Chapter 6

A class of Non-Selfadjoint Quadratic Matrix Operator Pencils and Spectral
Bounds

In this chapter the main results concern the structure and location of the spectrum and theorems
about the minimality, completeness and basis properties of the eigenvectors and associated
vectors corresponding to certain parts of the spectrum. Both Riesz basisness and Bari basisness
results are obtained. The results are applied to a system of singular differential equations arising
in the study of Hagen-Poiseuille flow with non-axisymmetric disturbances.
Sec(6.1): Quadratic Matrix Operator Pencils Arising In Elasticity Theory

We are going to study a class of damped non-selfadjoint quadratic operator pencils the
coefficients of which are unbounded block operator matrices. The aim is to investigate the
spectrum of such pencils, to study the properties of the eigenvectors and associated vectors
corresponding to certain parts of the spectrum, and to apply the results to the problem of
vibrations of a rotating beam with inner and outer damping in a possibly inhomogeneous
outer medium. A fundamental tool here is factorization theorems by Markus, Matsaev and
Russu ([45], [44], [32], [137]).

Let H be a separable (infinite dimensional) Hilbert space. We consider a quadratic operator
pencil £ acting in the product space H x H and given by the matrix representation

L) = 2 (cl) (1))+’1(QA0+ . aA(:-KZ)
+ (_‘;A ﬁAA) 1EeC (1)

Here A is an unbounded self-adjoint operator in H with domain D(A) having compact
resolvent, A > &1 with some 6 > 0, and 3 are positive constants, and K, K, are bounded
operators, 0 < K;, K, < yI with some co >y > 0. The domain of £L(}) is independent of A
and given by D(L(1)) = D(A) x D(A).

An example for such a quadratic operator pencil arises in elasticity theory: The system
of differential equations
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on the finite interval [0, I] describes the vibrations of a rotating beam of length | and mass
density m per unit length.

Here EI > 0 is the (constant) bending stiffness of the beam sections, w > 0 is the angular
frequency of the rotation, k > 0O is the coefficient of inner damping (Voigt material), and
€1, € are nonnegative continuous functions on [0, I] describing the outer viscous damping.
In the general case when the outer medium is inhomogeneous, one has g; &, (see e.g.
[49]).

The boundary conditions to be imposed e.qg. in the case of hinged ends are

u(0,t) = u(l,t) = az—u(o, t) = 62_u (l,t) = 0,
dz2 dz2
, , 4)
v(0,t) = v(l,t) = a—U(O,t) -9 (Lt)=0,
dz2 dz2

For simplicity, we assume that m = 1. Then separation of variables
(u(z £),v(z.t))" = e (3,(2),v2(2))".z € [0,1],¢ = O, (5)
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leads to a spectral problem of the form

L)y = 0,1 € C,
for y = (y1,v,)t in the Hilbert space L,(0,1) x L,(0,1) where the operators A and K in
L,(0,1) are given by

Ay :== EIy® D(4):= {y € L,(0,):y(0) = y(I) = y" (0)=y" () = 0},  (6)
Kiy := &y, D(K;) :==L,(0,1),i = 1,2, (7
and the constants « and 3 are given by a:= k, := wx.

We first determine the structure of the spectrum of the quadratic operator pencil (1). We

show that its essential spectrum consists of the points —1%3, —1_7”3, and that outside the

essential spectrum £ has 3 branches of eigenvalues accumulating at the points of the
essential spectrum and at co. Secondly, we show a criterion for the stability of the pencil L,
that is, a criterion guaranteeing that the spectrum of £ lies in the open left half plane.

We consider the case K; = K, where £ in fact decomposes into two quadratic pencils
in 7. In this case the eigenvalue branch accumulating at co splits again into two branches.
We derive theorems about the minimality, completeness and basis properties of the eigen-
vectors and associated vectors corresponding to the 4 branches of eigenvalues of L.

We consider the case K; # K,. We show a theorem about the minimality, completeness
and basis properties of the eigenvectors and associated vectors corresponding to the branch
of eigenvalues of £ accumulating at co. Finally, we apply all results to the problem (2)-(4)
of vibrations of a rotating beam.

We define the resolvent set p(£) of the quadratic operator pencil £ as

p(L):={AeC: L) : D(A) x D(A) » H x H is bijective, L(A)~! is bounded}
and its spectrum o(£) as o(£) := C\p(£L). For A € C, the operator L(A) is called Fredholm
if L(A) is closed, its kernel is finite dimensional and its range is finite codimensional (see
e.g. [48]). A point A, € C is said to be an eigenvalue of £ if L(2) is not injective. An eigen-
value A, € C of £ is called normal (or of finite type) if A,is isolated and L(A,) is
Fredholm. The essential spectrum of £ is defined as

Oess(L) :={A € C: L(A) is not Fredholm}.

In order to determine the essential spectrum of the operator pencil £, we consider the
transformed pencil £4 given by L4(A) := S71L() S on D(A) x D(A) for A € C where the
operator matrix S in H x H is of the form

5= (lII lzl)
Then, for A € C,

fa® =4 (0 1)+A< —é(Kl—Kz) A+~ (K, + K,) +< 0 (1—iﬁ)A)’

and L4(2) is closed (Fredholm) if and only if L(A) is closed (Fredholm).
Theorem(6.1.1)[51]: The essential spectrum of £ consists of the two points
1+ ip 1-ip

a a
The other points of the spectrum of £ are normal eigenvalues which accumulate at most at
1+if  1-ip

the points — - - ,and at oo,
Proof. LetA € C. If we write L4(A) in the form
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1 i

A (K~ Ky) (o (L= iB)A+ 21+ A5 (K, + Ky)

it is not difficult to see that £L43(A) (with domain D(A) x D(A)) is closed if and only if
A# —1j—lﬁ. Now let A # —1“:;—13 . Since

1 [
al + > (K; + K)A™t > (K; — K)A™t

-1 -1
L) (Ao A(jl) = 32 (Ao A(jl) ) ; A
5 (Ky —K)A™  al+ > (K; + K)A™t

(1+ip)I 0 ) _ ((1 +if + Aa)l 0 )

+< 0 @a-ip) 0 (1 —ip + Aa)l + KA, (8)
where K(A) is a compact operator in H x H, the operator on the left hand side of (8) is
Fredholm (see e.g. [127]). Hence the same is true for L4(A). On the other hand, since # is

infinite dimensional, it follows from (8) that £, (— 1x1p

- ) is not Fredholm. Moreover, the

operator in (8) is bijective for A = 0. Now the theorem follows e.g. from a theorem about

analytic Fredholm operator valued functions (see [127]).

Theorem(6.1.2)[51]: Assume that there exists a u > 0 with K; > ul, K, > ul, and such that
2

ua>6andﬁ—<1 or E<<Sandﬂ<l 9)
- 4ua ' a (b + p)?
Then the spectrum of £ lies in the open left half plane.
Proof. If A, € g,..(£), then obviously Re (1,) <0 by the above theorem. Otherwise, if
Ao € a(L)\o.s (L), then A, is an eigenvalue of L.
Let Y = (y,2)t € D(A) x D(A4), ||lyl|* + ||z||> = 1, be a corresponding eigenvector. Then

(L(1,)Y,Y) = 0 implies that
Re (10)2 —1Im (AO)Z + Re (AO) (a((Ay,y) + (AZ,Z)) + (Kﬂ’y}’) + (KZZ,Z))

+(Ay,y) + (4z,2) =0, (10)
2Re (o) Im (o) + Im (o) (a((4y.y) + (Az,2)) + (Kyy,y) + (K;z,2))
+ 2FIm (Az,y) = 0, (11)

Calculating Im( A,) from (11), using the estimate
12Im( Az, y)| < 2| (Az,y)| = 2| (AY? z, A2 y)|
< [la22|)" + |4V = (ay.y) + (4z,2)
and substituting it into (10), we arrive at
B2((Ay.y) + (4z,2))’

(2Re(g) + a((Ay,y) + (42,2)) + (K1, y) + (Ko, 7))

+Re(20) (a((4y.7) + (4z,2)) + (K1yy) + (K2,2)) + (Ay.y) + (4z,2) < 0. (12)
The left hand side is monotonically increasing for Re(4,) € [0, ). But the condition (9)
and A = 6 > 0 imply that

) B2((Ay.y) + (Az,2))’ + Uyy) + (42,2) >0

(a((ay. ) + (42.2)) + (Kay.y) + (2,2))
a contradiction to (12). Hence Re(4,) < O.

Re(1)? —
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In case K; = K, = K the operator pencil £L; in H x H is the orthogonal sum of two
quadratic operator pencils L. in #{,
_ (L) 0
e = (* L_(A)) A€ c,
where L, (1) := 221 + A(aA+K)+ (1 = iB)A, 1 € C.
In the following we are going to show minimality, completeness and basis results for the
eigenvectors and associated vectors corresponding to various branches of eigenvalues of L.
With regard to the eigenvalues which will show to accumulate at oo, we introduce the
auxiliary operator pencils £1 given by
2

A 1
Li() = — A2, (I) A~1/2

1+ 1 1

= A2 i I+2 (1 + (—)A—l/ZKA—l/Z) + (—) A7l decC
a a a

Lemma(6.1.3)[51]: The spectrum and the essential spectrum of L1 are given by:

Mo(£h)={5: 1 € oz uox
—a
(i) 0,55 (LL) = {O, T iﬁ}'
Proof. The assertions are immediate from Theorem (6.1.1) and from the definition of £, .
The numerical range (or root domain) of a quadratic operator polynomial 7 in # is the
set of all roots of all possible polynomials (77(:)y,y), y € H, y # 0 (see [137]). It
consists of at most two components. If the numerical range of T consists of two disjoint
components (called the root zones of T°), then, clearly, for any y € H, y # 0, the poly-
nomial (7" (- )y, y) has exactly one root in each component.
Lemma(6.1.4)[51]: The numerical range of L1 consists of two components A}, AL which
are bounded and separated by the strip
. ap
{AE(C.O<Im(/1)<1+ﬁ2}. (13)
say AL below and AL above this strip. There exists a simple contour I, surrounding
Zi U {0} and separating Zi U {0} from A%, and such that
inf — [(Li(A)y.»)] > 0.

Aert llyll=1
Proof. The first assertion follows from the fact that £1 is a pencil of bounded operators.
For the proof of the second statement, fix an element y € H, ||y|l = 1, consider the
function

1 1
o) = 22 + 1 <1 +n — (KA Y2y, A7/2y )> + n=(472y,A71/2y)
a a
for A € C,n € [0,1], and assume that there exists a point 4, in the strip (13) and ann € [0,1]
such that ¢(41,,1) = 0. The point A, has a representation A, =t +id with t € Rand
0<d< £ Hence

1+p2°
1+
(t% + 2itd — d?) - p

1+

1 1
+ (t + id) (1 +17 E(KA‘l/Zy,A‘l/Zy )) +n |a=2y|* = o,
Taking the imaginary part and multiplying by % yields

2 td a 1
t24+— —d?’+d — <1+n— KA™Y2y A71/2y > = 0.
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This is equivalent to
2

d d 1
(t+E) :E <d(1+’32) — CZ,B <1+T] E(KA_l/Zy’A—l/Zy)>>’

which implies, since K > 0, that

d > ap
1+p% "
a contradiction. Thus ¢(4,n) # 0, n € [0,1], and in particular(L1(A1)y,y) = |Iyll? ¢(1,1)
# 0 for all A in the strip (13).
The zeros A, (n),1,(n) o f ¢(-,n) = 0 depend continuously on the parameter n, and
1, (0) =0,1,(0) = —ﬁ are separated by the strip (13). Then, according to what was

proved above, so are A; (), 4,(n) for all n € [0,1]. In particular, the zeros of (L1(")y,
y) = llyll?@(-,1) are separated by the strip (13). This proves the second statement. The
remaining assertions are immediate.

The subsequent corollary about the existence of a spectral root of L1 (or, equivalently,
of a canonical factorization of 2~1(£1( 1)) follows from the above lemma by some general
results of Markus and Matsaev ([45], [44],[137]).

Corollary(6.1.5)[51]: The operator pencil £1 has a spectral root Z1 such that
o(Zr)= o(LY)nAL,

In the following let §,, < p < oo, denote the von Neumann-Schatten classes of compact
operators (see [154], [137]). Further, for an operator T € S., we denote by n(t,T) the sum
of the algebraic multiplicities of the eigenvalues of Tin {1 € C : |A] > 7~ 1}. For a quadratic
operator pencil 77 the nonzero spectrum of which in some bounded domain G containing O
consists of a sequence of eigenvalues of finite algebraic multiplicity converging to 0, we
denote by n(z,G,7) the sum of the algebraic multiplicities of the eigenvalues of 77 in
{A €C: |A| >171}Nn G (see[137]). Using a theorem of Markus, Matsaev and Russu[32] ,
we obtain:

Theorem(6.1.6)[51]: (i) The set of eigenvectors and associated vectors Corresponding to
the eigenvalues of £1 in Al is minimal in 7.

(i) If A=t € S, for some p < oo, then the set of eigenvectors and associated vectors

corresponding to the eigenvalues of L1 in Al is complete in 7. If, in addition,

n(r, iA‘1)~ ;T as T - oo with some 0 < ¢, ¢, < oo, then n(r,G},LL) ~ ¢, 7%,
where G1 is the interior of the curve I'}.

(iii) If n(z,A™Y) = o(z") for some y € (O,%], then the set of eigenvectors and associated
vectors corresponding to the eigenvalues of £1 in Al is a Riesz basis with parentheses in
. If, in addition, n (ri A‘l) =72+ 0(th) for some 0<c¢;,c, <00<pB<a<
B +y, thenalson (r, G, £1) = ¢;t% + 0(zP).

Proof. The theorem follows from a general result of Markus, Matsaev and Russu (see [32])
which is contained in [137]. To apply the statements therein, we choose H = i AL T=0

.. _ 1 -1 _ _ 1 _1/2 _—1 1 .
for (ii)and H = - At D,=0, D, = (Z) A K Azty wherey(O,E] for (iii).
Note that: Analogous assertions hold for the pencil £1.
With regard to the branches of eigenvalues possibly accumulating at — 14_:3

consider the pencils £.. themselves.

, we first
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Lemma(6.1.7)[51]: the numerical rang of £, consists of two components A,, A, which are
separated by the strip

{A eC: =6,<ImQA) < 5}
Where

1
62 :=B((a? + QallK|| + 4)67 + [K||?672)% + 16B%67%) %
The component located in the half plane {4 € C: Im (1) < —6,}, say A,, is bounded,
and there exists a simple closed curve I, surrounding A, and separating it from A, and such
that
nf o 1(£+(A)y. )1 >0
yeD(A) llyll=1
Proof. Lety € D(A), |ly]l = 1. Then the solutions A..(y) of ((£;(1)y,y)) = 0 are given

by

a(dy.y) + Ky.y) | J(Q(Ay,y) +(Ky, )"

L) = - > 2 -1 +ip)(Ay,y). (14
Hence
m (1.0))| = % Im ((a(Ay,y) +(Kyy)) - 4@+ iﬁ)(Ay,y))E
1 2
=57 (4(Ay,y)— (a(4y,y) + (Ky,y))

1

+ (((a(Ay,y) + (Ky,))" - 4(Ay,y))2 + 16B2(Ay,y)2)§>

1

(4y,y)? (4y,y)? = 0z

This proves the first assertion. The second statement follows from the fact that the root
A,(y) lying in the half plane {1 € C: Im (2) < —&,} tends to —==£ when (4y,y) tends

to infinity. The remaining assertions are then immediate.
In order to apply the results of Markus, Matsaev and Russu used before we need to
consider pencils of bounded operators. Therefore we introduce

> g ((a(Ay,y) + (Ky,y))2 —4(Ay,y)>2 . 16p3*

1 1+ 1
£2.(1) = (—)A—l/ZLi (/1 _ ﬁ)A_f
7 2141 p) 1
) &
=l a1+ <1 JAED (—) A—l/ZKA—1/2> +B,
(04 a a -

where
. 2 .
B. = M A—l _ ﬁ A—1/2KA—1/2
* as a? '
Corollary(6.1.8)[51]: The numerical range of £2 consists of two components A%, A2 which
are bounded and separated by the strip

{,15 (czg_gz < ImQ@Q) <§+6z},

say A2 below and A2 above this strip. There exists a simple closed curve I'? surrounding

A% u {0} and separating it from A2, and such that
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inf  [(L3y, M| >0

Aerg llyll=1

Theorem(6.1.9)[51]: (i) The set of eigenvectors and associated vectors corresponding to
the eigenvalues of £3 in A2 is minimal in 7€ .

(ii) If A=t € S, for some p < oo, then the set of eigenvectors and associated vectors
corresponding to the eigenvalues of £2 in A2 is complete in 7. If, in addition, n(7,B,) ~
c; T2 as T - o with some 0 < ¢; ,c, < oo, then n(zr,G%,L2) ~ ¢, 7% , where G2 is the
interior of the curve I'2.

Proof. As in the proof of Theorem (6.1.6), we use [137]. To apply the statements therein,
we now choose H = B, T = 0 for (ii), and we note that if A~ € S,, for some p < oo, then
also B, € &, (see e.g. [154]).

Note that: Analogous assertions hold for the pencil £2.

In order to formulate statements for the original pencil £, we first note that
o(L) = a(Ly) = o(Ly) U a(L).

We denote by A} and 22,k =1,2,..., the eigenvalues of the pencil £, located in the upper
and lower half plane respectively (counted according to their algebraic multiplicities). It is

not difficult to see that then the complex conjugates /11 and Ai, k =1,2,... arethe eigen-
values of the pencil £_ located in the lower and upper half plane, respectlvely. We denote
the corresponding eigenvectors and associated vectors of £, by y! and yZ, and those of
L_by y and yi.

Then the elgenvalues of L, (and hence those of £) can be separated into the 4 branches

{2} {1%}and {/1 1 {/12, which lie symmetrically to the real axis. The corresponding eigen-
vectors and associated vectors of £, are of the form

(2 0%, 52,05, (0.5F)  (0.5%)
The respective eigenvectors of L are given by
Wk D) G2 ) (0. 0) (iyﬁyyﬁ)ty

and there are analogous formulas for the associated vectors of L.
Theorem(6.1.10)[51]:(i) The set of eigenvectors and associated vectors of £ corresponding
to the eigenvalues A3 andTi, k=12,..., is minimal in the space H ,-1 X H ,-1 Where
Hy-r=(H,(A71-,A7" ")), complete in H -1 x H,-1if A™1 € S, for some p < oo, and
a Riesz basis with parentheses in H ;-1 x H -1 if n(r,A™) = 0(z?) for some y € (O,%].

(if) The set of eigenvectors and associated vectors of £ corresponding to the eigenvalues

A%z and A%, k = 1,2,..., is minimal in the space #{,-1 % #,-1 and complete in F -1 % H 4-1
if A"t €5, forsomep < oo.
1+i B

In particular, A3, 1), — o0, 1% — —
some p < .
Proof. The assertions in (i) and (ii) follow from Theorems (6.1.6) and (6. 1.9) The statement
about the accumulation at the points of the essential spectrum follows from Theorem (6.1.1)
together with the minimality and completeness from (i) and (ii).
Now we consider the general case of a quadratic block operator matrix pencil (1) with
possibly different K;, K,. In this case £ cannot be written as the orthogonal sum of two
pencils in H, and hence there exists no decomposition of the spectrum as it was used in
above.

,A_i—>—1_iﬁ fork — oo if A7 €S, for
a
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In order to guarantee a certain subdivision of the spectrum of £ also here and to obtain
minimality, completeness and basis results for the eigenvectors and associated vectors, we
have to assume in addition that

5 > 4/a? . (15)
We choose p > 0 such that
pad

25— 4 (16)

p =
Lemma(6.1.11)[51]: On the segment
2
L:={1€C:Re () =——.[Im@)| = p}

we have the estimate
Aienlf |[((Q)Y,Y)| >0

YED(A)xD(A),||Y]|=1
Proof. Let A = — % + it witht € R,Y = (y,2)" withy, z € D(4) and ||y]|* + ||z||? = 1.
Then
2\ 2
1LY, V)| = (_E + lT) + (_E + lT) (a(Ay,y) + a(Az,z) + (K1y,y) + (K,2,7))
. +(Ay,y) + (Ag,Z) + ﬁ(AZZ,y)—B(Ay,Z) .
= ol 7% - (Ay,y)- (Az,2)- E(Kﬂ’,}’)— p (Kyz,z)| =2 6 — P >0

by assumption (15).
Lemma(6.1.12)[51]: On the rays

F:={1€C:Re(d) = —%,Im(ﬂ) = #p}

we have the estimate
infi |[((A)Y,Y)| >0

AET;

YED(A)xD(A) ||Y]|=1
Proof. Let A=t +ip witht > —2; Y = (y,z)t with y,z € D(4) and ||y]|? + ||z]|? = 1.
Then
| (DY, Y)| = [Im(£(DY , V)|

= |2tp + p(a(Ay .y) + a(Az ,2) + (Ky ¥ ,y) + (K, z,2)) + 2B Im( Az, y)|
=|2t+(a(A4y,y) +a(4z,2) + (K, y . y) + (K, z,2))]

‘ . 2B Im(Az,y)
720+ (aldy,y) + aldz, 2) + (Kiy,y) + (K2,2))
>( 4 . 6)‘ 2B |Im(Az, y)]
2|(——+ta -
a ? Tt + (aldy,y) + aldz,2) + Kyy) + (K,2,2))|

4 2aB|(Az, y)| 4 2af||AY2z]||| A2y ||
Za(S—E) ‘p— a?s— 4 Za(S—E) - a?s— 4 ‘

an| e (A + |lavey)) 4 206
2a(6—?) P a8 — 4 2a(6—?)|p—a26_4>0

by assumption (15) and the choice of p according to (16).
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Lemma(6.1.13)[51]: On the segment
I;:={1€C: Re(d) = py,[ImA)| < p}withp; >p
we have
ot lc@rni>o

YeD(A)=xD(A),|IY]l=1

Proof. Let A = p; + it with |7] < p,Y = (y,2)t with y,z € D(4) and ||y||? + ||z]|* = 1.
Then
(L)Y, V)| = |Re (L)Y, V)|
_ |pf =7+ pu(a(Ay.y) + aldz,2) + (Kiy.y) + Koz, D)| 5050 25y > 0
+(Ay,y) + (Az,2)
since p; > p.
By I' we now denote the rectangle the sides of which are I3, I; and parts of the rays
LY I~ . Further, we denote by G~ the interior and by G* the exterior of I" (without the
boundary of I').
Lemma(6.1.14)[51]: For any fixed Y € D(A) x D(A), the polynomial (L(2)Y,Y) has one
root in G~ and one root in G*.
Proof. Consider the auxiliary pencil

L) = L(A—z) A€C,

and the corresponding polynomial (£,(1)Y,Y) for fixed Y = (y,z)" with y € D(4),z €
D(A4), lIylI* + ||z|I> = 1. The roots of (£,(1)Y,Y) = 0 are the roots of the equation

2%+ 2 <— g + a(Ay,y) + a(4z,z) + (Kyy,y) + (K,z, Z)) + % — (Ay,y) — (4z,2)

2 2
- (Kyy,y) — E(KZZ, z) + 2i Im(Az,y) = 0. 17)
Due to assumption (15) the quadratic equation
4 4
/12+/1(6——)+——6:0 1
a - " (18)

possesses exactly one solution on the positive half axis and exactly one on the negative half
axis (excluding 0). Now we consider A and K;, i = 1,2,as perturbations of 6§/ and O,
respectively, i.e., we consider

A() == n(A—=461) + 81, Ki(m) = nK;, =12
for n € [0,1] and the pencil £,(n,A) which arises if we substitute A and K;, i = 1,2,
inL;(1) by A(n)and K;(n), i = 1,2, i.e,

4
aA(m) + K, (n) —— 0
L= 2 (g ])+a ’

0 aA(n) + K, (n) —4;
2 4
. —A(n) — EK1(77) +t BA
2 4 |’
—BA —A() — p K,(m) + =

n €[0,1],A € C. Then £;(1,1) = L;(1) and the equation (£,(0,2)Y,Y) =0 is just the
equation (18). The quadratic form (£,(n,A)Y,Y) is analytic with respect to n and A. The
roots A,(n) and A,(n) of (£L,(n,A)Y,Y) =0 are piecewise analytic, they may fail to be
analytic in [0, 1] only if for some n € [0,1], we have 1,(n) = A,(n). Since 1,(0) and 1,(0)
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are the roots of (18), one of them, say A,(0), lies in the open left half plane and the other in
the open right half plane. According to Lemmas (6.1.11), (6.1.12) and (6.1.13), we have
inf (£, (DY, V)] >0

YeD(A)xD(A),|IY]l=1 !

where ' ¢ {1 € C : Re (1) > 0O} is the rectangle I := {4 +§ : 1 € I'}. Now we choose
p; > p such that p; > 1,(0). Then A,(n) remains inside I and A;(n) outside I for all
n € [0,1]. The roots of (L(A)Y,Y) are given by 1,(1) —% and 1,(1) — i Hence the first
one lies outside I" and the second one inside I".

In order to prove results about the eigenvectors and associated vectors corresponding to
the branches of eigenvalues possibly accumulating at co, we introduce
A l:=2 (A_l 0 )
a\0 AV

and consider the pencil
2

y/ 1\ . 1 I B
— A_l/ZL (_) A—1/2 — AZ - ( )
I+ - ATV2K AT 0

+ 1 +}(A—1 0)

1 -1
0 [+= avegae) @004
a
for A € C.
By I we denote the closed simple curve obtained from the rectangle I" aftere the trans-
formation 1 — % . Let G* (G™) denote the interior (exterior) of I.

Theorem(6.1.15)[51]: (i) The set of eigenvectors and associated vectors corresponding to
the eigenvalues of £, in G is minimal in 7 x 7.
(i) If A=1 € S, for some p < oo, then the set of eigenvectors and associated vectors

corresponding to the eigenvalues of £, in G* is complete in H x Z. If, in addition,

n(r,i A™) ~ ¢yt as T — oo with some 0 < ¢y, ¢, < oo, thenn(z,G*, L,) ~ 2¢,7¢2 .
(iii) f n(r,A™Y) = 0(zY) for some y € (O,%], then the set of eigenvectors and associated

vectors corresponding to the eigenvalues of £, in G* is a Riesz basis with parentheses in

H x H. If, in addition, n(r,iA‘l) =¢,;7% + 0(tP) for some 0 <c;,c, <0,0<f <

a < B +vy, thenalson(r,G*, L,) = 2¢;7% + 0(F).

Proof. Again we invoke the results contained in [137] and apply them with

y=2 (A_1 0),T:o

a V0 A1
for (i) and
_1 (A1 0
H T a ( 0 A‘l) '
1 A—l/ZI{1 A—1/2+y 0
D, = 0, D, = a < 0 A_l/ZKZ A~1/2+y

where y € (0,12] for (iii).

Theorem(6.1.16)[51]: The set of eigenvectors and associated vectors of £ corresponding to

the eigenvalues in the half plane {1 € C : Re(1) < —i}) is minimal in the space H4-1 %

H -1 where H 1= (H,(A71 -, A71 ). It is complete in H, -1 < Hy-1if A™H €S, for

some p < oo, and a Riesz basis with parentheses in H -1 x H -1 if n(z, A7) = 0(z?) for
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somey € (O,%]. In particular, the eigen-valuesin {1 € C: Re(1) < — i}) accumulate at oo
ifA"t € s, forsomep < oo.
we are going to apply the previous results to the system (2), (3) of partial differential

equations with boundary conditions (4). After the separation of variables (5) (and assuming
m = 1 for simplicity), it takes the form

E1y1(4) + wKEIy2(4) + A(KEIyl(4) + & yl) +12y, =0, (19)

E1y2(4) — wKEIyl(4) + A(KEIy2(4) + g y,)+ A2y, =0, (20)
with boundary conditions
y1(0) =y, (D =y"(0) =y" (D)= 0,
y2(0) = ¥,(1) = y",(0) =y",(D) = 0. (21)
Here the operators A and K, K, are determined by (6) and (7), and the constants «, 5
by a = k (the coefficient of inner damping) and f = wk (where w is the angular frequency
of the rotation of the beam).
Obviously, the operator A has compact resolvent, and it is not difficult to see that the

eigenvalues A,k = 1,2,...,0f A are all simple and given by
4

km
Ay = EI(T) k=12, ...

Hence the lower bound & of A is its least eigenvalue,
4

/s
§ = EI (7) .
It is also easy to see that the number n(z, A1) of eigenvalues of A~! greater than 771, i.e.,

the number of eigenvalues of A less than t satisfies
1/4

[l /1
n(r,A71) ~ - (E) r'/a, (22)
An immediate consequence of Theorem(6.1.1) is the following statement.

Theorem(6.1.17)[51]: The essential spectrum of the problem (19)—(21) consists of the two
points
1 1
— ;— lw, — ; + lw.
The other points of the spectrum of the problem (19)-(21) are normal eigenvalues which
accumulate at most at the points —Kl —iw, —Ki+ iw, and at oo,

From Theorem(6.1.2) we immediately get the following stability result.
Theorem(6.1.18)[51]: Set p := min;—;, Min ¢ p{ei(x) }. Then the spectrum of the
problem (19)—(21) lies in the open left half plane if

> kEI (£)4 and >w—2K
n= l L=
or if
4 4 2 4
u < kEI (ZE) and (KEI (ZE) + u) > w?k?El (ZE) .

Concerning results about the minimality, completeness and basis properties of the
eigenvectors of the problem (19)—(21) corresponding to certain branches of eigenvalues, we
have to distinguish the case when the outer medium is homogeneous, i.e., &; = &, =: ¢ and
hence K; = K,, and the case when the outer medium is inhomogeneous, i.e., &; # &, and
hence K; # K,.
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In the case of a homogeneous outer medium, according to above , the eigenvalues of the
given problem (19)—(21) split into 4 branches {A}} U {12} U {/11} U {42} where 1}, and
A2 k=1,2,..., are the eigenvalues of the problem

{(1 +iwk)Ely™® + A(kEly™® + ey) + 22y = 0,
y(©0) = y() = y"(0) = y"() =0
located in the upper and lower half plane, respectively (counted according to their algebraic

multiplicities). The respective eigenfunctions and associated functions of the problem of
(19)—(21) can be obtained from the eigenfunctions and associated functlons yk and y# of the

problem (23) and from the eigenfunctions and associated functions y; and y? of the
problem

(23)

{ (1 — iw)Ely™ + A(kEly™ + ey) + A2y = 0, 24)

y(0) = y() = ¥y"(0) = y"(l) = 0.
For instance, the eigenfunctions of (19)—(21) are given by the formulas
—_— —\t —_— —\t
Ok iy O ivd (ivkvi) (v vE) -
In the following we denote by W.(0,1) the Sobolev space of order 4 associated with

L,(0,1).
Theorem(6.1.19)[51]: (i) The set of eigenfunctions and associated functions of problem

(19)—(21) corresponding to the eigenvalues A} and E k=12, .,forms a Riesz basis
with parentheses in the space W, (0, 1) x W;‘(O 1) .

(i) The eigenvalues A} (and hence AL x) accumulate atoo; if enumerated such that
|A:] < |Ai44| , they satisfy the asymptotics

1 km * : 1 .1
Ay = —kEI (T) +iw+ & + in; k> oo,
where &1, n} are real and & = o(k*) ,nt = 0(1).
Proof. The assertion in (i) and the first assertion in (ii) follow from Theorem (6.1.10) which

we can apply due to (22) withy = i From Theorem (6.1.10) we also obtain that
4

|Ax| ~ KEI ) k — oo (25)

Now let y1, |lyi|l = 1, be an eigenfunction of (23) (i.e., of £,) at A.. Then
(A)? + A a4y yi) + Ky i) + A +iB)(Aye ,yx) = 0. (26)

From this it follows that |(Ay{ ,y1)| = o, k — oo, because otherwise

| 4k + a(Ayi . yi) + Ky, yi))l
would also be bounded, a contradiction to (25). Then the assertion follows from the formula
for the solutions of the quadratic equation (26) (see (14)) and from (25).
Theorem(6.1.20)[51]: The set of eigenfunctions and associated functions of problem (19)-

(21) corresponding to the eigenvalues A% and E k =1,2,..,is minimal and complete in the
space W,(0,1) x W,*(0,1). In Particular, 1% - — i —iw, E - — % + iw for k - oo,
In the case of an inhomogeneous outer medium we obtain:
Theorem (6.1.21)[51]: Assume that EI (?)4 > :—2 . Then:
(i) The set of eigenfunctions and associated functions of problem (19)-(21) corresponding
to the eigenvalues located in the half plane {1 € C : Re(1) < — %} forms a Riesz basis with

parentheses in the space W, (0, 1) x W, (0, 1).
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(if) The eigenvalues A, of problem (19)-(21) in {4 € C:Re(4) < —%} accumulate at oo;
if enumerated such that |A;| < |Ak41], they satisfy the asymptotics

ke *
Ay = —KEI (2—1) + 0(k4), k — oo,

Proof. The first assertion follows immediately from Theorem (6.1.16). The proof of the
second statement is similar to the proof of Theorem (6.1.19) (ii).

Sec(6.2): Non-Selfadjoint Pencils with an Application to Hagen-Poiseuille Flow

In this section we show some eigenvalue enclosures and basisness results for eigen-and

associated functions of non-selfadjoint linear operator pencil equations
Au = ABu, u € D(A) c D(B). (27)

The original motivation for this section is twofold. Firstly, it came from [111] in which
proved that, for a certain operator pencil arising in the study of Hagen—Poiseuille flow, the
essential spectrum is empty. Secondly, the refrernces [28, 26] showed that analytic spectral
enclosures combined with interval arithmetic eigenvalue computations may be used to show
linear instability results for non-selfadjoint spectral problems from hydrodynamics. How-
ever linear stability results require not only eigenvalue enclosures, but also basisness results
for the eigen-and associated functions. This is the problem we address in this section.

At the abstract level, the precise type of basisness result obtained depends only on the
distribution of the eigenvalues. In all cases the eigenvalue spacing must tend to infinity and
the imaginary parts of the eigenvalues must be bounded: in this case, at least a Riesz
basisness result is obtained (i.e. equivalence to an orthonor-mal basis). If one has more
information—for instance, if the eigenvalues are quadratically large with respect to their
index — then a stronger Bari basisness result is obtained (i.e. quadratic closeness to an
orthonormal basis). All these basisness results are obtained by reducing the pencil to an
operator and invoking basisness results for non-selfadjoint operators having certain
eigenvalue distributions.

The reduction of the pencil (27) to a linear operator in a suitable Hilbert space is
therefore very important. However, as pointed out by Kato [17], at a formal level there are a
number of different operators which might be considered as possible replacements for the
pencil, with B-1A, A B~ , B~/2.A4B~1/2 | all being possible choices provided they exist.
A priori the choice of operator seems somewhat arbitrary and the relationships between the
spectra of these operators and the spectrum of the original pencil are, in general, unclear.

In this section we assume that the operator B on the right-hand side of (27) is uniformly
positive, in which case all the above possibilities are available. Following ideas of [114] for
the Orr—Sommerfeld problem, developed simultaneously and independently in [104], we
introduce the Hilbert space #,,, := D(B/2) and consider therein the operator B~A.,
Thanks to an additional abstract hypothesis—which, in the Hagen—Poiseuille case, forces one
to consider only the physical boundary conditions which are usually imposed — it turns out
that B~*cA is closable in the space #;,, and, with M := B~1A denoting its closure, the
nonclassical spectral problem (27) is equivalent to the classical spectral problem

Mu = Au, u € D(M).
The spectral enclosures and basisness results are based on a decomposition of the operator
M = M, + M;into a self-adjoint operator Mjin #; ,, and a bounded perturbation M;. The
Bari basisness is obtained by means of a result of A.S. Markus (see [154]) which gives a
criterion for bases in terms of the convergence of a certain series involving only the eigen-
values. An interesting aside is that the proof of the boundedness of M; in H,,, depends on
a 1947 result of Krein (Lemma (6.2.6) below), originally stated for self-adjoint operators
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and later rediscovered and generalized by a number of authors (see the translation [115] and
the historical remarks at the end).

Finally, in preparation for the eventual application to the linear stability of an incom-
pressible flow in a circular pipe, we recall the coupled system of differential equations
describing the so-called Hagen—Poiseuille flow with non-axisymmetric disturbances, even
though these will not be seen again until mention it in this section . These equations have
the form

1,0\
2.2 ; o P
/T(k r2T) + iaRUT + lCZRr (kzr) 2anT \((p> — iRe (T 0 )((p)
U’ 0 0 k%r?/\n
2anT — inRT S + iaRUk?r?

on the interval (0,1] (see [105, 25]). Here R = 0 is the Reynolds number, @ € R is the
streamwise wave number, n € Z is the azimuthal wave number, and ¢ is a complex wave
speed which result from an exponential dependence on the axial, angular, and space co-
ordinate, respectively, of the form

exp(i(ax + n® — act)).
The function U:[0,1] — R is the axial mean flow while the function k: (0,1] — R is given

by k(r)? := a? + ’:—22 ,7 € (0,1]. The differential expressions 7', § have the form
-1 td 1 d = 1Y — 2 ez L
7= r2 rdr (k(r)zr dr)' § = k() r dr (k(r) dr) '
With 1 = iaRC, and by choosing suitable operator realizations of the various differential
expressions determined by boundary conditions, Hagen-Poiseuille flow problem can be cast
in the form (27). We show that it satisfies all assumptions of the abstract theorems, we work
out the corresponding basis results, and we establish explicit estimates for the real and
imaginary parts of the eigenvalues in terms of the coefficients a, R, n, and the axial mean
flow U; for parabolic U, the estimates yield new linear stability regions in the (a, R) —
plane.
In the following, we study linear operator pencils
Lo(A) = Ay—AB; L(A) =Ay+ Ay —AB; L, (28)
in a Hilbert space H, for which the domains D(£L(1)) do not depend on A, and are always
equal to D, := D(A,). The spectrum of £, denoted o (L), is defined to be the set of A € C
for which 0 € a(£(4)), with corresponding definitions of point spectrum o, (£), continuous
spectrum o.(£), residual spectrum o,.(£), essential spectrum o,...(L), and resolvent set
p(L). Eigenvalue problems of the form
(Ay+ Ay)x = ABx, x € D(A,), (29)
can then be written as L(1)x = 0, x € D,. Under the hypotheses, the spectra of L and £,
will turn out to be purely discrete. The aim is to show that the corresponding eigenfunctions
and associated functions of £ form a Bari basis, i.e., a basis quadratically close to an
orthonormal basis, in a suitable Hilbert space.
We denote the scalar product and corresponding norm on H by (-, ) and ||| ,
respectively. The operators A, , A, , and B are assumed to satisfy the following:
(i) A, is self-adjoint;
(i1) B is self adjoint, uniformly positive, D(A,) < D(B), and B is A,-compact;
(iii) A4 is closable with D(B) € D(A;) and D(B) < D(A7).
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We start with several abstract lemmas.

Lemma(6.2.1)[31]: . Let E, F be reflexive Banach spaces, let Ty, T, ,S be linear operators
fromE to F, and let T, be closable. If S is Ty,-compact, T; is S-bounded, and S is
boundedly invertible, then T; is Ty,-compact and S is (T, + T;)-compact.

Proof. By the assumptions we have the inclusions D(T,) € D(S) € D(T,) and hence
D(T, + Ty) = D(Tp).

In order to prove that T; is Ty-compact, let (x;) < D(T,) be a sequence such that (x;)
and (Tox;) are bounded. Since S is To-compact, there exists a subsequence (xjx) < (x;)
such that (Sx;,) converges. Since T; is S-bounded, the sequence (Tyx;) = (T1S™*Sxj;)
converges as well.

In order to show that S is (T, + T;)-compact, let (x;) < D(T,) be a sequence such that
(x;) and ((T, + T)x;) are bounded, ||x;|| < m, ||(Ty + Ty)x;|| <M forj € N. Since T} is
T,-compact, E, F are reflexive and T, is closable, T; is Ty-bounded with relative bound O
(see [62]). In particular, there exists a = 0 so that

1
1T x|l < allx|| + 5 ITox|l, x € D(Ty) < D(Ty).
Thus
1
IToxi | < Nl(To + T || + [|Taxsl| < M+ am + = [[Toxs[|.j € N,

and hence ||Tox;|| < 2(M + am). Now the T,-compactness of S shows that there exists a
subsequence (x;,) < (x;) such that (Sx;;) converges.

The following property of the adjoint of a sum of unbounded operators was first proved
in [29] (see also [19] or [102]).

Lemma(6.2.2)[31]: Let E,F be Banach or Hilbert spaces and let T,S be densely defined
linear operators from E' to F. If T is Fredholm, S is T — compact, and S* is T* —compact,
then (T +S)* = T*+ S*.

Note that, if S is T-compact, then $* need not be T*-compact; in fact, it may happen that
D(T*)n D(S*) = {0} even if T is the inverse of a positive definite compact operator in a
Hilbert space (see [29]).

In the next two propositions we use the preceding lemmas to deduce various properties
of the operators Ay, A, , and B from the assumptions (i)—(iii). First we consider several
compactness properties of the operator pencil £ and its essential spectrum which we define
as

Ooss(L) := {1 € C: 0 € g.55( L))} = {1 € C: L(A) is not Fredholm}.

Here a linear operator T in a Banach space is called Fredholm if its kernel is finite-
dimensional and its range is finite co-dimensional (and hence closed); the index of
a Fredholm operator is defined as ind T := codimran T — dimker T.
Proposition(6.2.3)[31]: Under the assumptions (i), (ii), and (iii) the following hold:

(I) A, has compact resolvent;

(1) A4 and A7 are A,-compact;

(1) B is (A, + A,)-compact;

(IV) Uess(L) = O-ess(fﬂo + ‘Al) = Uess(‘ﬂo) =@, and

ind £L(A) =ind A, =0,1 €C;
(V)a(£L) = op(L).
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Proof.(I)For u € p(A,), observe that (A, — u) ™ = B 1B(A, — u)~1 is compact because
B is boundedly invertible and B(A, — u)~! is compact by assumption (ii).

(1) and (I11) Since B is closed and A4 is closable, the inclusion D(B) c D(A,) already
implies that A, is B —bounded, and similarly for .A47. Now both claims follow from Lemma
(6.2.1).

(IV) The operator A, is Fredholm with index O since A, has compact resolvent by (1)
and A, is self-adjoint so that (ran A,)* = ker A,. Now all claims follow from (11), (I1I),
and (1) by means of the stability theorems for Fredholm operators (see [127]).

(V) By (1V) it follows that 6,(£) € 0..(L) = @ and that dim ker £(1) = dim(ran L(A))l
for every A1 € C, which implies that ¢,.(£) = 0.
Proposition(6.2.4)[31]: Under the assumptions (i), (ii), and (iii) the following are true:

(A" = (Ag + A" = Ay +Aj,

(I (A —AB)* = A* —AB,1 € C,
and hence

L) = Ay + A —2B, DELA))=D(A,), 1 € C.
Proof. (I) We apply Lemma (6.2.2) withS = A; and T = A: as a consequence, (1) holds
provided A, and A; are, respectively, A,-compact and A, —compact. Since A, is self-
adjoint, the required relative compactness properties are both guaranteed by Proposition
(6.2.3).

(I1) This time we apply Lemma (6.2.2) withS =B and T = A = A, + A;. Since B is
selfadjoint, it suffices to check that B is both A-compact and A*-compact. Applying
Lemma (6.2.1) and the result of part (I) we see that it is sufficient now to check that B is
HA-compact, which is assumption (ii); and that.A; and A; are B-bounded, which is
guaranteed by assumption (iii).

The last claim follows from (1), (1) and assumptions (ii), (iii).

Proposition(6.2.5)[31]: Let H; , H, be Hilbert spaces, let Ay, D, be self-adjoint operators in
H; and H,, respectively, and let B, be a densely defined closable linear operator from #, to
H, . Suppose that By is Ap-bounded with relative bound &g:, B, is Dy-bounded with
relative bound 8z and &5: 65, < 1. Then the block operator matrix
Ao= (50 ) DA = D(Ao) & D(Dy),

is self-adjoint in H; @ H,. If A, and D, are bounded below, then so is A,.

Proof. Since B, is closable, B is densely defined and hence so is A,. A direct calculation
shows that A, is symmetric. Therefore it is sufficient to find two points iw € p(A,) with
w >0 or, in the case where A, and D, are bounded below, to show that there exists a
¢, € R such that (=0, ;) < p(A,). The proof is closely modelled on [17].

Since &p: 65, < 1, we can choose f > 0 such that §5:/8 <1 and §p f < 1. Observe
that, for { € C,

1 O 0 BB
1 (1 0\_(4 O _
(o E>(‘ﬂ0 5)(0 B)_(OO D0)+ %BS 0o | ¢
= T+S-¢ (30)
Since, for { € p(T),
T+S—{ =0+ ST-7" )T -1,
to show bounded invertibility of T + S — ¢ it suffices to show that ||S(T — {)7 || < 1.
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In (30), due to the choice of g, the operator S is T-bounded with relative bound 8¢ <
max{8s:/B 65,8} < 1. Hence there exist as > 0 and bs € (8s,1) such that
ISx|l < aslix|l + bslITx|l, x € D(T).
In particular, for ¢ € p(T ),

IS(T — O~ 'yl < asll(T = O~ 'yl + bsIT(T = )~ Myll, v € Hy @ H,.
By the spectral theorem for the selfadjoint operator T,

IS(T = )7Hl < ag sup —— +bs sup |-=|. (31)
Aea(r) 1=l Aea(T) 143
If { = xiw with w > 0 is purely imaginary, then for all 1 € ¢(T ) c R we have
1 1 | A
< 1,

ATFio] o' I1F il T

and hence
— . N as
IS(T F iw)™1 || SZ + bs.

Since bg € (0,1), we can choose w sufficiently large to ensure that ag/w + bg < 1 and
hence +iw € p(T +5) = p(A,).
If A, and D, are bounded from below, then so is T,
T = min{mino (4,), mino (Dy)} =: yT.
Now (31) yields that, for { < yT,

_ 7)1 as Tl
IS(r =7 < 2% + bymax {112} (32)

Since ag/(yT — ¢) = O and |yT|/(yT — {) = 0as { = —oo, there exists {, < yT such that
IS(T — )71l <1 forall { < {,and hence (—=,{,) € p(T +S) = p(A,).

We reduce the spectral problem L(1)x = (A, + A, — AB)x = 0 for the linear operator
pencil £ in the Hilbert space ' to a classical spectral problem (M — A)y = 0 in another
Hilbert space induced by the operator B. Here we always assume that the operators A,
A, ,and B satisfy the pervious assumptions (i)—(iii).

Since B is uniformly positive by assumption (ii), we may introduce two new Hilbert
spaces, H,,, and H_,/,, as follows. The space #,,, with scalar product [:] 1/, and
corresponding norm ||-|[;/, is defined by

Hypp = D(BY?) [v]12:= (BY? - BY2 ), (33)
the space H_, /, is defined as the completion of H with respect to the norm induced by the
inner product [-,-] _,/, given by

['1'] -1/2 = (B_l/z 'vB_l/Z ) (34)
In the following, in view of the formal identity
L) =Ag+ A —AB=B(B 'Ay+B A — 1), 1€C, (35)

we consider the operators B~*A,, B~1A; in the Hilbert space #{; /, . To this end, from now
on we additionally assume that

(iv) D(A,) is acore for B2 and D(A,) c D(BY?).
Note that the property that D( A,) is a core of B2 does not follow from the previous
hypotheses (i),(ii), and(iii). To see this one may choose B to be the shifted one-dimensional

Neumann Laplacian B = — :—; +1in L?(0,1) with domain equipped with boundary condi-

tions u'(0) = 0 = u'(1), while A, = :—; + 1 in L?(0,1) equipped with boundary conditions
u(0) =u'(0) =0 =u(1) =u'(1). Both A, and B are self-adjoint and uniformly positive
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and B is A,-compact. The closure of D(A,) in the graph norm of B/2 is #£4(0,1), but
the domain of B2 is (0, 1).

Lemma(6.2.6)[31]: Let E be a Banach space with norm || || and let [:,-] be a positive
definite continuous inner product on E (i.e. ,|[x,y1l < yllx|l llyll, x,vy € E, for some
y > 0). Let S be a bounded operator in E and suppose that there exists a bounded operator
S*in E suchthat [Sx,y] = [x,S*y],x,y € E. Then:

(I) S is bounded with respect to the norm generated by the inner product [-,-] and
[Sx,Sx] < max{|ISIl,IS*I[}x, x].x € E.

(I If S is compact in E, then S is compact with respect to the norm generated by the
inner product [-,-]. In this case, if S denotes the continuous extension of S to the
completion £ of E with respect to the norm generated by [-,-], then o (S) = o(S)
and the algebraic eigenspaces of S in E and of S in E corresponding to the same
non-zero eigenvalue coincide.

In the sequel we use Lemma (6.2.6) with £ = H equipped with the norm [|-|| of H,
with the inner product [-,] =[] zandwith £ = 7 1.

Proposition(6.2.7)[31]: Under the assumptlons ), (i), (|||) and (iv) the following hold:
(1) B~Y2.4,B~1/2 is densely defined;
() ‘.73‘1/2c/11‘.73‘1/2 is densely defined and bounded with
[B=/24,B712| < max {|l-A,B7"II , lA;B"II} .
Proof. () The domain of B~Y2.4,B~1/2 is the set BY/2D(A,). To see that this set is dense
in ¢, let x € 7 and e > 0 be arbitrary and set y = B~Y/2 x € D(B/2). Since D(A,) is a
core of the closed operator B/2 by assumption (iv), there exists a z € D(A,) such that
|ly-z|| <& and ||x — BY?z|| = || B2y — BY?z|| < «.
(11) The domain of B~Y2.4,B~1/2 is the set BY/2D(A,). By assumption (iii) we have
D(B) € D(A,) and hence BzD(A,) D BzD(B) = D(Bz), which is dense.
In order to prove the remaining claims, we apply Lemma (6.2.6) with E = H and
E =3_4/,. Since D(B) c D(A,) and D(B) c D(A;) by assumption (iii), the operators
S:= A, B ltand S* := A} B~ are both bounded on . Moreover,
[AB™x,y]_1/, = (BY2A, B™'x, B Y2 y) = (A,B x,B"1y)
= (B 'x,A; B™ly) = (B™Y/2%x,B~Y/2 A, B~ 1y)
= [x, A} B 'yl_1/, ,x,y €EH.
Now Lemma (6.2.6) (1) shows that A4, B! is bounded with respect to the norm induced by
[]_1/2 and, fory € D(BY?),
”3—1/2(/113—1/2},”2 — [cﬂ1 B-1g1/2 y, A, B-1p1/2 y]_
<C [31/2 y’Bl/Z y]_1/2 — C”yllz

with € = max{ ||4,;B71||, ||A; B~||}. We have already seen that D( B/2) is dense in
BY2D(A,) = D(B~V2A, B~1/?), the estimate holds for all y € D(B~Y2.A4,B~1/?).
Proposition(6.2.8)[31]: Under the assumptions (i), (ii), (iii), and (iv) with § := min a(B)
(> 0), the following hold:
()  B7'A,is densely defined and essentially self-adjoint in % ,,; for its self-
adjoint closure M, := B~! A, we have
Ay = ay = M, = min{0, ay/L}.

1/2
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(1)  B~1 A, is densely defined and bounded in #f;/, ; for its bounded closure
M, := B~1A, we have
Myl < ||B7Y24,B712| .

Proof. (1) Since D(A,) © D(B) c D(BY?) = #,,, the domain of B~1A, as an operator
in 3y, is D(A,) . The set D(A,) s dense in Hy /, if and only if the set BY/2D(A,) s

dense in . The latter was shown in Proposition (6.2.7) (I) and its proof.
The symmetry of B~1A, in H; , is immediate from the self-adjointness of A, and B

inH:
[B~1Apx,x] 1 = (B% B_lcﬂox,B%X) = (Apx,x) ER, x € D(Ay). (36)
2

Hence for the first claim it remains to be shown that (ran( B~1A, F i))l% = {0}, where
14/, denotes the orthogonal complement in 7, ,, . By the definition of [-,-] ;/, in (33) and
by Proposition (6.2.4) (with A; = 0), we have
(ran(B~ 1A, F i))ll/2 = (ran(A, F i‘B))l = ker((A, ¥ iB)")
= ker( A, x iB).
If y € ker( A, £ iB), then
0= ((Ao =iB)y,y) = (Aoy,y) = i( By, y).

Since A, and B are selfadjoint, we conclude that ( By, y) = 0; as B is uniformly positive,
this impliesy = 0.

The last claim in (I) is immediate from (36) and from the estimate

(Apx,x) = ay(x,x) = min{0, ap/B}x,x]1/2 ,x € D(Ay).

(1) Since D(A,) c D(‘Bg) by assumption (iv), the domain of B~1A, as an operator in
31/ is D(A,). The set D(A,) is dense in H; /, if and only if the set BY/2D(A,) is dense
in H. The latter was shown in Proposition (6.2.7) (I1) and its proof.

By Proposition (6.2.7) (I1) the operator B~%/2.4,B~1/2 is bounded. Hence, by the definition
of the norm of #; /, in (33),

IB~Y Ayxlly, = ||B~Y2A,B7Y2(BY2 )|
< [[B72A4,B7V2| [|BY2
= [|B=24, 72| lixllyy2
for x € D(A,) © D(B/2) This implies that B~1cA, is bounded in 3£, ,, and hence so is its

closure M;.
Proposition (6.2.9)[31]: In the Hilbert space #; ,, define the linear operator M’ by

M = My+M; =B 1 (Ay+ A, (37)
where the closure on the right-hand side is taken in H7 /, . Then
M -1 = B Y2B-12 (Q)B-1/2BY2 ) € (, (38)

where the closure on the right-hand side is taken in £ and the operator B/2 is regarded as
an isometric isomorphism from 3£, ,, to % with inverse B=1/2

Proof. Since B~z Bz = I|g1/2y and D(L(2)) € D(A,) € D(B) c D(Bz), We can rewrite
the operator identity (35) as
B WAy +A)—A=B V2B V2L(1)BV2BY2 1 €C. (39)
The middle factor B=1/2 £(1) B~/? on the right-hand side of (39) can be written as
B Y2 LA)B™Y: = BTV2 A, B Y2 +B V2 A, B2 A
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Here the operator B~Y2.4,B~1/2 is densely defined by Proposition (6.2. 7) (1) and clearly
symmetric in 7, thus closable in ', while B=1/2.4, B=1/2 is densely defined and bounded
in H by Proposition (6.2.7) (II), thus also closable in . Hence B~Y2L(1)B~Y2 is a
densely defined closable operator in H..

The factors B~/2, B/2 hordering the operator B~1/2 £(1) B~/2 on the right-hand side
of (39) are, respectively, an isometric isomorphism from #,,, to #, and an isometric
isomorphism from H to H;,,. Taking closures in H; ,,in (39), and bearing in mind the
definition (37), we obtain (38).

Note that: In the proof of Proposition (6.2.9), we have shown that BY/2£(1)"1BY/2 is
bounded in # with dense domain D(B/2), while B L(A)~! is bounded in H_,,, with
dense domain #. Since B'/2 is an isometric isomorphism from H to H_4/2 , the relation,

Bl/ZL(A)—lBl/Z — B—1/2 B L(/l)_lBl/Z
shows that the closure of BY/2 £(1)~* BY/2 in I satisfies
B2 L(A)~1 B2 = B~/2 (B L(1)™)” B2 (40)
where (B £L(2)~1)~ is the continuous extension of B £L(1)~* to the space H_; /5.

In Proposition (6.2.3) (V) we have shown that, under the assumptions (i), (ii), and (iii),
the spectrum of L consists only of eigenvalues, but not that o(£) is discrete. If we
additionally suppose assumption (iv), we are able to prove that the operator M in #; /, has
compact resolvent and hence discrete spectrum and that the spectra of M and of the linear
operator pencil £ coincide. Moreover, we employ Lemma (6.2.6) (II) to show that the
algebraic eigenspaces of £L and of M at each eigenvalue coincide.

Recall that a sequence (xj); c D(A,) with l € Ny U {oo} is a Jordan chain of £ at an
eigenvalue A € o, ( L) corresponding to an eigenvector x,, if
(Ao +A; —AB)x; = Bxj_qy, j =0,1,...,1, (41)
where we have set x_; := 0 in the eigenvalue relation (see [137)] and note that £'(1) =
— B and LU (1) = 0 for j > 2 since £ is linear).
Theorem(6.2.10)[31]: Under the assumptions (i), (ii), (iii), and (iv), the operator M has
compact resolvent in 7, ,, and
op (£) = a(£) = a(M) = op(M);
moreover, the algebraic eigenspaces of M’ at an eigenvalue 4, and of the linear operator
pencil £ at A, coincide.
Proof. First we prove that p(£) c p(M). To this end, let A € p(£). By (38), we have
A€ p(M) if B-1/2L£(2)B~1/2 is boundedly invertible in 7. To prove the latter, we first
show that BY/2£(1)~* B2 , which has dense domain D(B'/2), is bounded in #. Since
D(L(1)) = D(A,) S D(B), the operator B L(A)~! is bounded in . We apply Lemma
(6.2.6) (1) with the inner product [x,y]_1 := (B™Y/2x,B™1/2y), x,y € H, defined in (34).
Since D(L(1)*) = D(A,) € D(B) by Proposition(6.3.5), the operator B £L(1)*is bounded
on H and we have
[BLA) %yl = (BV2BLA) 'x,B™V?y) = (L) 'x,y)
=, LA)TyY) = (B V2x,B Y2 BLA)y) =[x,BLA) "*y]_1/2,x,y EXH.
Now Lemma (6.2.6) shows that B £L(1)~! is bounded with respect to the norm induced by
[',:] -1/2 . Thus there exists C = 0 such that
B2 B L)Yy < c|[B2y|"y € #;
setting B~Y2 y = x, we obtain
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B2 ()1 BY2 x||* < Cllx ||2.x € D(BV?). (42)
1 1 1
Since D(Bz2) is dense in A, it follows that the operator Bz2L(1) 1Bz is closable in 7 with

1 1
everywhere defined bounded closure Bz £(1)~! Bz.
From the relation
Bl/ZL(A)—lBl/ZB—l/ZL(A) B—1/2 — Bl/ZL(A)—lL(A) B—1/2 — Bl/Z IlD(o‘lo)B_l/z

= I|Bl/21)(c/10)'
it follows that the operator G(1) = B~z L(A1) B2 in A, which is closable by Proposition
(6.2.9), is injective. By (42), the inverse G(1)~! = BzL(1) 1Bz is bounded with dense

domain, thus closable. Hence (see, e.g.,[101]) the closure G(1) = B 2L(1) Bz is also

injective with inverse G(1) ' = GA) 1= ‘BgL(/l)‘l‘Bg, which is bounded and every-
where defined.

Now we are ready to prove that M has compact resolvent. Let 1 € p(L) € p(M).
Since B is (A, + A;)-compact by Proposition (6.2.3) (lll) and, clearly, B-bounded,
Lemma (6.2.1) implies that B is £(4)-compact. Now we apply Lemma (6.2.6) (II) to the
compact operator B L(1)~! in H (see above). As a consequence, we obtain that the
continuous extension (B £(1)~*)™ of B L(1)~* to the space H_, , is compact in H_ ,, and
hence, by (38) and (40),

(M — )"t =B~1V2B1/2 £(1)~1 B2 B2 = B~ Y(BL(A)™')" B (43)

Is compact in H /; .

Next we show the equality of the spectra and point spectra of £ and M. Due to (37),
(41) and the inclusion D(Ay) € D(M), if 1, € 0p(L) with algebraic eigenspace Z; c
D( A,y ), then 1, € op(M ) with the same algebraic eigenspace Z; < D(M ). Together
with the inclusion p(£) c p(M) proved above and the fact that the spectrum of £ consists
only of eigenvalues by Proposition (6.2.3) (V), we find

op(£) € 0p(M) c€ (M) < o(L) = op(£),
and hence equality prevails everywhere.

It remains to be proved that if A, € 6p,(M) = 0p(£) and Z;, € D(M) c H,, is the
algebraic eigenspace of M at Ao, then Z; < D(A,) = D(L (4)); then, since M[p(4,) —
Ao = B Y(Ay + A;) — A, it is immediate that Z,,is the algebraic eigenspace of L at A,.
Let u € p(M) be arbitrary, but fixed. It is not very difficult to show that Z; < D(M) c
H1 /- is the algebraic eigenspace of M at 4, if and only if Z,  is the algebraic eigenspace of
the operator (M — u)~"at (4o — ) ™" . By (43) we see that BZ; < H_,, is the algebraic
eigenspace of the operator (BL(u) ™')™ inH_,/, at (1o — )~ ; in fact, the relation

(M- =Qe—wVx=x_1, j=01,....1,
for a Jordan chain (xj):) c Hy/, = D(BY2)of (M — )t at (Ag — w)~* can be written as

B (BLAW™) —=QA—w)™) Bx; =B 'Bx;_;, j=01,...,1L

Now Lemma (6.2.6)(11) yields that BZ,_ is the algebraic eigenspace of the operator BL(u) ™"
in H at (A, — u)~" and hence, in particular, BZ;, c H . The latter implies that Z, < D(B)
and that Z,_ is the algebraic eigenspace of the operator L(u)™'B in H at (4, —u)~*. The
corresponding relation for Jordan chains

CW'B-Qo—mwW ™ x = x4, j=01..1,
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shows that x, = (A9 — u) L(u )2 Bxy € D(L(1)) = D(A,) and hence, by induction,
xi = (A —wW (LW Bx; +x;_1) € D(L(W) = D(Ap),j =1,2,...,1. This proves that
Z/lo C D(cﬂo)
Theorem(6.2.11)[31]: Under the assumptions (i), (i), (iii), and (iv), the spectrum of the
linear operator pencil L(A1) = A, + A; — AB, A € C, is discrete, consists only of eigen-
values of finite algebraic multiplicity and lies in the horizontal strip

op(L) c A e C: IS | < ||BV24,B712|} .
Proof. All claims follow from Theorem (6.2.10) and from the fact that M = M, + M is a
perturbation of the selfadjoint operator M, in H, ,, by the operator M; which is bounded in
H1 /2 with norm [|My || < ||B~*/2.4,B-*/2|| by Proposition (6.2.8) (I1).

The above spectral inclusion may be improved if e.g. A, is semi-bounded and the
structure of the perturbation A is taken into account using a numerical range argument.
Theorem(6.2.12)[31]: Let the assumptions (i), (ii), (iii), and (iv) be satisfied and let
b, ,b, € R be such that for the bounded operator B~1/2.4, B~1/2

() by < J(B2A, B2y, y) < by,y € BY2D(Ay) llyll = 1.

Then the spectrum of the linear operator pencil £L(1) = A, + A; — AB, 1 € C, is contained
in the horizontal strip

op(L) € {2 € C: b, < JI(A) < by}
if a; € Rissuch that

() R(BY2A,B Y2 y,y) 2 a3,y € BY2D(Ay), Iyl =1,
and we suppose, in addition, that A, is semi-bounded with a, € R such that

() B~Y2A4,B~Y2 > a,,
then the spectrum of £ is contained in the horizontal semi-strip

op(L)c {2 € C: RA) =ay+ay, by < I(A) < by}
Proof. Let A € (L) = op(L). Then there is an x € D(L(1)) = D(A,), x # 0, with
(Apx,x) + (A1x,x) = A(Bx,x).

As B is uniformly positive, we have y := BY2x # 0,y € BY2D(A,) c BY?*D(A,),and
(B‘l/zcﬂOB_l/zy,y) . (B‘l/zcﬂlB_l/zy,y)

llyll? llyll?
Since A, is self-adjoint, all claims follow if we take real and imaginary parts.
Note that: The spectral inclusions in Theorem (6.2.12) also follow if we note that o,(£) =

op(M) € W(M) and that the numerical range of M = B~1(A, + A,) as an operator in
H , satisfies W (M) € W(B~1(A, + A,)) and

A=

(B~ 1Ay + Ax,x)1

W(B (A, +Ay)) = e 2 : x €D(Ay),x#0
X1
3
((Ap + Aq)x,x)
= [ mng x € D # o)

Hence, according to Proposition (6.2.8), one can always choose
= i @ = = = -1/2 -1/2
a, = minjo, 55 @ by = b, = ||B24,B71| .

We study the basis properties of the eigenvectors and associated vectors of the linear
operator pencil L(1) = A, + A; — AB, 1 € C, by means of the linear operator M = M, +
M; introduced in the previous part.
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Throughout this part we assume that the operators A,, A, , and B satisfy the assumptions
(), (i), (iii) and assumption (iv). We begin by showing that a system of eigen—and
associated vectors of £ can be chosen to form a so-called Riesz basis in H,,, , that is, a
basis equivalent to an orthonormal basis (see [154]). Here we use the following perturbation
result for semi-bounded self-adjoint operators.

Theorem(6.2.13)[31]: Let T, be a semi-bounded self-adjoint operator in a Hilbert space G
with compact resolvent whose eigenvalues 19 < 15 < --- are eventually simple and satisfy
A0 — 29, - 00,1 > o0, and let T; be a bounded operator in G. Then the operator T := T, +
T, has compact resolvent, its eigenvalues are eventually simple, and its eigen-and associated
functions can be chosen to form a Riesz basis in G.

Theorem(6.2.14)[31]: Suppose that the eigenvalues 19 < 19 < .-+ of the linear operator
pencil Ly(1) = A, — AB are eventually simple and satisfy 29 — 1?_;, - o,1 - . Then
the eigen- and associated functions of the operator pencil L(1) = A, + A, —AB can be
chosen to form a Riesz basis in H/, .

Proof. Due to Theorem (6.2.10), the eigenvalues of £ and M = M, + M, and the corres-
ponding algebraic eigenspaces coincide. By Proposition (6.2.8), M, = B~ A, is self-
adjoint in 3y, , while My = B~ A,is bounded and everywhere defined in H;,, . Now
Theorem (6.2.13) applied to the operators M, and M in H, /, yields the claim.

The next aim is to show that the eigen- and associated vectors of the linear pencil £ even
form a Bari basis, that is, a basis quadratically close to an orthonor-mal basis (see [154]). To
this end, we employ a result due to A.S. Markus (see [154], [114]) which requires more
detailed knowledge about the asymptotic behaviour of the eigenvalues.

Recall that an operator T in a Hilbert space G is called dissipative if
J(Tx,x) =0, x € D(T),

and quasi-dissipative if there exists ay € Rsuch that T + iy is dissipative.
Theorem(6.2.15)[31]: Suppose that T is a bounded dissipative operator in a Hilbert space
G with compact imaginary part which has a sequence of eigenvalues (4,)1°, 4, # A,
forv # u. Let Ny and L, denote, respectively, the geometric and algebraic eigenspaces of T
at 4, and define n, :=dimL, .Suppose that there exists vy € N suchthat N; =1L, for
v = v,, and suppose that the system of all eigen-and associated vectors of T is complete in
G.If

[00]

min{nv, nﬂ} —SQV)S(%)

—
v,u=1 |’1v - Aﬂl
VEU
then a sequence consisting of orthonormal bases of all the algebraic eigenspaces L, ~forms
a Bari basis of G.

In the following we show that there exists a point { € C such that the operator (M — )1

satisfies the assumptions of Theorem (6.2.15). To this end, we show the following auxiliary
result.
Theorem(6.2.16)[31]: Suppose that the eigenvalues A9 < 19 < .- of the linear operator
pencil L,(1) = A, —AB are eventually simple and satisfy 19 — 29, - 0,1 - 0. Let
(1)) < C denote the eigenvalues of £ and hence of M. Choose ¢ € C such that (M —
{)~ ! exists and is dissipative and set 1, := (1, —¢)~*,l € N. If

- 3(4,)3(4)
- —2
T, -1
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then the eigen-and associated functions of the linear operator pencil £ can be chosen to
form a Bari basis in H; /,.

Proof. By Proposition (6.2.8), the operator M; is bounded in # ,,. Hence we can choose
{ € C such that (M — {)~ 1 exists and

1
Vi=-3@+ 5 (M -M) < 0.

By Theorem (6.2.10), (M — )™t is compact and has, thus, also compact imaginary part.
Moreover, a short calculation shows that

(M- HD=-M-7" Y(r -~ = 0.
Theorem (6.2.14) also yields that the eigenvalues of M are eventually simple and the
eigen-and associated vectors of M are complete in #; ,, . Hence Theorem (6.2.15) applies
to the operator (M — ¢)~*. It is not difficult to see that the points A, are the eigenvalues of
(M — ¢)~* and the algebraic eigenspaces of M at A; and of (M —¢)~! at A; coincide.
Now Theorem (6.2.15), together with the fact that the eigenvalues and algebraic eigen-
spaces of L and M coincide by Theorem (6.2.10), completes the proof.

In view of applications to differential equations, the next observation is useful.

Proposition(6.2.17)[31]: Let (1,)° < C be a sequence and suppose that there exist
constants ¢,d € R such that A, = cl> +dl+0(1) forl— co. Let { € C and set 4; :=

(A4; — )~ ,1 € N. Then the sequence (/Tl)io satisfies the condition (44).

The Hagen-Poiseuille problem arises in the linear stability analysis of incompressible
flow in a circular pipe subject to non-axisymmetric disturbances (see [105]); it leads to a
spectral problem for a system of singular differential equations of the form

2anT \ @
, (a)

1
/T(kzr2 T) + iaRUT + iaR—(—)
r \k?r
2anT — inRT S + iaRUk?*r?

=iare (] 22)(©) (45)
on the interval (0,1] where R > O is the Reynolds number, @ € R is the streamwise wave
number, n € z is the azimuthal wave number, ¢ is a complex wave speed, and A = iaRc is
considered as the spectral parameter. The differential expressions 7 and S are given by
1 1d ( 1 d )

r2 v dr \k(r)?r dr J
— 4..2 li 2.3
5 = k(r)*r? = = (k)2 —), (46)
where
k(r)? = a? + n?/r?, r € (0,1], 47
and the axial mean flow U : [0, 1] = R is assumed to be twice differentiable with
lim,_,U'(r) = 0, U"boundedon|0,1]. (48)

In the applications literature the system (45) is supplemented by what we shall term
‘physical’ boundary conditions, such as those in [105]:
®(1)=o'(1) = (1) =0,
Iirrgqb(r) = Iirrgqb’(r) =0ifn= 0, (49)
r— r—
o(1)=9'(1) = 2(1) =0, Iirrg &(r) =0,
r—
lim,_, ®'(r) finite, lim,, 2(r) =0ifn= %1, (50)
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o(1)=o'(1)=02Q)=0,

Lim)é(r) = Limé’(r) = Lim)ﬂ(r) =0if|n| = 2. (51)
Reference [111] discussed the extent to which these conditions appear in the construction of
operator realizations of the differential expressions. It turns out that some of the conditions
at r = 0 need not be imposed, as they are satisfied automatically in the natural Hilbert space
setting. In order to understand these and other issues, we now establish some notation and
review results from [111]. The characterization of the operators involved, and their
properties, depends on whether or not n = 0 because the coefficient k(r) behaves rather
differently as r — 0 for n # 0 and for n = 0.

In the Hilbert space L2((0,1]; ) let the operator T, be defined by D(T,) = €5°(0,1)
with Tou = TJuforu € D(T,). Integration by parts shows that T, is symmetric in
L?>((0,1];7) and hence closable. It is a well-known result in the standard theory of Sturm-
Liouville problems (see e.g. [24]) that its closure T, called the minimal operator associated
with 77, has domain

D(Ty) ={u € D(T§):u(1) =u'(Q) = 0; Vv € D(T}), {u, v} = 0}, (52)
where

!

D(TY) = {u € I2((0,1]; ): u% € AC,,,([0,1]), Tu € L2((0,1]; r)}, (53)

u(r) v(r)

1 1 . 54
mur(r) mvr(r) ( )
If n + 0 then » = 0 is a limit point singularity and so the condition {u, v} = O is satisfied
for all u and v in D(Ty); it can therefore be dropped.

Lemma(6.2.18)[31]: For every n € z the minimal operator T, associated with 7 in
L?((0,1]; r) is uniformly positive and admits a self-adjoint Friedrichs extension T; with
domain

{u,v}:= lim

r—0

D(T,) ={u € D(Ty):u(1) = 0} if n=# 0, (55)

D(Ty) ={u € D(Ty):u(1) = 0,{u,v} =0} if n=0, (56)
(Here v is the solution of the differential equation 7v = 0 having the asymptotic behavior
v(r) = r?2+ ar* + .- whenr — 0.) A lower bound for T; is given by

2
(1+ 2]:’_1 > ifn # 0,
Ty = 14, :=mino(Ty) = Ty, = 4 C:.[Z n . (57)
k 1+ — if n= 0,
a

Moreover, T; has compact resolvent.
Proof. Since T, and T; have the same lower bound, we may consider y € D(T,). By [111]
we know that lim,._,, y(r) = y(1) = O for every n € z.

For n # 0 we use the estimate k(r)?r? = a?r? + n? < a? + n?,r € [0,1], to obtain

1
ly@I1  rly' ()2

(TOYvy)LZ((OJ]:T) = f( r N k(r)2T2> a

0

1

1
> ”yllsz((O,l];r)-l_ " frly'(r)l2 dr
0
> (1+ Yo ) 2 58
= ”y ”LZ((O,l];r)' ( )

a? +n?
where v, is the smallest eigenvalue of the spectral problem
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—(ry') = Ary, y(0)finite, y(1) = 0, y € L*((0,1]; r). (59)
Eqg. (59) is a Bessel differential equation for which vy = j§, is the square of the first zero of
the Bessel function J, (see [18]).
For n = 0 we use the estimate k(r)?r = a?r < a?,r € [0,1], to obtain

1
ly@I? 1y @)
(Toy, ¥)iz(0a3,v) = f < rarr >dr

0

1
1
> P ) + o5 | WOF dr
0

7'[2
> (1+5) Wy lEgoan
where 72 is the smallest eigenvalue of the Sturm-Liouville problem
—y" =2y, y(0) = y(1) =0, y € [*((0,1]; 1).
The compactness of the resolvent of T; was proved in [111].

For n # 0, we work in the space L?((0,1];7) and we define S, to be the minimal operator
associated with § in the same way as we defined the minimal operator T, associated with
T.

Lemma(6.2.19)[31]: For n # O the minimal operator S, associated with § in L?((0,1]; 7)
is uniformly positive and admits a self-adjoint Friedrichs extension S; with domain
DS, ) = {y € LZ((O,l]; r):y,k2r3y’ € ACoc ((O, 1]) ,}
' Sy € L*((0,1]; 1), (1) = 0 |
satisfying D(S;) < D(T,) < D(Ty), and lower bound given by
S1= 04n =mino(Sy) = Gy, p

(@? + n?)? ifa<n

60
4a’n? ifa > n (60)
(Here jj 4 is the first zero of the Bessel function J,.) Moreover, S; has compact resolvent.
Proof. By [111], we know that lim,._,, y(r) = O for every y € D(S,). From the differential
expression § defining S, (see (46)),

1

= q? + n2j§,1 +{

1
(51}’1}’)L2((0,1];r) :f rh(r)2|y(r)|2 dr+f h(r) |7”y,(7”)|2 dr, (61)
0 0
in which h(r) := k(r)?r = a?r + "7 ,7 € (0,1]. We immediately bound the first integral
from below by (Min,¢(o17 A(r))IIy lI720 17,y and we easily check that
h(1) =a? + n?  ifa < n,
n .
h(—)=2an ifa > n,

a
For the second integral we note that r2h(r) = a?r3 + n?r,r € (0, 1], and that

A ) =

1 1

1
[ My OF ar = @ [Py or a -+ [ ryor o
0 0 0
> (a?uy + n*vo)lly ||52((0,1];r),
in which vy = j§, is the smallest eigenvalue of the spectral problem (59) and  is the
infimum of the spectrum of the Sturm-Liouville problem

-(3y") = ary, y(1) = 0, y € 1*((0,1]; r), (62)
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Eq.(62) can be solved explicitly in powers of r to show that the spectrum is purely essential
and covers the semi-axis [1, o), whence u, = 1.

The compactness of the resolvent of S; was proved in [111].

For n = 0, the system of differential equations (45) decouples, but in the second equation
the coefficient k?r? of the spectral parameter A = iaR is no longer uniformly positive.
Therefore, in this case we work in the space L?((0,1]; 3). We shall need the following
results.

Lemma(6.2.20)[31]: For n = O the Sturm-Liouville differential expression —— § is
a“r

formally symmetric in the space L2((0,1];72). It is regular at » = 0 and limit point (see,
e.g., [24]) at r = 0. Moreover, the non-trivial solutions of the differential equation
_ Su = Au,A € R, always have at most finitely many zeros in (0, 1].

a?r?

Proof. A standard Frobenius ansatz u(r; 1) =1V X%, a;r’ yields the indicial equation

v(v + 2) = 0 together with recurrence relations for the coefficients a; of the form
v+ +j+ 2)g = (a? —Daj_,.

For v = 0 we obtain a solution uy(r; 1) in even powers of j which is an entire function of

r. Forv = —2 only the trivial solution is obtained; however Liouville’s formula for a

second solution (see [103]),

1

1

ul(r; /1) = uo(r; /1) fm ds

yields a second solution with the asymptotic behaviour u(r; 1) ~ r=2 for small r. Since
uo(-; ) € L2((0,11; 3) and uy(-; A) € L2((0,1]; r®), the singular point at r = 0 is of
limit point type. Moreover since u,(-; A) has only finitely many zeros in (0,1), for each 4,
the same is true for any non-trivial solution (-, ), for any real 4, by the Sturm Interlacing
Theorem.

In the Hilbert space L?((0,1]; %) we consider the operator R, given by D(R,) = €5°(0,1)
and Ryu = Sufor u € D(R,). Integration by parts shows that R, is symmetric in

a?r?
L?((0,1]; ®) and hence closable; its closure, denoted by Ry, is the so-called minimal
operator associated with —— § in L2((0, 1]; r3).

azre

Lemma(6.2.21)[31]: For n = O the minimal operator R, associated with # S in the space
LZ((O, 1]; r3). is uniformly positive and admits a self-adjoint Friedrichs extension R; with
domain and lower bound given by

1
D(R,) = {u e 12((0.11; 7*):u,ru’ € AGo(011), 55 5u € 12((0,11; 1), u(@) = o},

Ry = rg:=minag(Ry) = 7, := a® + ji,. (63)
Moreover, R, has compact resolvent.
Proof. Integration by parts shows that, for u € D(R,),
1

Rottya(05) = | @1 WP + Ple@P) dr. (64)

It is not difficult to see that the smallest eig?anvalue of the spectral problem
—(r3u’) = Ar3u, u(0) finite, u(l) = 0,
is the square of the first zero j; ; of the Bessel function /; (see [18]). This means that in (64)
we can estimate f01r3|u’(r)|2 dr = ji, f01r3|u(r)|2 dr and hence that Ry = a? + j, is
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a uniformly positive symmetric operator. The same lower bound holds for R, , which is the
Friedrichs extension of R,,.

Standard Sturm-Liouville theory (see e.g. [109, 110]) guarantees that at the regular
endpoint » = 1, functions u € D(R,) satisfy the boundary condition u(1) = 0; no
boundary condition is obtained at » = O since this is a limit point endpoint by Lemma
(6.2.20) (comp. [111]).

u=Au, A €R,

a“r
are non-oscillatory. By [23], this implies that g.,,(R;) = @. Together with the selfadjoint-
ness of R, , this shows that R, has compact resolvent.

For n # O there are many possibilities, including T; k?r? T, and T§ k?>r?T, =
(krTy)* (krT,). The operator Ty k?r?T, is the one whose domain carries the boundary
conditions u(1) = 0 = u'(1) specified in the physical problem, whereas T, k?r?T; involves
the boundary conditions u(1) = 0 = (Fu)(1). It turns out that Ty k12T, is the Friedrichs
extension of the minimal operator associated with the expression Tk?r2T, and is uniformly
positive with Ty k?r2T, = n2.

For n = 0, multiplication by kr is no longer boundedly invertible so krT, may not be
closed; thus (krT,)*(krT,) may not be self-adjoint. The self-adjoint Friedrichs realization
of the expression Tk?r2T is described in [111], where it is denoted L,. Following the
results at the end of the proof of [111],

D(L,) = { y € LZ((O,l]; r) : Tk*r?Ty € LZ((O, 1];r), }
Y@ =0=y'@), y() =06G?), y'¢) =000 — 0))
Because L, is a Friedrichs extension, we can calculate a lower bound for L, by using the

fact that it has the same lower bound on C;°(0,1)-functions as on elements of its domain.
Integration by parts then yields no boundary terms, and
1

(65)

a d/1 d 2
(L13’y}’)L2((0,1];r) = (ar Ty, ar TY)LZ((0,1];r) = |r - y(r)- «a d_(_ a) y(r)
0
1 1
a? '(r) d/1 d 2
f ly ()12 dr+2f |y | dr + fraz —(— —)}’(T)
dr \a?r dr

0
> (a2 + 21y 172 (0,13; (66)
where, in the last line, we have omitted the third integral and used a Poincaré estimate of the
second. A tighter lower bound for L, is given in Lemma (6.2.37) below.
The system of differential equations (45) with the boundary conditions (49), (50), and
(51) can now be written as a spectral problem for an operator pencil
(Ay + A )u = 1Bu,
in the Hilbert space L?((0,1];7) @ L?((0,1]; r) where the coefficients A,, A, , and B are
block operator matrices given by
Ay = (T(;k k?r?T, 2anT}

2anT, s, ) D(A,) := D(T; k?12T,) ® D(S,); (67)

(om+2() o)
A=iaR| T - D(A) = D(T) @ 12((0.1;7); (68)
UkZ 2/

nU’
Tar
T, 0 = 2((0.11;
Bi= (g ,2.2) D@B)= D) &L(O 1L ). (69)
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Remark(6.2.22)[31]: To justify this choice of domains we need to make two observations.
() By hypothesis (48), U'(r) = for U"(s)ds,r € [0,1], and U" is essentially
bounded. Thus also % is essentially bounded with L*((0, 1])-norm bound

1= < 1w | (70)

(1) As established in [111], the function %(%) is essentially bounded when
n # 0; in fact,

1,0y
r (kzr) o | a?r2 + n? (a?r? +n2)? r o
where we have used some simple analysis to show that the coefficients of U”and U'/r are
both bounded by 1/n?.
Remark(6.2.23)[31]: The operator A, can also be written as
Ty k*r?T, 2anT,
Ao = ).
2anT, S,

In fact, in (67), the (2,1) term acts on functions in D( Ty k?r2T, ) S D(T, ), while for
n # 0 the (1,2) term acts on functions in D(S;) € D(T;). Thus the operator T, in the off-
diagonal corners may be replaced by its extension Tj;.
Lemma(6.2.24)[31]:(Checking assumption (i) for n # 0). The operator A, is self-adjoint.
Proof. We shall use Proposition (6.2.5). Since A, := Ty k? 1% Ty = (k1 Ty)* (k7 Tp), itis
sufficient to show that T, is (krT,)*(krT,) —bounded with relative bound zero, and that T
is S; —bounded. The fact that D(S;) € D(T;) was established in [111]; a fortiori D(S;) S
D(Ty) and so Ty is S; -bounded. We shall prove slightly more than required by showing
that T, is (krT,)*(krT,)-compact.

The operator A, is uniformly positive, 4, > n?, and the quadratic form of 4, is given
(see [17]) by

1 —a’r?+n? U’ 2
< ;”U o, (71)

(72)

1

1
ta, ) = lkrToy ||2L2((0]1];r) = fr lk@)r(Ty)()|? dr, y €D(t,,) =D <A§>, (73)
0
and its domain D(t,,) consists of those y which can be approximated in the norm defined
by (73) by elements of D(4,). Since D(4,) € D(T,) and since kr is boundedly invertible,

this immediately establishes that D(t, ) < D(T,), and hence Ty is Ay> —bounded. But 4,

has compact inverse, so Agl/ ? is compact. Hence T, is 4, —compact.

Lemma(6.2.25)[31]: (Checking assumption (ii) for n # 0). The operator B is selfadjoint,
uniformly positive with B > min ¢(B) = min{t, ,,n*} = 1, and A,-compact.
Proof. The operator T; is selfadjoint and T; > 7,,, = 1 by Lemma (6.2.18). Because
k(r)?r? = a?r?+n? > n? r € (0,1], the corresponding multiplication operator in
L?((0,1]; ) is also selfadjoint and uniformly positive with mino(k? r?) = n? > 1 for
n # 0. This proves the first two claims about B.
Using the alternative form of A, in (72) and [111] it is sufficient to check the following:
D(Tg k*r2T,) < D(Ty); D(Sy) € D(k?r?); Ty is Ty k*r2Ty-compact; k?r? is S;-compact.
Clearly, D(T§ k? 2 Ty) < D(T,) < D(T;). The fact that T; is Tg k? r? Ty-compact is
immediate from the fact that T; is a finite-dimensional extension of T,, and, as established in
the proof of Lemma (6.2.24), T, is T k*r2T,-compact.
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Finally, it was proved in [111] that S; has compact resolvent. Since k(r)?r? = a?r? +
n?,r € (0,1), the multiplication operator k?r? is bounded and everywhere defined in
L?>((0,1]; 7). Thus D(S;) € D(k?r?) and k?r? is S;-compact.
Lemma(6.2.26)[31]: (Checking assumption (iii) for n # 0). The operator A, is closable
and satisfies D(B) = D(A,),D(B) € D(A7).
Proof. To prove that A, is closable it is sufficient to check that A7 is densely defined.
Thus it suffices to prove the claims for the domains.

By the definitions in (68) and (69), we have D(B) = D(A,). According to Remark

(6.2.22), the multiplication operators by U, = (k;”z) ,U' and Uk2r? which occur in A, by

(68) are bounded, everywhere defined and self -adjoint in L2((0, 1]; r). Moreover, T; is self-

adjoint so that we have the operator identity (UT,)* = T,U. Hence A] is given by

U’ U’

A, = —iaR T +- (kz ) | DAY =D(MU) B L2 (0,11 r) . (74)
0 Uk?r?

In order to show that D(B) < D(A}), we thus have to show that D(T;) < D(T,U). To this

end, lety € D(Ty). Since U € C2([0, 1), we clearly have Uy, — (Uy)' = — (Uy' +

U'y) € ACi,c([0,1]) and

u' y' 1 /U
TUy = UTyy — Z_kT - = (kz ) y. (75)
According to the assumptions on U and the propertles deduced from them in Remark
(6.2.22), the first and the last terms belong to L?((0, 1]; r) and the coefficient 2% of the
second term is essentially bounded. Since y(1) = 0 for y € D(T,), we trivially have
(Uy)(1) = 0 also, and so to show that Uy € D(T,) it suffices to show that - € L*((0,1];7).

In fact, if we use k(r)? = a?+n? ,r € (0,1], and (58), we find
1

2 1 , 2 )
”_ _ fr y'(r) 1 ly'(™)l
k2rll2(01r) ) k(r)?r k(r)2 k(r)?r
1
1 ly' ("I 1
~ a?+n?) k(r)*r dr = a? + n? (le’y)Lz((Oll]:r) < 0. (76)
0

Remark(6.2.27)[31]: The operators A;B~! and A; B~ are bounded with the following
bounds, in which 7, ,, = mina(T;) = 1 is the positive lower bound on T;:

A, B < JalR 10l + - max 12 210 77
Ay B < TR (Ul + = max ). an

an |CZ| n?

1 1
A B~ < aR<||U||oo+< + >”U"”oo>y 78
1 el \/Ta’n VaZz+nz |nlla] (78)

These bounds follow if we use the explicit forms of A, B~! and A; B~ according to (68)

and (74), (75), respectively, together with the bounds for U, % %(%) given in Remark

(6.2.22), the estimate for yT’ derived in (76), and the inequality

1
(Tyy. y)LZ((O 1;7) = (f. T f)LZ((O 1) S ||f ||L2((0 1]:7) (79)
fory = T7'f € D(Ty).
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Lemma(6.2.28)[31]: (Checking assumption (iv) for n # 0). D(A,) is a core for B2
and we have the domain inclusion D(A;) S D(B/?).

Proof. The operator B has domain D(T;) @ L?*((0,1]; ) and is block diagonal, and so
D(BY2) = D(TM?) @ L12((0,1]; 7).

Since T; is the Friedrichs extension of the (symmetric) minimal operator T,, which in
turn is the closure of T, having domain D(T,) = C°[0,1], the set C§°[0,1] is a core for
T2, Thus €[0,1] @ L2((0,1]; ) is a core for B2, Because D(A,) 2 C[0,1] B
L?((0,1]; 1), the first part of assumption (iv) is checked.

Since the domains of A; and B coincide by definition, it is immediate that D(A;) =
D(B) c D(BY?).

As a consequence of Lemmas (6.2.24), (6.2.25), (6.2.26), and (6.2.28), all the hypothesis
of the abstract study are satisfied by the Hagen—Poiseuille system for n # 0. So there is
only one obstacle left to applying Theorem (6.2.16) to obtain a Bari basisness result for the
eigen-and associated functions of the Hagen-Poiseuille operator: we must verify that the
spectral asymptotics given in Proposition (6.1.17) are satisfied.

To this end we note that in the purely self-adjoint case U = 0, which is equivalent to
A, = 0, the eigenvalues were calculated explicitly as long ago as 1969 by Burridge and

Drazin in [25, 19]. In particular, the asymptotics were also calculated
2

0 _ 1 1V
2 =Z(l+n+§)n + 0(1),1 - . (80)

Lemma(6.2.29)[31]: (Checking eigenvalue asymptotics in Proposition (6.2.17)). Both for
n =0 and for n # 0, the eigenvalues of the Hagen—Poiseuille problem (45), (50), (51)
satisfy

1 1\?

Alzz(l+n+§) 2 + 0(1),1 - . (81)

Proof. By Theorem (6.2.10) the eigenvalues (1;)7° of the Hagen—Poiseuille problem
coincide with the eigenvalues of the operator M; in the case A; = 0, the eigenvalues

(Afo))f coincide with those of the self-adjoint operator M. Since M is a bounded

perturbation of M, (81) is immediate from (80).
Theorem(6.2.30)[31]: For n # O, the eigen- and associated functions of the Hagen-
Poiseuille problem (45), (50), (51) may be chosen to form a Bari basis of the Hilbert space

Hy = D(T}?) @ L2((0,1];7) equipped with the scalar product

<(£> | (i)) 1/2 ) (;%LZ((O,H;@ N (%’%>L2((0,1];r) + @2 Dy (82)

Proof. Since all assumptions have been verified, Theorem (6.2.16) yields the Bari basis
property in #; ,, = D(BY2) = D(T,}*) @ L2((0,1]; ) equipped with the scalar product
('1')1/2 = (BI/Z 'vBl/z ) given by

D\ (@ 1/2 1/2
<(.(2) ' (.(2)) / - (T1 ®.T; (p)LZ((O,l]:r) + (kra2, kr‘Q)LZ((O,l]:T)'
1/2

By (58) the first term on the right-hand side coincides with the first two terms on the right-
hand side of (82). Since k?r2. is a bounded and boundedly invertible operator in L?((0,

1];7), the scalar product (kr -, kr );217: IS quivalent to the usual scalar product in
L?((0,1];7). Hence the scalar product ()1/2 in (82) is equivalent to the original scalar

product (+,-)1/, On H; 4, .
221



In case n = 0 we have k(r)? = a?,r € [0,1], and the system of differential equations
(45) decouples into the two scalar differential equations

1,0
(T(azrz T)+iaR<UiT+ - (T) >>cp = 1T,
r \Qd°r

(S+iaRU)N = a?r?20,

with A = iaR. While the abstract results still apply to the linear operator pencil induced by
the first equation in L,((0,1]; r), they no longer apply to the linear operator pencil induced
by the second equation since the coefficient a?r? of 1 does not induce a uniformly positive
multiplication operator in L,((0,1]; ). Thus we obtain basis properties of the eigen- and
associated functions for the second component in a different Hilbert space, formally by
dividing by a?r2.

A convenient formulation in terms of operators in the Hilbert spaces L,((0,1];r) and
L,((0,1]; r3), respectively, is now the following

<L1 + iaR <UT1 +1(UT’) >> ® = AT, @, ® € D((arTy)*(arTy)), (83)

r\a“r
(R, + iaRU)2 = 10, 0 €D(Ry), (84)

where L, , T; , and R, are the operators introduced in the present section .

We treat the two components separately. For the first spectral problem we apply the
abstract results for linear operator pencils developed in the preceding parts; for the second
problem, which is a classical spectral problem, we apply the abstract results in the particular
case B = 1I.

We begin with the problem (83) and introduce the linear operator pencil £, in the Hilbert
space L,((0,1]; ) by

L£,(A) = Ay + A, — AB, D(£,(1)) :=D(4,), 1 €C, (85)
where
A= Ly, A, := iaR (UT1 + - (%) ) B:= T, (86)

The following proposition shows that the linear operator pencil £, satisfies the abstract
assumptions (i)-(iv) and of Proposition (6.2.17) (i.e. the results of Lemmas (6.2.26), (6.2.
24), (6.2.25), (6.2. 28), and Proposition (6.2.4) all continue to hold with A,, A;, and B
replaced by A, A, , and B, respectively).

Lemma(6.2.31)[31]: (Checking assumptions (i)- (iv) for n = 0). The operator 4, is self-
adjoint with Ay = a® + 2%, B = T, is uniformly positive with T; > 7, , = 1, has compact
inverse, and is A,-compact; A, is closable with D(B) = D(A;) and D(B) € D(47); D(4,)
is a core for B/? and D(4,) & D(BY?).

Proof. The first claim was established in above and (66). All claims for B = T; except for
the last were showed in Lemma (6.2.18).

To check that B is A,-compact, first observe that L, := (Tyar)(arT;) is self-adjoint by
Von Neumann’s theorem, because (ar_Tl)* = T{ar = T,ar. We also note that both L, and
L, are selfadjoint realizations of the same ordinary differential expression Tk?r2T. This
means that the difference of their resolvents is a finite rank operator, and so it suffices to

check that T, (L, — /1)_1 is compact. Following the method in the proof of [111], we
observe that 0 € p(L,) and that T,L7* = (L,T;? )_1. However, since (arT;)|pr,) = arTh,
we have
L, T/t = (Tyar)(arT)T; ! = Tya?r?
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1
a2r?

Thus T, L7 = T; 1. This is compact by [111].

AU

Unlike in the case n # 0O, the multiplication operator iaR % (%) - is no longer bounded
in L2((0,1]; 7). But, by [111], we have
1 Uy
D(Tl) C D(lCZR ; (E) .>, (87)
which shows that D(B) = D(T;) = D(4,) and also D(4,)  D(B?).
As in the proof of Lemma (6.2.26), to prove that A, is closable it is sufficient to check
that D(B) < A; which implies that A7 is densely defined. To this end, let y € D(T,) =

D(B). As in the case n # 0 (see the proof of Lemma (6.2.26), we have Uy,k—ir (Wy)' =
k—ir (Uy' +U'y) € AC,.([0,1]) and formula (75) now reads, because k (r)? = a?, r €
[0,1],
Uy 1,0y
TUy = Ule -2 T‘_E — ; (E) y. (88)
By the assumptions on U and the properties deduced from them in Remark (6.2. 22), the

first term belongs to L?((0,1]; r), the coefficient 2 % of the second term is essentially
bounded, and the last term belongs to L2((0,1], r) because of (87). The proof that % €
L?((0,1],7) is analogous to the proof in the case n # 0 (comp. (76)):

1
1 (YR 1

0

!

Y

ar

L?((0,1];7)
Thus it remains to be shown that Uy satisfies the boundary condition {Uy,v} =0 for v
with v(r) = 0(r?),r — 0 (see remarks following (6.2.27)). By (54) we have

Wy, v} = lim,_ oUEN v} = lim (o 'Oy )e(),
and {y, v} = Osince y € D(T;). We know that U'(0) = 0 by hypothesis on U. The
condition y € D(T;) implies that y(0) = 0 through the Cauchy-Schwarz inequality

1/2 1/2

IS 2
ly'(s)l s
S

T

r
fs ds < Vo2 (T1}’vy)L2((0,1];r)'
0

ly(MI < f
0

Hence Iim0 (ﬁ U’(r)y(r)v(r)) = 0Oand so {Uy, v} = 0 as required.

The fact that D(4,) is a core for BY/?follows in the same way as for the case n # 0 in
the proof of Lemma (6.2.28): precisely because B = T; is the Friedrichs extension of T,
the operator B'/2 has C¢° [0,1] as a core, and hence has D(4,) as a core.

As a consequence of Lemma (6.2.31) and of the eigenvalue asymptotics in Lemma
(6.2.29) , the pencil £;(1) = A, + A; — AB, 1 € C, in (83) satisfies all the hypotheses of
the abstract study; in particular, Proposition (6.2.3) shows that £; has empty essential
spectrum (comp. [111]). Theorem (6.2.16) now Yyields the following basis result in the
Hilbert space #; ; , = D(B */?) if we note that B = T, and observe formula (58).
Theorem(6.2.32)[31]: For n = 0, the eigen- and associated functions of the linear operator
pencil £L;(1)=A,+ A, — 1B, 2 € C, may be chosen to form a Bari basis of the space

Hi1,, = D(T}'*)  equipped with the scalar product

® @ o' 9
(<D,(p)1,1/2 = (T11/2 (p'Tll/Z (p)LZ((o 1];7r) = (_'_) N <_’_> |
1], T/ 12(0]r) ar - ar Jz2oatr
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Finally we consider the second spectral problem (84).
Theorem(6.2.33)[31]: For n = 0, the eigen- and associated functions of the linear operator
L, := R, + iaRU in L?((0,1];r3) may be chosen to form a Bari basis of L?((0, 1]; r3).
Proof. By Lemma (6.2.21), R, is a selfadjoint semi-bounded operator in L2((0,1];73) with
compact resolvent. The eigenvalue asymptotics (80) for the case A; =0and n =0 imply a

fortiori that the eigenvalues of R;, being a subset of (/150)): , have the asymptotic behaviour

0(1?). Since U € C%([0,1]) by assumption, the multiplication operator iaRU - is bounded in
L, ((0,1]; r°).

Theorem (6.2.13) readily shows that the eigen-and associated functions of the operator
L, may be chosen to form a Riesz basis of L2((0,1]; r3). In order to see that they even form
a Bari basis, we note that the linear operator pencil £,(A1) := L, — A, A € C, trivially
satisfies the abstract assumptions (i)—(iv) with B = I in L,((0,1]; r®) because R; has

compact inverse and «A; = iaRU- is bounded and everywhere defined. Now Theorem (6.2.

16) yields the claim.

While Burridge and Drazin give information about the asymptotic location of eigen-
values in [25], Theorems (6.2.11) and (6.2.12) yield global bounds for the whole set of
eigenvalues, which depend on estimates for the operators A, A, , and B respectively. We
estimate these eigenvalue bounds for the Hagen—Poiseuille problem in terms of the para-
meters «, R, n, and of the axial mean flow U.

Here we consider the case a > 0; the formulation of the results for o« < O requires only
minor modifications.

For the refined spectral inclusion in Theorem (6.2.12) we first estimate the constants
ay, a, , by , and b, for the operators A, A, , and B introduced in (67), (68), and (69).
Lemma(6.2.34)[31]: (Bounds involving A,). The operator A, is semi-bounded with

B V2 A, B V2> ayp = dgpn>0 (89)
Where
1 Oan Oan \2 16a?n?
Agn = E nZTa,n + —az T 2 - \/(nzTan - —az " nz) + 2+ 2 (90)

and a, , arises from a,,, by replacing t, ,, 0, , by their lower bounds £, ,, 6, , defined in
(57) and (60), respectively.
Proof. Suppose thatu = (f,g)" € D(A,) = D(T;k?*r?T,) @ D(S;) < D(T,) & D(S,).
A direct calculation yields

(Apu, u)LZ((O,l];r)
1 1 1

= f r k@Yr(Tof YO)I? dr + f r(5,9)P)g(Pdr +dan R f r(Tof Y9G dr
0 0 0

= nzllTlf”iZ((gll];r) + O-a,n”g”iz((gll];r) - 4a|n| |(T1f1g)L2((0,1];r)
2 ) anl\.

> (n* — 4a|n|€)||T1f||L2((0,1];r) + | Oan e ||g”L2((0,1];r)’ (91)

where we have used Young’s inequality |ab| < €|a|? + |b|?/(4€) with some € > 0 in the
last step. Now let u = B2y, ie. v = BY2u=(x, y)T € BY2D(A,) and (f,g)" =

T
(Tl‘ 12 x,%y) . Using the lower bounds
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1 - 1
k(r)2rz2 = a? + n?2’

T1 = TO.',TL; r e (O, 1],

in (91), we obtain

-1/2 -1/2
(A,B v, B v)Lz (011:)

5 Oun — @|nl/e
= (nZ - 4a|n|E)Ta,n”x”LZ((Oll];r) + a? +n?
By the intermediate value theorem it is easy to see that the equation
Oun — aln|/ e
aZ + nZ
always has a solution € € (0, o); this solution can easily be found explicitly,

Y1) (92)

(n? — 4alnle)ty, =

2
1 o o 16a?n?
€= €an= g | M~ 0;" N T n? — “2171 2 + 2 2
’ 8a|n| Tan(a? + n?) Tan(@? +n?) Tan(a? +n?)
Then (n? — 4a|nlegn)Tan = Qgn With a,, as in (90) and hence the best lower bound in

(92) is (@anllxllZ (o 11 + 1V 122 o1 ). 2S Fequired.

Finally, it is easy to see that a, , is monotonically increasing as a function of both 7, ,
and o, ,, , which gives a,,, = d,,; the inequality a,, > 0 follows, e.g. by contradiction, if
we note that 7, = 1 and G, , = 4a?.

Lemma(6.2.35)[31]: (Bounds involving A, ). The bounded (and densely defined) operator
B~1/2.4,B~1/2 satisfies the estimates
() R(B™2A,B7V2v,0) = —aRbaullU" ||co,
() @R (Upin = banllU" o) <3 (B~Y2 A, B2 v,v)
< aR(Unax * banllU" llw),
for v € BY/2 D(A,), v = 1, with
Umin = minre[o,l] U(T‘), Umax = MaX;e[o,1] U(T‘),

1 1 1 1 1 -
ba,n ::\/T_a7§ —,m+\/m +; = ba,n
where 7., =mino(T,) = %,, is defined as in Lemma (6.2.18) and b, ,, arises from by, ,,
if we replace 7, by its lower bound %, ,.
Proof. Let v = (x,y)T € BY2D(A,), |lv | —L*((0,1]; r) =1, and set u := B~ /2y :=
(f, )T € D(4;) = D(Ty) @ L*((0.1];7). Then f = T, Y?x, g = ki y and we have

||f”L2((0,1];r) = ”Tl_ V2 x||L2((0,1];r) = \/% ||x”L2((0,1];r)’ (93)
9l oy = | ¥ o < o o) (04)
By the definition of A, in (68),
(A1u, w)2(0117) = iaR <<UT1 + L (UT,)’ >f,f> _ (E v f,g)
T AKET 12((0,11;r) nr L*((0.1r)
+(Uk*r%g, 9) 12(013:r))- (95)

Integrating by parts in the first term, we find
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(o + 3 () ) 7)

1

_ frU(r)( If (O +_k(r)2 O dr—fk( o f (OFG) dr. ()

The flrst term in (96) and the last term within the brackets in (95) are both real. Using the
Cauchy-Schwarz inequality and the estimates (70), (93), (94), the second term within the
brackets in (95) can be estimated by

L? ((0 1];r)

a U’ )
- —f < — ”U"”oo”f” llgll
(n " g L2((0117) L2((0,11;r) L?((0,1;r)
1 ) 1
E N0 oo —— \/m ”x”Lz((O,l]:T)”y”Lz((O,l]:T)
1

" 1 2 1 2
5> ”U ”mm (6”x”L2((0,1]§T) * E”y”LZ((o,ﬂ;r)) 7)

for some § > 0. Using the Cauchy—Schwarz inequality and the estimates (70), k(r)? >
a’?+n?r € (O 1], and (93), we estimate the second term in (96) by
1/2
dr)

,( ) : U )
< fll2o,a3:0) (j

1/2
“If ()12
= £l 2(c0.13:1) ( ] k(r)2 dr)

k(r)?r
1 1/2
1 lf' (I
- ||U’,||°°||f||L2((0,1];r) ( —zdr>
Vaz + n2 J k(r)zr
”U"” ”f”LZ((O 1]-7) (Tlfaf)iz/(z(oyl];r)

U’ (r)

IA

IA

1/0{2 + nZ
1
S\/ﬁ”U ”oo\/-— ||x||L2((01]T)

Hence, if we take the real part in (95), use (97), (98), and recall that we have assumed that
a = 0, we arrive at
R(A, B~ V2 v,B72v)

(98)

L?((0,1;r)
_ - a U’ U'(r) —
= B3| (G 19) gy | R S OT O

\%

—aR

7)o

" 1 6 1 2 1 2
> —aR 10"l —= (32 + 7o) Il * 35 9oy

This lower bound is optimized by the choice

0 Ra—
+ f e O @ r
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a a?
§= - ——=+ |5——=+1
Va? + n? a“+n

and, using ”v”iz((o,l];r) = ”x”iz((o,l];r) + ”y”iz«oll];r) = 1, we obtain

R(A, B™V2v,B72p) > —aR ||U"|| t 1 ! + ! +i
' ’ L*((0akr) — * JTan 2\ VaZ+n? a?+n? a2

Taking the imaginary part in (95) and using (97), (98) again yields
S(A, B™V2v,B72v)

) L?((0,11;r)
1 1 1
[ | @) (FIFOF + 2= 170 ar )
0
= aR +(Uk*r%g, 9)12((011r) . (99)

R <a U'f > U'(r)
—_ —— ’g —
\ nr 2oary g KO

In order to show the estimate from above, we use the inequality U(r) < U 7 € [0, 1], tO
estimate the first two terms in (99) by
1
1 2 1 l 2
| O (F 1O + 5 170 ar

0

fF@f'(r)dr /

1

1 1
< Upax fr(r—2|f(r) |2 + PORE |f’(r)|2) dr = Umax(Tlf'f)Lz((o,ﬂ;r)
0
UmaX”x”iZ((O,l];r)

and
(Ukzrzg,g)Lz((o,l];r) = Umax(kzrzg'g)Lz((o’l];r)
= Umax”y”iz((o,l];r)'
For the last two terms we proceed in the same way as for the term %(«4,37/2v, B71/2v)

and we conclude that

L2((0,1];r)

0"l 1 1 1
~ ~1/2 -1/2 —
3(A B0, B v)LZ((o,l];r) = @R Umax * 2\[Tan \Va? +n? M

The proof of the estimate from below is analogous.

Using the above estimates we now obtain the following spectral inclusion.
Theorem(6.2.36)[31]: Suppose n # 0. Then the set of eigenvalues A = iaRc € ap( L) of
the Hagen- Poiseuille problem (45), (49), (50),(51)satisfies the inclusion

op(L) c {2 € C: R() 2 agn — aRbullU" lloo, R (Umnin = banllU"lleo) < I(2)

< aR(Unmax *+ banllU" 1)}
With ay ., bg ) Umin, Umax defined as in Lemmas (6.2.34) and (6.2.35).
The inclusion continues to hold with a,, ,,, b, , replaced by their lower and upper,
respectively, bounds @, b -
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Proof. The claim is immediate from Theorem (6.2.12) and Lemmas (6.2.34) and (6.2.35).

In case n = O the problem splits into the two uncoupled problems, (83) and (84). We
first estimate the bounds needed for the application of Theorem (6.2.12) to the first spectral
problem (83).

Lemma(6.2.37)[31]:(Bounds involving L, ). The operator T, 2L, T, , with Ty , L, defined in
above, is semi-bounded with

. - Lo at+ i,
ly:=mino(Ly) = [, := a?+ ]12]1 CZZ+—]121 (100)
where j, 1 , j1 1 are the smallest zeros of the Bessel functions J, and J;, respectively.
Proof. Lety € D(L,) C D(Tl) (see [111]). In above (see (66)) it was shown that
a? 1y’ ( )I2
(Lyy, y)LZ((O 1) — f_ ly|? dr + 2
0
1 1
d /1 d 2 ly' (r)I?
+ fra2 E (E E) y(r) dr = a2(T1y,y)Lz((0’1];r) +f " dr
. d 1 d 2 0
+ | ra? |— (— —) 101
[re |5 (5= 5)vo) (102)
0
where we have used that
1 1
ly ("I 1 (lym?
(T, ¥)iz(01r) = " dr + s " d (102)

0 0
In order to estimate the third integral in the last line of (101), we use that the smallest
eigenvalue of the spectral problem (59) is j§, (see [18]). Letting u(r) = y'(r)/r in (59)
and using this estimate in (101), we obtain

% (T)I2

(L1y, y)LZ((o 1]r) = @ 2(Tyy, y)LZ((o 117r) T (a +Jo, 1)

We split the last integral into two parts weighted by (1 — u) and u, for some u € [0,1].

The first part is estimated by observing that the lowest eigenvalue of the problem
1

- (3 u) = 22 u, u(0)finite, u(1) = 0, (103)
is jZ, (see [18]) and so with the addltlonal help of (102) we obtain

1
7,.2 7'2 Ir2
—fw”'mzaﬂM%ﬂ””dHﬂj y P
r a r a r

)
. Ji1
> mln{(l— ,u)?,,u} (T1yyY)L2((0,1];r)

for arbitrary u € [0,1]. If we choose u = jZ,/(a? + j{,), then the above minimum becomes
maximal and we arrive at the estimate

(L1y, y)LZ((O 1];r) = <“ + (a +jo, 1)

from which the result is immediate.

2

o2 _,_]2 >(T1yy}’)L2((o,1];r) (104)
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Lemma(6.2.38)[31]: (Bounds involving A, ). The bounded (and densely defined) operator
B~1/24,B~1/2 satisfies the estimates
(1) R(B™Y24,B72v,v) = —aRbyo||U" || oo,
() @R (Upgin = baollU" o) < S(B™Y2 Ay B~Y20,v)
< aR(Umax + ba,0”U"”oo)1

1, where

minre[o,l] u(r), Umax = MaX¢[o,1] u(r),
1 1 1 1 -
ba,O = - S - S b

VTao @

with T, o = T, defined as in Lemma (6.2.18).

1
forv e Bz D(4,), ||l
Umin :

a,0r

%‘
N
o
e

1
Proof. We proceed in a way similar to the proof of Lemma (6.2.35). Let x € B2 D(4,),
1
x|l = 1,and set f := Bzx € D(A;) = D(T,). Then we have the estimates

-1
2
Tlx

1l 2oty = (105)

1
< —|xll,2¢¢0 170
L2((0,1]:7) JTao Il ((01%r)
By the definition of A, in (86) and by integration by parts, we have

-1/2 -1/2
(A,B~Y% x,B X) 2 ((0117)

1,0
= (Alf f)LZ((Ol]r) iaR <<UT1 + ; (E) >fvf>

1
1 11
[ @ (ZUr @ P+ == 17O ar
= iaR | ° . . (106)
U'(r)
\ f a’r

0

The second integral within the brackets can be estimated by

S~—

1 U’ L 1
fr azfj;) fr)f'(r)dr| < ||f||Lz((0]1];r) fr (2) f' (r) dr
0 0

1 P Iror ?
= E ”f”LZ((O,l];r) fT‘ " 272

0

1
o FOP
<10l | [ e
0

1 1 1 1
S - ||U"”00”f”L2((0 1] r)(Tlf f)Lz((O 1] T‘) S E |U"”oo\/T—0”xni2((0]1];r).
Q,

The first term W|th|n the brackets in (106) is real and can be estimated from above using the
inequality U(r) < Upax, v € [0, 1]:
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1

[rve) (e e+

0

5 IPOR) ar
r

a
1

< U [ (51O P+
0

= Umax”x”iZ((gll];r);

the estimate from below is analogous. Taking real and imaginary parts in (106) yields the

claimed bounds.

Theorem(6.2.39)[31]: Suppose n = 0. Then the set of eigenvalues A = iaRc € a,(L) of

the Hagen-Poiseuille problem (45), (49), (50), (51) satisfies the inclusion

gp(£) € {1 € C:R(A) = min{ly — aRbaollU" oo, 7a} , @R (Umin = baollU"lle) < I(2)

< aR(Umax + ba,OHU"”w)}

where Iy, by o, Unin and Uy, are defined as in Lemmas (6.2.37) and (6. 2.38) and 7, is

defined in Lemma(6.2.21). The inclusion continues to hold with b, , replaced by its upper

bound b, , and with

1

CZZT'Z

|f'(7”)|2) dr = Umax(T1f' f)iz0117)

min{l, — aRbgollU" || Te },

replaced by its lower bound
min {I; — aRbg ollU" |loo, For} = o — @RBg lIU" || oo -
Proof. We have o,(£) = 0,(L,) U 0p(L,) where the linear operator pencil £; is given by
Ly(A) =L, +A;—-AT, ,A € C, (see (85),(86)) and L, is the linear operator L, = R, + iaRU
with R; defined in Lemma (6.2.21).
For A € op(L£;) we use Lemmas (6.2.37) and (6.2.38) which yield that

R(A) = Iy — aRbyollU”" |l
and that J(A) satisfies the claimed estimate. For A € op(L,), we use Lemma (6.2.21) to
conclude that R(1) = r,, while the bounds aRU,,;, < I(A) < aRU,,,, are immediate
from (84). Hence both op(£,) and op(L,) satisfy the claimed inclusion. For the last claim
we note that j, ; < j;, for the smallest zeros of the Bessel functions j, and J;, respectively,
and hence [, < 7, by (134) and (63).

It is important to emphasize that the spectral bounds obtained in the preceding part,
based on numerical range estimates, are rather coarse. However, it should also be stressed
that numerical approximations of eigenvalues for non-selfadjoint spectral problems may not
be reliable. A promising way to address this problem is to combine analytical estimates with
validated numerics. This was done successfully in [26] for plane Poiseuille flow where a
linearly unstable eigenvalue was proved to exist at the Reynolds number 5772.221818, thus
providing the first guaranteed upper bound for the critical Reynolds number.

Besides numerical ranges, which we have discussed here, other approaches are possible,
e.g. methods based on attempting to bound the resolvent of an appropriate operator. With
the latter approach, for the particular case of a parabolic flow profile U(r) = 1 — 12, Asén
and Kreiss [30] showed that all eigenvalues must satisfy (1) > 0 if either 16|aR| <
max{1,n%} or |a|? < R.
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Figs. 1 and 2 below compare the neutral (linear) stability regions for parabolic flow
profiles to those of Asén and Kreiss for the case n = 0 and for n = 1 since the latter is
believed to be the least stable case. Here we have used Theorems (6.2.39) and (6.2.36),
respectively, with the lower bounds established in this section. It turns out that the stability
regions are quite different from theirs.

In the case n = O, the stability region contains the part of the plane not yet covered by
Asén and Kreiss, thus rendering all pairs (a,R) linearly stable. In the case n = 1, the
stability region improves that of Asén and Kreiss for all a 2 5.25; the region in the right
upper corner in Fig. 2 remains uncovered by either set of results.

However, Fig. 2 suggests that the results yield a critical Reynolds number R,, ., for
n # 0 such that all pairs (@, R) with R < R, ;¢ are linearly stable, while the estimates of

Asén and

Neutral stability region estimates for n=0
40 T T

40/ -

(o]
o
T
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O - ] ! 1
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Fig. 1. n = 0O: Area below the blue curve is stable by Theorem (6.2.39). Area to the left of
the red curve is stable by [30]. Thus all pairs (o, R) are linearly stable.

Neutral stability region estimates for n=1
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Fig. 2. n = 1: Area below the blue curve is stable by Theorem (6.2.36). Area to the left of
the red curve is stable by [30]. The region in the top right-hand corner is not guaranteed
stable by either set of estimates.
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Kreiss require that R = 0 when a — oo. In fact, the estimates can be used to show that for
n # 0,

~ 2 _ 2 2
R lim . Gan __ _ 1 5n?2 +1—,/(3n2 +1)2 + 16 -
’ MU Nowtbern 10" le 1++v2
This limit is increasing in n which supports that n = 1 is the least (linearly) stable case; in
particular, for n = 1 and parabolic U we obtain, in agreement with Fig. 2,
p o 16— 42
n,crit = 2 1 + \/i
Note that all the estimates apply not only to pipe Poiseuille flow, but to any other flow
profile U that is twice differentiable with U'(r) — 0 for r — 0 and bounded U", e.g.
velocity profiles with inflection points.

~ 0.0711, n # 0.
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List of symbols

symbol Page
WP : Sobolev space 1
L? : Hilbert space 1
dist : distant 1
Sup : Supremum 1
L™ : essential Lebesque space 6
min : minimum 9
S.E.1.D : strong energy image density 10
L' : Lebesque integral on the real line 11
H?! : Sobolev space 12
LP : Lebesque space 17
Loc : locally 17
det : determinant 13
max : maximum 21
Rad : radius 29
Diam : diameter 38
L9 : Lebesque dual space 41
a. e : almost everywhere 69
Ker : kernel 69
Im : imaginary 69
dim : dimension 69
codim : codimension 69
O : direct difference 69
sign : signature 71
arg :argument 71
sub : the category of subanalytic subset 101
® : tensor product 103
sem : semialgebraic 106
=, : equivalence relation modulo 106
int : interior 108
supp : support 125
inf :infimum 176
ess : essential 193
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Re : real 194

@ : direct sum 207
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