الآية

قال الله تعالى :

" هوَ الذي جعلَ الشمسَ ضياءً والقمرَ نورًا وقدرهُ منازلَ لتعلمُوا عددَ السنينَ والحسابَ ما خلقَ اللهُ ذلكَ إلا بالحقّ يفصلُ الاياتِ لقومٍ يعلمونَ ۞"

صدق الله العظيم سورة يونس

DEDICATION

We dedicate this research:

To our parents, thank you for unconditional support with our studies, we are honored to have you as our parents, thank you for giving us a chance to prove and improve ourselves through all our walks of life.

To our teachers, who thought us to think, understand and express. We earnestly feel that without their inspiration, able guidance and dedication, we are not be able to pass through the tiring process of this research

ACKNOWLEDGEMENT

First and foremost, we would like to express our gratitude to the most Gracious and Most Merciful ALLAH for helping us to complete this report.

It has been an honor and pleasure to have Ust. Gaffar babiker Osman as our supervisor. We are grateful to him for the time given to us to make this requirement and for his valued suggestion. In addition to his huge knowledge and experience. We enjoyed his support and patience during the very tough moment of the research work and writing of the report.

Last but certainly not least, we would like to deeply acknowledge our beloved parents for their untiring efforts in providing moral and financial assistance that inspired to finish this work and also to all our friends that's been really helpful in providing us some help along with their kind opinion.

Abstract

Elevators are very important tool, used in vertical transportation for carrying goods and people from a floor to other floors.

The purpose of this project is to construct a circuit that is able to control a four levels elevator model so it can perform the elevator function to shift between the floors according to the orders and the priority of them and being able to determine the exact position of the elevator at any time so it can know when exactly to stop.

المستخلص

تعتبر المصاعد من أهم الوسائل التي تستخدم في النقل, حيث تستخدم في حمل الافراد والبضائع من مستوى الى مستوى آخر.

الهدف من هذا البحث هو بناء دائرة قادرة على التحكم في نموذج لمصعد كهربائي يتحرك في اربعة طوابق بحيث يقدر على القيام بمهام المصعد والتنقل بين الطوابق بناء على الاولوية والطلب والمقدرة على معرفة موقع الغرفة في أي لحظة لتحديد وقت الوقوف المناسب.

TABLE OF CONTENTS

	Page
الآية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
المستخلص	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
CHAPTER ONE	
INTRODUCTION	,
1.1 Background	1
1.2 Problem Statement	3
1.3 Objectives	3
1.4 Methodology	3
1.5 Project Layout	4
CHAPTER TWO	L
ELEVATORS OVERVIEW	
2.1 Uses of Elevators	5
2.2 Elevator Components	7
2.2.1 Elevator Car	8
2.2.2 Hoistway	10
2.2.3 Elevator Machine and drive system	10
2.2.4 Safety system	13
2.3 Elevator Types	14
2.3.1 According to hoist mechanism	14
2.3.2 According to building height	18
2.3.3 According to building type	18
2.3.4 Elevator classification according to elevator location	19
2.3.5 Elevator classification according to special uses	19
CHAPTER THREE	
ELEVATOR CONTROL SYSTEM	
3.1 Introduction	20
3.2 Closed-Loop Control Versus Open-Loop Control	20
3.3 Microprocessor, Microcomputer and Microcontroller	23

3.4 Elevator Control System Components	24
3.4.1 Inputs	25
3.4.2 Outputs	27
3.4.3 Controller	28
CHAPTER FOUR CIRCUIT COMPONENTS AND ANALISIS	
4.1 Introduction	31
4.2 System Block Diagram	31
4.3 System Components	32
4.3.1 Arduino	32
4.3.2 Servo motor	36
4.3.3 Radio frequency identification	37
4.3.4 IR sensor	38
4.3.5 Magnetic proximity switch sensor	38
4.3.6 Thermal sensor	39
4.3.7 Liquid crystal display	40
4.3.8 Keypad	41
4.3.9 Seven segment	41
4.4 Circuit Implementation and Connection	42
4.5 Elevator Control System State Diagram	44
CHAPTER FIVE	
CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	46
5.2 Recommendations	46
REFRENCESES	47

LIST OF FIGURES

Figure	Title	Page
2.1	Elevator components	7
2.2	Elevator car types	8
2.3	Gearless machines components	11
2.4	Geared machines components	12
2.5	Drum machine	13
2.6	Layout of elevator safety system	14
2.7	Hydraulic elevators	15
2.8	Machine-room-less elevators	16
2.9	Geared traction elevators	17
2.10	Gear-less traction elevators	17
2.11	Pneumatic elevators	18
3.1	The difference between microprocessor and	24
	microcontroller	
3.2	General elevator flow chart	25
3.3	Door opening device	27
4.1	Main elevator control system block diagram	31
4.2	Arduino Mega 2560	34
4.3	Continuous rotation servo motor SM-S4315R	36
4.4	RFID	37
4.5	Infra-red	38
4.6	Magnetic sensor	39
4.7	LM35 sensor	40
4.8	Liquid crystal display	40
4.9	Keypad	41
4.10	Seven segment	42

4.11	Elevator control system flow chart	42
4.12	The elevator state diagram	45