بسم الله الرحمن الرحيم

قال تعالي:

صدق الله العظيم

الرنمد ١٧

DEDICATION

To

My dear mother and sprit of my dear father

My brothers and my sisters

My Wife

Light of my eyes, my kids Mohanned and Mahmoud

My Large Family

And my friends

ACKNOWLEDGEMENT

Many thanks to all who contributed in the completion of this work, and especially thanks to:

- My Supervisors Dr. Faiz M. B. Elshfee and Dr. Mubarak M. A. El-mahal, to give me their time, support, and assistance until the end of the project.
- My boss Eng. Hassan Mutasim who gave me psychological bush to go forward.

And to my colleagues:

- Images processing Engineering's Hassan El-paserie who gave me his time and technical support for completion of image processing software.
- Mechanical engineering's Rahamt-Allah Bashier to assist me in design and follows-up the manufacturing process of the mechanical case.

ABSTRACT

The ability of thermal cameras to produce a crisp image even in total darkness and to measure objects temperature by special calibration in a noncontact mode makes them extremely suitable for a wide variety of applications. The objective of this thesis is to design high performance, simple structure, and low cost IR optical system (IR lenses) to work compatible with IR113 thermal detector module in order to obtain high quality thermal images, followed by thermal images processing software to build thermographic camera suitable for many civilian applications (early detection of breast cancer as medical application).

ZEMAX optical design program was used to design, optimize, and meet the targeted criterion (lower MTF value at cutoff frequency = 0.583348, and maximum value of spot diameter = $8.805\mu m$) of an IR optical system which consists of 3 germanium lens with one aspheric surface, and it was characterized by diameter of 40mm, length of 58.5mm, and weight of 70g. The manufacturing of this optical system was done in company specializing in production of IR optical systems at reasonable cost.

6061 aluminum alloy was used to manufacture special mechanical case to assemble (carry and align) the optical system with thermal detector module and build handheld thermal camera. This camera (IR optical system+ thermal detector module) was tested in field by taken several thermal images.

MATLAB computer software was used to create PC thermal image processing software to convert the thermal gray images to flash color images and read the object temperature from its image. The thermographic camera was tested by read temperature of objects from its images and compared them with known in advance temperatures and we get acceptable results.

المستخلص

قابلية الكاميرات الحرارية لإنتاج صور واضحة حتى فى الظلام الدامس و لقياس درجة حرارة الاجسام بمعايرة خاصة فى وضع عدم الاتصال يجعلها مناسبة للغاية لعدد كبير من التطبيقات. اغراض هذا البحث هي تصميم نظام بصري (عدسات) للاشعة تحت الحمراء عالى الاداء، بسيط البنية، ومنخفض التكلفة ليعمل متوافقاً مع وحدة الكاشف الحرارى IR113 وذلك للحصول على صور حرارية عالية الجودة متبوعاً ببرنامج لمعالجة الصور الحرارية من اجل بناء كاميرا رسم حرارى ملونة (thermographic camera) مناسبة لكثير من التطبيقات المدنية.

برنامج التصميم البصري ZEMAX تم إستخدامة لتصميم وتحسين و تلبية المعايير المستهدفة (اقل قيمة لدالة نقل التضمين MTF عند تردد القطع = 0.583348 و اقصى قيمة لقطر البقعة = 8.805 ميكرومتر)لنظام الاشعة تحت الحمراء البصري المُكو َن من ثلاثة عدسات جرمانيوم مع سطح واحد شبة كروى (aspheric surface)، والذي يتميز بقطر 40 ملم و طول 58.5 ملم و وزن 70 جرام. تم تصنيع هذا النظام البصري في شركة متخصصة في انتاج هذا النوع من الانظمة البصرية بتكلفة معقولة.

سبيكة الالمونيوم 6061إستُ خدمت لتصنيع هيكل ميكانيكي خاص لتجميع (حمل و محاذاة) النظام البصرى مع وحدة الكاشف الحراري وبناء كاميرا حرارية محمولةيدوياً. هذة الكاميرا (نظام الاشعة تحت الحمراء البصري+ وحدة الكاشف الحراري) خبرُت ميدانياً باخذ عُدة صور حرارية.

برنامج MATLAB تم إستخدامة لإنشاء برنامج حاسوبي لمُعالجة الصور الحرارية لتحويل الصور الحرارية ملونة وقراءة درجة حرارة الجسم من صورتة. تم إختبار كاميرا الرسم الحرارية بقراءة درجة حرارة الاجسام من صورها الحرارية و مقارنتها بدرجات حرارة معلومة سلفاً و تحصلنا علي نتائج مقبولة.

TABLE OF CONTENTS

Chapter No	Title	Page No
	Al-AYAH	vi
	DEDICATION	vi
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vi
	ABSTRACT (ARABIC)	vi
	TABLE OF CONTENTS	vi
	LIST OF FIGURES	vi
	LIST OF TABLES	vi
	LIST OF ABBREVIATIONS	vi
Chapter 1	INTRODUCTION	
1.1	Background of study	1
1.2	Literature review	2
1.3	Research problem	4
1.4	Objectives of research	4
1.5	Research significance	5
1.6	Outlines of thesis	5
Chapter 2	BASIC CONCEPTS OF THERMAL IMAGING	
2.1	Introduction	7
2.2	Thermal imaging	7
2.2.1	Thermographic imaging	9
2.3	Elements of thermal imaging system	12
2.4	IR image-forming optical system	16
2.5	Factors affecting image quality (diffraction and aberration)	18
2.5.1	Primary aberrations	19
2.5.1.1	Spherical aberration	22
2.5.1.2	Coma	26
2.5.1.3	Astigmatism	30
2.5.1.4	Field curvature	32
2.5.1.5	Distortion	34

2.5.1.6	Axial Chromatic Aberration	36
2.5.1.7	Lateral Chromatic Aberration	
2.6	Image Quality and Performance Evaluation of the Optical System	40
2.6.1	Resolution and f/number	41
2.6.2	Performance Evaluation	42
2.6.2.1	Spot diagrams	43
2.6.2.2	Ray trace curves	44
2.6.2.3	Field plot	52
2.6.2.4	Encircled energy	54
2.6.2.5	Modulation transfer function (MTF)	55
2.7	Special optical surfaces	59
2.7.1	Aspheric surfaces	59
2.7.1.1	Conic surfaces	61
2.7.2	Plan parallel plate	66
2.8	IR optical materials	68
2.8.1	Germanium	70
	I e e e e e e e e e e e e e e e e e e e	
Chapter 3	DESIGN AND EXPERMENTAL WORK	
Chapter 3	DESIGN AND EXPERMENTAL WORK Introduction	75
		75 75
3.1	Introduction	
3.1	Introduction IR optical system design	75
3.1 3.2 3.2.1	Introduction IR optical system design Choice of thermal detector	75 75
3.1 3.2 3.2.1 3.2.2	Introduction IR optical system design Choice of thermal detector The design criteria	75 75 76
3.1 3.2 3.2.1 3.2.2 3.2.3	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications)	75 75 76 77
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure	75 75 76 77 78
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure Defocus treatment	75 75 76 77 78 84
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure Defocus treatment Design and manufacture of mechanical case	75 75 76 77 78 84 85
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 3.4	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure Defocus treatment Design and manufacture of mechanical case Creation of thermal image processing software	75 75 76 77 78 84 85
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 3.4 Chapter 4	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure Defocus treatment Design and manufacture of mechanical case Creation of thermal image processing software RESULTS AND DISCUSSION	75 75 76 77 78 84 85 88
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 3.4 Chapter 4 4.1	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure Defocus treatment Design and manufacture of mechanical case Creation of thermal image processing software RESULTS AND DISCUSSION Introduction	75 75 76 77 78 84 85 88
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 3.4 Chapter 4 4.1 4.2	Introduction IR optical system design Choice of thermal detector The design criteria Basic design specifications (optical specifications) Design procedure Defocus treatment Design and manufacture of mechanical case Creation of thermal image processing software RESULTS AND DISCUSSION Introduction IR optical system	75 75 76 77 78 84 85 88 94 94

4.2.2.2	Modulation transfer function (MTF)	99
4.2.2.3	Transverse Ray Fan Plot (Ray Aberration)	
4.2.2.4	Encircled energy	103
4.2.2.5	Chromatic focal shift (chromatic aberration	104
4.2.2.6	Lateral color	105
4.2.3	Tolerance analysis	107
4.2.4	Solve a problem of defocus	115
4.3	The mechanical case	116
4.4	Thermal Image processing software	121
4.4.1	Convert of thermal gray image to pseudo/flash color (thermographic) image	121
4.4.2	Reading of temperature from thermographic image	124
4.5	Conclusion	128
4.6	Future work	129
	REFERANCES	130
	Appendix A: Uncooled Thermal Imaging Module Specifications	133
	Appendix B: Emissivity	135
	Appendix C: The MATLAB Code who established to the thermal image processing	138

LIST OF FIGUERS

Fig. No	Title	Page No
2.1	Basic element of thermal imaging system	13
2.2	Type of infrared source	14
2.3	Various field/strategic targets	15
2.4	Image quality, geometrical aberration and diffraction limited	18
2.5	Spherical aberration	23
2.6	Spherical aberration correction using a number of lenses	23
2.7	Change of spherical aberration with change of lens shape (lens bending) for a germanium lens with index n=4.	25
2.8	In the presence of coma, the rays through outer portions of the lens focus at a different height than the rays through the center of the lens	27
2.9	Construction of coma blur	27
2.10	Spherical aberration and coma as function of lens shape	29
2.11	Coma with stop in front of lens and reduced coma with stop after of lens	30
2.12	Astigmatism	31
2.13	Field curvature and Patzval surface	33
2.14	Distortion	34
2.15	Where does distortion come from?	35
2.16	Axial chromatic aberration	36
2.17	Chromatic doublet to correct axial chromatic aberration	37
2.18	Lateral chromatic aberration or lateral color, results in different-sized Images for different wavelengths	38
2.19	Geometrical-based Spot Diagrams and Transverse Ray Aberration Curves for Cooke Triplet Example	44
2.20	Explanation of Ray Trace Curves	46
2.21	Formation of comatic image blur	48
2.22	Formation of Ray Trace Curves for Spherical Aberration	49
2.23	Typical Transverse Ray Aberration Curves	51
2.24	Field curve: distortion plot. The percentage distortion is	53
	plotted as a function field angle. Note that the axis of the	
2.25	dependent variable is the horizontal axis Field curve: field curvature plot	53
2.20	i iola cui ve. Hela cui vature piot	33

2.26	Field curve: lateral color plot	54
2.27	Encircled Energy for Cooke Triplet Example	54
2.28	Illustration of the Meaning of the Modulation Transfer Function (Simple Sinusoidal Curves before and after Modulation)	56
2.29	Typical MTF Curves	57
2.30	Diffraction-limited MTF for circular pupil	58
2.31	Comparison of a spherical and an aspheric lens	60
2.32	Conic surfaces with same curvature and different conic constant	62
2.33	Correction of astigmatism with an aspheric surface	64
2.34	Longitudinal image shift caused by a plane-parallel plate	66
2.35	Lateral displacement of image by a tilted plane-parallel plate	67
2.36	Rough estimate of market share of germanium	73
3.1	Lens design and optimization procedure	80
3.2	Drawing of 1st lens	83
3.3	Drawing of 2 nd lens	84
3.4	Drawing of 3 rd lens	84
3.5	Drawing of mechanical case (objective)	87
3.6	Assembly drawing	88
3.7	The MRTD test station and thermal camera	89
3.8	Follow chart of thermal image processing software	93
4.1	Layout diagrams (2D, 3D and shaded model layout)	95
4.2	Spot diagram on 25µm pixel for on axis, 0.7FOV, and full FOV points	98
4.3	Polychrochromatic diffraction MTF curve for on axis, 0.7FOV, and full FOV points at Nyquist frequency	99
4.4	Spot diagram on 30µm pixel for wide FOV at on axis, 0.7FOV, and full FOV points	100
4.5	Polychrochromatic diffraction MTF curve for wide FOV in on axis, 0.7FOV, and full FOV points at Nyquist frequency	100
4.6	Ray fan plot for 8, 10, and 12µm at on-axis, 0.7FOV, full FOV	103
4.7	Encircled energy	104
4.8	Chromatic focal shift	105

4.9	Lateral color	106
4.10	Real picture of IR optical system (3 germanium lenses) after	115
	manufacturing	
4.11	Thermal detector module (IR113) inside his mechanical case	115
4.12	Assembly of the optical system (3 lenses) on mechanical case.	117
	And thermal detector module (IR 113)	
4.13	The thermal camera	118
4.14.a	Thermal image of power on selling fan and power off wall	118
	lamp at distance 4 and 4.7m respectively	
4.14.b	Person at distance 5.6 m in total darkroom	119
4.14.c	Same person at total darkroom carrying cup of a tea	119
4.15	Curve fitting of blackbody Temperature Vs Image Intensity	125
	(gray level).	

LIST OF TABLES

Table No	Title	Page No
2.1	Minimum spherical blur spot sizes for singlet made from	25
	different material	
2.2	Summary of primary monochromatic aberration	35
	dependence on aperture and field angle	
2.3	Variation of primary aberrations as function of aperture and	40
	field height	
2.4	Conic section types	62
2.5	Optical properties (indices, dn/dT, and spectral range) of	68
	selected IR materials	
3.1	Basic design specifications/basic optical specifications	77
4.1	Final design specifications	95
4.2	Comparing between spot radius& MTF values for designed	101
	and long range dual field of view of thermal imaging camera	
	in 3~5µm wave band optical systems	
4.3	Tolerance values	108
4.4	Conclusion of defocus calculation	116
4.5	Reading of blackbody temperature from test station in	122
	addition to its thermal and thermographic images	
4.6	Blackbody temperatures and corresponding images intensity	124
4.7	Readings of blackbody temperatures	126
4.8	Readings of several people's temperatures	126

LIST OF ABBREVIATIONS

Objective Name	Description
PC	Personal Computer
MTF	Modulation Transfer Function
FPA	Focal Plan Array
CCD	Charge Coupled Device
LLL TV	Low Light Level Television
MWIR	Medium Wave Infrared
LWIR	Long Wave Infrared
ADD	Airy Disk Diameter
FOV	Field Of View
WFOV	Wide Field Of View
TOTR	Total Track
EFFL	Effective Focal Length
HDD	Horizontal Detector Dimension
VDD	Vertical Detector Dimension
HFOV	Horizontal Field Of View
VFOV	Vertical Field Of View
MRTD	Minimum Resolvable Temperature Difference
NETD	Noise Equivalent Temperature Difference
RMS	Root Mean Square