Dedication

To my family who always support me all time, encourage and want me to be the best

To my teachers, friends whom always I find them beside me and support me in anything.

To any person who help me to complete this work

Acknowledgement

Firstly, great thank to allah to let me reaching this agreat place.

and great thank to my supervisor DR/ **Asmalbrahim** for her effort and support me to complete this work.

Also I want to thanks my colleagues in all CT center especially in Alamal diagnostic center and Sudan advanced center, Alzaytouna hospital for their help.

Very special thanks to my parent for their effort, patient with me to finish this work.

Abstract

This study was carried out to evaluate and diagnosis renal arteries using multidetector computed tomography angiography for the donors.

The staudy was carried out in Alamal diagnostic centre and Alzaytouna hospital ,and Sudan advanced centre , where 50 patients were collected randomly from different ages and different genders 30 male , 20 female , this study has been carried out in 3-4 months.

The general objective ofthis study is the evaluation the role of multi-detector computed tomography angiography in diagnosis of renal vascular of the renal system in donors

The data of this study was collected by data collecting sheet and analysis using Microsoft Excel and software package for statistical analysis(SPSS).

All donors underwent to multidetector computed tomography angiography of renal, the study conclude that multidetector computed tomography angiography could evaluate renal arteries in 44 donors by 88 % of is normal and free from any anamolies, 4 donors 8% had double renal arteries in RT kidney and , 2 donors 4%

had Arteriovenous malformation, so that the multidetector computed tomography angiography secceeded to exclude 6 subjects from donation, donor with Arteriovenous malformation and the other had double renal arteries.

images and decreased the time and radiation dose.

ملخص البحث

اجريت هذه الدراسه لتقويم وتشخيص الشرايين الكلويه لمتبرعي الكلي باستخدام الاشعه . المقطعية متعددة الكواشف

حيث اجريت هذه الدراسه بمركز الامل التشخيصي, وايضا بمستشفي الزيتونه, و مركز السودان المتطور,حيث تم جمع 50 عينه عشوائيا من مختلف الاعمار والاجناس, و استغرقت الدراسه من 3-4 شهور

الهدف الرئيسي لهذه الدراسه هو تقييم دور الاشعة المقطعية في تشخيص اوعية الكلي الدمويه . للمتبرعين

و قد تم جمع بيانات هذه الدراسه بواسطة ورقه تجميع بيانات وقد تم تحليلها بواسطه برنامج مايكروسفت اكسل وبرنامج التحليل الاحصائي

حيث أخضع كل المتبرعين وعددهم 50 متبرع لفحص الشرايين الكلويه بواسطه الاشعه المقطعيه متعددة الكواشف. عليه توصلت الدراسه انه يمكن تقويم الشرايين الكلوية لمتبرعي الكلي بالأشعة المقطعيه متعددة الكواشف بنسبة 88% في 44 متبرع كانو طبيعيين و 8 % في 4 متبرعين لديهم شريانين في الكله اليمني , و 2 متبرعين بنسبة 3 % لديه تشوة شرياني وريدي

. بهذ نجحت الأشعة المقطعيه متعددة الكواشف من استبعاد 6 متبرعين من التبرع بالكلي لأن منهم من يعاني من تشوة شرياني وريدي والبعض الاخر لديهم شريانين في الكلي اليمني ايضا استخدام الاشعه المقطعيه متعددة الكواشف مكننا من الحصول علي صورة بجوده عالية وايضا تقليل الزمن وتقليل الجرعه الاشعاعية

Abbreviations

Abbreviations	Words
2D	2Dimension
3D	3 Dimension
ADH	Antidiuretic hormone
AVMs	Arteriovenous Malformations
CKD	Chronic kidney disease
Cm	Centimeter
CPR	Curved Planar Reformatting
CTA	Computed tomography angiography
DSA	Digital subtraction angiography
FIG	Figure
HU	Hounsfield unit
IVC	Inverior vena cava
KVB	Killovoltagepeak
MAS	Milliampair second
MDCT	Multidetecor computed tomography
MDCTA	Multidetecor computed tomography angiography
Mg	Milligram
Min	Minute
MIP	Maximum Intensity projection
ML	Milliliter
Mm	Millimeter
MPR	Multiplanar Reformatting

MRA	Magnatic resonance angiography
PRA	Plasma renin activity
Pt	Patient
RAA	Renal Artery Aneurysm
RAD	Renal artery disease
RAS	Renal artery stenosis
RVHT	Renovascular hypertension
Sec	Second
SMA	Superior mesenteric artery
T	Time
VRT	Volume rendering technique

List of tables

Table	Table title	Page
No		
3-1	Specification of machine used	26
3-2	The technique used for renal CTA	28
4-1	Gender distribution	30
4-2	Age distribution	31
4-3	CTA finding	32
4-4	Width measuement of RT andLT renal arteries	33
4-5	Frequancy of length of RT and LT renal artery	34
4-6	The averages of width and length for RT and LT	35
	renal arteries	
4-7	According to the genders Average width of PT repal arteries according to	35
4-/	Average width of RT renal arteries according to	35
	gender	
4-8	Average width of LT renal arteries according to	36
	gender	
4-9	Average length of RT renal arteries according to	37
	gender	
4-10	Average length of LT renal arteries according to	38
	gender	

List of figures

Fig No	Figures title	Page
2-1	position of the kidney and its related organs	6
2-2	show the structure of the kidney	6
2-3	Artery stenosis in 60 year-old patient. coronal MPR	11
2-4	image RT renal artery stent in a 60 –year-old man was	13
	successfully treated for RVHT .coronal CT MPR	
2-5	image Show LT renal artery aneurysm in 55-year- old	14
2-6	women coronal 3D CTA. Show LT RAA in 55-year- old women . Axial MIP CTA	14
	image show LT renal artery aneurysm	
2-7	Show an arterial venous malformation of the LT	15
	renal artery (LT arrow). And simple cyst of the RT	
	kidney	
2-8	CTA of renal donor MIP image .displaying normal	16
	right and left renal arteries .	
2-9	multiple renal arteries in 50 -year-old man	17
	potential renal donor Two LF renal arteries coronal	
	CTA MIP image	
· · · · · · · · · · · · · · · · · · ·		

3-1	Aquilion64slice Toshiba machine.	25

List of contents

Topic		Page
Dedication	Dedication	
Acknowledg		II
Abstract (en		III
Abstract (ara		IV V
Abbreviation	Abbreviations	
List of table	S	VI
List of figure	es	VII
List of contents		VIII
Chapter one		
1	Introduction	1
l l	Problem of the study	2 3
	Objective Significante of the study	3
1-4	organicance of the study	3

Chapter two

2-1	Anatomy of the kidney	5
2-1-1	Nerve supply	7
2-1-2	Renal vascular anatomy	7
2-1-3	Normal variants	8
2-2	Renal physiology	9
2-2-1	Blood pressure regulation	9
2-2-2	Hormone secretion	10
2-2-3	Acid –base homeostasis	10
2-2-4	Excretion of wastes	10
2-2-5	Osmolarty regulation	10
2-3	Renal pathology	10
2-3-1	Renal arteries stenosis	10
2-3-2	Renovascular hypertension	13
2-3-3	Renal artery anuerysm	13
2-3-4	Renal arteriovenous malformation	15
2-3-5	Renal trasplantation evaluation	15
2-4	Renal vein pathology	18
2-5	Instrumentation	18
2-5-1	Doppler ultrasound	18
2-5-2	Magnetic Resonance Angiography	19
2-5-3	Digital Subtraction Angiography	19
2-5-4	Multi-detectors spiral CT	20
2-5-4-1	Advantages of MDCT	20
2-6	CT Angiographic Technique	21
2-6-1	Image acquisition	21
2-6-2	Contrast media administration	21
2-6-3	Acquisition parameter	21

2-6-4	Post processing technique	22
2-7	Previous study	23
	Chapter three	
3-1	Materials	25
3-1-1	Study population	25
3-1-2	Machine used	25
3-2	Methode	27
3-2-1	Technique used	27
3-2-1-1	Patient prepration	27
2-3	Image interpertation	29
3-4	Data analysis	29
3-5	Ethical considerations	29
Chaper four		
4	Results	30
Chapter five		
5-1 5-2	Discussion	39 41
5-2 5-3	Conclusion recommendation	41 42
5-4	References	43

Appendix