الآية

بسم الله الرحمن الرحيم

قال تعالي:

﴿ اللَّهُ نُورُ السَّمَاوَاتِ وَالْأَرْضِ مَثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحُ الْمِصْبَاحُ فِي زُجَاجَةٍ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبُ دُرِّيٌّ يُوقَدُ مِنْ شَبَرَةٍ الْمِصْبَاحُ فِي زُجَاجَةٍ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبُ دُرِّيٌّ يُوقَدُ مِنْ شَبَرَةٍ مَنْ شَبَرَةٍ مَنْ يَثُونَةٍ لَا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ مُبَارَكَةٍ زَيْتُونَةٍ لَا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسنهُ نَارٌ نُورٌ عَلَى نُورٍ يَهْدِي الله لِنُورِهِ مَنْ يَشَاءُ وَيَضْرِبُ اللّهُ الْعَظيم.

[سورة النور: 35]

الإهداء

يا من أحمل اسمك بكل فخر يا من يرتعش قلبي لذكرك أبي يا من أودعتني لله أهديك هذا البحث إلى حكمتيوعلمي إلى أدبيوحلمي إلى طريقي المستقيم إلى طريق..... الهداية إلى ينبوع الصبر والتفاؤل والأمل أمي الغالية إلى كل من في الوجود بعد الله ورسوله إلى سندى وقوتى وملاذي بعد الله إلى من آثروني على نفسهم إلى من علموني علم الحياة إخوتي إلى من أظهروا لي ما هو أجمل من الحياة إلى من كانوا ملاذى وملجئي إلى من تذوقت معهم أجمل اللحظات إلى من سأفتقدهم وأتمنى أن يفتقدونني إلى من جعلهم الله أخوتي فيه و من أحببتهم فيه إلى من يجمع بين سعادتي وحزني إلى من لم أعرفهم ولن يعرفوني إلى من أتمنى أن أذكرهماذا ذكروني إلى من أتمنى أن تبقى صورهمفي عيوني

ACKNOWLEDGMENT

The greatest thanks to Allah above all always, before and after.

We would like to express our deep gratitude to everyone who has been helping us throughout this work at any step.

Most appreciation to our supervisor Dr. Abdu AL Aziz, for their expert support and valuable advices which guided us throughout this work and the beginning of our career life as engineers.

We would also like to thank all of our teachers in the school of electrical and nuclear engineering for all the help and knowledge that they gave us.

ABSTRACT

The static synchronous compensator (STATCOM) is one type of FACTS devices which resembles in many respects a rotating synchronous condenser used for voltage control and reactive power compensation. The STATCOM can increase transmission capacity, damping low frequency oscillation, and improving transient stability. This project presents a control block diagram of STATCOM for the transient stability improvement. The SIMULINK/MATLAB software package is used for simulation of test system. In this project the STATCOM is connected to the 500kVline for atypical two machine transmission system. The study demonstrates that STATCOM can improve transient stability and also compensate the reactive power in power system networks.

المستخلص

معوض ثابت التزامن هو واحد من عائلة ضخمة تسمي (FACTS) وهو يشابه في عدة نواحي مكثفات التزامن الدوارة التي تستخدم في تنظيم الجهد وأيضا في تعويض القدرة الردية. معوض ثابت التزامن له القدرة علي زيادة سعة خطوط النقل كما له القدرة علي تخميد تأرجح الترددات المنخفضة كما له القدرة أيضا علي تحسين الإستقرارية العابرة والحالات الإنتقالية لمنظومة القدرة الكهربائية ، وفي هذه الدراسة تم استخدامه لتحسين الإستقرارية العابرة حيث تم تمثيل منظومة القدرة الكهربائية بواسطة برنامج الماتلاب وتم إجراء الاختبار عليها. وتم تركيب معوض ثابت التزامن علي خط نقل 500 كيلو فولت بين اثنين من الماكينات المتماثلة ذو الجهد 13.8 كيلو فولت .وهذه الدراسة أظهرت أن معوض ثابت التزامن له القدرة علي تحسين الاستقرارية العابرة و أيضا له إمكانية تعويض القدرة الردية في المنظومة الكهربائية .

TABLE OF CONTENTS

	Page
الآية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
المستخلص	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xiii
CHAPTER ONE INTRODUCTION	
1.1 Preface	1
1.2 Why We Need Transmission Interconnections	2
1.3 Problem Statement	4
1.4 Objectives	5
1.5Methodology	5
1.6Project Layout	5
CHAPTER TWO STABILITY AND FACTS DEVICES	
2.1 Power system stability	7
2.2 Classification Of Stability	8
2.3 Transient Stability	8
2.4Power – Angle Curve	9
2.5 Power Angle Equation	9
2.6 Swing Equation	9
2.7 Equal Area Criteria	10
2.8 Overview of FACTS	12

2.9 FACTS-Devices and Applications	14
2.10 Basic Types of FACTS controllers	16
2.11 Series Controllers	16
2.12 Types of series controllers	17
2.12.1 Thyristors-Controlled Series Capacitor (TCSC)	17
2.12.2 SSSC	18
2.13 Shunt Controllers	19
2.14 Types of Shunt Controllers	20
2.14.1 SVC	20
2.14.2 STATCOM	21
2.15 Combined series-series Controllers	22
2.16 Combined series-shunt Controllers	23
2.17 Types of Combined series-shunt Controllers	24
2.17.1 Unified Power Flow Controller	24
2.17.2 Interline Power Flow Controller	25
2.17.3 Generalized Unified Power Flow Controller	26
2.18 Back-to-Back Device	27
CHAPTER THREE	
STATCOM OPERATION AND CONTROL	
STATCOM OPERATION AND CONTROL 3.1 Overview	29
3.1 Overview	29
3.1 Overview 3.2 Need for Reactive Power Compensation	30
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM)	
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM	30 31 32
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC)	30 31
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM	30 31 32 33
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors	30 31 32 33 33
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT)	30 31 32 33 33 33
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor	30 31 32 33 33 33 34
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X)	30 31 32 33 33 33 34 34
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X) 3.4.4 Harmonic Filters	30 31 32 33 33 33 34 34 34
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X) 3.4.4 Harmonic Filters 3.5 Applications of STATCOM	30 31 32 33 33 34 34 34 34
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X) 3.4.4 Harmonic Filters 3.5 Applications of STATCOM 3.6 Operating Principle of STATCOM	30 31 32 33 33 34 34 34 34 34
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X) 3.4.4 Harmonic Filters 3.5 Applications of STATCOM 3.6 Operating Principle of STATCOM 3.7 Operating Modes 3.7.1 Voltage Regulation 3.7.2 Phase angle control	30 31 32 33 33 34 34 34 34 34 37 37 39
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X) 3.4.4 Harmonic Filters 3.5 Applications of STATCOM 3.6 Operating Principle of STATCOM 3.7 Operating Modes 3.7.1 Voltage Regulation 3.7.2 Phase angle control 3.8 PWM Techniques used in STATCOM	30 31 32 33 33 34 34 34 34 34 37 37 39 41
3.1 Overview 3.2 Need for Reactive Power Compensation 3.3 Static Synchronous Compensator (STATCOM) 3.4 Components of STATCOM 3.4.1 Voltage-Source Converter (VSC) 3.4.1.1 Square-wave Inverters using Gate Turn-Off Thyristors 3.4.1.2 PWM Inverters using Insulated Gate Bipolar Transistors (IGBT) 3.4.2 DC Capacitor 3.4.3 Inductive Reactance (X) 3.4.4 Harmonic Filters 3.5 Applications of STATCOM 3.6 Operating Principle of STATCOM 3.7 Operating Modes 3.7.1 Voltage Regulation 3.7.2 Phase angle control	30 31 32 33 33 34 34 34 34 34 37 37 39

3.11 STATCOM versus SVC	47
CHAPTER FOUR	
RESULTS AND DISCUSSION	
4.1 Introduction	50
4.2 Simulation Model of Two Machine System	51
4.3 Simulation Results	52
4.3.1 System results without and with STATCOM controller (under three	52
phase fault)	
4.3.2 STATCOM Scopes	60
4.3.3 SVC Scopes compared with STATCOM	61
CHAPTER FIVE	
CONCULUSION AND RECOMMENDATION	Ţ
5.1 conclusion	65
5.2 recommendations	65
REFERENCES	66

LIST OF FIGURES

Figure	Title	Page
2.1	Classification of Power System Stability	8
2.2	Power-Angle curve	10
2.3	Overview of major FACTS devices	13
2.4	operational limits of transmission lines for different voltage levels	15
2.5	principle setup and operational diagram of a Thyristor controlled	18
	Series compensation (TCSC)	
2.6	principle setup of SSSC and implementation as DVR for power	19
	quality applications	
2.7	SVC building block and voltage/current characteristic	21
2.8	STATCOM structure and voltage /current characteristic	22
2.9	unified series- series Controller	23
2.10	coordinated series and shunt Controller	24
2.11	Principle Configuration of an UPFC	25
2.12	Principle Configuration of an IPFC	26
2.13	Principle Configuration of an GUPFC	27
2.14	Schematic configuration of a HVDC Back to Back with voltage	28
	source converter	
3.1	The maximum currents being independent of the Voltage	29
3.2	principle of operation of STATCOM	32
3.3	GTO-based STATCOM Simple Diagram	33
3.4	Functional model of STATCOM	35
3.5	Operating modes of STATCOM	37
3.6	diagram of a STATCOM designed for voltage compensation	38
3.7	The pharos diagrams of capacitive and inductive mode	40
3.8	Basic model of a STATCOM	43
3.9	Control scheme of the STATCOM	45
4.1	Single Line Diagram of Two Area Interconnected System	51
4.2	Two machine system installed with STATCOM Controller	52
4.3	Voltage magnitude (V) without STATCOM controller	53
4.4	Voltage magnitude (V) with STATCOM controller	53
4.5	Rotor speed deviation (dw) without STATCOM controller	54
4.6	Rotor speed deviation (dw) with STATCOM controller	54
4.7	Rotor speed (wm) without STATCOM controller	55
4.8	Rotor speed (wm) with STATCOM controller	55
4.9	Load angle without STATCOM controller	56

4.10	Load angle with STATCOM controller	56
4.11	Output active power without STATCOM controller	57
4.12	Output active power with STATCOM controller	57
4.13	Output reactive power without STATCOM controller	58
4.14	Output reactive power with STATCOM controller	58
4.15	Electromagnetic torque without STATCOM controller	59
4.16	Electromagnetic torque with STATCOM controller	59
4.17	reference voltage(Vref) VS maximum rate of voltage change of	60
	STATCOM controller(Vm)	
4.18	reference reactive power(Qref) and maximum rate of change of	60
	reactive power reference STATCOM controller(Qm)	
4.19	Rotor speed deviation (dw) with STATCOM controller	61
4.20	Rotor speed deviation (dw) with SVC controller	61
4.21	Output active power with STATCOM controller	62
4.22	Output active power with SVC controller	62
4.23	Voltage magnitude (V) with STATCOM controller	63
4.24	Voltage magnitude (V) with SVC controller	63

LIST OF SYMBOLS

P	Active power transferred, W
X	Transfer reactance, Ω
Xd	Transient reactance of the machine, Ω
X1	Reactance of transmission line, Ω
Е	Magnitude of the voltage behind direct axis synchronous reactance
	of the machine, V
V	Voltage of infinite bus ,V
δ	Angle between the voltage E and V, deg
M	Angular moment of the rotor
J	Moment of inertia of the rotor, H
W	Synchronous speed of the rotor, rad/s
Pm	Mechanical power input, M W
Pe	Electrical power output, M W
Pa	Accelerating power, M W
\mathbf{W}_0	no load speed, rad/s
Н	inertia constant
δο	No load angle, deg
$\delta_{ m c}$	clearing angle, deg
A1	area of accelerating, m^2
A2	area of decelerating, m^2
Q	Reactive power, Mvar
Vout	converter output voltage
Vdc	DC voltage across capacitor
k	Coefficient
V1	System voltage, V
V2	Voltage generated by the VSC, V
X	Transmission reactance between V1 and V2, Ω
Ma	Amplitude modulation ratio
Vac	AC system voltage,V
∝	phase angle,deg
Vcontrol	control voltage, V
Vtri	triangular voltage, V
Mf	frequency modulation ratio
Fs	carrier frequency, Hz
Fi	fundamental frequency of the converter, Hz
Fh	harmonic frequencies, Hz

Mf	frequency modulation ratio
K	Constant
f1	modulating frequency, Hz
VA_0	line-to-neutral voltage, V
Vd	dc voltage, V
Vll	line-to-line voltage, V
Qc	reactive output of controller, M Var
V	system voltage, V
Vc	controller voltage, V
X	reactance between system and controller, Ω
Pinj	active power injected by statcom, MW
Qinj	reactive power injected by stator, Mvar
id and iq	the reference currents in the dq coordinates, A

LIST OF ABBREVIATION

FACTS	Flexible Alternative currenttransmitionsystems
DC	Direct current
AC	Alternative current
IGBT	Insulated Gate Bipolar Transistor
IGCT	Insulated Gate commutated Transistor
SVC	Static var compensator
STATCOM	Static Synchronous Compensator
TCSC	Thyristor Controlled Series Compensator
SSSC	The Static Synchronous Series Compensator
DVR	Dynamic Voltage Restorer
SVR	Static Voltage Restorer
PST	Phase Shifting Transformers
UPFC	Unified Power Flow Controller
IPFC	Interline Power Flow Controller
GUPFC	Generalized Unified Power Flow Controller
DFC	Dynamic Power Flow Controller
TSC	Thyristor Switched Capacitors
TSR	Thyristor Switched Reactors
TCR	Thyristor Controlled Reactors
GTO	Gate Turn -off Thyristor
CSC	convertible static compensator
VSC	Voltage Source Converter
HVDC	High Voltage Direct Current
PWM	Pulse Width Modulation
SCR	Series Controlled Reactors
MOSFET	metal-oxide semiconductor field-effect transistor
M1	Machine one
M2	Machine two
IEEE	International electronic and electrical engineering
Pu	per unit
PI	Proportional integral
sec	Second