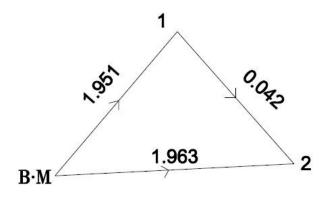
الباب الرابع المقارنة بين طرق أقل التربيعات

للمقارنه كُونت شبكة مساحيه من ثلاث نقاط نقطتين مجهولتى الإرتفاع بالإضافة إلى البنشمارك الذي قيمته 100 متر هذه الشبكه تحتوي على إرصادات تمثل فروقات إرتفاع بين النقاط السابقة هذه الشبكة تم حلها بطرق أقل التربيعات الثلاث المذكوره في الباب الثالث بمراحل مختلفه لمقارنة النتائج المتحصل عليها من كل طريقه فاعتبرنا الرصد في بداية الأمر بنفس الدقة وفي مرحلة أخرى بدقه مختلفه ومن ثم زدنا في عدد النقاط.


4-1 المرحله الأولى:

4-1-1 حالة الأرصاد العاديه:

• في حاله الأرصاد رُصدت بنفس الدقة (مصفوفة الوزن مصفوفة وحده):

المسافات بالأمتار	ملاحظات	فرق الإرتفاع (متر)	إلى	من
2000	إرتفاع	(مىر) 1.951	1	B.M
2500	إرتفاع	0.042	2	1
1800	إنخفاض	1.963	B.M	2

الجدول(4-1)

الشكل(4-1)

نتائج الحل بطريقة المعادلات الشرطيه المعادلة المستخدمه في الباب الثالث رقم (3-1):

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأرتفاعات (متر)	
-0.0100	v_1	101.9410	x_1
-0.0100	v_2	101.9730	<i>x</i> ₂
0.0100	v_3		

الجدول(4-2)

نتائج الحل بطريقة معادلات الرصد المعادلة المستخدمه في الباب الثالث رقم (3-2):

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا للأرتفاعات (متر)	النقاط
المتبقيه	المتبقيه	للأرتفاعات (متر)	
-0.0100	v_1	101.9410	\boldsymbol{x}_1
-0.0100	v_2	101.9730	x 2
0.0100	v_3		

الجدول(4-3)

نتائج الحل بإستخدام الطريقه العامه المعادلة المستخدمه في الباب الثالث رقم (3--3):

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأرتفاعات (متر)	
-0.0100	v_1	101.9410	x_1
-0.0100	v_2	101.9730	x ₂
0.0100	v_3		

الجدول(4-4)

• عندما تكون الأرصاد بدقة مختلفه (مصفوفة الوزن ليست مصفوفة وحده):

في هذه الحاله نحتاج لتكوين مصفوفة وزن من المسافات بالمعادلة الآتيه:

$$s_i = 0.01\sqrt{k}$$
$$w_i = \frac{1}{s_i^2}$$

حيث :

تمثل المسافه المقاسه بالكيلومتر بين النقاط. k

المسافه المقاسه بالمليمترات. s_i

إذن مصفوفة الوزن المكونة كالآتى:

$$w_{3\times3} = \begin{bmatrix} 5000 & 0 & 0 \\ 0 & 4000 & 0 \\ 0 & 0 & 5555.5556 \end{bmatrix}$$

نتائج الحل بطريقة المعادلات الشرطيه:

مقادير الأخطاء المتبقيه	الأخطاء المتبقيه	القيم الأكثر إحتمالا للأرتفاعات (متر)	النقاط
-0.0095	v_1	101.9415	<i>x</i> ₁
-0.0119	v_2	101.9716	<i>x</i> ₂
0.0086	v_3		

الجدول(4-5)

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0095	v_1	101.9415	\boldsymbol{x}_1
-0.0119	v_2	101.9716	x ₂
0.0086	v_3		

الجدول(4-6)

نتائج الحل بإستخدام الطريقه العامه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0095	v_1	101.9415	x_1
-0.0119	v_2	101.9716	x ₂
0.0086	v_3		

الجدول(4-7)

4-2 المرحله الثانية:

2-2-4 حالة زيادة عدد النقاط:

• في حاله الأرصاد تكون بنفس الدقة (مصفوفة الوزن مصفوفة وحده):

المسافات بالأمتار	ملاحظات	فرق الإرتفاع	إلى	من
		(متر)		
2000	إرتفاع	1.951	1	B.M
2500	إرتفاع	0.042	2	1
1800	إنخفاض	1.963	B.M	2
3000	إرتفاع	0.172	3	2
2300	إنخفاض	2.105	B.M	3

الجدول(4-8)

الشكل(4-2)

نتائج الحل بطريقة المعادلات الشرطيه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0150	v_1	101.9360	x_1
-0.0150	v_2	101.9630	x ₂
0.0000	v_3	102.1200	x ₃
-0.0150	v_4		
0.0150	v_5		

الجدول(4-9)

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0150	v_1	101.9360	\boldsymbol{x}_1
-0.0150	v_2	101.9630	x ₂
0.0000	v_3	102.1200	x ₃
-0.0150	v_4		
0.0150	v_5		

الجدول(4-10)

نتائج الحل بإستخدام الطريقه العامه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0150	v_1	101.9360	x_1
-0.0150	v_2	101.9630	<i>x</i> ₂
0.0000	v_3	102.1200	x ₃
-0.0150	v_4		
0.0150	v_5		

الجدول(4-11)

• عندما تكون الأرصاد بدقة مختلفه (مصفوفة الوزن ليست مصفوفة وحده):

$$W_{5*5} = \begin{bmatrix} 5000.0000 & 0 & 0 & 0 & 0 \\ 0 & 4000.0000 & 0 & 0 & 0 \\ 0 & 0 & 5555.5556 & 0 & 0 \\ 0 & 0 & 0 & 3333.3333 & 0 \\ 0 & 0 & 0 & 0 & 4347.8261 \end{bmatrix}$$

نتائج الحل بطريقة المعادلات الشرطيه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا للأرتفاعات (متر)	النقاط
المتبقيه	المتبقيه	للأرتفاعات (متر)	
-0.0129	v_1	101.9381	<i>x</i> ₁
-0.0161	v_2	101.9640	<i>x</i> ₂
0.0010	v_3	102.1185	x ₃
-0.0176	v_4		
0.0135	v_5		

الجدول(4-12)

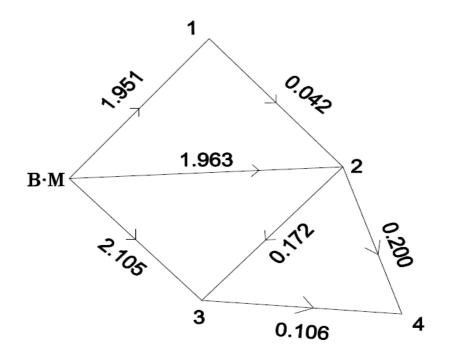
نتائج الحل بطريقة معادلات الرصد:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0129	v_1	101.9381	x_1
-0.0161	v_2	101.9640	x ₂
0.0010	v_3	102.1185	x ₃
-0.0176	v_4		
0.0135	v_5		

الجدول(4-13)

نتائج الحل بإستخدام الطريقه العامه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأرْتفاعاتُ (متر)	
-0.0129	v_1	101.9381	<i>x</i> ₁
-0.0161	v_2	101.9640	x ₂
0.0010	v_3	102.1185	x ₃
-0.0175	v_4		
0.0135	v_5		


الجدول(4-14)

2-4-3 زيادة عدد النقاط نقطة رابعة:

• في حالة الأرصاد بنفس الدقة (مصفوفة الوزن مصفوفة وحده):

المسافات بالأمتار	ملاحظات	فرق الإرتفاع	إلى	من
		(متر)		
2000	إرتفاع	1.951	1	B.M
2500	إرتفاع	0.042	2	1
1800	إنخفاض	1.963	B.M	2
3000	إرتفاع	0.172	3	2
2300	إنخفاض	2.105	B.M	3
3500	إرتفاع	0.200	4	2
1700	إرتفاع	0.106	4	3

الجدول(4-15)

الشكل(4-3)

نتائج الحل بطريقة المعادلات الشرطيه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0120	v_1	101.9390	<i>x</i> ₁
-0.0120	v_2	101.9690	<i>x</i> ₂
0.0060	v_3	102.1110	x ₃
-0.0300	v_4	102.1690	X 4
0.0060	v_5		
0.0240	v_6		
-0.0240	v_7		

الجدول(4-16)

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	القيم الأكثر إحتمالا للأرتفاعات (متر)	
-0.0120	v_1	101.9390	x_1
-0.0120	v_2	101.9690	<i>x</i> ₂
0.0060	v_3	102.1110	x ₃
-0.0300	v_4	102.1690	X 4
0.0060	v_5		
0.0240	v_6		
-0.0240	v_7		

الجدول(4-17)

نتائج الحل بإستخدام الطريقه العامه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأرْتفاعاتُ (متر)	
-0.0120	v_1	101.9390	\boldsymbol{x}_1
-0.0120	v_2	101.9690	x ₂
0.0060	v_3	102.1110	x ₃
-0.0300	v_4	102.1690	X 4
0.0060	v_5		
0.0240	v_6		
-0.0240	v_7		

الجدول(4-18)

• عندما تكون الأرصاد بدقة مختلفة (مصفوفة الوزن ليست مصفوفة وحده):

$$W_{5*5} = \begin{bmatrix} 5000.000 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4000.000 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5555.555 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3333.333 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4347.826 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2857.142 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5882.352 \end{bmatrix}$$

نتائج الحل بطريقة المعادلات الشرطيه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا للأرتفاعات (متر)	النقاط
المتبقيه	المتبقيه	للأرتفاعات (متر)	
-0.0106	v_1	101.9404	x_1
-0.0132	v_2	101.9692	<i>x</i> ₂
0.0062	v_3	102.1092	x ₃
-0.0320	v_4	102.1692	X 4
0.0042	v_5		
0.0310	v_6		
-0.0150	v_7		

الجدول(4-19)

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا للأرتفاعات (متر)	النقاط
المتبقيه	المتبقيه	للأرتفاعات (متر)	
-0.0106	v_1	101.9404	x_1
-0.0132	v_2	101.9692	<i>x</i> ₂
0.0062	v_3	102.1092	x ₃
-0.0320	v_4	102.1692	X 4
0.0042	v_5		
0.0310	v_6		
-0.0150	v_7		

الجدول(4- 20)

نتائج الحل بإستخدام الطريقه العامه:

مقادير الأخطاء	الأخطاء	القيم الأكثر إحتمالا	النقاط
المتبقيه	المتبقيه	للأر تفاعات (متر)	
-0.0106	v_1	101.9404	x_1
-0.0132	v_2	101.9692	<i>x</i> ₂
0.0062	v_3	102.1092	x ₃
-0.0320	v_4	102.1692	X 4
0.0042	v_5		
0.0310	v_6		
-0.0150	v_7		

الجدول(4-21)

3-4 المقارنة النهائية بين طرق أقل التربيعات:

مصفوفة الوزن مصفوفة وحده			
عدد أرصاد ونقاط أكثر	عدد أرصاد ونقاط أكثر	عدد أرصاد أقل	الطريقة
X _{1=101.9390}	X _{1=101.9360}	X _{1=101.9410}	
X 2=101.9690	X 2=101.9630	X 2=101.9730	الطريقة الشرطيه
X 3=102.1110	X 3=102.1200		العريف المرسود
X 4=102.1690			
$x_{1=101.9390}$	X _{1=101.9360}	X _{1=101.9410}	
X 2=101.9690	X 2=101.9630	X 2=101.9730	طريقة معادلات الرصد
X 3=102.1110	X 3=102.1200		طریعه معادلات الرصد
X 4=102.1690			
$\chi_{1=101.9390}$	X _{1=101.9360}	X _{1=101.9410}	
X 2=101.9690	X 2=101.9630	X 2=101.9730	4 1. ti Is t. ti
X 3=102.1110	X 3=102.1200		الطريقة العامه
X 4=102.1690			
	مصفوفة ليست وحده	مصفوفة الوزن	
عدد أرصاد ونقاط أكثر	عدد أرصاد ونقاط أكثر	عدد أرصاد أقل	الطريقة
X1=101.9404	X _{1=101.9381}	X _{1=101.9415}	
X 2=101.9692	X 2=101.9640	X 2=101.9716	الطريقة الشرطيه
X 3=102.1092	X 3=102.1185		الطريعة الشرطية
X 4=102.1692			
X _{1=101.9404}	X _{1=101.9381}	X _{1=101.9415}	
X 2=101.9692	X 2=101.9640	X 2=101.9716	طريقة معادلات الرصد
X 3=102.1092	X 3=102.1185		طریقه معاددت الرصد
X 4=102.1692			
<i>χ</i> 1=101.9404	X _{1=101.9381}	X _{1=101.9415}	
χ 2=101.9692	X 2=101.9640	X 2=101.9716	الطريقة العامه
X 3=102.1092	X 3=102.1185		الطريقة العامة
X 4=102.1692			

الجدول(4-22)