

 ߳(t) = 〈߮̇ , ,  V ݀ܽݎ݃〉 + 〈̈߮ ߮̇〉 = 0 

where in the last step we use the equation of motion (1-1). 

Lemma (1-2-7): 

The system (1-1) is equivalent to the following system of ordinary 

differential equation of firstorder for the functionݕ: I → ℝ଺  

 (ହݕ ,ଷݕ ,ଵݕ) grad௬భV− = 2ݕ̇ ,ଶݕ= 1ݕ̇ 

 (ହݕ ,ଷݕ ,ଵݕ) grad௬యV− =  4ݕ̇    ,ସݕ = 3ݕ̇ 

grad௬ఱ− =  6ݕ̇    ,଺ݕ = 5ݕ̇  V (ݕଵ, ݕଷ, ݕହ) 
The solutions of this system are called phase curves. 
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Observation (1-2-8): 

This suggests to introduce ℝ଺ with coordinates x, y, z, ux, uy, uz. This is 

space is sometimes calledthe phase space ℙof the system. We equip the phase 

space ℙ with the energy function 

E(x1, x2, x3, u௫భ, u௫మ , u௫య) =ଵ
ଶ
 ( u௫భ

ଶ   ,   u௫మ
ଶ  ,  u௫య

ଶ  )  +  V (ݔଵ, ݔଶ, ݔଷ) 

It should be appreciated that the first term in E is a quadratic form. 

On phase space, we consider the ordinary differential equations 

  ௗ௫೔

ௗ௧
 = u௫೔  ,  

ௗ୳ೣ೔
ௗ௧

  = - grad௜V (ݔଵ, ݔଶ, ݔଷ)    (1-2) 

The solutions of (1-2) are called phase curves. They are contained in subspaces 

of ℙ of constantvalue of E. 

Observations(1-2-9): 

(1) Assume that for any point M ∈ ℙa global solution xM(t) of (1-2) with initial  

conditionsM exists. This allows us to define a mapping 

gt : ℙ → ℙby gt(M) = xM(t). 

(2) Standard theorems about ordinary differential equations imply that gt is a 

diffeomorphism,i.e. a differential map with differentiable inverse mapping. 

(3) We find g௧భo g௧భ= g௧భା ௧మand thus a smooth action 

g : ℝ × ℙ → ℙ 

(t,M) → gt(M)  

called the phase flow. 
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Chapter (2) 

Lagrangian mechanics 

Section (2-1):Variational calculus and system with constraints 

We begin this section by studying the variational calculus.  

Observations(2-1-1): 

(1) Our objects are trajectories, i.e. smooth functions ߮ : I → ℝ୒, I = [t1, t2] on 

an intervalwith values in ℝ୒. We say that the trajectory is parameterize by its 

eigentime in I. Lateron, we will consider more general situations, e.g. smooth 

functions on intervals with valuesin smooth manifolds as well. Possibly after 

choosing additional structure on ℝ୒, we canassociate to each such function a 

real number. For example, if we endow ℝ୒ with thestandard Euclidean 

scalar product 〈· , ·〉 with corresponding norm || · || : ℝ୒ → ℝ, we candefine 

the length of a trajectory by: 

   L1(߮) =       ||߮̇|| ݀ݐ 

or its energy by 

L2(߮) =        ||߮̇||ଶ݀ݐ 

Such scalar valued functions on spaces of trajectories are also called functionals. 

(2) Like the length of a trajectory, the functional we are interested in depend on 

the trajectory ߮ and its derivatives, i.e. on positions and velocities. Positions 

take their values inpositions space, in our case 

I


I

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ℝ୒with Cartesian coordinates (x1, ..., xN) . 

We also need coordinates for derivatives of a trajectory ߮ with respect to its 

eigentime.To this end, we introduce the large space 

J1(ℝ୒) = ℝ୒⨁ℝ୒ 

with Cartesian coordinates (x1, ..., xN, ݔ೟
భ, ..., ݔ೟

ొ). There is a natural injection 

   ℝ୒ ↪  J1(ℝ୒) 

(x1, ..., xN)  ⟼ (x1, ..., xN, 0, ..., 0). 

We now iterate this procedure. This will not only be natural from a mathematical 

point of view, but also give us a natural place for second derivatives with respect 

to eigentime, i.e. a place for accelerations. 

Since the equations of motion are second order differential equations, we 

continue by adding a recipient for the second derivatives: 

J2(ℝ୒) = ℝ୒⨁ℝ୒⨁ℝ୒ with coordinates (ݔ௜ ೟ݔ ,
௜ ೟೟ݔ ,

௜ ) . 

We also use the abbreviation ݔమ
௜ = ݔ೟೟

௜ . If we continue this way, we get a system 

of vector spaces for derivatives up to order ∝ 

  J∝ (ℝ୒) ≅ (ℝ୒)∝ାଵ 

with embeddingsJ∝ ↪ J∝ାଵ(ℝ୒) 

We call J∝ାଵ(ℝ୒) the jet space or order ∝. 

(3) Let us now explain in which sense the spaces we have just constructed are 

      recipients for the derivatives of a smooth trajectory 
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 ߮: I → ℝ୒ . 

For any n ∈ ℕand  i = 1, . . .N, we can consider the i-th component of the 

n-th derivative of the trajectory ߮ with respect to eigentime: 

   ௗ೙

ௗ௧೙ ߮௜  

which is a smooth function on I. For any ∝∈ N, we can combine these functions 

to a single function 

 ݆ఈ߮ : I →  ఈℝேܬ

with components given by 

   (݆ఈ߮)௡
௜  = ௗ೙

ௗ௧೙ ߮௜ 

We call this function the prolongation of the trajectory. 

(4) We now formulate the variational problem we wish to solve: 

Given a function like length or energy 

 ݈: Jఈ(ℝ୒) → ℝ  

find all smooth trajectories 

 ߮ : I → ℝ୒ 

which extremize the function 

L(߮) =        ݈(݆ఈ߮)݀ݐ 
I

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This problem is not yet correctly posed: if we minimize the length on all 

trajectories, theconstant trajectories are obvious and trivial minima.  

Definition (2-1-2): 

Let ݈ : J1(ℝ୒) → ℝ , be a real-valued function on jet space of order 1. Denote by 

E(݈) the ℝ୒-valued function on thejet space of order 2: 

E(݈) : (ℝ୒) → ℝ  

with components 

E(݈)i= డ௟
డ௫೔   -  ∑

డమ௟
డ௫೔డ௫ഁ

೔ೕ,ഁ
శభഁݔ

೔  

We call the operator that associates to l the function E(݈) the Euler-Lagrange 

operator. 

Remarks (2-1-3): 

(1) We can rewrite the Euler-Lagrange operator as follows: 

 the total derivative operator 

D =∑ శభഁݔ
೔ డ

డ௫ഁ
೔೔ഁ
 

maps smooth functions on Jఈ(ℝ୒) to smooth functions on Jఈାଵ(ℝ୒). We then 

have 

E(݈)i = డ௟
డ௫೔   -  D డ௟

డ௫೟
೔  
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(2) For any smooth trajectory, we obtain an ℝ୒-valued function on I ⊂ℝ  with  

i-th component ߮ → E( ݈)i ◦ jα(߮) = E( ݈) [߮]  

In terms of this function, the derivative of a variational family with respect to the 

variationalparameter߳ becomes 

   ௗ
ௗఢ

 L(߮ఢ) =〈ܧ(݈)[߮ఢୀ଴] , ௗ
ௗఢ

߮ఢ〉 

Lemma (2-1-4): 

Suppose that the continuous real-valued function 

f  : I = [t1, t2] →ℝ 

has the property that for any smooth function 

h : I →ℝ 

vanishing at the end points of the interval, h(t1) = h(t2) = 0, the integral over the 

productvanishes,  

 ݂. ℎ ݀ݐ = 0  

Then f  vanishes identically, i.e.  f t  = 0 for all t∈[t1, t2]. 

Proof: 

Suppose that f  does not vanish identically. After possibly replacing f by f , 

we find  *
0 1,t t t such that  * 0f t  . Since f  is continuous, we find a 

neighborhoodU  of *t such that:    0f t c  , for all t U . 

I


2

1

t

t




20 
 

Using standard arguments from real analysis, we find a smooth function h with 

support in U such that �| 1Uh   for some neighborhood �U  of *t contained in U .  

We thus find the inequalities: 

  .f h  .f h  �
0. | |Cf h U   

contradicting our assumption.  

Proposition (2-1-5): 

Let L be a functional given on trajectories given by the smooth function 

  : Nl J  R R  

Then the trajectory ߮ : I → ℝ୒ is a stationary point for L, if and only if the N 

ordinarydifferential equations 

E(l) [߮] = 0 

hold. This set of ordinary differential equations is called Euler-Lagrange 

equations for the functionl on the trajectory ߮. 

Examples (2-1-6): 

(1) We introduce so called natural systems of classical mechanics. Endow ℝ୒ 

with the standardEuclidean structure. Choose a smooth function V: ℝ୒ → ℝ . 

As we will see, inpractice it is quite important to allow V to have singularities. 

We will not discuss thetype of singularities involved, but rather take the 

perspective that in this case, the systemis defined on the manifold obtained from 

ℝ୒ by removing the points at which V becomessingular. 

1

0

t

t
U


�U

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Then the system is defined by the following function on the first order jet space: 

l(x, xt) =
ଵ
ଶ

∑ ௧ݔ)  
௜)ଶ    −   V(ݔ௜ಿ

೔సభ
) 

The first summand is frequently called the kinetic term, the second summand the 

potential term. We compute relevant expressions 

డ௟
డ௫೔ = −grad௜V డ௟

డ௫೟
೔  = ݔ௧

௜ 

and find for the Euler-Lagrange operator 

E(l)௜  = −grad௜V − Dݔ௧
௜  

This gives us a system of N equations 

௧௧ݔ
௜  = −grad௜V 

which gives the following Euler-Lagrange equations on a trajectory ߮ : I → ℝ୒: 

Dݔ௧
௜(߮) = ߮̈௜ = −grad௜V(߮(߬)) 

These are Newton’s equations of motion in the presence of a force given by the 

gradientof the potential V. If there is a potential for the forces of a system, all 

information aboutthe equations of motion is thus contained in the real-valued 

function 

l : J(ℝ୒) → ℝ  

which is also called the Lagrangian function of the system. 

(2)  Let  : [t0, t1] → ℝ  be a real valued function. The length of the curve: 

 ℝଶ ⊃{x = ߮(t)  mit t0≤ t ≤ t1 : (t , x)} = ߛ   
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is given by 

   L(ߛ)= ඥ1 +  ߮̇ଶ ݀ݐ 

We thus consider the function 

l(x, xt) =ඥ1 +  ݔ೟
మ 

To find the Euler-Lagrange equations, we compute 

   డ௟
డ௫

 = 0   and   డ௟
డ௫೟

 =  ௫೟

ටଵା ௫೟
మ
 

and find 

డ
డ௫೟

డ௟
డ௫೟

௧௧= ௫೟೟ݔ

(ଵା ௫೟
మ)

య
మ
= 0 

which reduces to ݔ௧௧ = 0. Hence we get the differential equation ߮̈ = 0 on the 

trajectorieswhich have as solutions ߮(t) = ct+d.  

Definitions(2-1-7): 

(1) We call a smooth function l : J1ℝ୒ → ℝ the Lagrangian function of a 

 classical mechanicalsystem. 

(2) Given a Lagrangianl(xi, ݔ௧
௜ , t) and a trajectory ߮: I → ℝ୒ , we call  

L(߮) =݈ ∘  j ߮ ݀ݐthe corresponding action for the trajectory ߮. 
I


1

0

t

t
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Observations(2-1-8): 

(1)  Any local coordinate xi on ℝ୒ is called a generalized coordinate, ݔ௧
௜ a 

(generalized) velocity. The function డ௟

డ௫೟
೔

on jet space is called the 

        generalized momentumcanonically conjugate to the coordinate xi. డ௟

డ௫೔
is 

 called the generalized force. 

(2)  A coordinate is called cyclic if the Lagrangian does not depend on it, i.e. 

  డ௟

డ௫೔
 

Proposition (2-1-9): 

The momentum canonically conjugate to a cyclic coordinate is constant for any 

solution of theEuler-Lagrange equations. 

Proof: 

For any trajectory߮: I → ℝ୒ , that is a solution of the Euler-Lagrange 

equations, we have for a cyclic coordinate xi 

ௗ
ௗ௧

డ௟

డ௫೟
೔

∘ j1߮ =  డ௟

డ௫೔
∘ j1߮ = 0 

Now we will discuss system with constrain. 

Proposition (2-1-10): 

Consider the auxiliary function 

fሚ = ℝ୒×ℝ୰ → ℝ  
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(x,λ) ↦f(x) +∑   (ݔ)∝݃∝ߣ
ೝ
ഀసభ  

The additional parameters λ ∈ ℝ୰ are called Lagrangian multipliers. Then the 

restriction f|Mhas a stationary point in x0∈ M, if and only if the functionfሚhas a 

stationary point in  (x0 ,λ0) for some λ0∈ ℝ୰. 

Proof: 

The function f ෨has a stationary point (x0 ,λ0) ∈ ℝ୒ ×ℝ୰, if and only if the two 

equations hold 

 0 = డ୤ሚ

డ௫
|( ௫బ ,ఒబ)  = ݃∝(ݔ଴)  and  డ୤

డ ௫೔ |௫బ  =  ∑ ∝ߣ
డ

డ௫೔   (଴ݔ)∝݃ 
ೝ
ഀసభ  

The first equation is equivalent to x0∈ M. The second equation requires the 

gradient of f inx0 to be normal to M, ensuring that x0 is a stationary point of the 

restriction f |M.  

Observations(2-1-11): 

(1)  We now consider the natural system on ℝ୒ given by a potential 

    V: ℝ୒ → ℝ , 

l(x, xt) =
ଵ
ଶ ∑

௧ݔ)  
௜)ଶ –  V(ݔ)

ಿ
೔సభ  

that is constrained by unknown forces to a sub-manifold M ⊂ℝ୒ of dimension N 

−r. Weassume that M is given by r smooth functions ݃∝= ݃∝(xi). 

We are only interested in trajectories 
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   ߮: I → ℝ୒  

within߮ ⊂ M. In a variational family, only trajectories satisfying the 

constraints݃∝ (߮ఢ(t)) = 0 for all 1= ߙ, ..., r and all ߳, t are admitted. For such a 

family, we arelooking for the stationary points of 

    ݈ ∘ jଵ߮ .  ݐ݀

We introduce Lagrangian multipliers and minimize the functional 

f(߳ , λ) = (݈ ∘ jଵ߮ఢ   +   ∑ ௥ ( (ఢ߮)∝݃ ∝ߣ
ఈୀଵ  ݐ݀

The derivative with respect to ߳  yields the following additional term   

   ∑
∝ߣ

డ௚ഀ

డ௫೔  .  ௗఝച
೔

ௗఢ

ೝ
ഀసభ |ఢୀ଴  

so that the equation of motions for a trajectory ߮ become 

E(l) ∘ j1(߮) = ߮̈+ grad V(߮) = −∑ ߮)∝݃ grad∝ߣ )   (2.1) 

The right hand side describes additional forces constraining the motion to the 

sub-manifoldM. The concrete form of the forces described by the gradients of 

the functions  ݃∝ is, ingeneral, unknown. 

(2)  We describe the local geometry of the situation in more detail: we consider a 

 local coordinate 

q : M ⊃ U → ℝ୒ି୰  

I


I

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of the sub-manifold, where U ⊂ M is open. We use the embedding M ↪ ℝ୒  to 

identifyTpM with a vector subspace of Tpℝ୒  and express the basis vectors as 

   డ
డ௤ഀ = డ௫೔

డ௤ഀ
డ

డ௫೔  , 1 = ߙ, … , N-r 

In subsequent calculations, the notation is simplified by introducing the vector  

x∈ ℝ୒, with coordinates xi, i = 1, . . .N. We then write for the basis vector of 

    డ
డ௤ഀ = డ௫

డ௤ഀ    (2.2) 

(3) Next, we have to relate the jet spaces J2M and J2ℝ୒,. Since they are  

designed as recipientsof trajectories and their derivatives, we consider a 

 trajectory with values in U ⊂M 

߮: I → U ⊂ M. 

Using the embedding U → ℝ୒, we can see this also as a trajectory ෤߮  in ℝ୒: The 

chainrule yields 

   ௗఝ෥ ೔

ௗ௧
 = డ௫೔

డ௤ഀ . ௗఝഀ

ௗ௧
 

This is, of course, just the usual map of tangent vectors induced by a smooth 

map ofmanifolds, in the case the embedding M ↪ ℝ୒. From this, we deduce the 

followingexpression for the coordinates xt of J1ℝ୒, seen as a function on jet 

space J1M: 

௧ݔ   
௜ = ݔ௧

௜ (ݍఈ , ݍ௧
ఈ  , t) = డ௫೔

డ௤ഀ ௧ݍ
ఈ (2.3) 

and expressed in coordinates ݍఈ ௧ݍ , 
ఈon J1M. We find as an obvious consequence 
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డ௫೟
೔

డ௤೟
ഀ= డ௫೔

డ௤ഀ (2.4) 

Similarly, to find the transformation rules for the coordinates ݔ௧௧
௜ describing the 

secondderivative, we compute the second derivative of a trajectory: 

    

ௗమఝ෥
ௗ௧మ  = డమ௫೔

డ௤ഁడ௤ഀ . ௗఝഁ

ௗ௧
. ௗఝഀ

ௗ௧
 + డ௫೔

డ௤ഀ
ௗమఝഀ

ௗ௧మ  

This yields the following expression of the coordinate function ݔ௧௧
௜  on J2ℝ୒ as a 

functionon J2M, in terms of the coordinates ݍ೟೟
ഀ on J2M: 

௧௧ݔ 
௜ ௧௧ݔ = 

௜ ௧ݍ , ఈݍ)
ఈ , t) = డ௫೔

డ௤ഀ ೟೟ݍ 
ഀ  + డమ௫೔

డ௤ഀడ௤ഁ ௧ݍ
ఉݍ೟

ഀ (2.5) 

(4) Since we do not know the right hand side of the equation of motion (2.1), we 

take the scalarproduct 〈· , ·〉 in ℝ୒ with each of the tangent vector (2.2) in TpM. 

This yields r equations 

௧௧ݔ〉    , డ௬
డ௤ഀ〉 = -〈grad V  , డ௫

డ௤ഀ〉 , with  1 = ߙ, … , r 

Our goal is to rewrite these equations as the Euler-Lagrange equations for an 

actionfunction on the jet space of the sub-manifold J1M. The right hand side is 

easily rewrittenusing the chain rule:  

  〈grad V  , డ௫
డ௤ഀ〉 = డ୚

డ௫೔
డ௫೔

డ௤ഀ  = డ୚
డ௤ഀ 

This suggests to take the restriction of V to M as the potential for the Lagrangian 

systemon M. 

Proposition (2-1-12): 
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Suppose a natural system on ℝ୒with potential V(x) is constrained by unknown 

forces to asub-manifold M ⊂ℝ୒. Then the equations of motion on M are the 

Euler-Lagrange equationsfor a Lagrangianl(q, qt) on J1M obtained from the 

Lagrangian on J1ℝ୒ by restricting V to Mand transforming the coordinates xt as 

in (2.3). 

Section (2-2): Lagrangian Systems and Lagrangian Dynamics 

We begin with the concepts of Lagrangian systems . 

Definitions(2-2-1): 

(1) The kinematical description of a Lagrangian mechanical system is given by a 

surjectivesubmersion  ߨ : E → I, where I ⊂ ℝ is an interval of “eigentime”. E is 

called the extendedconfiguration space. The fibre 1−ߨ(t) = Etfor t∊ I is the space 

of configurations of thephysical system at time t. If E is of the form  

E = I×M, then M is called the configurationspace.  

(2)  Global trajectories are global sections of ߨ, i.e. smooth maps ߮: E → I such 

that ߨo ߮ = idI . Local sections give local trajectories. For an open subset U⊂I, a 

localsection is a smooth map ߮: U → E such that ߨ o ߮ = idU. The system of 

local sectionsforms a sheaf on I. 

(3) A system defined by constraints on the system  : E → I is a submanifold 

i: E'↪ Esuch that ߨ ='ߨ o Iis a surjective submersion E'→ I. 

Remarks (2-2-2): 

(1) We will generalize the situation by considering a general 

surjectivesubmersion  ߨ : E → M, where M is not necessarily an interval. 
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(2) In certain situations, it might be necessary to endow either of the manifolds  

E or M withmore structure. Examples in field theory include metrics endowing E 

with the structureof a Riemannian manifold or, to be considered as local 

coordinate functions on M. 

 

Definitions(2-2-3): 

(1) Let E,M be smooth manifolds, dimM = m and let ߨ : E → M be a 

surjectivesubmersion.We say that ߨ defines a fibred manifold. 

(2)  For any open subset U ⊂ M, we denote by Γಘ(U) the set of local smooth 

sections of ߨ,i.e. the set of smooth functions sU : U → E such that ߨosU = idU. 

These sets form asheaf on M. 

(3) For any multi-index I = (I(1), ..., I(m)), we introduce its length 

|I| =∑ I(݅)೘
೔సభ  

and the derivative operators 

   డ| ୍ |
డ௫౅ = ∏  ( డ 

డ௫೔
೘
೔సభ )୍(௜) 

Example (2-2-4): 

We consider the situation relevant for classical mechanics with time-independent 

configurationspace a smooth manifold M. This is the trivial bundle  

p1 : ℝ×M → ℝ  a section of p1 

   ߮ : ℝ → ℝ×M 
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t ⟼ (t, ෤߮ (t)) 

is given by a smooth trajectory 

෤߮ : ℝ → M 

 

The 1-jet of the section ߮ in the point t0∈ ℝ reads in local coordinates xi on M 

(t0 , xi , ݔ೟
೔) o j೟

భ߮ = (t0 , xi ෤߮(t) ,  ௗ
ௗ௧

|೟స೟బ బݔ
೔ ෤߮(t)) 

Thus, all information that appears is the tangent vector 

    ௗఝ෥
ௗ௧

|೟స೟బ  

at the point ෤߮(t0) ∊ M There is a canonical isomorphism 

J1ߨ → ℝ × TM 

    ݆௧బ
ଵ ߮ → ቀݐ଴  ,   ௗఝ෥

ௗ௧
|೟స೟బቁ 

Definition (2-2-5): 

The infinite jet bundle ߨஶ: Jஶߨ → M is defined as the projective limit (in the 

category oftopological spaces) of the jet bundles 

  … → J2 ߨ
గమ,భ
ሱ⎯ሮ J1 ߨ

గభ,బ
ሱ⎯ሮ E 

గ
ሱሮ M 

It comes with a family of natural projections 

:ஶ,௥ߨ  Jஶߨ → J௥ߨ 
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Definition (2-2-6): 

A real-valued function f ∶ Jஶߨ → ℝ is called smooth or local, if it factorizes 

through a smoothfunction on a finite jet bundleJ௥  i.e. there exists r ∊ℕand a .ߨ

smooth function fr: J௥ߨ → ℝsuch that:  

f = fr∘  ஶ,௥ߨ

Remarks (2-2-7): 

(1) In plain terms, local functions are those functions on jet space which depend 

 only on afinite number of derivatives. 

(2) The algebra Loc(E) of smooth functions on Jஶߨ is thus defined as the  

inductive limit ofthe injections 

௞ାଵ,௞ߨ  
∗  : Cஶ(J௞ߨ) → Cஶ(Jೖశభߨ)   

of algebras. The embedding is given by considering a function in Cஶ(J௞ߨ)that 

depends onthe derivatives of local sections up to order k as a function that 

depends on the derivatives up to order k+1, but in a trivial way on the k + 1-th 

derivatives. 

(3)  The algebra Cஶ(Jஶ) has the structure of a filtered commutative algebra. 

Definition (2-2-8): 

Let  ߨ : E → M be a fibred manifold. A local functional on the space of smooth 

sections Γగ(M)is a functionS :Γగ(M) → ℝ 

which can expressed as the integral over the pullback of a local function  

l ∊Loc(E). 
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Definition (2-2-9): 

A vector field on the jet bundle Jஶߨis defined as a derivation on the ring 

Cஶ(Jஶߨ)  of smoothfunctions. 

 

 

 

Remark (2-2-10): 

In local coordinates (xi,ݑ಺
ഀ) on Jஶߨ, a vector field can be described by a formal 

series of theform 

   X= ∑ A௜
డ

డ௫೔௜  + ∑ B౅
ఈ డ

డ௨౅
ഀಉ,౅
 

The word “formal” means that we need infinitely many smooth functions  

Ai = (xi,ݑ಺
ഀ) and   B౅

ಉ) = B౅
ಉ (xi,ݑ಺

ഀ) to describe the vector field. But once we apply 

it to a smooth function inCஶ(Jஶߨ) , only finitely many of the derivations 

B౅
ఈ డ

డ௨౅
ഀyield a non-zero result, since smoothfunctions only depend on derivatives 

up to a finite order. 

Definition (2-2-11):  

The prolongation of a (local) vector field X ∊Γ (U) is the (local) vector field 

prஶX on Jஶߨacting on a smooth function f ∊Cஶ(Jஶߨ)  in the point 

jஶs(p)∊Jஶߨ as 

   prஶXౠಮ౩(౦)f = Xp(f ∘ jஶs) 

Definition (2-2-12): 

For a multi-index I = (i1, . . . in), we introduce the following operator acting on 

local functionsdefined on a coordinate patch: 
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DI= D௜భ ∘ D௜మ ∘ … ∘ D௜೙  

A total differential operator is a mapping from Loc(E) to itself which can be 

written inlocal coordinates in the form ZIDI where the sum goes over symmetric 

multi-indices I whereZI∊Loc(E) is a local function. 

 

 

 

Definitions(2-2-13): 

(1) An Ehresmann connection on the fibred manifold ߨ: E → M is a smooth 

 vector sub-bundleH of the tangent bundle TE over E such that 

TE = H ⨁V 

where the direct sum of vector bundles over E is defined fiberwise. 

(2) The fibers of H are called the horizontal subspaces of the connection. 

(3) A vector field on E is called horizontal, if it takes its values in the horizontal 

subspaces. 

Proposition (2-2-14): 

Let ߨ: E → M be a fibred manifold and Jஶߨ be the corresponding jet bundle.  

The following holds: 

(i)  The subspaces endow Jஶߨwith an Ehresmann connection, the so-called 

Cartan connection. 

(ii)  One has 

  prஶ[X1,X2] = [prஶX1, prஶX2]  

hence the Cartan connection is flat. 

Remarks (2-2-15): 

The horizontal bundle H is a vector bundle of rank dimM. The restriction 

d஠|ౄ: H→ TM is an isomorphism. 



35 
 

In the following we will discuss of Lagrangian dynamics. 

Definitions(2-2-16):  

(1) A Lagrangian system of dimension m consists of a smooth fibred manifold 

 E → M with M a smooth m-dimensional manifold, together with a :ߨ

 smooth differential form l∊ Ω௡,଴ (Jஶߨ), where n = dimM. 

(2) The manifold E is called the (extended) configuration space of the system. 

The differential form l is called the Lagrangian density of the system. 

(3) Suppose that volM∊ Ω௡(M) is a volume form on M and that L∊Loc(E) 

 is a localfunction. Then 

l= L.ߨஶ
∗ (volM) ∊Ω௡,଴ (Jஶߨ),  

is a Lagrangian density and the local function L is called the Lagrange  

function of thesystem. 

(4)  A Lagrangian system is called mechanical, if M is an interval I ⊂ℝ. 

Definition (2-2-17): 

Let X be a vector field on E. Then there is a unique vector field on Jஶ(E), also 

called theprolongation of X and denoted by prు(X), such that: 

(i)  X and prు(X) agree on functions on E. 

(ii) The Lie derivative of prు(X) preserves the contact ideal: 

   L୮୰ు(ଡ଼)C(Jஶߨ) ⊂C(Jஶߨ). 

Remarks(2-2-18): 
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(1)  We present expressions in local adapted coordinates. Consider a vector field 

 on E, 

   X= ܽ௜ డ
డ௫೔   + ܾఈ డ 

డ௨ഀ 

 

(2)  We then write the prolongation as 

   prు(X)= Z௜ డ
డ௫೔   + Z౅

஑ డ 
డ௨౅

ഀ 

The first condition in the definition immediately yields 

Zi = aiand Z஑ = b஑  

One can determine the coefficients to be 

   Z౅
஑ = DI(b஑ − ౠݑ 

஑) + ݑౠ౅
஑ܽ୨  

Definition (2-2-19): 

Given a Lagrangian density 

l = l (xi , ݑ౅
ఈ)dx1⋀ … ⋀dxn∊Ω௡,଴(Jஶπ) 

the Euler-Lagrange form E(l) ∊Ω௡,଴(Jஶπ)is defined as 

E(l) = Eఈ(l)Θఈ dx1⋀ … ⋀dxn 

with 

  Eఈ(l) = డ௟
డ௨ഀ  − D௜

డ௟
డ௨೔

ഀ +  D௜௝
డ௟

డ௨೔ೕ
ഀ  + −  … = (−D)୏

డ௟
డ௨಼

ഀ 
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Let M be a smooth manifold of dimension n andߨ: E → M a fibred manifold. 

Because ofthe Euler-Lagrange form, we are interested in forms in Ω௡,ଵ(Jஶπ). 

Forms on Jஶπ of type (n, s)with s ≥ 1 are dH-closed, but turn out to be not even 

locally dH-exact. 

 

Lemma (2-2-20): 

We have the following identities for the inner Euler operators: 

(1)  Forߟ∊Ω௡ିଵ,௦JஶπJ, we have 

I(݀ுఎ) = 0 . 

(2) I is an idempotent, I2 = I 

(3)  For any ߱ ∊Ω௡,௦ (Jஶπ) there exists ߟ∊ Ω௡ିଵ (Jஶπ) such that: 

  ߱ = I(߱) + ݀ுఎ. 

(4)  For any Lagrangian density ߣ∊Ω௡,଴ (Jஶπ), we have 

E(ߣ) = I (dVߣ) 

This suggests to extend the bicomplex.  

Propositions(2-2-21): 

(1)  Let l∊Ω௡,଴ (Jஶπ), be any Lagrangian. We claim that then there always 

 exists ߟ∊ Ω௡ିଵ,ଵ (Jஶπ) such that 

dVl = E(l) + dH(ߟ) . 
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(2)  Using a Cartan-like calculus for differential forms on jet space, one can use 

this to showthat, if X is a vertical vector field on E, then there exists a 

formߪ∊ Ω௡ିଵ,଴ (Jஶπ) such that 

  L୮୰ు(ଡ଼)l = ߡ୮୰ు ଡ଼(E(l)) + dHߪ . 

This is a global first variational formula for any variational problem on E. We 

find alltogether 

ௗ
ௗఢ

|ఢୀ଴ ݈(Jஶݏఢ) =  L୮୰ు(ଡ଼)l = ߡ୮୰ు ଡ଼ (E(l)) + dHߪ 
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Section (2-3):  Symmetries, Noether identities and Natural Geometry 

First we will discuss symmetries and Noether identity. 

Definitions (2-3-1): 

(1)  Let  π : E → M be a fibred manifold. A vector field X on jet space Jஶπ is 

 called asymmetry of the fibred manifold, if [X,Z] ∊H for all Z ∊vectH. 

(2) Due to the integrability of the Cartan distribution H, all vector fields in vectH 

 are symmetries. 

The Lie algebra of vector fields vectH is, by definition of vectsym(ߨ), an ideal in 

the Lie algebra vectsym(ߨ) of all symmetries. We introduce the Lie algebra of 

non-trivialsymmetries as the quotient 

sym(ߨ) = vectsym(ߨ)/ vectH . 

Using the split of vector fields into horizontal and vertical vector fields, we can 

restrict tovertical vector fields on Jஶπ for the description of symmetries. 

We will need a different description of symmetries. 

Observations (2-3-2): 

(1) A vector field X ∊vectsym acts as a derivation on the filtered algebra of 

 local functionsLoc(E) and yields a local function. The algebra Cஶ(E) of 

 smooth functions on E isa subalgebra of the algebra Loc(E). We can thus 

 restrict the action of any vector field X ∊vectsymto the sub-algebra Cஶ(E). 

 We get a derivation ߮ଡ଼on Cஶ(E) which takes itsvalues in Loc(E). 

(2)  Since we assumed that vector fields in vectsym are vertical, we can write ߮ଡ଼ 

in localcoordinates as:  
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    ܳఈ డ௬
డ௨ഀ   with ܳఈ∊Loc(E) 

(3) We can thus informally see ߮ଡ଼ as a vertical vector field on E with 

 coefficients in localfunctions. More precisely, the differential operator ߮ଡ଼ 

 is a section Jஶπ →  of thepullback bundle (ߨ)∗ߨ

(ߨ)∗ߨ ሱሮ E

↓ ↓ ߨ

Jஶπ
గಮ
ሱሮ ܯ

 

We call (ߨ)ߢthe space of smooth sections of the bundle (ߨ)∗ߨ → Jஶπ on jet 

space. 

Definition (2-3-3): 

An element ߮ଡ଼ is called a generating section of a symmetry X or also 

anevolutionary vector field. 

Remarks (2-3-4): 

(1) We denote the symmetry of the fibred manifold corresponding to a section 

߮  byEఝ. Some authors reserve the term evolutionary vector field (ߨ)ߢ ∍

 for this symmetry. 

(2)  If ߮  is described in local coordinates as  (ߨ)ߢ∍

߮ =∑ ߮ఈ డ
డ௨ഀ

೘

೔సഀ
 

with local functions (߮௜ , . . . , ߮௠), then Eఝ is its prolongation prE 

Eఝ=  ∑ D୍(߮ఈ) డ
డ௨಺

ഀ಺,ഀ
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1

0

t

t


The first goal of this subsection is to explore symmetries of Lagrangian systems 

 .(E → M,l : ߨ)

Remark (2-3-5): 

Suppose that there are volume forms given and we work with a Lagrangian 

function L. Wecan then formulate a variational family for the Lagrangian 

function as follows: this is a pair(Q, jK), consisting of an evolutionary vector 

field Q and m local functions ji, with i= 1, . . .m, 

prE(QE)(l) = DK(Q୉
ఈ) డ௟

డ௨಺
ഀ = Diji 

where Di is the total derivative in the direction of xi. 

Definition (2-3-6): 

Let (ߨ : E →M,l) be a Lagrangian system. A m − 1-form ߙ∊Ω௠ିଵ,଴(Jஶπ) is 

called aconserved quantity for the Lagrangian system, if for every solution  

s : M → E of the equationsof motion given by l the m − 1-form 

(jஶs)*∊Ω௡ିଵ(M) is closed. 

Remarks (2-3-7): 

(1)  In the case of a mechanical system over an interval I=[t0, t1], we have  

m = 1 and forevery solution of the equations of motions a function 

ߙ=௦ߙ ∘ jஶ(t) = , ݐ)ߙ ,(ݐ)ݏ ,(ݐ)௧ݏ … )on the interval Isuch that 
ௗ
ௗ௧

௦ߙ = 0 This implies 

– ௦(t1)ߙ   = ௦(t0)ߙ
ௗ

ௗ௧
ݐ݀(ݐ)௦ߙ = 0 
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which justifies the term “conserved quantity”. Notice that for a given 

section s, the valueof this conserved quantity can depend on the section and 

its derivatives. 

(2)  In the case of a field theoretical system, we obtain a m−1 form which, in 

 case a Hodgestar exists, can be identified with a 1-form 

∑ =௦ߙ ௜೘ݔ௜݀(௦ߙ)

೔సభ
 

(3) One speaks of a conserved “current”. Let us explain this and consider the 

 situation ofa Galilei space of any dimension n. This is really a fibred  

manifold of affine spaces,८n→ ८1. Like for any fibred manifold, we can 

 split differential forms into a horizontalcomponent and a vertical component. 

For any solution s of the equations of motion, we have a conserved n − 1-form 

js on ८nwhich we write asjs = ߩ௦+ dt⋀ js 

with ߩ௦∊Ω଴,௡ିଵ(८n) and js∊Ω଴,௡ିଶ(८n). We then get the equation 

0 = dj = dt⋀ (డఘೞ

డ௧
 + d୚jୱ) 

where dV is the vertical (i.e. here: special) differential. Fix a certain 

 n−1-dimensionalvolume at fixed time. We then have: 

݀
ݐ݀

௦ߩ     =      
߲
ݐ߲

௦ߩ = −        ݀౒j௦ = −    jୱ 

where in the last step we used Stokes’ theorem. This has the following 

interpretation: forever solution s of the equations of motion, we find a quantity 

(“charge”) ߩ௦ that can beassigned to any spacial volume V and a “current” js 

whose flux across the boundary ∂Vdescribes the loss or gain of this quantity. 

Together, they form the m components of theconserved m − 1-form. 

V


V


V


V

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Definition (2-3-8): 

Given a total differential operator Z, we define its adjoint Z+ as the total 

differential that obeys 

(jஶݏ) ∗ ൫FZ(G)൯dvol୑ =        (jஶݏ) ∗ (Zା(F)G)dvol୑ 

for all sections s : M → E and all local functions F,G ∊LocE. It follows that 

FZ(G)dvolM = Z+(F)GdvolM + dH ߞ 

for some ߞ = ߞ(Z, F,G) ∊Ω௡ିଵ,଴(jஶߨ) that depends on F and G and the precise 

form of thetotal differential operator Z. 

If the total differential operator reads Z = ZJDJ in local coordinates, integration 

by parts yields the explicit formula 

Z+(F) = (−D)J (ZJF) . 

Theorem (2-3-9):[Noether’s first theorem] 

(1)  Let (ߨ: E → M, l) be a Lagrangian system with a Lagrange function l that, 

 for simplicitydoes not explicitly depend on M, i.e. డ
డ௫೔ L= 0. Let (Q, j) be a 

variational symmetry inthe sense of remark (2-3-5). Then there is a  

conserved one-form on jet space which can beworked out by doing repeated  

integrations by parts. 

(2) If the Lagrangian depends only on first order derivatives, the conserved  

one-form on jetspace reads explicitly(Qఈ డ௟
డ௨೔

ഀ - j௜)݀ݔ௜  

  

M


M

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Proof: 

(1) Let s be a solution of the equations of motion. Since Q is a variational 

 symmetry, we have 

0 =൫−D௜ j௜൯ ∘ jஶݏ =        ൬ డ௟
డ௨೔

ഀ (Dூ Qఈ)൰ ∘ jஶݏ 

Repeated integration by parts on M yields by the previous comment on adjoint 

operatorsand local functions ߞ௜on jet space such that 

0 =൬(−D)୍
డ௟

డ௨೔
ഀ ൰ Qఈ ∘ jஶݏ +         D௜ ߞ௜ ∘ jஶݏ   

Since the Lagrangian does explicitly depend on M, the Euler-Lagrange equations 

for thesection s take the form  

   ൬(−D)୍
డ௟

డ௨೔
ഀ ൰ ∘ jஶ0 = ݏ 

We thus learn that0 =   D௜ (ߞ௜ − j௜) = 0 . 

(2) If the Lagrangian depends only on first order derivatives, the divergence 

 term is explicitly 

D௜ ( 
߲݈

௜ݑ߲
ఈ Qఈ)  ∘ jஶݏ 

so that the conserved quantity is given by the one-form on jet space 

   ൤ డ௟
డ௨೔

ഀ Qఈ −  j௜൨  ௜ݔ݀

  

M


M


M


M


M


M

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Definition (2-3-10): 

A gauge symmetry of a Lagrangian system (ߨ: E → M, l) consists of a family of 

local functions,for1 = ߙ, . . . n and all multi-indices I, 

 R஑୍: Jஶߨ → ℝ 

for 1 = ߙ, . . . n and all multi-indices I, such that for any local function 

 ߳: Jஶߨ → ℝ 

the evolutionary vector field R஑୍(D୍߳) డ
డ௨ഀ on E is a variational symmetry of l. 

Remarks (2-3-11): 

(1) Loosely speaking, a gauge symmetry is a linear mapping from local functions 

 on Jஶߨ intothe evolutionary vector fields on E preserving the Lagrangian. It 

 is crucial for a gaugesymmetry that there is a symmetry for every local  

function. 

(2)  Notice that the coefficients of the vector field depend linearly on ߳ and on all  

its totalderivatives. 

(3) By the results just obtained, it follows that being a gauge symmetry is 

equivalent to requiring(R஑୍ (D୍߳))E஑(l) to be a divergence for each local 

function߳ on Jஶߨ. 

Theorem (2-3-12):[Noether’s second theorem] 

For a given Lagrangian system (ߨ: E → M,l) and for local real-valued functions 

{R஑୍} definedon Jஶߨ, the following statements are equivalent: 
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(i) The functions {R஑୍} define a gauge symmetry of l, i.e., R஑୍(D୍߳) డ
డ௨ഀ is a  

variationalsymmetry of l for any local function  ߳: Jஶߨ → ℝ. 

(ii) R஑୍ (D୍߳)E஑ (l) is a divergence for any local function ߳. 

(iii) The functions {R஑୍} define Noether identities of l, i.e. Rା஑୍D୍(E஑ (l)) is  

identically zeroon the jet bundle. 

Second we will discuss the Natural geometry. 

Definitions (2-3-13): 

(1) Denote by Mann the category of n-dimensional manifolds and open 

embeddings. Let Fibnbe the category of smooth fiber bundles over  

n-dimensional manifolds with morphismsdifferentiable maps covering 

morphisms of their bases in Mann. 

(2)  A natural bundle is a factorी: Mann→ Fibn such that for each  

M ∊ Mann, ी(M) is abundle over M. Moreover, ी(M') is the 

 restriction of ी(M) for each open sub-manifoldM'⊂ M, the map 

ी(M')→ ी(M) induced by M'↪ M being the inclusion ी(M')↪ ी(M). 

Theorem (2-3-14):(Krupka, Palais, Terng) 

For each natural bundle ी, there exists l  ≥ 1 and a manifold ी with a 

smooth GL೙
(೗)actionsuch that there is a factorial isomorphism 

  ी(M) ≅ Frl(M) ×ୋ୐೙
(೗) B(l)= (Frl(M) × B) / GL೙

(೗) 
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Conversely, each smooth GL೙
(೗)-manifold B induces, a natural bundle ी. We will 

call B thefiber of the natural bundle ी. If the action of GL೙
(೗)on B does not reduce 

to an action of thequotient GL೙
(೗షభ) we say that ी has order l. 

Examples (2-3-15): 

(1) Vector fields are sections of the tangent bundle T(M). The fiber of this 

bundle is ℝ௡ , withthe standard action of GLn. The description 

 T(M) ≅ Fr(M) ×ୋ୐೙ ℝ௡is classical. 

(2)  De Rham m-forms are sections of the bundle Ω୫(M) whose fiber is the 

 space of anti-symmetricm-linear maps Lin(Λm(ℝ௡),ℝ ), with the obvious  

induced GLn-action. The presentation 

Ω୫(M)≅ Fr(M) ×ୋ୐೙  Lin(Λm (ℝ௡),ℝ ) 

is also classical. A particular case is Ω଴(M) ≅ Fr(M) ×ୋ୐೙ ℝ  ≅ M× ℝ the 

bundle whosesections are smooth functions. We will denote this natural bundle 

by ℝ, believing therewill be no confusion with the symbol for the reals. 

Definition (2-3-16): 

Let ृ and  ॄ be natural bundles. A (finite order) natural differential operator 

ॊ : ृ ⟶ ॄ isa natural transformation (denoted by the same symbol) 

ॊ : ृ(k)⟶  ॄ, for some k ≥ 1. Wedenote the space of all natural differential 

operators ृ ⟶ ॄ by Nat(ृ, ॄ). 
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Examples (2-3-17): 

(1)  Given natural bundles ी’ and ी” with fibers B’ resp. B”, there is an 

obviously definednatural bundle ी’× ी” with fiber B’×B”. With this notation, 

the Lie bracket is a naturaloperator [−,−] : T×T ⟶ T and the covariant derivative 

an operator ∇ : Con×T×T ⟶ T,where T is the tangent space functor and Con the 

bundle of connections. The correspondingequivariant maps of fibers can be 

easily read off from local formulas given in Examples. 

(2) The operatorॊథ: T × Ωଵ ⟶ Cஶfrom the Example above is induced by the 

GLn– equivariantmap 

Oథ:ℝ௡ × (ℝ௡)*⟶ ℝ  given by oథ(ݒ ,  .((ݒ)ߙ)߶ = (ߙ
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Chapter (3) 

Classical field theories 

Section (3-1): Maxwell’s equations and Special relativity 

We start explaining Maxwell’s equation on a Galilei space८.  

Observations(3-1-1): 

(1)  The first new quantity is electric charge. It can be observed e.g. in processes 

 like discharges. 

Charge is measured at fixed time, so for any measurable subset U ⊂८t, we 

should be ableto determine the electric charge by an integral over U. It is 

therefore natural to considerthe charge density ߩ at time t as a three-form on 

८t: 

 t(x) dx1⋀dx2⋀dx3∊Ωଷ(८t)ߩ 

The charge density is not constant in time and we will study its time 

dependence. We thusdefine charge density as a differential form ߩ∊Ω଴,ଷ(८). 

We are, deliberately, vague aboutsmoothness properties of ߩ since many 

important idealizations of charge distributions –point charges, charged wires 

or charged plates – involve singularities. 

(2)  If we take a volume V ⊂८tat fixed time with smooth boundary ߲V , then 

 electric chargecan pass through its boundary ߲V. The amount of charge  

passing per time should bedescribed by the integral over a two form 
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jt∊Ωଶ(८t). Again, this two-form will dependon time so that we introduce  

the current density as a 3-form :    j(x, t) = dt⋀ jt(x) ∊Ωଵ,ଶ(८). 

We then have the natural conservation law for any closed volume V ∊८t 

  ௗ
ௗ

ߩ          = −            j௧ 

which by Stokes’ theorem takes the form 

   డ
డ௧

ߩ       = −        j௧ =  −         ݀௏j௧ 

Since this holds for all volumes V ⊂८t, we have the infinitesimal form of the 

conservationlaw 

డ
డ௧

t + ݀௏ߩ j௧ = 0 

which is an equality of three-forms on ८t for all t. 

(3)  We can write the conservation law more compactly in terms of the three- 

form, the chargecurrentdensity j: 

j = ߩ − j = ߩtdx⋀dy⋀dz − dt⋀ jt∊Ωଷ(८) 

defined on the four-dimensional space ८. We find 

dj = డ
డ௧

 t dt⋀dx⋀dy⋀dz +dt⋀݀௏j௧ = 0ߩ

(4)  Since the charge-current density 3-form is closed, dj = 0, it is exact by the 

 Poincarelemma. We can find a two-form H ∊ Ωଶ(८), the excitation 2-form  

such that 

dH = j . 

V


V


V


V


V




51 
 

The fact that such a 2-form exists even globally is the content of the 

inhomogeneousMaxwell equation. 

(5) Using the bigrading of 2-forms on ८, we can write 

H = dt⋀ H + D 

with H ∊ Ω଴,ଵ(८) and D ∊ Ω଴,ଶ(८). One calls H the magnetic “excitation” and D 

the“electric excitation”. Using the three-dimensional metric, the field H can be 

identified witha vector field. For the field D, we first need to apply a three-

dimensional Hodge star toget a one-form which then, in turn, can be identified 

with a vector field. The Hodge starand thus the vector field depend on the 

orientation chosen on three-dimensional space.For this reason, D is sometimes 

called a pseudo vector field. 

Then the inhomogeneous Maxwell-equations 

j = ߩ − dt ⋀ j = dH = −dt⋀ dVH + dt⋀߲௧D + dV D 

are equivalent to 

dVD = ߩ    and߲௧D = dVH − j , 

where the vertical derivative dV is just the special exterior derivative. 

The first equation is the Coulomb-Gauss law, the second equation theOersted-

Ampere equation. The term containing the time derivative −߲௧D of theexcitation 

is sometimes called Maxwell’s term. 
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Example (3-1-2): 

Gauß’ law reads in integral form for a volume V in space 

   Q =݀ߩଷݔ =  −         D 

The electric flux through the surface ߲V is thus proportional to the electric 

charge included bythe surface. It should be appreciated that this holds even for 

time dependent electric fields. 

We use Gauß’ law to determine the electric field of a static point charge in the 

origin:ߩ(⃗ݔ, t) = f(r)݁⃗௥ . 

with 

݁⃗௥= ଵ
ඥ௫మା௬మା௭మ(x, y, z) ∊T(x,y,z)(ℝଷ \ {0}) 

the radial unit vector field on ℝଷ \ {0}. 

Integrating over the two-sphere with center 0 and radius r, we find   

  q =Dሬሬ⃗ ݀f⃗ =  (ݎ)ଶfݎߨ4 

and thus Coulomb’s law: 

Dሬሬ⃗ ,ݔ⃗) (ݐ =  
q

ߨ4
1
ଶݎ ݁⃗௥ 

In the case of a static field, Coulombs law and the principle of superposition of 

chargesconversely implies the first inhomogeneous Maxwell equation dVD =ߩ. 

  

V


V


2
rS

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Observations (3-1-3): 

(1) Based on empirical evidence, we impose on the electromagnetic field dF the 

 condition tobe closed, 

dF = 0 . 

These are the homogeneous Maxwell equations. 

(2)  In the three-dimensional language F = dt∧ E + B, the equation 

0 = dF = dt∧ dV E + dt∧ ߲௧B + dV B 

is equivalent to the following two equations: 

dV B = 0 and     ߲௧B = −dV E . 

Example (3-1-4): 

Faraday’s law of induction yields a relation between the induced voltages along 

a loop ߲F boundinga surface F 

Uind =݀ݔEሬሬ⃗  

and the magnetic fluxΦ௠௔௚=Bሬሬ⃗  

through the surface which reads 

 Uind =݀ݔEሬሬ⃗  = − ௗ
ௗ௧

൫  Bሬሬሬሬ⃗ ൯ =  − ௗ
ௗ௧

Φ୤
௠௔௚ = − ௗ

ௗ௧
൫   Bሬሬሬሬሬ⃗ ൯ 

This law is the basis of the electric motor and the electrical generator. The minus 

sign is quitefamous: it is called Lenz’ rule. 

  

F


F


F


F


F

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Observations (3-1-5): 

(1) The following space-time relations are important: 

 (i) In empty space, one has the relation 

H = −λ ∗ F 

which makes sense in four dimensions. The constant λ is a constant of 

nature.Sometimes ∗F is called the dual field strength. 

(ii) In axion-electrodynamics, one has two constants of nature 

−H = −λ1∗ F + λ2F . 

(iii) In realistic media, the constants typically depend on frequencies or, 

 equivalent, wavelengths, and yield quite complicated relations between F  

and H. 

(2) We summarize the Maxwell equations in vacuo: 

dF = 0 and d(∗F) = J , 

which are the homogeneous and the inhomogeneous Maxwell equations. As 

a consequence,we have the continuity equation 

dJ = d(∗F) = 0 . 

It is complemented by the equation for the Lorentz force 

f = I(F) ∧J . 



55 
 

In this form, the equations are also valid in special and even in general 

relativity. TheMaxwell equations in vacuo can be considered as truly 

fundamental laws of nature. 

(3) We also present these equations in the classic notation of vector calculus: 

divB = 0 and∂tB + rot Eሬሬ⃗  = 0 

divE = ߩ and rotB − ∂tE = ȷ⃗ 

Observations(3-1-6): 

(1) Consider the Maxwell equations in vacuo without external sources, i.e. j = 0.  

We find 

dF = 0 and d ∗ F = 0 . 

The last equation implies ∗F = 0. We thus have for the Laplace operator on 

differentialforms 

∆F = ߜdF + dߜF = 0 

so that in the vacuum without external source, J = 0, harmonic forms are a 

solution tothe Maxwell equations. 

(2) To restore familiarity, we repeat this analysis in the language of vector 

 analysis. Then theMaxwell equations read: 

divEሬሬ⃗  = 0   ,     rotEሬሬ⃗  = − ப୆ሬሬ⃗

ப౪
 

divBሬሬ⃗  = 0    ,    rotBሬሬ⃗  =  ப୉ሬሬ⃗

ப౪
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Taking the rotation of the second equation yields 

∆Eሬሬ⃗  = ∆Eሬሬ⃗  - grad(divEሬሬ⃗  ) = − rot rot Eሬሬ⃗ = 

= rot
߲
ݐ߲

Bሬሬ⃗ =
߲
ݐ߲

rotBሬሬ⃗ =
߲ଶEሬሬ⃗
ଶݐ߲  

A dimensional analysis shows that we should restore a factor c2 with the 

dimension of thesquare of a velocity. Hence we get 

   □Eሬሬ⃗  = ቀ ଵ
஼ మ

డమ

డ௧మ −  △ቁ Eሬሬ⃗ = 0 

with □ the so-called d’Alembert operator. Similarly, one finds 

□Bሬሬ⃗ = ቀ ଵ
஼మ

డమ

డ௧మ −  △ቁ Bሬሬ⃗ = 0 

We discuss our postulates of special relativity. 

First postulate: space time is homogeneous  

Second postulate: the laws of physics are of same form for all observers in 

relative uniform motion. 

Third postulate: velocity of light as a limit velocity. 

Definitions (3-1-7): 

(1) An affine space ॸoverℝସ together with a metric of signature  

(−1, +1, +1, +1) on itsdifference space is called a Minkowski space. 
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(2)  Standard Minkowski space is ℝସ with the diagonal metric (1 ,1 ,1 ,1−) = ߟ. 

 It plays therole of standard Galilei space. Using the velocity of light c, we 

 endow it with coordinates(ct, x1, x2, x3) whose dimension is length. 

(3) A Lorentz system of ॸ is an affine map 

߶: ॸ → (ℝସ, ߟ) 

which induces an isometry on the difference space. 

(4) The light cone in Tp ॸ is the subset 

LCp= {x∊Tp ॸ|ߟ୮(x,x) = 0} 

Lemma (3-1-8):  

LetΛ: ॸ → ॸbe a diffeomorphism that preserves the light cones. Then Λ is an 

affine mapping.For the induced map on tangent space, one has 

 ୮(x,y) for all x,y∊Tp ॸߟ୮(Λp x , Λp y) = a(Λ)ߟ

with some positive constant a(Λ) .The symmetries are thus composed of a four-

dimensionalsubgroup of translations, a one-dimensional subgroup of dilatations 

and the six-dimensionalLorentz group SO(3, 1). 

Remarks (3-1-9): 

(1) Consider the bijection of vectors in ℝସ to two-dimensional hermitian 

 matrices 

Φ: (x0, x1, x2, x3) ⟼ ൬ ଴ݔ + ଷݔ ଵݔ − ଶݔ݅

ଵݔ + ଶݔ݅ ଴ݔ − ଷݔ ൰ 
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and 

detΦ(x) Φ(y) = −(x, y) 

Lie group SL(2,ℂ) acts on hermitian matrices as H ⟼ SHS+. This action 

induces anisomorphism of 

PSL(2, ℂ) = SL(2, ℂ)/{±1} 

and the proper orthochronous Lorentz group. 

(2)  Using the parity transformation 

P = diag(+1,−1,−1,−1) 

and time reversal 

T = diag(−1, +1, +1, +1) 

we can write every element of L uniquely in the form 

Λ = PnTm Λ0withn,m∊ {0, 1}, Λ0∊Lା
↑  

Definitions (3-1-10): 

(1) A non-zero vector x in the difference space for Minkowski space ॸ is called 

time like, if x2 = (x, x) < 0 

light like or null, if x2 = (x , x) = 0 

space like, if x2 = (x , x) > 0 

(2)  A time like or light like vector x = (x0, x1, x2, x3) in the difference space for  

Minkowskispace is called future directed, if x0>0 and past directed if 
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x0<0. The light cone atany point decomposes into the forward light cone 

 consisting of light like future directedvectors, the backward light cone  

consisting of past directed light like vectors and the zerovector. 

Lemmas (3-1-11): 

(1) For any two space like vectors x, y, the Cauchy-Schwarz identity holds in its 

 usual form, 

|(x, y)|≤ ඥ(ݔ , ,ݕ)ඥ(ݔ  (ݕ

with equality if and only if the vectors x, y are linearly dependent. 

(2) For any two time like vectors x, y in the difference space to Minkowski 

 space, we have 

|(x , y)|≥ ඥ−(ݔ , ,ݕ)−ඥ(ݔ  (ݕ

and equality if and only if the vectors x, y are linearly dependent. 

(3)  For any two lightlike or timelike vectors x, y, we have (x, y) ≤ 0, if both 

 are future directedor both are past directed. We have (x , y) ≥0, if and only 

 if one is future and one is pastdirected. 

Definitions (3-1-12): 

(1) A velocity unit vector w ෞis a future directed time like vector normalized to 

     (wෝ , wෝ ) = −1. 

(2)  Our set of observers – or, more precisely, their world lines, consists of the 

 affine lines of theform a+ℝwෝ , where a∊ॸସis any point and wෝ is any  

velocity unit vector. We abbreviatethe observer or the corresponding affine  
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lie respectively, with ࣩ௔,୵ෝ or sometimes even withࣩ୵ෝ , when the base 

 point a does not matter. 

(3) The time interval elapsed between two events x, y∊ℝସas observed by the 
 observer ࣩ୵ෝ is given by the observer-dependent time function 

୵ෝݐ∆ (x, y) = (wෝ , x − y) . 

Remarks (3-1-13): 

(1) For any two observers ࣩ୵ෝ and ࣩ௩ොwith different velocity unit vectors wෝ  

and ݒො, there existevents x, y∊ॸ such that x happens before y for ࣩ୵ෝ and  

y happens before x for ࣩ௩ො . Thisfact might be called the “relativity of  
simultaneity.” 

(2) The future I+(x) of an event x∊ॸ equals 

I+(x) = { y ∊ॸ|(ݒො, y − x) < 0 for all observers ࣩ௩ො} 

i.e. the set of events that happens after x for all initial observers. This justifies the 
qualifierabsolute future for I+(x). 

Observation (3-1-14): 

Consider two observers ࣩ௩ො  and ࣩ௪ෝ which are in relative uniform motion. We take 

twoevents x ,y ∊ॸwhich occur for the observer ݓෝ  at the same place in space. 

This justmeans x − y = ݐ ෝݓ  with some t ∊ℝ. For the time elapsed between these 

two events, theobserverݓෝmeasures 

୵ෝݐ∆  (x, y) = |x − y| =ඥ−(ݔ −  ଶ(ݕ 

You can imagine that observer ݓෝ looks twice on his wrist watch, at the event x 
and at theevent y. 



61 
 

Let us compare this to the time difference measured by observer ࣩ௩ො  for the 

events x∊ॸand y ∊ॸwhich is 

௩ොݐ∆  (x, y) = |(ݒො, x − y)| 

We introduce the vectora= (x − y) + (x − y, ݒො)ݒො 

which is, because of (ݒො, ݒො) = −1, orthogonal to ݒො, 

(a, ݒො) = (x − y, ݒො) + (x − y, ݒො)(ݒො, ݒො) = 0 

and which is, because of the Cauchy-Schwarz inequality for future-directed time 
like vectors, 

≤ |(ෝݓ ,ොݒ)| ඥ−(ݒො, ˆv)ඥ−( ݓෝ ,  , ෝ) = 1ݓ

a space-like vector: 

a2 = (x − y)2 + 2(x − y, ݒො)2 + (x − y, ݒො)2(ݒො, ݒො) 

= (x − y)2 + (x − y, ݒො)2 = −t2 + t2(ݒො, ݓෝ)2> 0 . 

We have thus 

x − y = −∆ݐ௩ො(x, y) ݒො+ a 

which implies 

௪ෝݐ∆ (x, y)2 = |(ݒො, x − y)|2 + a2 = ∆ݐ௩ො(x, y)2 + a2 

Hence 

௩ොݐ∆|   (x, y)|>|∆ݐ௪ෝ (x, y)| . 

Thus the moving observer ࣩ௩ොmeasures a strictly longer time interval than the 

observerࣩ௪ෝ at rest.  
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Section (3-2): Electrodynamics as a gauge theory 

We start our discussion with some comments on electrodynamics on Minkowski 

space ॸ. 

Remarks (3-2-1): 

(1)  Consider Maxwell’s equations on a star-shaped region U ⊂ॸ on which 

        from the homogeneous Maxwell equations dF = 0 and the fact that 

Minkowski space is contractible, we conclude that there exists a one-form  

A∊Ωଵ(M) suchthat d A = F. The one-form A is called a gauge potential 

 for the electromagnetic fieldstrength F. 

The one-form A is not unique: taking any function ߣ ∊Ω଴(ॸ), we find that 

Aᇱ= A + d ߣ ∊Ωଵ (ॸ) 

also obeys the equation dAᇱ = F. This change of gauge is also called agauge 

transformation. This arbitraryness in choosing A is called the gauge freedom 

andchoosing one A  is called a gauge choice. 

(2)  One can impose additional gauge conditions on A to restrict the choice. For  

example,using the metric on ॸ, one can impose the condition ߜA = 0. A 

choice of A that obeysthis equation is called a Lorentz gauge. This gauge is 

 called a covariant gauge, since thegauge condition is covariant. 

Observations (3-2-2): 

(1) For a geometric interpretation, we consider on the disjoint union 
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L ෩ =  ሡ(Uఈ ×  ℂ) =  ራ(U஑ × {ߙ} × ℂ)
ఈ∈ூఈ∈ூ

 

the equivalence relation 

(x, ߙ, ݃ఈఉz) ∼ (x, ߚ, z) . 

Then the quotient 

L= L ෩/∼ 

is a smooth manifold and comes with a natural projection to Mwhich 

 provides a complexline bundle π : L →M. 

(2)  This bundle comes with a linear connection which locally is 

∇ఈ= ݀ +  
1
݅

ఈܣ  

Locally, we can consider the two form 

Fఈ= ݀ܣఈ 

which is trivially closed. On twofold overlaps, we have 

  Fఈ − Fఉ= d ݀ܣఈ− ݀ܣఉ= d (ܣߜ)ఈఉ) = dlog ݃ఈఉ  = 0 

so the locally defined two-forms Fఈpatch together into a globally defined two-

form whichwe interpret as the electromagnetic field strength. 
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Remark (3-2-3):  

The gauge potential also enters if one wants to obtain the Lorentz force for a 

charged particlefrom a lagrangian. Indeed, consider the simplest case of a 

particle moving in background fields 

Ei = − డ஍
డ௫೔ −  ߲௧A௜  and  Bi = rotiA 

where we are using three-dimensional notation. Then the equations of motion for 

the Lagrangian 

l(x, xt, t) =
௠
ଶ

೟ݔ
మ − ௧ݔ)ݍ 

௜A௜(ݔ, (ݐ +  Φ(ݔ,  ((ݕ

are because of 

߲݈
௜ݔ߲ = ೟ݔݍ− 

మ 
߲A௜

௜ݔ߲ − ݍ 
߲Φ
 ௜ݔ߲

given by 

 m߮̈௜ − ݍ డ୅೔

డ௫ೕ ߮̇௝ = ௝̇߮ݍ− డ୅ೕ

డ௫೔ − ݍ  డ஍
డ௫೔ −  ௜ܣ௧߲ݍ 

which is just 

m߮̈௜ = ̇߮)ݍ  ∧ ௜(ܤ +  ௜ܧݍ 

and thus the Lorentz force. 
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Remarks (3-2-4): 

(1) Let M be a smooth n-dimensional manifold with a (pseudo-)Euclidean 

 metric. We set upa theory of l-forms for 0 ≤l≤ n. As equations of  

motion for the l-form l(M), we take 

dF = 0 and d ∗ F = 0 . 

(We consider here for simplicity the case without external sources; external 

source requirerelative cohomology.) It obviously has waves as classical 

solutions: any solution obeysdF = 0 and ߜF = 0 and is thus harmonic.  

Given any solution, one can define its electric flux 

[F] ∊ H೏ೃ
௟ (M) 

and its magnetic flux 

[∗F] ∊ H೏ೃ
೙షభ (M) 

(2) If one wants to introduce an action, one has to break electric magnetic duality 

 and use oneof the equations, say dF = 0, to introduce locally defined gauge 

 potentials and transition functions (ܣఈ , ݃ఈఉ). These are to be considered as 

 the fundamental degree of freedom, is the following action is naturally 

 defined: 

S[A] =  ݃     ܣ]ܨ, ݃] ∧∗ ,ܣ]ܨ ݃]  

with ݃ a constant of the theory and can be shown to lead to the equations of 

motiond∗ ,ܣ]ܨ ݃]=0. We have now a gauge symmetry in the sense of 

Noether’s second theorem.For example, for n = 4 and k = 2, we have for 

 every function ߣ the symmetry S[A+d ߣ] =S[A]. For a general local 

M

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 function, we neglect its dependence on derivatives. Differentialrelations 

 between the equations of motion are then introduced by the relation dF[A]=0. 

We summarize in this subsection some important aspects of general relativity 

 in the form ofseveral postulates. 

Observations (3-2-5): 

(1) The mathematical model for space time, i.e. the collection of all events, is a 

 four-dimensionalsmooth manifold M with a Lorentz metric ݃. 

(2)The topological space underlying a manifold is always required to be 

Hausdorff; it can beshown that the existence of a Lorentz metric implies that 

 the space is para-compact. 

(3) The manifold structure is experimentally well established up to length scales 

 of at least10−17m. 

(4) For a general Lorentz manifold, non-zero tangent vectors X ∊TpM fall in 

 the classes oftime-like, space-like or null vectors. 

We discuss the postulates. 

      (i)   Local causality. 

      (ii)  Local conservation of energy momentum. 

      (iii) Field equation:Einstein’s equation read:    

(ܴ௔௕[݃] - ଵଶ R[݃]݃௔௕) + Λ݃௔௕ =  ଼గீ
௖ర ௔ܶ௕  (3.1) 
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Lemma (3-2-6): 

Let M be a smooth manifold and ݃(ଵ)and ݃(ଵ)two Lorenz metrics on M with the 

same set oflight cones. Then there is a smooth function ߣ ∈  ஶ(M,ℝ+) withܥ

values in the positive realnumbers such that  

݃௣
(ଵ) = ߣ(p) · ݃௣

(ଵ)for all p ∈ M. 

Proof: 

Let X ∈ TpM a time-like and Y ∈ TpM a space-like vector. The quadratic 

equation in ߣ 

0 = ݃(X + ߣY,X + ߣY ) = ݃(X,X) + 2 ݃ߣ(X, Y ) + 2݃ߣ(Y, Y ) 

has two roots 

= 2ߣ ,1ߣ
௚(ଡ଼,ଢ଼)
௚(ଢ଼,ଢ଼)

 ± ට௚(ଡ଼,ଢ଼)మ

௚(ଢ଼,ଢ଼)మ −  ௚(ଡ଼,ଡ଼)
௚(ଢ଼,ଢ଼)

 

which are real since ݃(Y, Y ) > 0 and݃(X,X) < 0. We have 

௚(ଡ଼,ଡ଼)= 2ߣ · 1ߣ  
௚(ଢ଼,ଢ଼)

 

so that the ratio of the magnitudes of a space-like and a time-like vector can be 

derivedfrom the light cone. 

Now suppose that W,Z ∊TpM and W + Z are not light-like.Then: 

  ݃(W,Z) =ଵ
ଶ
(݃(W,W) + ݃(Z,Z) − ݃(W + Z,W + Z)) . 
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Each of the terms on the right hand side can be compared to either X or Y and is 

thusfixed. 

Proposition (3-2-7): 

The tensor T is a symmetric covariantly conserved tensor: if evaluated on any 

field configuration߰ obeying the equations of motion implied by a Lagrangian 

function L, one has 

Tab(߰ , ߲߰, . . .)b = 0. 

Proof: 

We have for any diffeomorphismΦ: M → M that restricts to the identity outside a 

compactsubset D ⊂ M for the Lagrangian density l = Ldvol௚ 

 

I =     ݈ =         ݈ =        Φ∗(݈) 

 

and thus Z 

   ݈ −  Φ∗(݈) = 0 

If the diffeomorphism Φ is generated by a vector field X, we have 

ܮ  × ݈ = 0 

  

D


( )D


D


D


D

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We find 

௑൫݈ ݀vol௚൯ܮ =       ൭
ܮ߲
߲߰

− ௘ܦ  ൬
ܮ߲

߲߰௘
൰൱ ௑߰݀vol௚ܮ +  

1
2

ܶ௔௕ܮ௑݃௔௕݀vol௚ 

The first term vanishes due to the equations of motion. For the second term, we 

need the Liederivative of the metric 

LX݃ab = 2X(a,b) 

which equals the symmetrization of the covariant derivative.Thus 

0 =ܶ௔௕ܮ௑݃௔௕݀vol௚ = 2        ((ܶ௔௕ܺ௔) ௕ −  ௕ܶ
௔௕ܺ௔)݀vol௚ 

The first term can be transformed into an integral over ߲D which vanishes since 

the vectorfield X vanishes on ߲X. Since this identity holds for all vector fields X, 

we have covariantconservation of the energy momentum tensor, T್ೌ್ 

Remarks (3-2-8): 

(1) The equation (3.1) can be compared for so-called static space times, i.e. 

 space times with atime-like Killing field that is orthogonal to a family of  

space-like surfaces in a certainlimit to Newtonian gravity. The constant G 

 then becomes Newton’s constant. 

(2) The equations can be derived from the so-called Einstein-Hilbert action 

S[݃, Φ] = ଵ
ଵ଺గ

(ܴ[݃] −  2Λ)vol௚ + ݈(Φ, g) 

where Φ stands symbolically for other fields in the theory. 

  

D


D


D


D


D



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Chapter (4) 

Hamiltonian mechanics 

Section (4-1): (Pre-) symplectic manifolds 
We start with some notions from linear algebra. We restrict to vector spaces of 

finite dimension. 

Definition (4-1-1): 

Let k be a field of characteristic different from 2. A symplectic vector space is a 

pair (V, ߱). 

consisting of a k-vector space V and a non-degenerate two-form ߱ ∈ ΛଶV , i.e. 

an anti-symmetricbilinear map ߱ : V×V → k such that ߱(v,w) = 0 for all w∈V 

implies v = 0. 

Remarks (4-1-2): 

(1)Symplectic vector spaces have even dimension. 

(2) To present a standard example, consider V=ℝଶ௡ with the standard basis  

(ei)i=1,...2n andits dual basis (݁௜
∗)i=1,...2n. Then 

  ߱= ݁భ
∗ ∧ ݁మ

∗ + ݁య
∗ ∧ ݁ସ

∗ +…. +݁మ೙షభ
∗ ∧ ݁మ೙

∗  ∈ Λଶ(ℝଶ௡) 

is a symplectic form. 

(3) Given any finite-dimensional k-vector space W, the k-vector space 

       V=W⨁W* has acanonical symplectic structure given by 

߱((b,ߚ), (c, ߛ)) = ߚ(c) ߛ(b) . 
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(4) The subset of linear endomorphisms ߮ ∈ GL(V) of a symplectic real vector  

space (V, ߱)that preserve ߱, i.e. ߮∗߱ = ߱, is a (non-compact) Lie group  

Sp(V) of dimensionୢ୧୫୚(ୢ୧୫୚ାଵ)
ଶ

 

 Its elements are also called symplectic or canonical maps. 

We now extend these notions of linear algebra to smooth manifolds. 

Definitions(4-1-3): 

Let M be a smooth manifold. 

(1) A 2-form ߱ ∈ Ωଶ(M) is called a pre-symplectic form, if it is closed, d߱ = 0, 

 and of constantrank. 

(2) A non-degenerate pre-symplectic form is called a symplectic form. 

(3) A smooth manifold M together with a (pre-)symplectic form ߱ is called a 

(pre-)symplectic manifold.  

(4) A morphism f:(M, ߱M) →(N, ߱N) of (pre-)symplectic manifolds is a 

 differentiable mapf : M →N that preserves the (pre-)symplectic form,  

f*߱N = ߱M. Such morphisms arealso called symplectomorphisms or  

canonical transformations. 

Remarks (4-1-4): 

(1) Since for any point p of a symplectic manifold M the tangent space TpM is a 

symplecticvector space, the dimension of a symplectic manifold is 

 necessarily even. The dimensionof a pre-symplectic manifold, in contrast, can  

be odd or even. 
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(2) One verifies by direct computation that on a symplectic manifold M of 

 dimension dimM =2n, the n-th power ߱^୬ of the symplectic form ߱ is a 

 volume form on M. It is called theLiouville volume and the induced  

measure on M is called the Liouville measure. 

(3) A symplectic map between two symplectic manifolds of the same dimension 

 preserves theLiouville volume ߱^୬. Since volume preserving smooth maps 

have a Jacobian of determinant1, they are local diffeomorphisms. Symplectic 

maps between two symplectic manifoldsof the same dimension are thus local  

diffeomorphisms. 

Definition (4-1-5): 

Let M be a smooth manifold of any dimension. The symplectic manifold  

(T*M, ߱0) is calledthe canonical phase space associated to the configuration 

space manifold M. 

Remarks (4-1-6): 

(1) Since the canonical phase space comes with the canonical one-formߠ, the 

symplectic formis in this case not only closed, but even exact. 

(2) The canonical phase space is a non-compact symplectic manifold. Examples  

of compactsymplectic manifolds are quite important for mathematical  

physics, but more difficult toobtain. 

Theorem (4-1-7): (Darboux’ theorem) 

Let (M, ߱) be a (2n + k)-dimensional presymplectic manifold with rank ߱=2n. 
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Then we can find for any point m∈M a neighborhood U and a local coordinate  

chart 

߰  : U → ℝ2n+k  

߰(u) =(qଵ, …  , q୬  , pଵ, … , p୬ , ηଵ, …  , η୩ 

such that߱|୙= ∑ dp୧ ∧  q୧୬
౟సభ

. Such coordinates are called Darboux coordinates 

orcanonical coordinates. One can choose the covering such that the coordinate 

changes are canonicaltransformations. 

Remarks (4-1-8): 

(1)Darboux’ theorem implies that symplectic geometry is locally trivial in 

 contrast to Riemanniangeometry where curvature provides local invariants, 

and where in Riemanniancoordinates the metric can be brought to a 

 standard form in one point only. In other words,locally two symplectic 

 manifolds are indistinguishable. 

(2) While any manifold can be endowed with a Riemannian structure, there are 

 manifoldswhich cannot be endowed with a symplectic structure. For  

example, there is no symplecticstructure on the spheres S2n for n > 1. 

Proposition (4-1-9): 

Let (M,߱) by a symplectic manifold and f ∈ Cஶ(M, ℝ) be a smooth function. 

Then there is aunique smooth vector field Xf on M such that 

df(Y) = ߱(Xf , Y) for all local vector fields Y on M,or, equivalently, df = ߡଡ଼౜߱. 
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Definitions(4-1-10): 

(1) Let f be a smooth function on a symplectic manifold (M, ߱). The vector field 

Xf suchthat df = ߡଡ଼౜߱is called the symplectic gradient of f. 

(2) A vector field X on a symplectic manifold (M, ߱) is called a Hamiltonian 

 vector field,if there is a smooth function f such that X = Xf . Put differently,  

a vector field X isHamiltonian, if there is a function f such that ߡ௑߱ = df,  

i.e. if the one-form ߡ௑߱ is exact.The function f is called a Hamiltonian 

 function for the vector field X. 

(3) A vector field X on a symplectic manifold (M, ߱) is called locally 

 Hamiltonian, if the family 

߮௧:M→M of diffeomorphisms of M associated to the vector field is a  

symplectictransformation for each t. 

Proposition (4-1-11): 

Let (M, ߱) be a symplectic manifold. The flow of a vector field X consists of 

symplectic transformations,if and only if the vector field X is locally 

Hamiltonian. 

Lemma (4-1-12): 

Let X be any vector field on a symplectic vector space (V, ߱). If X is 

Hamiltonian, then thelinear map DXv : V →V is skew symplectic for all points 

v∈ V . 
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Proof: 

Let X be a Hamiltonian vector field with Hamiltonian function h. By definition, 

we have inevery point v ∈ V 

߱(X௩,w) = dh௩(w) for allw ∈ V . 

We differentiate both sides as a function of v ∈ V  in the direction of u and find 

߱(DX௩(u),w) = D2h௩(u,w) . 

Here D2h௩ is the Hessian matrix of second derivatives in the point v. Since 

second derivativesare symmetric, this expression equals 

D2h௩(u,w) = D2h௩(w, u) = ߱(DX௩(w), u) = − ߱(u,DX௩(w)) . 

Lemma (4-1-13): 

A linear vector field is Hamiltonian, if and only if it is skew symplectic, i.e. if 

and only if 

߱(v,Aw) = − ߱(Av,w) for all v,w∈ V . 

Proof: 

 Let X be a Hamiltonian vector field with Hamiltonian function h. In the 

previous lemma,we have already shown the identity 

 ߱(DX௩(u),w) = − ߱(u,DX௩(w)) . 
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To differentiate the linear vector field X௩ = Av in the direction of w, we note 

DX௩(u) =lim௧→଴
୅(௩ା୲୳)

୲
= Au 

Inserting this result, we find 

߱(Au,w) = ߱(DX௩(u),w) = − ߱(u,DX௩(w)) = − ߱(u,Aw) 

for all u,w ∈ V so that the endomorphism A is skew symplectic. 

Conversely, let A be skew symplectic. We introduce the function 

h(v) =ଵ
ଶ ߱(Av, v) 

on V . We claim that then the linear vector field X௩= Av is the symplectic 

gradient of thefunction h and thus symplectic. Indeed,by the Leibniz rule for the 

bilinear pairing givenby ߱(A ·,·〉, we find 

〈dhݒ, u〉 =ଵ
ଶ(߱(Au, v) + ߱(Av, u)) =ଵ

ଶ(−߱(u, Av) + ߱(Av, u)) = ߱(Av,u) 

Lemma (4-1-14): 

Let X be any vector field on a symplectic vector space (V, ߱). Then X is 

hamiltonian, if andonly if the linear map DX௩ : V → V is skew symplectic for all 

points v ∈ V. 

Proof: 

Assume that the vector field X is Hamiltonian. Then the statement that DX௩ is 

skewsymmetric has already been shown. 
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Conversely, suppose that DX௩ is skew symplectic for all v ∈ V. Then consider 

the function 

h(v) =         ߱(X௧௩  ,  ݐ݀(ݒ

on V . Then h is a Hamiltonian function for X, since we have for all u ∈ V 

〈dhݒ, u〉 =            ߱(DX௧௩(ݑݐ) , , X௧௩)߱ + (ݒ  dt(ݒ

, (ݑ)DX௧௩ݐ)           ߱=   , X௧௩)߱ + (ݒ  dt(ݒ

, X௧௩ +(ݒ)DX௧௩ݐ)           ߱ =   dt((ݑ

 =߱(       ௗ
ௗ௧

,X௧௩ݐ) ((ݑ  =  ߱(X௩ ,  (ݑ

  

1

0

1

0

1

0

1

0

1

0
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Section (4-2): Poisson manifolds and Hamiltonian systems 

We use the symplectic gradient Xf that is associated to any smooth function f to 

endow the(commutative) algebra of smooth functions on a symplectic manifold 

with additional algebraicstructure. 

Definitions(4-2-1): 

Let k be a field of characteristic different from two. 

(1)  A Poisson algebra is a k vector space P, together with two bilinear 

products · and {−, −},with the following properties 

(i) (P, ·) is an associative algebra. 

(ii) (P, {−, −}) is a Lie algebra. 

(iii)  The bracket {·, ·} provides for each x ∈ P a derivation on P for the 

associativeproduct: 

{x, y · z} = {x, y}z + y{x, z}. 

The product {·, ·} is also called a Poisson bracket. Morphisms of Poisson 

algebras arek-linear maps Φ : P → Pᇱ that respect the two products,  

{ Φ(v), Φ(w)} = Φ({v,w}) 

And   Φ(v) · Φ(w) = Φ(v · w) for all v,w∈ P. 

(2)  A Poisson manifold is a smooth manifold M with a Lie bracket{−, −} : 

Cஶ(M) × Cஶ(M) → Cஶ(M) 

such that the algebra of smooth functions (Cஶ(M), {−, −}) together with the 

pointwiseproduct of functions is a (commutative) Poisson algebra. A 
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morphismof Poisson manifoldsis a smooth map Φ : M → Mᇱ such that the linear 

map 

Φ∗ : Cஶ(M0) → Cஶ(M) is amorphism of Poisson algebras.  

Examples (4-2-2): 

(1)  Every associative algebra (A, ·) together with the commutator 

[x, y] = x · y − y · x 

has the structure of a Poisson algebra. This Poisson bracket is trivial, if the 

algebra iscommutative. 

(2)  Consider the associative commutative algebra A = Cஶ(M) of smooth 

functions on asmooth symplectic manifold (M,߱). We use the symplectic 

gradient to define the followingPoisson bracket 

{f , ݃} = − 〈݀௚ , ݔ௙〉= ߱(X௙,X௚) 

for f, ݃ ∈ A. From the last equation in observation(4.1.10), we find in local 

Darbouxcoordinates 

{f, g} = ݀௚ (X௙) = డ௚
డ௉೔

డ௙
డ௤೔ −  డ௚

డ௤೔ 
డ௙
డ௉೔

 

One should verify that this really defines a Poisson bracket on Cஶ(M,ℝ). 

More generally,one has in local coordinates 

{f , ݃} = ߱୧୨
௜߲݃ ୨߲f , 

where ߱୧୨is the inverse of the symplectic form. The corresponding tensor 

for a generalPoisson manifold need not be invertible. 



80 
 

(3)  One can show that a diffeomorphismΦ : M → N of symplectic manifolds 

is symplectic,if and only if it preserves the Poisson bracket, i.e. 

{Φ∗f,Φ∗݃} = Φ∗{f, } for all f, ݃ ∈ Cஶ(N, ℝ) . 

Observations(4-2-3): 

(1)  We discuss Poisson manifolds in more detail. For any smooth function  

h ∈ Cஶ(M) on aPoisson manifold M, the map 

{h, −} : Cஶ(M) → Cஶ(M) 

f   ⟼{h,f} 

is a derivation and thus provides a global vector field X୦ ∈ vect(M) with 

  X୦(f) ≡df(X୦) = {h, f} . 

We can consider its integral curves; thus any function on a Poisson 

manifold gives a firstorder differential equation and thus some 

“dynamics”. 

(2)  Let ߮ : I → M be an integral curve for the Hamiltonian vector field X୦, 

i.e. 

  ௗఝ
ௗ௧

 | ୲ୀ୲బ =  X୦(߮(ݐ଴)) 

Let f∈ Cஶ(M,ℝ) be a smooth function on M. Then f ∘ ߮ : I → ℝ is a real-

valuedsmooth function on I. We compute its derivative: 

ௗ
ௗ௧

f∘ ߮(t) = df(ௗఝ
ௗ௧

 = df(X୦) | ఝ୲ = {h, f}(߮(t)) . 
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For this equation, the short hand notation 

 ݂̇= {h, f} 

is in use. 

This motivates the following definition which provides an alternative description 

of classicalmechanical systems with time-independent configuration space in 

terms of a single real-valuedfunction. 

Definitions (4-2-4): 

(1)  A time-independent generalized Hamiltonian system consists of a Poisson 

manifold(M, {·, ·}), together with a function 

h :M→ ℝ, 

called the Hamiltonian function. The manifold M is called the phase space 

of the system.The integral curves of the Hamiltonian vector field X୦ are 

called the trajectories of thesystem. The family ߮௧ of diffeomorphisms 

associated to the Hamiltonian vector field X୦ iscalled the phase flow of the 

system. The algebra of smooth functions on M is also calledthe algebra of 

observables. 

(2)  A time-independent Hamiltonian system consists of a symplectic 

manifold (M, ߱), togetherwith a function 

h :M → ℝ, 

We consider M with the Poisson structure induced by the symplectic 

structure ߱. 
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Remarks (4-2-5): 

(1)  Since the Poisson bracket is anti -symmetric, {h, h} = 0 holds. Thus the 

Hamiltonian functionh itself is a conserved quantity for the Hamiltonian 

dynamics generated by it. Moregenerally, a smooth function  

f∈ Cஶ(M, ℝ) on a Poisson manifold is conserved, if andonly if  

{h, f} = 0. Two functions f,݃ on a Poisson manifold are said to Poisson-

commuteor to be in involution, if {݂, ݃} = 0 holds. 

(2)  Suppose that two smooth functions ݂, ݃ on a Poisson manifold are in 

involution with theHamiltonian function h, 

{h, f} = 0 and {h, ݃} = 0 . 

Then the Jacobi identity implies 

{h, {݂, ݃}} = −{݃, {h, ݂}} − { ݂, { ݃, h}} = 0 . 

Put differently, if ݂ and g are conserved quantities, also the specific 

combination of theirderivatives given by the Poisson bracket is a 

conserved quantity. 

Conserved functions thus form a Lie subalgebra and even a Poisson 

subalgebra, since thePoisson bracket acts as a derivation: 

{h, ݂ · ݃} = {h, ݂} · ݃ + ݂ · {h, ݃} = 0 . 

The Poisson subalgebra of conserved quantities is just the centralizer of h 

in the Lie algebra(Cஶ(M), {·, ·}). 
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Remarks (4-2-6): 

(1) Suppose that M is even a symplectic manifold so that we can consider 

local Darbouxcoordinates. We can apply the equation ݂̇= {h, f} to the 

coordinate functions qi and piand find for the time derivatives of the 

coordinate functions on a trajectory of h: 

ݍ ̇  = డ௛
డ௣೔

 ,  and   p ̇  = డ௛
డ௤೔ 

These equations for the coordinate functions evaluated on a trajectory are 

calledHamilton’s equations for the Hamilton function h. 

(2) In the case of a natural Hamiltonian system, the Hamiltonian is in Darboux 

coordinates 

h(q, p) =ଵ
ଶ

݃௜௝(q)p௜p୨  + V(qi) . 

Hamilton’s equations thus become 

ݍ  ̇  = ݃௜௝(q)p୨ andp ̇  = − డ௏
డ௤೔ 

This includes systems like the one-dimensional harmonic oscillator with 

Hamiltonianfunction 

h(p, q) = ଵ
ଶ௠

pଶ + ୈ
ଶ

qଶ 

and the Hamiltonian function 

h(p, q) = ଵ
ଶ௠

pଶ  −   ୩
|୯|

 

for the Kepler problem. 

 
i 

i i 
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Proposition (4-2-7): 

Let (M, ߱, h) be a Hamiltonian system. For any closed oriented surface ∑ ∈M in 

phase spacefor the integral over the symplectic form is constant under the phase 

flow, 

       ߱  =             ߮௧
∗߱ =              ߱ 

One says that the sympletic form leads to an integral invariant. 

Proposition (4-2-8): (Poincare’s recurrence theorem) 

Let (M, ߱, h) be a Hamiltonian system with the property that for any point  

p ∈ M the orbitࣩ௣ is bounded in the sense that it is contained in a subset  

DM of finite volume. Then for eachopen subset U  M, there exists an orbit 

that intersect the set U infinitely many times. 

Remark (4-2-9): 

The time evolution s : I → M of a particle in a Hamiltonian system (M, ߱, h) is 

given theintegral curve of the hamiltonian vector fieldX௛. This implies 

s(t) = ߮௧(s(0)) 

where ߮௧ : M → M is the phase flow of the Hamiltonian vector field X௛ on M. 

Put differently,we have 

  ߮ି௧
∗ ∘ s(0) = s ∘ ߮ି௧(t) = s(0) . 

We could equally well consider the time evolution of a probability distribution 

on phase spaceM, i.e. of a normalized non-negative top form p ∈ Ω௡(M) with  

 

t (∑)  (∑)  (∑)  



85 
 

n = dimM. At time t, we thenhave a probability density pt∈ Ωଶ௡(M) with 

    ߮ି௧
∗ p௧ = p଴  

Suppose for simplicity that we have p௧ = ௧݂߱ஃ௡ with ௧݂: M → ℝ a smooth 

function and ߱ஃ௡the Liouville volume on M. Then ௧݂ = (߮ି௧)*
଴݂ and thus 

ௗ
ௗ௧

| ೟స೟బ ௧݂ = LX௛ ଴݂ = {h, ଴݂} , 

so that the Poisson bracket also describes the evolution of probability 

distributions. 
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Section (4-3): Hamiltonian dynamics and Lengendre Transform 

 Now we will discuss time dependent Hamiltonian dynamics. 

Observations(4-3-1): 

(1) We want to consider time dependent Hamiltonian systems. To this end, we 

consider asurjective submersion  : E → I with I  R an interval and require 

for each t ∈Ithefibre Et = ିߨଵݐ E to be a symplectic manifold. The manifold 

E is called the evolution space of the system. 

(2) Since the evolution space E is odd-dimensional, it cannot be a symplectic 

manifold any longer. Rather, E is pre-symplectic manifold of rank dimE − 1. 

It has the property thatthe projection of ker߱ to I is non-vanishing. 

This has generalizations to field theory: in this case, it has been proposed to 

considerpresymplectic manifolds with higher dimensional leaves. 

(3) By the slice theorem, there exists a foliation of evolution space with one-

dimensionalleaves. We require that the integral curves of the dynamics we 

are interested in parametrizethese leaves. A presymplectic formulation has 

been proposed in particular to deal with systemsin which no natural 

parametrization is known, e.g. for massless relativistic particles. 

Examples(4-3-2): 

(1) We take a symplectic manifold (M,߱଴) and obtain a presymplectic manifold 

I×M withpresymplectic form pݎଶ
∗߱଴. This cannot be the correct 

presymplectic form, since the leavesof the presymplectic manifold  

(I × M, ߱଴) are submanifolds of the form I × {m} withm ∈ M, i.e. have 

trivial dynamics on the space M. of leaves. 
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(2) For any smooth function 

h : I ×M → ℝ 

we consider 

߱௛  = pr*߱଴ − dh ∧ dt ∈ Ωଶ(I ×M) . 

This form is closed as well and has rank dimM. Thus any choice of 

function h endowsI ×M with the structure of a pre-symplectic manifold  

(I ×M, ߱௛). 

(3)  Consider local Darboux coordinates (qi, pi) on M. Then 

߱଴= ∑ ௜݌݀ ∧ ௜௡ݍ݀
೔సబ

 

and, with the summation convention understood, in local coordinates 

(qi, pi, t) on I ×M 

߱௛ ௜݌݀ =  ∧ ௜ݍ݀    −  డ௛
డ௣೔

௜݌݀  ∧ ݐ݀ −  డ௛
డ௤೔ ௜ݍ݀  ∧  ݐ݀

It is easy to check that the nowhere vanishing vector field X௛ 

(X௛)| (೛,೜,೟) =   
߲ℎ
௜݌߲

| (೛,೜,೟)

߲ℎ
௜ݍ߲  −  

߲ℎ
௜ݍ߲ | (೛,೜,೟)

߲ℎ
௜݌߲

   + 
߲
ݐ߲

 

Obeys ,   

௑೓ߡ       ߱௛ = 0 

and thus is tangent to the leaves. 
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Definitions(4-3-3): 

(1) A  time dependent Hamiltonian system consists of a symplectic manifold 

(M, ߱଴) and asmooth function 

h : I ×M → ℝ, 

called the (time-dependent) Hamiltonian function. Introduce the vector 

          fieldX෩௛ ∈ vect(I ×M) in p ∈ I ×M as the sum 

 X෩௛= X௛ + డ 
డ௧

 

where X௛ is the symplectic gradient of h on the slice. The integral curves of 

X෩௛ describethe physical trajectories for the Hamiltonian function h. 

(2) The pre-symplectic manifold (I ×M෩ , ߱ −dh∧dt) is called evolution space of 

the system.The space of leaves is called the phase space of the system. It has 

the structure of asymplectic manifold. A leaf of the foliation is an 

unparametrized trajectory. The imagesof trajectories in evolution space E in 

phase space are called (Hamiltonian) trajectories. 

Observations(4-3-4): 

(1) Consider a Hamiltonian system (M, ߱, h). Choose local Darboux coordinates 

(p, q) on Mand the related local Darboux coordinates (t, p, q) on evolution 

space E = I ×M. 

(2) The phase flow for h 

߮௧ : M → M 
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on M leads to a family of diffeomorphisms on evolution space E which 

parameterize theleaves 

ᇱݐ ↦ (߮௧(x), ݐᇱ + t) . 

We already know that the one-forms Θ and ΘE are globally defined, if M is a 

cotangentbundle. We will assume from now on that the symplectic form is 

not only closed but even exactand that a globally defined one-form 

Θ ∈ Ωଵ (M) has been chosen such that dΘ = ߱. 

Proposition (4-3-5): 

Let Υଵ and Υଶ be two curves in evolution space E that encircle the same leaves. 

Then we have 

   Θா =      Θா 

    

The one-form Θா is called Poincare-Cartan integral invariant. 

Proof: 

Let ∑ be the surface formed by those parts of the leaves intersecting 

Υଵ(and thus Υଶ) that is bounded by the curves, ߲ ∑ = Υଶ − Υଵ. Such a surface is 

called a flux tube. Stokes’ theoremimplies 

   Θா =    Θா  =        Θா =     dΘா  =        ωா = 0 

since ∑ consists of leaves whose tangent space is by definition the kernel  

ker ωா of thepre-symplectic form on evolution space.  

  


  

(∑)  ∑  ∑  
1


2


1


2

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Observations(4-3-6): 

(1)  We now specialize to curves in evolution space M at constant time, 

Υ௜ ∈ ଵ݌ 
ିଵ1 (ݐ௜), to find 

 Θ௕ =        Θ  

 

(2) Consider now an oriented two-chain ∑ ∈ M such that  ߲ ∑ =Υ . 

Stokes’ theorem thenimplies that  

ω =          dΘ =          Θ =            Θ  

 

is invariant under the phase flow. We have derived this result earlier. 

In the following we will discuss the Legendre Transform. 

Observations(4-3-7): 

(1) Let V be a real vector space and U  V be a convex subset, i.e. with 

x, y ∈ U, also allpoints of the form tx + (1 − t)y with t ∈ [0, 1] are contained 

in U. In other words, alongwith two points x, y, the subset U also contains 

the line segment connecting x and y. 

(2)  If dimℝ V = 1, the situation is more specifically that U is an interval, and the 

implicitequation fixing x in terms of p becomes ݂ᇱ(x) = p. 

Definition (4-3-8): 

Let U  V be a convex subset of a real vector space. Given a convex function 

f : U → ℝ, thereal-valued function ݃ defined on a subset of V*by 

݃(p) = ݉ܽݔ௫∈௎〈݌, 〈ݔ −  (ݔ)݂ 

is called the Legendre transform of f. 

1


2



∑  


∑  


∑  


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Remarks (4-3-9): 

(1)  Consider as an example the function  ݂(ݔ) = m ௫ഀ

ఈ
 

on ℝ with m > 0 and 1 <ߙ. Then forfixed p ∈ ℝ, the function 

F(p, x) = px − m௫ഀ

ఈ
 

has in x an extremum for p = mݔఈିଵ. Hence we find for the Legendre 

transform 

݃(p) = ݉ି భ
ഀషభ

୮ഁ

ఉ
withଵ

ఈ
 + ଵ

ఉ
 = 1 

As special cases, we find with  2 = ߙ for the function 

f(x) =௠
ଶ

x2the Legendre transform 

݃(p) = ୮మ

ଶ௠
,     and for m = 1 for the function 

௫  = (ݔ)݂
ഀ

ఈ
the Legendre transform݃(p) = ୮

ഁ

ఉ
 

with    ଵ
ఈ
 + ଵ

ఉ
 = 1  

(2) The definition of the Legendre transform via a maximum implies the 

inequality 

F(x, p) = xp–f(x) ≤ ݃(p) 
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for all values of x, p where the functions f and g are defined. A function 

and its Legendretransform are thus related by 

px ≤ f(x) + ݃(p). 

Applying this to the second example just discussed, we find the classical 

inequality 

Px ≤ ଵ
ఈ

ఈ  +  ଵݔ
ఉ

pఉ ,withଵ
ఈ
 + ଵ

ఉ
 = 1 

This is Young’s inequality. It can be used to prove Holder’s inequality 

   ||݂݃||ଵ  ≤ ||݂||ఈ  .   ||݃||ஒ 

wheref∈ L஑(M) with norm 

||݂||ఈ =(         |݂|ఈ)
భ
ഀ  

and similarly  ݃ ∈ Lஒ(M) and M a measurable space. 

Observations (4-3-10): 

(1) Given a Lagrange function l : I × TM → ℝ, we define the Legrendre 

transformation 

Λ : I × TM  → I × T* M 

for (t, q, qt) ∈ I × TqM as the element (t, Λt,q(qt)), where the element Λt,q(qt) 

∈ T୯
∗ M isdefined by 

  〈Λ௧,௤(ݍ௧), ߱〉 = ௗ  
ௗఢ

| ചసబ ,ݐ)݈  ,ݍ ௧ݍ +  ߳߱) =  డ௟
డ௤೟

೔ ߱௜ 

M

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(2)  In many cases of interest, Λ is even a global diffeomorphism of TM to 

T*M. Then onecan work with the phase space T*M instead of the 

kinematical space TM. 

We will now restrict to this case. Then the function 

h : I × T*M → ℝ 

defined by the Legendre transform of l: 

 

   I × TM
               ஃ                
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ I × T∗M 

 

 

 

 

can be used as a Hamiltonian function for a time-dependent Hamiltonian system 

on I ×T*M. 

Theorem (4-3-11): 

Let M be a smooth manifold. Letl : I × TM → ℝ, be a time-dependent 

Lagrangian function such that the Legendre transform exists as a 

globaldiffeomorphism 

   Λ : I × TM → I × T*M 

ℝ 

ℎ ݈ 
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of manifolds fibred over the interval I. Let 

h : I × T*M → ℝ 

be the Legendre transform of l: 

I × TM
                 ஃ               
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ I × T∗M 

    

 

 

 

This sets up a bijection of Lagrangian and Hamiltonian systems with a bijection 

of classicaltrajectories: A section  : I → I ×M is a solution of the Euler Lagrange 

equations for l, if andonly if the Legendre transform of its jet prolongation 

Λ ∘ j1 ߮: I → I × TM → I × T*M 

obeys the Hamilton equations for h. 

  

ℝ 

ℎ ݈ 
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