pao I Gy A
Sudan University of science and Technology

College of Graduate Studies

Mathematical Structure of Analytic Mechanics
dglilail) \Slall 1) ol

Thesis Submitted in partial Fulfillment for the Degree of M.SC. in
Mathematics

BY:
Khalifa Abd ALmajeed Mohammed ALSadig

Supervisor:

Dr. Emad ELdeen Abdallah AbdelRahim

2016



Dedication

Tomy ...
Father ,
Mother,
Brothers,
Sisters,
Teachers,

And to lovely friends



Acknowledgements

Thanks first and last to Allah who enabled to conduct this by grace
of him and denoted strength and patience.

Thanks to my supervisor Dr. EmadELdeenAbdallah Abdel Rahim
for this advices and help.

Also thanks are due to all teachers in the Department of

Mathematics.



Abstract
In this work, we try to set up a geometric setting for Lagrangian
systems that allows to appreciate both theorems of Emmy Noether.
We consistently use differential form and a geometric approach, in this
research, we also discuss electrodynamics with gauge potentials as an
instance of differential co-homology. Also we emphasize the role of

observables with some examples and applications.
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Introduction:

It is true , of course, that physics chooses mathematical concepts for the
formulation of the laws of nature, and surely only a fraction of all mathematical
concepts is used in physics. It is true also that the concepts which were chosen
were not selected arbitrarily from a listing of mathematical terms but were
developed, in many if not most cases, independently by the physicist and
recognized then as having been conceived be for by the mathematician.

In this research our goal is to discuss the appropriate mathematics to
studying physics, roughly familiar with all classes of theoretical physics, so it is
organized as follows:

Firstly, we discuss the general concepts of Newtonian mechanics, via our
definition of affine space, with some remarks. Also we study the Gelilei space,
and defined the equivalence class of a Galilean structure of Galilean coordinate,
with some remarks, then we study the dynamics of Newtonian systems with
some examples.

In chapter 2, we deal with Lagrangian mechanics, because of this, we
study the basic concepts of the variational calculus and system with constraints
with some observations. We illustrate the definition of Lagrangian systems and
Lagrangian dynamics, the kinematical system, and the concept of a Global
trajectories. We discuss the symmetries. In different descriptions, Noether
identities and natural Geometry with some examples and applications.

In chapter 3, we give an explaining of Maxwell’s equations in terms of the
exterior algebra. We study the Minkowski space with remarkable points. Also
we discuss the electrodynamics, and investigate some of its comments on

Minkowski space, and some applications in term of gauge theory.

VI



Finally, we discuss some notions of the linear algebra, and the
mathematical structures of the pre-symplectic manifolds. We study the Poisson
manifolds, and Hamiltonain systems with some applications. Also, we describe
the Hamiltonain dynamics and Lengendre transform with some examples and

applications.

VIl



Chapter (1)

Newtonian mechanics

Section (1-1): Galilei space

In classical physics, the idea that there exists empty space should be

accepted as central.

Abasic postulate requires empty space to be specially homogeneous. Also,
not direction should bedistinguished: space is required to be isotropic. A similar

homogeneity requirement is imposedon time.

The mathematical model for these requirements is provided by the notion

of an affine space.
We formulate it over an arbitrary fieldk .
Definition (1-1-1):

An affine space is a pair(A ,V),consisting of a set A and a k —vector
space V together with anaction of the abelian group (V,+)underlying V on the

set A that is transitive and free.
We comment on terms used in the definition:

Remarks (1-1-2):

(1) In more detail, an action of the abelian group (V,+)on the set A is a map

oV xA A



Such that
p(v+a), a) = p(v,p(a), a))fOI‘ allv,weV,ac A

(2) An action is called transitive, if for all p,geA existsveVsuch that

p(v,p)=q; anaction is called free, if this veV is unique.

(3) We call dim,V the dimension of the affine space Aand write dimA=dim, V

We alsosay that the affine space (A ,V )is modelled over the vector spaceV .

(4) We introduce the notation p (v, p)= p +v. If Vis the unique vector in V such
that g=p+v,we writeq—p=Vv. We also say that Ais a(V,+)-Torsor or a
principal homogenous spacefor the group (V,+). The group (V,+)is also called

the difference space of the affine space.

(5) While a vector space has the zero vector as a distinguished element, there is

no distinguishedelement in an affine space.

In the application to classical mechanics, the field k is usually taken to be
the field ofreal numbers, k =R the difference of three positions in space can be
described by three realcoordinates. In fact, for all practical purposes, one might
restrict to rational coordinates, butmathematically it is convenient to complete
the field. The transitive action accounts for special homogeneity. The fact that an
affine space does not have a distinguished element is a nontrivial feature of
Newtonian mechanics: historically, there are many views of the world with
adistinguished point in space, including the Garden of Eden, Rome, Jerusalem,

the sun of oursolar system .

We also need morphisms of affine spaces:



Definition (1-1-3):

Let(A,,V,) and (A,,V,)be affine spaces modelled over vector spacesV,,V,

over the same fieldk. A morphism(A_,V,)— (A,,V,)or affine map is a map
oA >A,

for which there exists a k-linear map A :V, — V,such that

o(p)-9¢(d)=A,(p-q) forall p,geA,
Remarks (1-1-4):

(1) Note that the (V,+)-equivariantmorphisms are those morphisms for which

A, =idV .

(2) Any two affine spaces of the same dimension over the same vector space are
isomorphic,but not canonically isomorphic.

(3) The choice of any point p e A induces a bijection p(-, p):V — A of sets. As

a finite-dimensional R —vector space,V has a unique topology as a normed
vector space. By consideringpre-images of open sets in V as open inA, we
get a topology on Athat does notdepend on the choice of base point. We
endow Awith this topology.

(4) We will see in the appendix that affine space A" is an n-dimensional

manifold. The choiceof a point pe Aprovides a natural global coordinate

chart.



Definitions(1-1-5):

(1) Aray Lin a real vector space Vis a subset of the form L=R_,vwith

veV \{0}.

(2) A halfplane in a real vector spaceV is a subset H —V such that there are
two linearlyindependent  vectorsv,w eV with H=R,+R,w. The

boundary of a halfplane is theonly line through the origin contained in it.

(3) A rotation group for a real three-dimensional vector space V is a subgroup
D c GL(V)Wwhich acts transitively and freely on the set of pairs consisting

of a halfplane and a rayon its boundary.
Proposition (1-1-6):
For any three-dimensional vector space, the map

{Scalar products on V }/R_, — Rotation groups

which maps the scalar product b to its special orthogonal group SO(V,b) is a

bijection.
Definitions(1-1-7):

(1) Given a rotation group D, we call an orbitl =V \{0}a unit length.

(2) Given a unit length, we define a norm on V as follows. We first remark that
any rayintersects a given unit length lin precisely one point. If the ray
throughw €V intersectslinvelando=Av ~ withA>0 we define the

normon Why|w|= 4.



Definitions(1-1-8):

(1) An n-dimensional Euclidean space E"is an n-dimensional affine space A"
together withthe structure of a Euclidean vector space on the difference

vector space.

(2) As morphisms of Euclidean spaces, we only admit those affine maps ¢ for

which the linear mapA, is an isometry, i.e. an orthogonal map.

(3) The group of automorphisms of a Euclidean space is called a Euclidean
group.

Proposition (1-1-9):

The Euclidean group of a Euclidean vector space E" is a semi-direct
product of the subgroup V of translations given by the action of Vand the

rotation group O(V,b):

Aut(E)=V =0(V,b)

n(n-1)

It is a non-compact Lie group of dimensionn+

The Euclidean group is thus a proper subgroup of the affine group.
Definitions(1-1-10):

(1) A Galilei space(AV,t,(-,"}) consists of

(i) An affine space A over a real four-dimensional vector spaceV . The elements

of Aare called events or space time points.



(i) The structure of a Euclidean vector space with positive definite scalar

product <-,->on kert.
(2)t(a—b)eR iscalled the time difference between the events a, b € A.

(3) Two events a, b € A with t(a—b)=0 are called simultaneous. This gives

an equivalencerelation on Galilei space. The equivalence class
Cont(a)={be Alt(b—a)=0}

Is the subset of events simultaneous toac A.

Remark(1-1-11):

As the morphisms of two Galilei spaces(A,,V,,t,,(+:)1)and(A,V,.t,,(-)2) we

consider thoseaffine maps
p:A A,
which respect time differences
t,(b—-a)=t,(p(b)—¢(a)) forall a,b,e A,

and the Euclidean structure on space in the sense that the restriction

A, :kert, — kert, is anorthogonal linear map.

Remarks(1.1.12):

(1) The group of automorphisms of a Galilei space is a proper subgroup of the

affine group ofthe underlying affine space.



(2) Two Galilei spaces are isomorphic, but not canonically isomorphic. The

automorphismgroup Aut(G) of the Galileian coordinate space G is called

the Galilei group.

(3) We consider three classes of automorphisms in Aut(G):

(i) Uniform motions with velocityv e R*:
g, (t,x)=(t,x +vt)

(ii) Special translations by x,€ R3combined with time translations by t,€ R:
g, (t,x)=(t +ty,x +X,)

(iii) Rotations and reflections in space withl €O (2):

One can show that Aut(G) is generated by these elements. It is a ten-dimensional

non-compactLie group.
Definitions(1-1-13):
(1) Let X be any set and

p:X -G

be a bijection of sets. (On the right hand side, it would be formally more correct
to write the set underlyingG.) We say that ¢provides a global Galilean

coordinate systemon X .

(2) We say that two Galilean coordinate systemsd,,¢,: X — G are inrelative

uniform motion, if

¢ o, eAut(G) .



Any global Galilean coordinate system ¢:X — G endows the set X with the

structure ofa Galilean space over the vector space [J *:

we define on X the structure of an affine space over [J *by requiring ¢to be an

affine map:
X +v =¢t(g(x)+v )forallx eX v el *.

Definitions(1-1-14):

(1) A Galilean structure on a set X is an equivalence class of Galilean

coordinate systems.

(2) Given a Galilean structure on a set X , any coordinate system of the defining
equivalenceclass is called an inertial system or inertial frame for this Galilean

structure.
Remarks (1-1-15):

(1) By definition, two different inertial systems for the same Galilean structure

are in uniformrelative motion.

(2) There are no distinguished inertial systems.



Section (1-2): Dynamics of Newtonian systems

Definitions(1-2-1):

(1) A trajectory of a mass point in R3 is an (at least twice) differentiable map
@: 1> R3

with I cR an interval. To simplify our exposition, we will from now on restrict

to smoothtrajectories, i.e. trajectories that are infinite-many times differentiable.

(2) A trajectory of N mass points in R3 is an N-tuple of (at least twice)

differentiable maps
pW: | - R3

with | cRan interval. Equivalently, we can consider an (at least twice)

differentiablemap
1= (R3V.
(3) The velocity in tyelis defined as the derivative:
o) =2 | o
(4) The acceleration in tye | is defined as the second derivative:

d?¢
dt2| to

@ (to) =
(5) The graph

{(t,x() |t eI} cR x R3



of a trajectory is called the world line of the mass point. We consider a world

line as asubset of Galilean coordinate space G.

The following principle is the basic axiom of Newtonian mechanics. It cannot be
derivedmathematically but should rather seen as a deep abstraction from many

observations in nature.
We first discuss the situation in a fixed coordinate system:
Definitions(1-2-2): [Newtonian determinism]
(1) A Newtonian trajectory of a point particle
@: 1 - R3, with | = (t, t1) cR

is completely determined by the initial position o(to) and the initial velocity

d
?‘P| t=t,

(2) In particular, the acceleration at t, is determined by the initial position and
the initialvelocity. As a consequence, there exists a function, called the force
field,

FIRANx RN xR — R3N,

where the first factor are the three special coordinates of N particles, the second
aretheir velocities and the third is time, such that for all Newtonian trajectories

theNewtonian equation

d% i _ i i . .
—aX =X =F'(xx,t),i=1,...,N

10



Definition (1-2-3):

Let A be a Galilei space, | an interval of eigentime and ¢: 1 = A a smooth
function. Then gis called a physical motion if for all inertial frames ¥: A - G

the function o ¢ : | — Gisthe graph of a Newtonian trajectory.
Remarks (1-2-4):

(1) We immediately have the following consequences of the Newtonian principle
of relativity.

(i) Invariance under time translations: the force F does not depend on time t.

(i1) Invariance under special translations: F depends only on the relative
coordinates ¢'- .

(2) We deduce Newton’s first law: a system consisting of a single point is
described in aninertial system by a uniform motion (t, xo +t V). In particular, the

acceleration vanishes,x = 0.

In the following we will discuss some examples:

Examples (1-2-5):

(1) The harmonic oscillator is defined by the potential
V(X,Y, 2) :21 Dx

The force experience by a particle with x-coordinate x is then in x-direction and
equals—Dx, i.e. it is proportional to the elongation. The equations of motion in

one-dimensionread

mx = —Dx

11



They have the general solution ¢(t) = Acos(wt— ¢o) with that have to be

determined from the initial conditions.

(2) We just assumed that a force F = F(x) depending only on coordinates is
described as thegradient of a potential function U. One can investigate what

force fields can be describedin this way.

A force field is called conservative, if for any trajectory ¢: (ta, t,) — RNthe so
calledwork integral
b t,
j’dgo: feooe
a t,
only depends on the end points ¢(t;) and ¢(t,) and not on the particular choice of
trajectoryconnecting them. Then, there exists a potential that is unique up to

unique isomorphism.

(3) To write down Newton’s law of gravity, we consider a potential energy

depending only onthe distance r from the center of gravity:

ko
U(xe, Xo, X3) = — with r=/xf +x} + x3

<p:-gradU:rk—3<p

This potential is central for the description not only of macroscopic systems like
a plane turning around the sun; in this case, the potential described the
gravitational force exertedby the sun. It also enters in the description of
microscopic systems like the hydrogen atomwhere the potential describes
electrostatic force exerted on the electron by the proton thatconstitutes the

nucleus of the atom.

12



Observation (1-2-6):

Consider a mechanical system given by a force F(x,x , t) which we suppose right
away to begiven by a potential of the form

V:R3 >R

and thus independent of t and x° . We have to study the coupled system of
ordinary differentialequations

¢ = - grad V(¢) (1-1)

of second order. For any trajectory ¢:1 — R3that is a solution of (1-1) we
consider the realvaluedfunction

e:l-R

e(t) == |lp@) |17 + V(e ()

For its derivative, we find

d A .

a E(t) :<(p ’(p>+ <g"”adv ’(p>:0
where in the last step we use the equation of motion (1-1).
Lemma (1-2-7):

The system (1-1) is equivalent to the following system of ordinary

differential equation of firstorder for the functiony: | -» R®

Y1 =Y, y2=—grad, V (y1, 3, ¥s)
Y3=Ya, Ya =—grad,.V(yi,ys, ¥s)

Y5=Ye Yo =—0rady.V (¥, y3, ¥s)
The solutions of this system are called phase curves.

13



Observation (1-2-8):

This suggests to introduce R® with coordinates X, y, z, Uy, Uy, Uz This is
space is sometimes calledthe phase space Pof the system. We equip the phase

space P with the energy function
E 1.2 2 2y 4V
(X17 X2, X3, le, uxz , ux3) > ( le , uxz ! ux3 ) (x17 X2, x3)

It should be appreciated that the first term in E is a quadratic form.

On phase space, we consider the ordinary differential equations

dxt duxi
d—t = uxi T4 =- gradiV (x17 X2, x3) (1-2)

The solutions of (1-2) are called phase curves. They are contained in subspaces

of P of constantvalue of E.
Observations(1-2-9):

(1) Assume that for any point M € Pa global solution xy(t) of (1-2) with initial

conditionsM exists. This allows us to define a mapping
gt : P —= Pby g¢(M) = xum(t).

(2) Standard theorems about ordinary differential equations imply that g; is a
diffeomorphism,i.e. a differential map with differentiable inverse mapping.

(3) We find g¢, 0 9¢, = 9¢, + r,and thus a smooth action

g:RxPoP

(tM) = g(M)

called the phase flow.

14



Chapter (2)

Lagrangian mechanics

Section (2-1):Variational calculus and system with constraints
We begin this section by studying the variational calculus.
Observations(2-1-1):

(1) Our objects are trajectories, i.e. smooth functions ¢ : I - RN, | = [ty, t,] on
an intervalwith values in RN. We say that the trajectory is parameterize by its
eigentime in |. Lateron, we will consider more general situations, e.g. smooth
functions on intervals with valuesin smooth manifolds as well. Possibly after
choosing additional structure on RN, we canassociate to each such function a
real number. For example, if we endow RN with thestandard Euclidean
scalar product (-, -) with corresponding norm || - || : RN — R, we candefine

the length of a trajectory by:

Li(p) = f ol de
or its energy by |
Lo(e) = f llgl12de
|
Such scalar valued functions on spaces of trajectories are also called functionals.

(2) Like the length of a trajectory, the functional we are interested in depend on
the trajectory ¢ and its derivatives, i.e. on positions and velocities. Positions

take their values inpositions space, in our case

15



RNwith Cartesian coordinates (x', ..., X") .

We also need coordinates for derivatives of a trajectory ¢ with respect to its

eigentime.To this end, we introduce the large space
J(RY) = RN@RN

with Cartesian coordinates (x', ..., X", x2,

., x). There is a natural injection
RN o JYRN)

XY - L XN, L 0).

We now iterate this procedure. This will not only be natural from a mathematical
point of view, but also give us a natural place for second derivatives with respect

to eigentime, i.e. a place for accelerations.

Since the equations of motion are second order differential equations, we

continue by adding a recipient for the second derivatives:
F(RN) = RN@RVORN with coordinates (x!, x!, x},) .

We also use the abbreviation x! = x/. If we continue this way, we get a system

of vector spaces for derivatives up to order
Joc (RN) ~ (RN)OC+1

with embeddings]® < J*t1(RN)

We call J**1(RN) the jet space or order .

(3) Let us now explain in which sense the spaces we have just constructed are

recipients for the derivatives of a smooth trajectory

16



@:1-> RN,

For any n € Nand i =1, .. .N, we can consider the i-th component of the

n-th derivative of the trajectory ¢ with respect to eigentime:

an i
arn ®

which is a smooth function on I. For any <€ N, we can combine these functions

to a single function
j9 11> J*RY

with components given by

(ep)s = =o'
We call this function the prolongation of the trajectory.
(4) We now formulate the variational problem we wish to solve:
Given a function like length or energy
I J*(RY) - R
find all smooth trajectories
@: 1> RN

which extremize the function

L(g) = _[ (% p)dt

17



This problem is not yet correctly posed: if we minimize the length on all

trajectories, theconstant trajectories are obvious and trivial minima.
Definition (2-1-2):

Letl:J'(RY) > R , be a real-valued function on jet space of order 1. Denote by

E(I) the RN-valued function on thejet space of order 2:
E(): (RY) - R
with components

a

21,
dxt ) Xp+1

i—
E(D)= j B oxidxh

We call the operator that associates to | the function E(l) the Euler-Lagrange

operator.
Remarks (2-1-3):

(1) We can rewrite the Euler-Lagrange operator as follows:

the total derivative operator

;@
D =25 X1 507

B
maps smooth functions on J*(RN) to smooth functions on J**1(RN). We then

have

9 poL
E(l) ~oaxt Daxé

18



(2) For any smooth trajectory, we obtain an RN-valued function on | cR  with

i-th component ¢ — E(l)i > j%¢) = E(1) [¢]

In terms of this function, the derivative of a variational family with respect to the

variationalparametere becomes

= L(¢e) :<J(z) [Pezol 2= c)
Lemma (2-1-4): |
Suppose that the continuous real-valued function
fil=[t, ] >R
has the property that for any smooth function
h:1 >R

vanishing at the end points of the interval, h(t;) = h(t;) = 0, the integral over the

productvanishes,

Then f vanishes identically, i.e. f(t) =0 for all te[ty, t,].

Proof:

Suppose that f does not vanish identically. After possibly replacing fby—f,

we findt" e(t,t)such that f(t")>0. Since f is continuous, we find a

neighborhoodU oft”such that: f (t)>c >0, forallteU.

19



Using standard arguments from real analysis, we find a smooth function h with

support in U such that h|;=1 for some neighborhood U of t"contained in U .

We thus find the inequalities:

[
j fh:f}th%@kw
f U U

contradicting our assumption.

Proposition (2-1-5):

Let L be a functional given on trajectories given by the smooth function
1:3°(RY) >R

Then the trajectory ¢ : 1 - RN is a stationary point for L, if and only if the N

ordinarydifferential equations

E() [¢]1=0

hold. This set of ordinary differential equations is called Euler-Lagrange

equations for the functionl on the trajectory ¢.
Examples (2-1-6):

(1) We introduce so called natural systems of classical mechanics. Endow RN
with the standardEuclidean structure. Choose a smooth function V: RN - R .
As we will see, inpractice it is quite important to allow V to have singularities.
We will not discuss thetype of singularities involved, but rather take the
perspective that in this case, the systemis defined on the manifold obtained from

RN by removing the points at which V becomessingular.

20



Then the system is defined by the following function on the first order jet space:
1(X, X) :% Zliv_l xH)? — V(xH)
The first summand is frequently called the kinetic term, the second summand the

potential term. We compute relevant expressions

al al i
dxt grad; oxt t

and find for the Euler-Lagrange operator
E()' = —grad;V — Dx}
This gives us a system of N equations
x, = —grad;V
which gives the following Euler-Lagrange equations on a trajectory ¢ : | - RN:
Dxi(¢) = ¢* = —grad;V(¢(7))

These are Newton’s equations of motion in the presence of a force given by the
gradientof the potential V. If there is a potential for the forces of a system, all
information aboutthe equations of motion is thus contained in the real-valued

function
|:J(RN) » R

which is also called the Lagrangian function of the system.

(2) Let :[to,t1] = R be areal valued function. The length of the curve:

y={(t,X) :x=@(t) mittp<t<t}c R?

21



is given by

tl
L(y)=+ 1| + @2dt
ty

We thus consider the function

I(X, X) =/1 + x?

To find the Euler-Lagrange equations, we compute

ol al X
—=0 and = L

O0x Ox¢ ’1_'_ x?

and find

0 ol _ Xtt _
—Xp=—3-0
axt axt (1+ X?)E

which reduces to x;; = 0. Hence we get the differential equation ¢ = 0 on the

trajectorieswhich have as solutions ¢(t) = ct+d.
Definitions(2-1-7):

(1) We call a smooth function | : J'RN - R the Lagrangian function of a

classical mechanicalsystem.

(2) Given a Lagrangianl(x', x, t) and a trajectory ¢: | - RN , we call

L(¢) =l d ] ¢ dtthe corresponding action for the trajectory ¢.
|

22
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Observations(2-1-8):

(1) Any local coordinate x' on RN is called a generalized coordinate, x} a
ol

(generalized) velocity. The function on jet space is called the

l
0x¢

IS

generalized momentumcanonically conjugate to the coordinate x'.

oxt

called the generalized force.

(2) A coordinate is called cyclic if the Lagrangian does not depend on it, i.e.
al

dxt
Proposition (2-1-9):

The momentum canonically conjugate to a cyclic coordinate is constant for any

solution of theEuler-Lagrange equations.

Proof:

For any trajectoryp: | — RN | that is a solution of the Euler-Lagrange

equations, we have for a cyclic coordinate X

2 % ojp= 2L ojlp=0
dt dx; oxt

Now we will discuss system with constrain.
Proposition (2-1-10):
Consider the auxiliary function

f=RNxRF - R

24



() 2T + Ty

The additional parameters A € R" are called Lagrangian multipliers. Then the
restriction flyhas a stationary point in xo€ M, if and only if the functionfhas a

stationary point in (Xq,A) for some Ao€ R'.
Proof:

The function fhas a stationary point (Xo ,A0) € RN xRT, if and only if the two

equations hold

_ ot _ oy
0_6x|(x0 o) _g“(xO) and axilxo - Za:ll“% goc(xo)

The first equation is equivalent to xo€ M. The second equation requires the
gradient of f inx, to be normal to M, ensuring that X, is a stationary point of the

restriction f |y.
Observations(2-1-11):

(1)  We now consider the natural system on RN given by a potential

V:RN S R

N

I(X7 Xt) :%Zi=1 (xti)z _ V(x)

that is constrained by unknown forces to a sub-manifold M cRN of dimension N

—r. Weassume that M is given by r smooth functions ge= go (X).

We are only interested in trajectories
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@: 1> RN

withinp ¢ M. In a variational family, only trajectories satisfying the
constraintsg,. (.(t)) =0 for all « =1, ..., r and all ¢, t are admitted. For such a

family, we arelooking for the stationary points of

j [ ojle.dt
|
We introduce Lagrangian multipliers and minimize the functional

f(e,)) = (f oJ'Pe + Tt du gule) ) dt
|

The derivative with respect to € yields the following additional term

T .
Za:l aga d(p(l:' IE=0
X gxt’ de

so that the equation of motions for a trajectory ¢ become

E(I) o j'() = ¢+ grad V(p) =X (2.1)

Axgrad g (¢ )

The right hand side describes additional forces constraining the motion to the
sub-manifoldM. The concrete form of the forces described by the gradients of

the functions g, is, ingeneral, unknown.

(2) We describe the local geometry of the situation in more detail: we consider a

local coordinate

q:M>U- RN
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of the sub-manifold, where U c M is open. We use the embedding M & RN  to

identifyT,M with a vector subspace of T,RN and express the basis vectors as

2 _ox' a

0q%* 0q“ axi

a=1,...,N-r

In subsequent calculations, the notation is simplified by introducing the vector

x€ RN, with coordinates xi, i =1, ...N. We then write for the basis vector of
0 _ Ox
307 = 97 (2.2)

(3) Next, we have to relate the jet spaces J*M and J’RN,. Since they are
designed as recipientsof trajectories and their derivatives, we consider a

trajectory with values in U cM
. 1-UcM.

Using the embedding U — RN, we can see this also as a trajectory @ in RN: The
chainrule yields

ap!_ ox' o

dt 9q® " dt
This is, of course, just the usual map of tangent vectors induced by a smooth
map ofmanifolds, in the case the embedding M  RN. From this, we deduce the
followingexpression for the coordinates x; of J'RN, seen as a function on jet

space J'M:

. . a 1
xt=x{ (g%, qF 1) = ﬁq? (2.3)

and expressed in coordinates g% , g¥on J*M. We find as an obvious consequence
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ox_ ox!
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Similarly, to find the transformation rules for the coordinates x} describing the

secondderivative, we compute the second derivative of a trajectory:

d2p _ 9%xt  doP de“ + Axt d2 %
dt2 ~ 9qPaqe’ dt = dt  9q* dt?

This yields the following expression of the coordinate function x%, on J’RN as a

functionon J°M, in terms of the coordinates g%on J*M:
, , azxi u
xie = xie(@%, qf 1) = @ e t thﬁqt (2.5)

(4) Since we do not know the right hand side of the equation of motion (2.1), we
take the scalarproduct (-, -) in RN with each of the tangent vector (2.2) in T,M.

! aqa ! aqa ! WI Ve

Our goal is to rewrite these equations as the Euler-Lagrange equations for an
actionfunction on the jet space of the sub-manifold J'M. The right hand side is
easily rewrittenusing the chain rule:

av axt _ av

(grad V , ) ax 907 ~ g%

This suggests to take the restriction of V to M as the potential for the Lagrangian

systemon M.

Proposition (2-1-12):
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Suppose a natural system on RNwith potential V(X) is constrained by unknown
forces to asub-manifold M cRN. Then the equations of motion on M are the
Euler-Lagrange equationsfor a Lagrangianl(g, ) on J'M obtained from the
Lagrangian on J'RN by restricting V to Mand transforming the coordinates x; as
in (2.3).

Section (2-2): Lagrangian Systems and Lagrangian Dynamics
We begin with the concepts of Lagrangian systems .
Definitions(2-2-1):

(1) The kinematical description of a Lagrangian mechanical system is given by a
surjectivesubmersion m : E = |, where I c R is an interval of “eigentime”. E is
called the extendedconfiguration space. The fibre 7 '(t) = Efor te | is the space
of configurations of thephysical system at time t. If E is of the form

E = IxM, then M is called the configurationspace.

(2) Global trajectories are global sections of m, i.e. smooth maps ¢: E — | such
that o ¢ = id, . Local sections give local trajectories. For an open subset Ucl, a
localsection is a smooth map ¢: U — E such that = 0 ¢ = idy. The system of

local sectionsforms a sheaf on I.

(3) A system defined by constraints on the system : E — | is a submanifold

i E's Esuch that w'= mr o lis a surjective submersion E'— 1.
Remarks (2-2-2):

(1) We will generalize the situation by considering a general

surjectivesubmersion m : E — M, where M is not necessarily an interval.
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(2) In certain situations, it might be necessary to endow either of the manifolds
E or M withmore structure. Examples in field theory include metrics endowing E
with the structureof a Riemannian manifold or, to be considered as local

coordinate functions on M.

Definitions(2-2-3):

(1) Let E,M Dbe smooth manifolds, dimM = m and let 7 : E - M be a

surjectivesubmersion.We say that m defines a fibred manifold.

(2) For any open subset U ¢ M, we denote by I (U) the set of local smooth
sections of m,i.e. the set of smooth functions sy : U — E such that wosy = idy.

These sets form asheaf on M.

(3) For any multi-index 1 = (I1(2), ..., I(m)), we introduce its length
I =2, 1)

and the derivative operators

a|1]_ Hm 0 i
axl  1li=t (axi)l(l)
Example (2-2-4):

We consider the situation relevant for classical mechanics with time-independent
configurationspace a smooth manifold M. This is the trivial bundle

p; : RxM — R a section of p;

@R - RxM
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t— (t @(1)
Is given by a smooth trajectory

Pg:-R->M

The 1-jet of the section ¢ in the point t,€ R reads in local coordinates x' on M
i . . I ~ d i~
(tO 1 X! 1 X;) Ojé(p = (tO 1 Xl(p(t) 1 E It:toxo(p(t))
Thus, all information that appears is the tangent vector

12
de 't=to

at the point @(t0) € M There is a canonical isomorphism

o> RxTM

. dp
jte - (to Zl)
Definition (2-2-5):

The infinite jet bundle m: J*m — M is defined as the projective limit (in the

category oftopological spaces) of the jet bundles

2 1
) Tt—o)Jr—oE->M
21 T10 T

It comes with a family of natural projections

Moo 37T =)
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Definition (2-2-6):
A real-valued function f:J®m— R is called smooth or local, if it factorizes

through a smoothfunction on a finite jet bundle)"x. i.e. there exists r eNand a

smooth function f,: J” T — Rsuch that:

f=fomy,,
Remarks (2-2-7):

(1) In plain terms, local functions are those functions on jet space which depend

only on afinite number of derivatives.

(2) The algebra Loc(E) of smooth functions on J*m is thus defined as the

inductive limit ofthe injections

Tpp1y - CO(Fm) - Co (1)
of algebras. The embedding is given by considering a function in C®(J*r)that
depends onthe derivatives of local sections up to order k as a function that

depends on the derivatives up to order k+1, but in a trivial way on the k + 1-th

derivatives.
(3) The algebra C*(J*) has the structure of a filtered commutative algebra.
Definition (2-2-8):

Let = : E — M be a fibred manifold. A local functional on the space of smooth
sections I';;(M)is a functionS :I;;(M) - R

which can expressed as the integral over the pullback of a local function
| eLoc(E).
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Definition (2-2-9):
A vector field on the jet bundle J*mis defined as a derivation on the ring

C*(*m) of smoothfunctions.

Remark (2-2-10):
In local coordinates (x',u%) on J®m, a vector field can be described by a formal

series of theform

X:ZiA'i"‘Z B -

Loxt al 1 quf
The word “formal” means that we need infinitely many smooth functions
Ai- (X u?) and BY) = B® (x',u%) to describe the vector field. But once we apply
it to a smooth function inC*(*m) , only finitely many of the derivations

9

B¥ —yield a non-zero result, since smoothfunctions only depend on derivatives

I ug

up to a finite order.
Definition (2-2-11):

The prolongation of a (local) vector field X eI’ (U) is the (local) vector field
preX on J®macting on a smooth function f eC®(J®m) in the point

j*s(p)el®m as
ProXjeo sy f = Xo(f o j5)

Definition (2-2-12):
For a multi-index | = (iy, . . . iy), We introduce the following operator acting on

local functionsdefined on a coordinate patch:
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D|: D;

iy o Diz °o.,..o0 Din
A total differential operator is a mapping from Loc(E) to itself which can be
written inlocal coordinates in the form Z'D, where the sum goes over symmetric

multi-indices | whereZ'eLoc(E) is a local function.

Definitions(2-2-13):
(1) An Ehresmann connection on the fibred manifold 7: E — M is a smooth
vector sub-bundleH of the tangent bundle TE over E such that

TE=H &V
where the direct sum of vector bundles over E is defined fiberwise.
(2) The fibers of H are called the horizontal subspaces of the connection.
(3) A vector field on E is called horizontal, if it takes its values in the horizontal
subspaces.
Proposition (2-2-14):
Let 7: E — M be a fibred manifold and J*m be the corresponding jet bundle.
The following holds:
(i) The subspaces endow J*mwith an Ehresmann connection, the so-called
Cartan connection.
(if) One has

Preo[Xe,Xz] = [preXy, preeXe]

hence the Cartan connection is flat.

Remarks (2-2-15):
The horizontal bundle H is a vector bundle of rank dimM. The restriction

di|: H= TM is an isomorphism.
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In the following we will discuss of Lagrangian dynamics.
Definitions(2-2-16):

(1) A Lagrangian system of dimension m consists of a smooth fibred manifold
. E - M with M a smooth m-dimensional manifold, together with a

smooth differential form le Q™° (J® ), where n = dimM.

(2) The manifold E is called the (extended) configuration space of the system.

The differential form | is called the Lagrangian density of the system.

(3) Suppose that volye Q"*(M) is a volume form on M and that LelLoc(E)

is a localfunction. Then
I= L.tk (voly) eQ™0 (%),

Is a Lagrangian density and the local function L is called the Lagrange

function of thesystem.
(4) A Lagrangian system is called mechanical, if M is an interval | cR.
Definition (2-2-17):

Let X be a vector field on E. Then there is a unique vector field on J*(E), also

called theprolongation of X and denoted by pr:(X), such that:

(1) X and prg(X) agree on functions on E.

(i1) The Lie derivative of pr(X) preserves the contact ideal:
Lprs)CU*m) cCO*m).

Remarks(2-2-18):
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(1) We present expressions in local adapted coordinates. Consider a vector field

on E,

oxt ou”

(2) We then write the prolongation as

pro(X)=2' 3 + 2 5o

The first condition in the definition immediately yields
Z'=a'and Z* = b*
One can determine the coefficients to be
Z¥ = Dy(b* — u") +u]Ia
Definition (2-2-19):
Given a Lagrangian density
=1 (X', u®dx'A ... AdX"eQ™0(J®)
the Euler-Lagrange form E(l) eQ™°(J*m)is defined as
E() = E,()O% dx'A ... AdX"
with

al al al
=— —+ c— 4+ — =(— e
(I) la a Dl] aug. ( D)K au%
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Let M be a smooth manifold of dimension n andr: E — M a fibred manifold.
Because ofthe Euler-Lagrange form, we are interested in forms in Q™).
Forms on J* of type (n, s)with s > 1 are dy-closed, but turn out to be not even

locally dy-exact.

Lemma (2-2-20):
We have the following identities for the inner Euler operators:
(1) ForneQ™ 15)%°m), we have
I(dpy) = 0.
(2) | is an idempotent, I? = |
(3) For any w Q™ (J®) there exists ne Q™1 (J*) such that:
w = l(w) + dyy.
(4) For any Lagrangian density 1eQ™° (J®), we have
E(A) =1 (dvA)
This suggests to extend the bicomplex.
Propositions(2-2-21):

(1) Let 1eQ™® (J®m), be any Lagrangian. We claim that then there always

exists ne Q11 (%) such that

dvl = E(l) + du(n) .

37



(2) Using a Cartan-like calculus for differential forms on jet space, one can use
this to showthat, if X is a vertical vector field on E, then there exists a

formoe Q™19 (J*m) such that

I—prE(X)I = lprg X(E(I)) + duno

This is a global first variational formula for any variational problem on E. We

find alltogether

d o
E|e=0 l(‘] Se) = I—prE(X)I = lprgx (E(I)) + duo
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Section (2-3): Symmetries, Noether identities and Natural Geometry
First we will discuss symmetries and Noether identity.
Definitions (2-3-1):

(1) Let n: E — M be a fibred manifold. A vector field X on jet space J*m is
called asymmetry of the fibred manifold, if [X,Z] €H for all Z evect,.

(2) Due to the integrability of the Cartan distribution H, all vector fields in vecty

are symmetries.
The Lie algebra of vector fields vecty is, by definition of vects,m(r), an ideal in

the Lie algebra vectym(m) of all symmetries. We introduce the Lie algebra of

non-trivialsymmetries as the quotient
sym(m) = vectym(m)/ vecty .

Using the split of vector fields into horizontal and vertical vector fields, we can
restrict tovertical vector fields on J 1 for the description of symmetries.

We will need a different description of symmetries.
Observations (2-3-2):

(1) A vector field X evectsyn acts as a derivation on the filtered algebra of
local functionsLoc(E) and yields a local function. The algebra C*(E) of
smooth functions on E isa subalgebra of the algebra Loc(E). We can thus
restrict the action of any vector field X evectymto the sub-algebra C*(E).
We get a derivation gxon C*(E) which takes itsvalues in Loc(E).

(2) Since we assumed that vector fields in vectg, are vertical, we can write ¢y
in localcoordinates as:
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Q“a—y with Q%eLoc(E)

ou«

(3) We can thus informally see ¢x as a vertical vector field on E with
coefficients in localfunctions. More precisely, the differential operator ¢y

is a section J*1m — m*(m) of thepullback bundle
n*(m) — E
l lr

J*t — M
Too

We call x(m)the space of smooth sections of the bundle 7*(r) — J*m on jet

space.
Definition (2-3-3):

An element @y is called a generating section of a symmetry X or also

anevolutionary vector field.
Remarks (2-3-4):

(1) We denote the symmetry of the fibred manifold corresponding to a section
@ €k(mw) byE,. Some authors reserve the term evolutionary vector field
for this symmetry.

(2) If @ ex(m) isdescribed in local coordinates as

—ym a9
¢ _Zi=aq) ou®
with local functions (¢%, . .., ™), then E,, is its prolongation prg

_ 0
E(p_ Zlya DI((pa) 5}1

40



The first goal of this subsection is to explore symmetries of Lagrangian systems
(m:E > M|).

Remark (2-3-5):

Suppose that there are volume forms given and we work with a Lagrangian
function L. Wecan then formulate a variational family for the Lagrangian
function as follows: this is a pair(Q, j<), consisting of an evolutionary vector

field Q and m local functions j', with i= 1, . . .m,
al .
pre(Qe)(l) = DK(Q%)W = Djyj
1
where D; is the total derivative in the direction of x'.
Definition (2-3-6):

Let (m : E ->M,I) be a Lagrangian system. A m — 1-form aeQ™ 19()®n) is
called aconserved quantity for the Lagrangian system, if for every solution
s : M - E of the equationsof motion given by | the m — I-form
(j*s)*€Q™ (M) is closed.

Remarks (2-3-7):

(1) In the case of a mechanical system over an interval I=[ty, t;], we have
m = 1 and forevery solution of the equations of motions a function

as=a o %) = a(t,s(t),s(t),..)on the interval Isuch that

d L
s = 0 This implies
by
d
ag(t) — as(to) = a (t}dt =0

to
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which justifies the term “conserved quantity”. Notice that for a given
section s, the valueof this conserved quantity can depend on the section and

its derivatives.

(2) In the case of a field theoretical system, we obtain a m—1 form which, in

case a Hodgestar exists, can be identified with a 1-form

= Zzl(as)idxi

(3) One speaks of a conserved “current”. Let us explain this and consider the
situation ofa Galilei space of any dimension n. This is really a fibred
manifold of affine spaces, A" A'. Like for any fibred manifold, we can

split differential forms into a horizontalcomponent and a vertical component.

For any solution s of the equations of motion, we have a conserved n — 1-form

js on A"which we write asjs = ps+ dtA js

with p,eQ%™~1(A") and jse Q%" 2(A"). We then get the equation
0=dj = dtA (2= + dyjg)

where dy is the wvertical (i.e. here: special) differential. Fix a certain

n—1-dimensionalvolume at fixed time. We then have:

Ps = ps - dVJS - Js
d at v

where in the last step we used Stokes’ theorem. This has the following
interpretation: forever solution s of the equations of motion, we find a quantity
(“charge™) p, that can beassigned to any spacial volume V and a “current” s
whose flux across the boundary dVdescribes the loss or gain of this quantity.

Together, they form the m components of theconserved m — 1-form.
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Definition (2-3-8):

Given a total differential operator Z, we define its adjoint Z* as the total

differential that obeys

J (js) = (FZ(G))dvoIM = J (j*s) = (Z*(F)G)dvoly
M M
for all sections s : M — E and all local functions F,G €Locg. It follows that
FZ(G)dVOlM = Z+(F)GdVO|M + dy {

for some ¢ = ¢(Z, F,G) eQ" 19(j*x) that depends on F and G and the precise

form of thetotal differential operator Z.

If the total differential operator reads Z = Z’D; in local coordinates, integration

by parts yields the explicit formula
Z'(F) = (-D) (Z'F) .
Theorem (2-3-9):[Noether’s first theorem]

(1) Let (m: E = M, I) be a Lagrangian system with a Lagrange function I that,
for simplicitydoes not explicitly depend on M, i.e. %L: 0. Let (Q, j) be a
variational symmetry inthe sense of remark (2-3-5). Then there is a

conserved one-form on jet space which can beworked out by doing repeated

integrations by parts.

(2) If the Lagrangian depends only on first order derivatives, the conserved

a1l

- i

one-form on jetspace reads explicitly (Q*
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Proof:

(1) Let s be a solution of the equations of motion. Since Q is a variational

symmetry, we have

0 =(}Dzji) °j¥s = (%(DI Q“)) °J%s
M M

Repeated integration by parts on M yields by the previous comment on adjoint

operatorsand local functions ¢%on jet space such that

(fD»aa )< oj=s + éziqms

Since the Lagrangian does explicitly depend on M, the Euler-Lagrange equations

for thesection s take the form

al o
(D )eims=0
We thus learn that0 = D; ({[i - =0
M

(2) If the Lagrangian depends only on first order derivatives, the divergence

J al
D;

a
MOU;

term is explicitly

Q%) °j”s
so that the conserved quantity is given by the one-form on jet space

Ol aa _ i gyt
ous Q% — ]dx
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Definition (2-3-10):
A gauge symmetry of a Lagrangian system (r: E — M, |) consists of a family of

local functions,fora = 1, ... nand all multi-indices I,
R: J°r - R

fora =1, ... nandall multi-indices I, such that for any local function
€T >R

d
ou®

the evolutionary vector field R*(D;e)—on E is a variational symmetry of I.

Remarks (2-3-11):

(1) Loosely speaking, a gauge symmetry is a linear mapping from local functions
on J®m intothe evolutionary vector fields on E preserving the Lagrangian. It
is crucial for a gaugesymmetry that there is a symmetry for every local
function.

(2) Notice that the coefficients of the vector field depend linearly on € and on all

its totalderivatives.

(3) By the results just obtained, it follows that being a gauge symmetry is
equivalent to requiring(R*' (D;€))E,(I) to be a divergence for each local

functione on J*m.
Theorem (2-3-12):[Noether’s second theorem]

For a given Lagrangian system (r: E — M,I) and for local real-valued functions

{R*'} definedon J*m, the following statements are equivalent:
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(i) The functions {R™} define a gauge symmetry of I, i.e., R®(Dje) %is a

a

variationalsymmetry of | for any local function e: 1”7 — R.
(i) R™' (D;e)E, (1) is a divergence for any local function .

(iii) The functions {R*'} define Noether identities of I, i.e. RT¥D(E, (1)) is

identically zeroon the jet bundle.
Second we will discuss the Natural geometry.
Definitions (2-3-13):

(1) Denote by Man, the category of n-dimensional manifolds and open
embeddings. Let Fiby,be the category of smooth fiber bundles over
n-dimensional manifolds with morphismsdifferentiable maps covering

morphisms of their bases in Man;,.

(2) A natural bundle is a factor®: Man,— Fib, such that for each
M € Man, B(M) is abundle over M. Moreover, B(M) is the
restriction of B(M) for each open sub-manifoldM'c M, the map
B(M")— B(M) induced by M's M being the inclusion B(M")< B(M).

Theorem (2-3-14):(Krupka, Palais, Terng)

For each natural bundle 8B, there exists | > 1 and a manifold 8B with a

smooth GL{actionsuch that there is a factorial isomorphism

B(M) = Fr'(M) X0 Bgy= (Fr'(m) x B) / GL®
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Conversely, each smooth GL®-manifold B induces, a natural bundle 8. We will
call B thefiber of the natural bundle 3. If the action of GL{’on B does not reduce

to an action of thequotient GL{~* we say that B has order I.
Examples (2-3-15):

(1) Vector fields are sections of the tangent bundle T(M). The fiber of this

bundle is R™, withthe standard action of GL,. The description
T(M) = Fr(M) . R™is classical.

(2) De Rham m-forms are sections of the bundle Q™ (M) whose fiber is the

space of anti-symmetricm-linear maps Lin(A™(R™),R ), with the obvious

induced GL,-action. The presentation
Q™(M)= Fr(M) x¢;. Lin(A™ (R®),R )

is also classical. A particular case is Q°(M) = Fr(M) Xgr, R =MxRthe
bundle whosesections are smooth functions. We will denote this natural bundle

by R, believing therewill be no confusion with the symbol for the reals.
Definition (2-3-16):

Let Fand ® be natural bundles. A (finite order) natural differential operator
O : §— 6 isa natural transformation (denoted by the same symbol)
O: §¥— @, for some k > 1. Wedenote the space of all natural differential

operators § — & by Nat(g, ).
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Examples (2-3-17):

(1) Given natural bundles B’ and B” with fibers B’ resp. B”, there is an
obviously definednatural bundle B’x B” with fiber B’xB”. With this notation,
the Lie bracket is a naturaloperator [-,—] : TXT — T and the covariant derivative
an operator V : ConxTxT — T,where T is the tangent space functor and Con the
bundle of connections. The correspondingequivariant maps of fibers can be

easily read off from local formulas given in Examples.

(2) The operatorD,: T x Q' — C®from the Example above is induced by the

GL,— equivariantmap

04 R™ x (R")'— R given by 04(v , @) = p(a(v)).
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Chapter (3)

Classical field theories

Section (3-1): Maxwell’s equations and Special relativity
We start explaining Maxwell’s equation on a Galilei spaceA.
Observations(3-1-1):

(1) The first new quantity is electric charge. It can be observed e.g. in processes

like discharges.

Charge is measured at fixed time, so for any measurable subset U cA;, we
should be ableto determine the electric charge by an integral over U. It is
therefore natural to considerthe charge density p at time t as a three-form on
Ay

p(X) dX*AdXCAdXeQ3 (A

The charge density is not constant in time and we will study its time
dependence. We thusdefine charge density as a differential form peQ®3(A).
We are, deliberately, vague aboutsmoothness properties of p since many
important idealizations of charge distributions —point charges, charged wires

or charged plates — involve singularities.

(2) If we take a volume V cAsat fixed time with smooth boundary aV , then
electric chargecan pass through its boundary dV. The amount of charge

passing per time should bedescribed by the integral over a two form
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ji€Q?(A). Again, this two-form will dependon time so that we introduce
the current density as a 3-form :  j(x, t) = dtA ji(x) eQL2(A).

We then have the natural conservation law for any closed volume V €A,

Poe=d

\ oV
which by Stokes’ theorem takes the form
9 : .
% | P=— JJt = = J dyle
% Y oV

Since this holds for all volumes V cA\;, we have the infinitesimal form of the

conservationlaw
9 .
Pt dyje =0
which is an equality of three-forms on A\ for all t.

(3) We can write the conservation law more compactly in terms of the three-

form, the chargecurrentdensity j:
j=p —j= pdxAdyAdz — dtA ji€Q3(A)

defined on the four-dimensional space A. We find
dj == pdtAdxAdyAdz +dtAdyj, = 0

(4) Since the charge-current density 3-form is closed, dj = 0, it is exact by the

Poincarelemma. We can find a two-form H e Q?(A), the excitation 2-form
such that

dH=j.
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The fact that such a 2-form exists even globally is the content of the

inhomogeneousMaxwell equation.
(5) Using the bigrading of 2-forms on A, we can write
H=dtAH+D

with H € Q%1(A) and D € Q%?(A). One calls H the magnetic “excitation” and D
the“electric excitation”. Using the three-dimensional metric, the field H can be
identified witha vector field. For the field D, we first need to apply a three-
dimensional Hodge star toget a one-form which then, in turn, can be identified
with a vector field. The Hodge starand thus the vector field depend on the
orientation chosen on three-dimensional space.For this reason, D is sometimes

called a pseudo vector field.
Then the inhomogeneous Maxwell-equations
j=p—dtA j=dH=-dtA dyH + dtAd,D + dy D
are equivalent to
dyD=p ando;D=dyH-j,
where the vertical derivative dy is just the special exterior derivative.

The first equation is the Coulomb-Gauss law, the second equation theOersted-
Ampere equation. The term containing the time derivative —d,D of theexcitation

iIs sometimes called Maxwell’s term.
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Example (3-1-2):

Gaul’ law reads in integral form for a volume V in space

Q:pd3xJ=— D J

% oV
The electric flux through the surface dV is thus proportional to the electric

charge included bythe surface. It should be appreciated that this holds even for

time dependent electric fields.

We use Gaul}’ law to determine the electric field of a static point charge in the
origin:p(x, t) = f(r)e, .
with

> 1 3
er‘\m(x’ Y, Z) ET(X,y,z)(R \{0})

the radial unit vector field on R3 \ {0}.

Integrating over the two-sphere with center 0 and radius r, we find

q :BJ? = Anr?f(r)
¥
and thus Coulomb’s law:
g1,

e

B0y = 2-5é

In the case of a static field, Coulombs law and the principle of superposition of

chargesconversely implies the first inhomogeneous Maxwell equation dyD =p.
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Observations (3-1-3):

(1) Based on empirical evidence, we impose on the electromagnetic field dF the

condition tobe closed,
dF=0.

These are the homogeneous Maxwell equations.

(2) Inthe three-dimensional language F = dtA E + B, the equation
O=dF=dtAndyE+dtAd,B+dy B

is equivalent to the following two equations:
dyB=0and 0,B=—-dyvE.

Example (3-1-4):

Faraday’s law of induction yields a relation between the induced voltages along

a loop dF boundinga surface F
Uind :d}(E
OF
and the magnetic flux®™?9=B _[
F

through the surface which reads

Uo=dfE=— L (B) —Lomeo-_1m) |
oF F F

This law is the basis of the electric motor and the electrical generator. The minus

sign is quitefamous: it is called Lenz’ rule.
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Observations (3-1-5):
(1) The following space-time relations are important:
(1) In empty space, one has the relation

H=-AxF

which makes sense in four dimensions. The constant A is a constant of

nature.Sometimes *F is called the dual field strength.
(i) In axion-electrodynamics, one has two constants of nature
—H=-N* F+ AF.

(ifi) In realistic media, the constants typically depend on frequencies or,
equivalent, wavelengths, and yield quite complicated relations between F
and H.

(2) We summarize the Maxwell equations in vacuo:
dF=0andd(«xF)=J,

which are the homogeneous and the inhomogeneous Maxwell equations. As

a consequence,we have the continuity equation
dJ=d(xF)=0.
It is complemented by the equation for the Lorentz force

f=1(F) AJ.
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In this form, the equations are also valid in special and even in general
relativity. TheMaxwell equations in vacuo can be considered as truly

fundamental laws of nature.

(3) We also present these equations in the classic notation of vector calculus:
divB = 0 andd;B + rot E=0
divE=pandrotB—-o0E=7

Observations(3-1-6):

(1) Consider the Maxwell equations in vacuo without external sources, i.e. j = 0.
We find

dF=0andd*F=0.

The last equation implies *F = 0. We thus have for the Laplace operator on

differentialforms
AF = 6dF +d6F=0

so that in the vacuum without external source, J = 0, harmonic forms are a

solution tothe Maxwell equations.

(2) To restore familiarity, we repeat this analysis in the language of vector

analysis. Then theMaxwell equations read:

divE=0 , rotE=-28
0t

divB=0 |, rotﬁzg—E

t
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Taking the rotation of the second equation yields

AE = AE - grad(divE ) = — rot rot E=

A dimensional analysis shows that we should restore a factor ¢ with the

dimension of thesquare of a velocity. Hence we get

= (12 - ) =0

with o the so-called d’ Alembert operator. Similarly, one finds

We discuss our postulates of special relativity.
First postulate: space time is homogeneous

Second postulate: the laws of physics are of same form for all observers in

relative uniform motion.
Third postulate: velocity of light as a limit velocity.
Definitions (3-1-7):

(1) An affine space MoverR* together with a metric of signature

(=1, +1,+1, +1) on itsdifference space is called a Minkowski space.
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(2) Standard Minkowski space is R* with the diagonal metric n = (-1, 1, 1, 1).
It plays therole of standard Galilei space. Using the velocity of light c, we

endow it with coordinates(ct, x*, X, x*) whose dimension is length.
(3) A Lorentz system of M is an affine map
¢: M - (R*, 1)
which induces an isometry on the difference space.
(4) The light cone in T, M is the subset
LCp= {xeT, Mn,(x,x) = 0}
Lemma (3-1-8):

LetA: M — Mbe a diffeomorphism that preserves the light cones. Then A is an

affine mapping.For the induced map on tangent space, one has
Np(Bp X, ApY) = a(A)ny(x,y) for all x,yeT, M

with some positive constant a(A) .The symmetries are thus composed of a four-
dimensionalsubgroup of translations, a one-dimensional subgroup of dilatations

and the six-dimensionalLorentz group SO(3, 1).
Remarks (3-1-9):

(1) Consider the bijection of vectors in R* to two-dimensional hermitian

matrices
0 3 1 2
+ —
o (XO,Xl,XZ,X3) (x x> x ix )

xl+ix?  x0—x3
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and

detd(x) d(y) = —(X, y)

Lie group SL(2,C) acts on hermitian matrices as H ~— SHS". This action

induces anisomorphism of
PSL(2, €) = SL(2, C)/{+1}
and the proper orthochronous Lorentz group.
(2) Using the parity transformation
P =diag(+1,—1,-1,-1)
and time reversal
T =diag(—1, +1, +1, +1)
we can write every element of L uniquely in the form
A =P"T™ Agwithn,me {0, 1}, Agel,
Definitions (3-1-10):
(1) A non-zero vector x in the difference space for Minkowski space M is called
time like, if x* = (x, X) <0
light like or null, if x* = (x, x) =0
space like, if x* = (x, x) > 0

(2) A time like or light like vector x = (X°, x*, X4, X°) in the difference space for

Minkowskispace is called future directed, if x°>0 and past directed if
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x’<0. The light cone atany point decomposes into the forward light cone
consisting of light like future directedvectors, the backward light cone

consisting of past directed light like vectors and the zerovector.
Lemmas (3-1-11):

(1) For any two space like vectors X, y, the Cauchy-Schwarz identity holds in its

usual form,

WISV (e, )V (3, 9)
with equality if and only if the vectors x, y are linearly dependent.

(2) For any two time like vectors x, y in the difference space to MinkowskKi

space, we have

= =)= y)
and equality if and only if the vectors x, y are linearly dependent.

(3) For any two lightlike or timelike vectors X, y, we have (x, y) < 0, if both
are future directedor both are past directed. We have (x , y) =0, if and only

if one is future and one is pastdirected.
Definitions (3-1-12):

(1) A velocity unit vector Wiis a future directed time like vector normalized to

(W, W) = 1.

(2) Our set of observers — or, more precisely, their world lines, consists of the
affine lines of theform a+RW, where aeM*is any point and Wis any

velocity unit vector. We abbreviatethe observer or the corresponding affine
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lie respectively, with O, go0r sometimes even withOg, when the base

point a does not matter.

(3) The time interval elapsed between two events X, yeR*as observed by the
observer Ogis given by the observer-dependent time function

Atg (X, y) = (W, X — ) .
Remarks (3-1-13):

(1) For any two observers Ogand Opwith different velocity unit vectors w
and ¥, there existevents x, yeM such that x happens before y for Ogand
y happens before x for Oz. Thisfact might be called the “relativity of
simultaneity.”

(2) The future I"(x) of an event xeM equals
I"(x) = { y eM|(D, y — x) <0 for all observers 0;}

I.e. the set of events that happens after x for all initial observers. This justifies the
qualifierabsolute future for I*(x).

Observation (3-1-14):

Consider two observers 03 and Oywhich are in relative uniform motion. We take
twoevents x ,y eMwhich occur for the observer w at the same place in space.
This justmeans x — y = t W with some t eR. For the time elapsed between these

two events, theobserveriwmeasures

Aty (X, ¥) = Xyl =y =(x = ¥)?

You can imagine that observer wlooks twice on his wrist watch, at the event x

and at theevent y.
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Let us compare this to the time difference measured by observer O; for the
events xeMand y eMwhich is

Aty (X, y) = (D, x = y)|

We introduce the vectora= (X —y) + (X — y, D)D

which is, because of (¥, ¥) = —1, orthogonal to 7,
@v)=x-y,0)+Kx-y D) 7)=0

and which is, because of the Cauchy-Schwarz inequality for future-directed time
like vectors,

(0, W) = /=B, V)= (W, W) =1,
a space-like vector:

a’ = (x = )"+ 2(x —y, )" + (x — y, )(, D)

=(x— )+ (X —y, D)* =—t* + 2D, W)*> 0.
We have thus

X—y=—-Aty(X,y) U+ a
which implies

Aty(x,y)* = (D, x = Y + % = Aty(x, ) + @°
Hence

Aty (X, Y)>|Atm (X, )] -

Thus the moving observer Ozmeasures a strictly longer time interval than the
observerOyat rest.
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Section (3-2): Electrodynamics as a gauge theory

We start our discussion with some comments on electrodynamics on Minkowski

space M.
Remarks (3-2-1):

(1) Consider Maxwell’s equations on a star-shaped region U cM on which

from the homogeneous Maxwell equations dF = 0 and the fact that
Minkowski space is contractible, we conclude that there exists a one-form
AeQl(M) suchthat d A = F. The one-form A is called a gauge potential

for the electromagnetic fieldstrength F.
The one-form A is not unique: taking any function 1 eQ°(M), we find that
A'=A+dAeQ! (M)

also obeys the equation dA" = F. This change of gauge is also called agauge

transformation. This arbitraryness in choosing A is called the gauge freedom

andchoosing one A is called a gauge choice.

(2) One can impose additional gauge conditions on A to restrict the choice. For
example,using the metric on M, one can impose the condition A = 0. A
choice of A that obeysthis equation is called a Lorentz gauge. This gauge is

called a covariant gauge, since thegauge condition is covariant.
Observations (3-2-2):

(1) For a geometric interpretation, we consider on the disjoint union
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C= ] Jex 0= | Joxtarxo

a€el a€el

the equivalence relation

X, @, gapz) ~ (X, B, 2) .
Then the quotient

L=L/~

iIs a smooth manifold and comes with a natural projection to Mwhich

provides a complexline bundle w: L -»M.

(2) This bundle comes with a linear connection which locally is

Locally, we can consider the two form
Fo=dA,
which is trivially closed. On twofold overlaps, we have
Fo —Fg=ddA,— dAg=d (6A4)4p) =dlog gop =0

so the locally defined two-forms F,patch together into a globally defined two-

form whichwe interpret as the electromagnetic field strength.
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Remark (3-2-3):

The gauge potential also enters if one wants to obtain the Lorentz force for a
charged particlefrom a lagrangian. Indeed, consider the simplest case of a

particle moving in background fields

E=-22_ A and B = rotA

dxt

where we are using three-dimensional notation. Then the equations of motion for

the Lagrangian
1%, %, 1) =2 %2 = q(eA (x, 1) + D(x,))

are because of

oL oAt 0D
axi gt 954
given by
aAl | ; , i 0AJ oD :
M@' —q-—¢) = —q@p) =~ g5~ qO. A
which is just

m¢' = q(¢ AB)' + qE"

and thus the Lorentz force.
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Remarks (3-2-4):

(1) Let M be a smooth n-dimensional manifold with a (pseudo-)Euclidean
metric. We set upa theory of I|-forms for 0 <I<n. As equations of

motion for the I-form I(M), we take
dF=0andd*F=0.

(We consider here for simplicity the case without external sources; external
source requirerelative cohomology.) It obviously has waves as classical

solutions: any solution obeysdF = 0 and 6F = 0 and is thus harmonic.
Given any solution, one can define its electric flux

[F] & Hir(M)
and its magnetic flux

[+F] € Hzz" (M)

(2) If one wants to introduce an action, one has to break electric magnetic duality
and use oneof the equations, say dF = 0, to introduce locally defined gauge
potentials and transition functions (A, , gqp). These are to be considered as
the fundamental degree of freedom, is the following action is naturally
defined:

S[AI= g | FlA g A+ FlA.g)
M

with g a constant of the theory and can be shown to lead to the equations of

motiond* F[A, g]=0. We have now a gauge symmetry in the sense of

Noether’s second theorem.For example, for n = 4 and k = 2, we have for

every function A the symmetry S[A+dA] =S[A]. For a general local
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function, we neglect its dependence on derivatives. Differentialrelations

between the equations of motion are then introduced by the relation dF[ A]=0.

We summarize in this subsection some important aspects of general relativity

in the form ofseveral postulates.
Observations (3-2-5):

(1) The mathematical model for space time, i.e. the collection of all events, is a

four-dimensionalsmooth manifold M with a Lorentz metric g.

(2)The topological space underlying a manifold is always required to be
Hausdorff; it can beshown that the existence of a Lorentz metric implies that

the space is para-compact.

(3) The manifold structure is experimentally well established up to length scales

of at least10 *'m.

(4) For a general Lorentz manifold, non-zero tangent vectors X €T,M fall in

the classes oftime-like, space-like or null vectors.
We discuss the postulates.

(1) Local causality.
(i) Local conservation of energy momentum.

(i) Field equation:Einstein’s equation read:

L (3.1)

c4

(RapLg] - 3 RIg1Gap) + Agap =
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Lemma (3-2-6):

Let M be a smooth manifold and gVand g™Mtwo Lorenz metrics on M with the
same set oflight cones. Then there is a smooth function 2 € C*(M,R.) with

values in the positive realnumbers such that
gz(f) = A(p) - gz(,l)for allpe M,

Proof:

Let X € T,M a time-like and Y € T,M a space-like vector. The quadratic

equation in A
0=g(X+AY,X+2AY)=g(X,X) +22g9(X, Y) + 2%g(Y,Y)

has two roots

2 2, =280 \/g(x,Y)Z _ 9XX)
g(Y.) gyy)?  g(¥y)

which are real since g(Y, Y ) >0 andg(X,X) < 0. We have

g(XX)
g¥.y)

11'12:

so that the ratio of the magnitudes of a space-like and a time-like vector can be

derivedfrom the light cone.

Now suppose that W,Z eT,M and W + Z are not light-like.Then:

g(W.2) ==(g(W,W) + g(Z.2) — g(W + ZW +2)) .
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Each of the terms on the right hand side can be compared to either X or Y and is
thusfixed.

Proposition (3-2-7):

The tensor T is a symmetric covariantly conserved tensor: if evaluated on any
field configurationy obeying the equations of motion implied by a Lagrangian

function L, one has
T , 0y, .. ), = 0.
Proof:

We have for any diffeomorphismd: M — M that restricts to the identity outside a

compactsubset D c M for the Lagrangian density | = Ldvol,

and thus Z

J [— ®*(1)=0

D

If the diffeomorphism @ is generated by a vector field X, we have

L xl :d‘

D
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We find

. Ly (1 dvol ):J oL D (aL) Lyydvol, + FTPL dvol
X g ol e\3 !e X g xYab g

D

The first term vanishes due to the equations of motion. For the second term, we
need the Liederivative of the metric

LxGab = 2X(ap)

which equals the symmetrization of the covariant derivative.Thus

0 :Tj‘bLXgabdvolg =2 ((y‘abXa) » — TP X,)dvol,
D D
The first term can be transformed into an integral over dD which vanishes since

the vectorfield X vanishes on dX. Since this identity holds for all vector fields X,

we have covariantconservation of the energy momentum tensor, T2?
Remarks (3-2-8):

(1) The equation (3.1) can be compared for so-called static space times, i.e.
space times with atime-like Killing field that is orthogonal to a family of
space-like surfaces in a certainlimit to Newtonian gravity. The constant G

then becomes Newton’s constant.

(2) The equations can be derived from the so-called Einstein-Hilbert action

Slg, @] :$ (RLg]l = 2A)vol, + 1(®, Q)

where @ stands symbolically for other fields in the theory.
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Chapter (4)
Hamiltonian mechanics
Section (4-1): (Pre-) symplectic manifolds

We start with some notions from linear algebra. We restrict to vector spaces of

finite dimension.
Definition (4-1-1):

Let k be a field of characteristic different from 2. A symplectic vector space is a

pair (V, w).

consisting of a k-vector space V and a non-degenerate two-form w € A%V , i.e.
an anti-symmetricbilinear map w : VxV — k such that w(v,w) = 0 for all weV

implies v =0.
Remarks (4-1-2):

(1)Symplectic vector spaces have even dimension.
(2) To present a standard example, consider V=R?" with the standard basis

(&i)i=1..2n andits dual basis (e;)i=1,.2n. Then

w=e; Ne, +e, Ney; +....+e;,_, Ne,

m € N(R?™)
is a symplectic form.

(3) Given any finite-dimensional k-vector space W, the k-vector space

V=W@W" has acanonical symplectic structure given by

w((b.B), (¢, v)) = B(c) y(b) .
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(4) The subset of linear endomorphisms ¢ € GL(V) of a symplectic real vector

space (V, w)that preserve w, i.e. ¢*w = w, IS a (non-compact) Lie group
dimV(dimV+1)

Sp(V) of dimension

Its elements are also called symplectic or canonical maps.
We now extend these notions of linear algebra to smooth manifolds.
Definitions(4-1-3):

Let M be a smooth manifold.

(1) A 2-form w € Q2(M) is called a pre-symplectic form, if it is closed, dw = 0,

and of constantrank.
(2) A non-degenerate pre-symplectic form is called a symplectic form.

(3) A smooth manifold M together with a (pre-)symplectic form w is called a

(pre-)symplectic manifold.

(4) A morphism f:(M, wm) —(N, wyn) of (pre-)symplectic manifolds is a
differentiable mapf : M —N that preserves the (pre-)symplectic form,
fwn = wm Such morphisms arealso called symplectomorphisms or

canonical transformations.
Remarks (4-1-4):

(1) Since for any point p of a symplectic manifold M the tangent space T,M is a
symplecticvector space, the dimension of a symplectic manifold is
necessarily even. The dimensionof a pre-symplectic manifold, in contrast, can

be odd or even.
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(2) One verifies by direct computation that on a symplectic manifold M of
dimension dimM =2n, the n-th power ™™ of the symplectic form w is a
volume form on M. It is called theLiouville volume and the induced

measure on M is called the Liouville measure.

(3) A symplectic map between two symplectic manifolds of the same dimension
preserves theLiouville volume w™™. Since volume preserving smooth maps
have a Jacobian of determinantl, they are local diffeomorphisms. Symplectic
maps between two symplectic manifoldsof the same dimension are thus local

diffeomorphisms.
Definition (4-1-5):

Let M be a smooth manifold of any dimension. The symplectic manifold
(T"M, wo) is calledthe canonical phase space associated to the configuration

space manifold M.
Remarks (4-1-6):

(1) Since the canonical phase space comes with the canonical one-formé, the

symplectic formis in this case not only closed, but even exact.

(2) The canonical phase space is a non-compact symplectic manifold. Examples
of compactsymplectic manifolds are quite important for mathematical

physics, but more difficult toobtain.
Theorem (4-1-7): (Darboux’ theorem)

Let (M, w) be a (2n + k)-dimensional presymplectic manifold with rank w=2n.
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Then we can find for any point meM a neighborhood U and a local coordinate
chart
_(p U N R2n+k

w(u) :(ql"" ’qn ) pl’---’pn’nl’--- ,T]k

such thatw|y= Zinldpi A @'. Such coordinates are called Darboux coordinates
orcanonical coordinates. One can choose the covering such that the coordinate

changes are canonicaltransformations.
Remarks (4-1-8):

(1)Darboux’ theorem implies that symplectic geometry is locally trivial in
contrast to Riemanniangeometry where curvature provides local invariants,
and where in Riemanniancoordinates the metric can be brought to a
standard form in one point only. In other words,locally two symplectic

manifolds are indistinguishable.

(2) While any manifold can be endowed with a Riemannian structure, there are
manifoldswhich cannot be endowed with a symplectic structure. For

example, there is no symplecticstructure on the spheres S*" for n > 1.
Proposition (4-1-9):

Let (M,w) by a symplectic manifold and f € C*(M, R) be a smooth function.
Then there is auniqgue smooth vector field X; on M such that

df(Y) = w(X¢, Y) for all local vector fields Y on M,or, equivalently, df = ix w.
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Definitions(4-1-10):

(1) Let f be a smooth function on a symplectic manifold (M, w). The vector field

X suchthat df = iy wis called the symplectic gradient of f.

(2) A vector field X on a symplectic manifold (M, w) is called a Hamiltonian
vector field,if there is a smooth function f such that X = X; . Put differently,
a vector field X isHamiltonian, if there is a function f such that (yw = df,
i.e. if the one-form (yw is exact.The function f is called a Hamiltonian

function for the vector field X.

(3) A vector field X on a symplectic manifold (M, w) is called locally

Hamiltonian, if the family

@, M-M of diffeomorphisms of M associated to the vector field is a

symplectictransformation for each t.
Proposition (4-1-11):

Let (M, w) be a symplectic manifold. The flow of a vector field X consists of
symplectic transformations,if and only if the vector field X is locally

Hamiltonian.
Lemma (4-1-12):

Let X be any vector field on a symplectic vector space (V, w). If X is
Hamiltonian, then thelinear map DXv : V -V is skew symplectic for all points

vVE V.
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Proof:

Let X be a Hamiltonian vector field with Hamiltonian function h. By definition,

we have inevery pointv € V
w(X,,w) = dh,(w) forallwe V.

We differentiate both sides as a function of v € V in the direction of u and find
w(DX,(u),w) = D*h,,(u,w) .

Here D?h, is the Hessian matrix of second derivatives in the point v. Since

second derivativesare symmetric, this expression equals
D?h, (u,w) = D*h,,(w, u) = w(DX, (W), u) = — w(u,DX,(W)) .
Lemma (4-1-13):

A linear vector field is Hamiltonian, if and only if it is skew symplectic, i.e. if

and only if
w(v,Aw) = — w(Av,w) for all v,we V.
Proof:

Let X be a Hamiltonian vector field with Hamiltonian function h. In the

previous lemma,we have already shown the identity

w (DX, (u),w) = — w(u,DX,(W)) .
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To differentiate the linear vector field X,, = Av in the direction of w, we note

A(v+tu)
t

= Au

DX, (u) =lim;_,
Inserting this result, we find
w(Au,w) = w (DX, (u),w) =— w(u,DX, (W) = — w(u,Aw)
for all u,w € V so that the endomorphism A is skew symplectic.

Conversely, let A be skew symplectic. We introduce the function
h(v) =3 w(AV, V)

on V . We claim that then the linear vector field X,= Av is the symplectic
gradient of thefunction h and thus symplectic. Indeed,by the Leibniz rule for the

bilinear pairing givenby w(A -,-), we find
(dhv, u) =5(w (AU, V) + w(AV, U)) =3(-w (U, Av) + w(AV, U)) = w(AV,U)
Lemma (4-1-14):

Let X be any vector field on a symplectic vector space (V, w). Then X is
hamiltonian, if andonly if the linear map DX,, : V — V is skew symplectic for all

pointsv € V.
Proof:

Assume that the vector field X is Hamiltonian. Then the statement that DX,, is

skewsymmetric has already been shown.
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Conversely, suppose that DX,, is skew symplectic for all v € V. Then consider

the function

1
h(v) = I 0 (X , v)dt
0
on V. Then h is a Hamiltonian function for X, since we have for allu € V

(dhv, u) = J‘l (DX (t1) ) + 0(Xpy , v)Clt
0
1

=w J‘ (DX, (1) , v) + w(Xyy , v)dt
0

= j b (DX () + X )t
0

“o( [ @) = o, 0
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Section (4-2): Poisson manifolds and Hamiltonian systems

We use the symplectic gradient X; that is associated to any smooth function f to
endow the(commutative) algebra of smooth functions on a symplectic manifold

with additional algebraicstructure.
Definitions(4-2-1):
Let k be a field of characteristic different from two.

(1) A Poisson algebra is a k vector space P, together with two bilinear
products - and {—, —},with the following properties

(1) (P, -)isan associative algebra.

@)  (P,{—,—}) is a Lie algebra.

(ili)  The bracket {-, -} provides for each x € P a derivation on P for the

associativeproduct:

.y - ={xy}z+y{x z}.

The product {-, -} is also called a Poisson bracket. Morphisms of Poisson

algebras arek-linear maps @ : P — P’ that respect the two products,
{2(v), (W)} = P({v.w})
And d(v) - d(w) = P(v - w) for all v,we P.

(2) A Poisson manifold is a smooth manifold M with a Lie bracket{—, —} :
C*(M) x C*(M) » C*(M)

such that the algebra of smooth functions (C*(M), {—, —}) together with the

pointwiseproduct of functions is a (commutative) Poisson algebra. A
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morphismof Poisson manifoldsis a smooth map @ : M — M’ such that the linear
map

®* : C*(MO0) - C*(M) is amorphism of Poisson algebras.
Examples (4-2-2):
(1) Every associative algebra (A, -) together with the commutator
X, yI=x-y-y- X

has the structure of a Poisson algebra. This Poisson bracket is trivial, if the

algebra iscommutative.

(2) Consider the associative commutative algebra A = C*(M) of smooth
functions on asmooth symplectic manifold (M,w). We use the symplectic

gradient to define the followingPoisson bracket
{f , g} == <dg , xf>: w(xf7xg)

for f, g € A. From the last equation in observation(4.1.10), we find in local

Darbouxcoordinates

_ _99 of _ 99 of
{f, g} = dg (Xf) " 9P; gt dqt oP;

One should verify that this really defines a Poisson bracket on C*(M,R).

More generally,one has in local coordinates
{f, g} = 09,90,

where wVis the inverse of the symplectic form. The corresponding tensor

for a generalPoisson manifold need not be invertible.
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(3) One can show that a diffeomorphism® : M — N of symplectic manifolds

is symplectic,if and only if it preserves the Poisson bracket, i.e.
{o*f,d*g} = o*{f, } forallf, g € C*(N, R).
Observations(4-2-3):

(1) We discuss Poisson manifolds in more detail. For any smooth function

h € C*(M) on aPoisson manifold M, the map
{h, =} : C*(M) » C*(M)
f —{hf}
is a derivation and thus provides a global vector field X;, € vect(M) with

Xy, () =df(X,,) = {h, f} .

We can consider its integral curves; thus any function on a Poisson
manifold gives a firstorder differential equation and thus some
“dynamics”.

(2) Let ¢ : | = M Dbe an integral curve for the Hamiltonian vector field X;,,
e

a2 t=t, = Xn(@(to))

dt

Let fe C*(M,R) be a smooth function on M. Then f o : I - R is a real-

valuedsmooth function on I. We compute its derivative:

%fo p(t) = df(z—q: = df(Xy) | ot = {h, H () .

80



For this equation, the short hand notation

f={nf}
IS in use.

This motivates the following definition which provides an alternative description
of classicalmechanical systems with time-independent configuration space in

terms of a single real-valuedfunction.
Definitions (4-2-4):

(1) A time-independent generalized Hamiltonian system consists of a Poisson

manifold(M, {-, -}), together with a function
h:M- R,

called the Hamiltonian function. The manifold M is called the phase space
of the system.The integral curves of the Hamiltonian vector field X}, are
called the trajectories of thesystem. The family ¢, of diffeomorphisms
associated to the Hamiltonian vector field X;, iscalled the phase flow of the
system. The algebra of smooth functions on M is also calledthe algebra of

observables.

(2) A time-independent Hamiltonian system consists of a symplectic
manifold (M, w), togetherwith a function
h:M- R,

We consider M with the Poisson structure induced by the symplectic

structure w.
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Remarks (4-2-5):

(1) Since the Poisson bracket is anti -symmetric, {h, h} = 0 holds. Thus the
Hamiltonian functionh itself is a conserved quantity for the Hamiltonian
dynamics generated by it. Moregenerally, a smooth function
fe C*(M,R) on a Poisson manifold is conserved, if andonly if
{h, f} = 0. Two functions f,g on a Poisson manifold are said to Poisson-
commuteor to be in involution, if {f, g} = 0 holds.

(2) Suppose that two smooth functions f, g on a Poisson manifold are in
involution with theHamiltonian function h,

{h,f}=0and {h, g} =0.

Then the Jacobi identity implies

th{f.g3}=—{g.{h. f}}-{f.{g,h}}=0.

Put differently, if f and g are conserved quantities, also the specific
combination of theirderivatives given by the Poisson bracket is a

conserved quantity.

Conserved functions thus form a Lie subalgebra and even a Poisson

subalgebra, since thePoisson bracket acts as a derivation:

{h,fg}:{h,f}g+f{h,g}:0

The Poisson subalgebra of conserved quantities is just the centralizer of h
in the Lie algebra(C*(M), {-, -}).
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Remarks (4-2-6):

1)

)

Suppose that M is even a symplectic manifold so that we can consider

local Darbouxcoordinates. We can apply the equation f= {h, f} to the
coordinate functions q' and piand find for the time derivatives of the

coordinate functions on a trajectory of h:

_on .
q —ap,andip

i

_ oh
dqt

These equations for the coordinate functions evaluated on a trajectory are

calledHamilton’s equations for the Hamilton function h.

In the case of a natural Hamiltonian system, the Hamiltonian is in Darboux

coordinates

h(a, p) =5 9" (@p,p, + V(d)
Hamilton’s equations thus become

1 _ .. "__a_V
¢ =g”(@p; andp'=--

This includes systems like the one-dimensional harmonic oscillator with

Hamiltonianfunction

h(p, ) ==-p? + 22

and the Hamiltonian function

k
hp. o) =5-p* —

for the Kepler problem.
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Proposition (4-2-7):

Let (M, w, h) be a Hamiltonian system. For any closed oriented surface ), €M in

phase spacefor the integral over the symplectic form is constant under the phase

e Ty e[
oy (2) ) )

One says that the sympletic form leads to an integral invariant.

flow,

Proposition (4-2-8): (Poincare’s recurrence theorem)

Let (M, w, h) be a Hamiltonian system with the property that for any point

p € M the orbit0, is bounded in the sense that it is contained in a subset

DcM of finite volume. Then for eachopen subset U — M, there exists an orbit

that intersect the set U infinitely many times.
Remark (4-2-9):

The time evolution s : | - M of a particle in a Hamiltonian system (M, w, h) is

given theintegral curve of the hamiltonian vector fieldX,. This implies

s(t) = ¢+(s(0))

where ¢; : M — M is the phase flow of the Hamiltonian vector field X, on M.

Put differently,we have

@t ©8(0) =s 0 @_(t) = 5(0) .

We could equally well consider the time evolution of a probability distribution

on phase spaceM, i.e. of a normalized non-negative top form p € Q"*(M) with
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n = dimM. At time t, we thenhave a probability density p;€ Q2"(M) with

PP = Po

Suppose for simplicity that we have p, = fiw®™ with f,: M — Ra smooth

function and w’™the Liouville volume on M. Then f, = (¢_,) f, and thus

21 ofe=WXafo=1{n, fo},

so that the Poisson bracket also describes the evolution of probability

distributions.
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Section (4-3): Hamiltonian dynamics and Lengendre Transform
Now we will discuss time dependent Hamiltonian dynamics.
Observations(4-3-1):

(1) We want to consider time dependent Hamiltonian systems. To this end, we
consider asurjective submersion : E — | with I < R an interval and require

for each t €lthefibre E; = m ™'t cE to be a symplectic manifold. The manifold
E is called the evolution space of the system.

(2) Since the evolution space E is odd-dimensional, it cannot be a symplectic
manifold any longer. Rather, E is pre-symplectic manifold of rank dimE — 1.

It has the property thatthe projection of kerw to | is non-vanishing.

This has generalizations to field theory: in this case, it has been proposed to

considerpresymplectic manifolds with higher dimensional leaves.

(3) By the slice theorem, there exists a foliation of evolution space with one-
dimensionalleaves. We require that the integral curves of the dynamics we
are interested in parametrizethese leaves. A presymplectic formulation has
been proposed in particular to deal with systemsin which no natural

parametrization is known, e.g. for massless relativistic particles.
Examples(4-3-2):

(1) We take a symplectic manifold (M,w,) and obtain a presymplectic manifold
IxM withpresymplectic form pryw,. This cannot be the correct
presymplectic form, since the leavesof the presymplectic manifold
(I x M, w,) are submanifolds of the form | x {m} withm € M, i.e. have

trivial dynamics on the space M. of leaves.
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(2) For any smooth function
h:IxM->R
we consider
Wy, = Pr wo — dh A dt € Q% (1 xM) .

This form is closed as well and has rank dimM. Thus any choice of
function h endowsl xM with the structure of a pre-symplectic manifold
(I XM, (,()h).

(3) Consider local Darboux coordinates (q', pi) on M. Then
_ i
wo= X, ,dp; A dq

and, with the summation convention understood, in local coordinates

(d' pi ) on I xM
wp = dp; Adqt — g—gdpi Adt — ;—:idqi A dt
It is easy to check that the nowhere vanishing vector field X,

oh oh oh oh 0

Ol a0 = 351 wanagt ~ 3g1! wandy T 3
Obeys ,
Ly, wp =0

and thus is tangent to the leaves.
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Definitions(4-3-3):

(1)A time dependent Hamiltonian system consists of a symplectic manifold

(M, w,) and asmooth function
h:l1xM - R,

called the (time-dependent) Hamiltonian function. Introduce the vector

fieldX,;, € vect(l xM) in p € | xM as the sum

where X,, is the symplectic gradient of h on the slice. The integral curves of

X, describethe physical trajectories for the Hamiltonian function h.

(2) The pre-symplectic manifold (I xM, w —dhAdt) is called evolution space of
the system.The space of leaves is called the phase space of the system. It has
the structure of asymplectic manifold. A leaf of the foliation is an
unparametrized trajectory. The imagesof trajectories in evolution space E in

phase space are called (Hamiltonian) trajectories.
Observations(4-3-4):

(1) Consider a Hamiltonian system (M, w, h). Choose local Darboux coordinates
(p, 9) on Mand the related local Darboux coordinates (t, p, g) on evolution
space E = | xM.

(2) The phase flow for h

¢ M->M
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on M leads to a family of diffeomorphisms on evolution space E which

parameterize theleaves

t' = (@(x), t" + 1)

We already know that the one-forms ® and ©g are globally defined, if M is a
cotangentbundle. We will assume from now on that the symplectic form is
not only closed but even exactand that a globally defined one-form
0 € 0! (M) has been chosen such that d® = w.

Proposition (4-3-5):

Let Y; and Y, be two curves in evolution space E that encircle the same leaves.

_[ O = jGE
71 Yo

Then we have

The one-form ©y is called Poincare-Cartan integral invariant.
Proof:

Let ). be the surface formed by those parts of the leaves intersecting
Y; (and thus Y) that is bounded by the curves, ), =Y, —Y;. Such a surface is

called a flux tube. Stokes’ theoremimplies

V2 71 2 %

o )
since ), consists of leaves whose tangent space is by definition the kernel

ker wg of thepre-symplectic form on evolution space.
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Observations(4-3-6):

(1) We now specialize to curves in evolution space M at constant time,

Y, € prli (t,), to find
J‘ G)b :j Q)
71 Y2

(2) Consider now an oriented two-chain ), € M such that ) =Y .

Stokes’ theorem thenimplies that

=gl

is invariant under the phase flow. We have derived this result earlier.

In the following we will discuss the Legendre Transform.
Observations(4-3-7):

(1)Let V Dbe a real vector space and U — V be a convex subset, i.e. with
X,y € U, also allpoints of the form tx + (1 — t)y with t € [0, 1] are contained
in U. In other words, alongwith two points X, y, the subset U also contains
the line segment connecting x and y.

(2) If dimR V =1, the situation is more specifically that U is an interval, and the

implicitequation fixing x in terms of p becomes f'(x) = p.

Definition (4-3-8):
Let U < V be a convex subset of a real vector space. Given a convex function

f: U - R, thereal-valued function g defined on a subset of V'by

9(p) = maxyey(p, x) — f(x)
is called the Legendre transform of f.
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Remarks (4-3-9):

(1) Consider as an example the function f(x) = m %

on R with m >0 and a> 1. Then forfixed p € R, the function
F(p, X) = px — m%

has in x an extremum for p = mx*~1. Hence we find for the Legendre

transform
__r pﬁ 1 1
=m a-1—with-+->=1
g(p) =m a-1owith_ + 2
As special cases, we find with a = 2 for the function
f(x) :?xzthe Legendre transform

g(p) :%, and for m = 1 for the function

* B
f(x) = Zthe Legendre transformg (p) = &
@ B

+

1
|_\

with

RIr

|+

(2) The definition of the Legendre transform via a maximum implies the

inequality

F(x, p) = xp—f(x) < g(p)
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for all values of x, p where the functions f and g are defined. A function

and its Legendretransform are thus related by

px < f(x) + g(p).

Applying this to the second example just discussed, we find the classical

inequality
l a l B i l l =
Px < _X + Bp ,Wltha+B 1
This is Young’s inequality. It can be used to prove Holder’s inequality

1fglls < 1Iflle- llgllg

wherere with norm
herefe L%(M) with

1

1/ lle =( _[ If1%)
M

and similarly g € LP(M) and M a measurable space.

Observations (4-3-10):

(1)Given a Lagrange function | : I x TM — R, we define the Legrendre

transformation

A IXTM > IxT M

for (t, 0, g)) € | x T4M as the element (t, A,q(0r)), where the element A;4(qy)
€ Tq Misdefined by

i

p ol
(Aeq(qr), ) = EI oo (6. 9.0; + €w) = gt
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(2) In many cases of interest, A is even a global diffeomorphism of TM to
T'M. Then onecan work with the phase space T'M instead of the

kinematical space TM.
We will now restrict to this case. Then the function
h:IxTM->R

defined by the Legendre transform of I:

A
IXTM —mM8M I <X T*M
\ /
R

can be used as a Hamiltonian function for a time-dependent Hamiltonian system
on I xT"M.

Theorem (4-3-11):

Let M be a smooth manifold. Letl : I x TM — R, be a time-dependent

Lagrangian function such that the Legendre transform exists as a
globaldiffeomorphism

A IXxTM I xTM
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of manifolds fibred over the interval I. Let
h:IxTM->R

be the Legendre transform of I:

A
| xTM | xT*M

R

This sets up a bijection of Lagrangian and Hamiltonian systems with a bijection
of classicaltrajectories: A section : 1 — | XM is a solution of the Euler Lagrange

equations for |, if andonly if the Legendre transform of its jet prolongation
Aojl@il 5 IxTM > I xTM

obeys the Hamilton equations for h.
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