

To my mother and my father

ACKNOWLEDGEMENTS

This thesis would not have been possible without the Grace of Allah and His Guidance. Thanks God for giving me the strength to face hardship, the patience to complete and the joy of knowledge.

First and foremost, I would like to thank my supervisor Dr. Jacqueline John George for her precious guidance and time. Her inspiring ideas and constructive comments have contributed greatly in the writing of the thesis. Her advice has become the beacon of light to this humble effort, Thanks for always keeping a nice smile and encouraging comments.

My thanks to Eng. Musaab Mustafa Hassan who suggested this topic.

I would also like to thank my father Eng. Abdoun Ishag for his support, his helpful comments and careful reviews of this thesis.

Most of all I would like to thank my mother Eng. Makka Elyas for her love and encouragement; I would not have completed this thesis without her continuous and immeasurable support.

This acknowledgement would seem odd without mentioning these few names; Hatem, Safaa, Sahar, Sameer and Namareg thank you for the support and care.

Finally, I would like to thank everyone who have been directly or indirectly involved in the process of completing this thesis.

Abstract

High Altitude Platform Stations (HAPs) are communication facilities situated at an altitude of 17 to 20 km and at a specified fixed point relative to the Earth. They are mostly solar-powered, unmanned, and remotely operated. HAPs, when fully deployed will have the capability of providing services and applications ranging from broadband wireless access, navigation and positioning systems, remote sensing and weather observation/monitoring systems, future generation mobile, telephony, digital TV etc. Rainfall poses a serious issue to HAP since due to its position rainfall creates the maximum attenuation scenario and causes a decrease in the carrier to noise ratio. In this thesis the modulation technique will be adapted according to the carrier to noise ratio as a proposed solution to rain attenuation problem.

A graphical User Interface was designed using MATLAB to provide the best modulation technique that offers the highest possible data rate with a minimum BER having different rain rates. A case study was carried out in two cities-Khartoum and Juba-to suggest which of them is appropriate to implement HAP in.

المستخلص

محطات المنصات عالية الارتفاع (HAPs) هي مرافق الاتصالات التي تقع على ارتفاع يتراوح من 17 إلى 20 كيلومتراً وعند نقطة معينة ثابتة بالنسبة للأرض. وهي في الغالب تعمل بالطاقة الشمسية، من دون طيار، وتعمل عن بعد. (HAPs) عندما يتم تفعيلها بالكامل يكون لديها القدرة على توفير الخدمات والتطبيقات التي تتراوح بين الاتصالات اللاسلكية عريضة النطاق، ونظم الملاحة وتحديد الموضع، والاستشعار عن بعد ونظم رصد الأحوال الجوية / الرصد، انظمه الاتصالات للجيل القادم ، الاتصالات الهاتفية، وأجهزة التلفزيون الرقمية وغيرها. هطول الأمطار يشكل قضية خطيرة إلى الـ HAP فنسبة لموقعها هطول الأمطار هو سبب الحد الأقصى للتلوهين ويسبب أيضاً نقصاً في نسبة الإشارات إلى الضجيج. في هذه الرسالة تقنية التعديل ستكتيف وفقاً لنسبة الإشارات إلى الضجيج كحل مقترن لمشكلة تلوهين المطر.

تم تصميم واجهة المستخدم الرسومية باستخدام MATLAB لتقديم أفضل تقنية تعديل التي توفر أعلى معدل بيانات ممكن مع وجود الحد الأدنى للـ BER بوجود معدلات أمطار مختلفة. وأجريت دراسة حالة في اثنين من المدن - الخرطوم و وجوباً. لاقتراح أيهما مناسب لتنفيذ الـ HAP .

List of Contents

الآية

Dedication	I
Acknowledgment	II
Abstract	III
المستخلص.....	IV
List of Content	V
List of Figures.....	VIII
List of Table	XII
List of Abbreviation	XIII
Symbols.....	XV

Chapter One: Introduction to High Altitude Platforms

1.1 Preface.....	1
1.2 Problem Statement	3
1.3 Proposed Solution	3
1.4 Methodology	4
1.5 Thesis outline	4

Chapter Two: HAP System Architecture and Application

2.1 Introduction	5
2.2 High Altitude Platform Compared with Other Systems.....	6
2.2.1 HAPS Compared with Terrestrial Services.....	6
2.2.1 HAPS Compared with Satellite Services.....	7
2.3 High Altitude Platform History.....	7
2.4 High Altitude Platform Communication Systems.....	9
2.4.1 Stratospheric Segment.....	9

2.4.2 Ground Segment.....	11
2.5 High Altitude Platform Topologies.....	12
2.5.1 A Terrestrial-HAP-Satellite System.....	13
2.5.2 An Integrated Terrestrial-HAP System.....	14
2.5.3 A standalone HAP system.....	14
2.6 Antennas for High Altitude Platform System.....	15
2.7 High Altitude Platform Applications.....	16
2.7.1 2G/3G (UMTS) and 4G Applications.....	16
2.7.2 Broadband Fixed Wireless Access Applications.....	17
2.7.3 Emergency and disaster scenarios.....	18
2.7.4 Military Communications.....	19

Chapter Three: Rain Attenuation and Link Budget Analysis

3.1 Introduction	20
3.2 Propagation Phenomena for High Altitude Platform.....	20
3.2.1 Factors that Contribute to Rain Attenuation.....	23
3.3 High Altitude Platform Link Budget	25
3.3.1 Link budget Analysis	27
3.3.1.1 Uplink Segment	30
3.3.1.2 Transponder	32
3.3.1.3 Downlink Segment	32

Chapter Four: Simulation and Result

4.1 Introduction	34
4.2 Simulator Environment	34
4.3 Simulation Model.....	40
4.4 Result and Discussion	40

Chapter five: Conclusion and Recommendation

5.1 Conclusion	62
5.2 Recommendation	63
References.....	64
Appendix.....	66

List of Figures

Figure	Page
(2.1) The zeppelin NT airship, lunched in June 2000	8
(2.2) Helios AeroVironment's craft has a wing span of 75m and aims to operate up at 100000ft under solar power	8
(2.3) Wind Speed and Temperature for Different Altitude and Atmospheric Pressure Values	10
(2.4) HAPS Infrastructure Concept	12
(2.5) A Terrestrial-HAP-Satellite System	13
(2.6) An integrated terrestrial-HAP system	14
(2.7) A standalone HAP system	15
(3.1) Schematic of a HAPS link budget	27
(3.2) The Relationship between BER and C/N.....	30
(3.3) Uplink HAPS model	31
(3.4) Transponder model for HAPS	32
(3.5) Downlink HAPS model	33
(4.1) Rain Attenuation Path Geometry	37
(4.2) GUI Design for Calculating the Modulation Technique.....	40

(4.3) Modulation Technique for F=1.8/2.1GHz in Khartoum at R=4mm/h.....	42
(4.4) Modulation Technique for F=27/31GHz in Khartoum at Elevation Angle=45°.....	42
(4.5) Modulation Technique for F=27/31GHz in Khartoum at Elevation Angle=100°.....	43
(4.6) Modulation Technique for F=47/49GHz in Khartoum at Elevation Angle=35°.....	43
(4.7) Modulation Technique for F=47/49GHz in Khartoum at Elevation Angle=85°.....	44
(4.8) Modulation Technique for F=1.8/2.1GHz in Khartoum at R=50mm/h.....	45
(4.9) Modulation Technique for F=27/31GHz in Khartoum at Elevation Angle=45°.....	45
(4.10) Modulation Technique for F=27/31GHz in Khartoum at Elevation Angle=100°.....	46
(4.11) Modulation Technique for F=47/49GHz in Khartoum at Elevation Angle=35°.....	46
(4.12) Modulation Technique for F=47/49GHz in Khartoum at Elevation Angle=85°.....	47
(4.13) Modulation Technique for F=1.8/2.1GHz in Khartoum at R=120mm/h....	48
(4.14) Modulation Technique for F=27/31GHz in Khartoum at Elevation Angle=45°.....	48
(4.15) Modulation Technique for F=27/31GHz in Khartoum at Elevation Angle=100°.....	49

(4.16) Modulation Technique for F=47/49GHz in Khartoum at Elevation Angle=35°.....	49
(4.17) Modulation Technique for F=47/49GHz in Khartoum at Elevation Angle=85°.....	50
(4.18) Modulation Technique for F=1.8/2.1GHz in Juba at R=20mm/h.....	51
(4.19) Modulation Technique for F=27/31GHz in Juba at Elevation Angle=45°.....	51
(4.20) Modulation Technique for F=27/31GHz in Juba at Elevation Angle=100°.....	52
(4.21) Modulation Technique for F=47/49GHz in Juba at Elevation Angle=35°.	52
(4.22) Modulation Technique for F=47/49GHz in Juba at Elevation Angle=85°.	53
(4.23) Modulation Technique for F=1.8/2.1GHz in Juba at R=250mm/h.....	54
(4.24) Modulation Technique for F=27/31GHz in Juba at Elevation Angle=45°.	54
(4.25) Modulation Technique for F=27/31GHz in Juba at Elevation Angle=100°.....	55
(4.26) Modulation Technique for F=47/49GHz in Juba at Elevation Angle=35°.	55
(4.27) Modulation Technique for F=47/49GHz in Juba at Elevation Angle=85°.	56
(4.28) Modulation Technique for F=1.8/2.1GHz in Juba at R=660mm/h.....	57
(4.29) Modulation Technique for F=27/31GHz in Juba at Elevation Angle=45°.	57
(4.30) Modulation Technique for F=27/31GHz in Juba at Elevation Angle=100°.....	58

(4.31) Modulation Technique for F=47/49GHz in Juba at Elevation Angle=35°.58

(4.32) Modulation Technique for F=47/49GHz in Juba at Elevation Angle=85°.59

List of Tables

Table	Page
(4.1) HAPS link Parameters for Voice Services.....	35
(4.2) HAPS link Parameters for Fixed Satellite and Terrestrial Services.....	35
(4.3) HAPS link Parameters for Fixed Broadband Services.....	36
(4.4) Parameters for Empirical Rain Attenuation Model.....	37
(4.5) The Relation between the Operating Frequency and the Elevation Angle...	38
(4.6) Relation between the C/N and the Modulation Technique.....	39
(4.7) Effect of Parameters variation on HAPS in Khartoum and Juba.....	60

List of Abbreviation

HAPS	High Altitude Platform
FSS	Fixed Satellite Services
CNR	Carrier to Noise Ratio
QAM	Quadrature Amplitude Modulation
PSK	Phase Shift Keying
QPSK	Quadrature Phase Shift Keying
MATLAB	Matrix Laboratory
WRC	World Radio communications Conference
ITU	International Telecommunication Union
RR	Radio Regulations
HALE Platforms	High Altitude Long Endurance Platforms
TT&C	Telemetry Tracking and Command
PSTN	Public Switched Telephone Network
UMTS	Universal Mobile Telecommunications System
MBMS	Multimedia Broadcast and Multicast Services
B-FWA	Broadband Fixed Wireless Access
QoS	Quality of Service

GUI Graphical User Interface

BER Bit Error Rate

Symbols

C/N	Carrier to Noise Ratio
EIRP	Equivalent Isotropic Radiated Power
PEIRP	EIRP for HAPS in dB
LFS	Free Space Loss
Ar	Rain Attenuation
G	Receive Antenna Gain
T	Noise System Temperature
G/T	Figure of Merit
K	Boltzmann Constant
R	Data Rate
R	Rainfall Rate
rR	Total Rainy Slant Path Length
hS	Ground Station Antenna Height above Mean Sea Level
hR	Effective Rain Height
elev	Elevation Angle