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  Chapter 6 
A class of Non-Selfadjoint Quadratic Matrix Operator Pencils and Spectral 

Bounds 
In this chapter the main results concern the structure and location of the spectrum and theorems 
about the minimality, completeness and basis properties of the eigenvectors and associated 
vectors corresponding to certain parts of the spectrum. Both Riesz basisness and Bari basisness 
results are obtained. The results are applied to a system of singular differential equations arising 
in the study of Hagen-Poiseuille flow with non-axisymmetric disturbances.  
Sec(6.1): Quadratic Matrix Operator Pencils Arising In Elasticity Theory  
     We are going to study a class of damped non-selfadjoint quadratic operator pencils the 
coefficients of which are unbounded block operator matrices. The aim is to investigate the 
spectrum of such pencils, to study the properties of the eigenvectors and associated vectors 
corresponding to certain parts of the spectrum, and to apply the results to the problem of 
vibrations of a rotating beam with inner and outer damping in a possibly inhomogeneous 
outer medium. A fundamental tool here is factorization theorems by Markus,  Matsaev and 
Russu ([45], [44], [32], [137]). 
Let ℋ be a separable (infinite dimensional) Hilbert space. We consider a quadratic operator 
pencil ℒ acting in the product space ℋ × ℋ and given by the matrix representation 

ℒ( ߣ) = ଶߣ   ቀܫ 0
0 ቁܫ + ߣ  ൬ ܭ + ܣ ߙଵ 0

0 + ܣ ߙ  ଶܭ 
൰   

+  ൬ ܣ ܣߚ
ܣߚ− ܣ ൰   , ∋ ߣ  ℂ.                                                                   (1) 

Here A is an unbounded self-adjoint operator in ℋ with domain ࣞ(A)  having compact 
resolvent, A ≥ δI with some δ >  ଶ are boundedܭ,ଵܭ and β are positive constants, and ߙ,0
operators, 0 ≤ ଶܭ,ଵܭ ≤ ∞ with some ܫߛ > ≤ ߛ 0. The domain of ℒ(λ) is independent of λ 
and given by ࣞ(ℒ( λ))  =  ࣞ(A) × ࣞ(A).  
      An example for such a quadratic operator pencil arises in elasticity theory: The system 
of differential equations 

ܫܧ
߲ସݑ
ସݖ߲

 + ܫܧߢ߱ 
߲ସݒ
ସݖ߲

 + ܫܧߢ 
߲ହݑ
 ݐସ߲ݖ߲

ଵߝ +
ݑ߲
 ݐ߲

 +  ݉
߲ଶݑ
ଶݐ߲

 =  0,         (2) 

ܫܧ
߲ସݒ
ସݖ߲

ܫܧߢ߱−
߲ସݑ
ସݖ߲

 + ܫܧߢ 
߲ହݒ
 ݐସ߲ݖ߲

ଶߝ +
ݒ߲
 ݐ߲

 +  ݉
߲ଶݒ
ଶݐ߲

 =  0,          (3) 
on the finite interval [0, l] describes the vibrations of a rotating beam of length l and mass 
density m per unit length.  
Here ܫܧ > 0 is the (constant) bending stiffness of the beam sections, ω > 0 is the angular 
frequency of the rotation, κ > 0 is the coefficient of inner damping (Voigt material), and 
εଵ, εଶ are nonnegative continuous functions on [0, l] describing the outer viscous damping. 
In the general case when the outer medium is inhomogeneous, one has εଵ ≢  εଶ (see e.g. 
[49]).                                 
      The boundary conditions to be imposed e.g. in the case of hinged ends are 

,0)ݑ (ݐ = ,݈)ݑ  (ݐ =  
߲ଶݑ
ଶݖ߲

(0, (ݐ =  
߲ଶݑ
ଶݖ߲

  (݈, (ݐ =  0,  
(4) 

,0)ݒ (ݐ = ,݈)ݒ  (ݐ =  
߲ଶݒ
ଶݖ߲

(0, (ݐ =  
߲ଶݒ
ଶݖ߲

  (݈, (ݐ =  0, 
      For simplicity, we assume that m ≡  1. Then separation of variables 

൫ݖ)ݑ, ,(ݐ ,ݖ)ݒ ൯௧(ݐ  =  ݁ఒ௧ ൫ݕଵ(ݖ),ݕଶ(ݖ)൯௧, ∋ ݖ  [0, ݈], ≤ ݐ  0,               (5) 
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leads to a spectral problem of the form 
ℒ(λ)y =  0, λ ∈  ℂ, 

for  ݕ = ,ଶ(0ܮ ௧ in the Hilbert space(ଶݕ,ଵݕ)  ݈)  × ,ଶ(0ܮ  ݈) where the operators A and ܭ in 
,ଶ(0ܮ ݈) are given by 

ݕܣ ∶= (ܣ)ࣞ,  (ସ)ݕ ܫܧ  ∶= ∋ ݕ}  ,ଶ(0ܮ  (0)ݕ :(݈ = (݈)ݕ  = (݈) "y = (0) "ݕ  =  0}, (6) 
ݕ௜ܭ  ∶= (௜ܭ)ࣞ,ݕ௜ߝ  ∶= ,ଶ(0ܮ ݈), ݅ =  1, 2,                                                    (7) 

and the constants α and β are given by α ∶=  κ, β ∶=  ωκ.  
      We first determine the structure of the spectrum of the quadratic operator pencil (1). We 
show that its essential spectrum consists of the points − ଵା୧ஒ

஑
,− ଵି୧ஒ

஑
, and that outside the 

essential spectrum ℒ has 3 branches of eigenvalues accumulating at the points of the 
essential spectrum and at ∞. Secondly, we show a criterion for the stability of the pencil ℒ, 
that is, a criterion guaranteeing that the spectrum of ℒ lies in the open left half plane.   
      We consider the case ܭଵ  =  ଶ where ℒ in fact decomposes into two quadratic pencilsܭ 
in ℋ. In this case the eigenvalue branch accumulating at ∞ splits again into two branches. 
We derive theorems about the minimality, completeness and basis properties of the eigen-
vectors and associated vectors corresponding to the 4 branches of eigenvalues of ℒ.     
      We consider the case ܭଵ ≠  ଶ. We show a theorem about the minimality, completenessܭ
and basis properties of the eigenvectors and associated vectors corresponding to the branch 
of eigenvalues of ℒ accumulating at ∞. Finally, we apply all results to the problem (2)–(4) 
of vibrations of a rotating beam.   
      We define the resolvent set ρ(ℒ) of the quadratic operator pencil ℒ as 
(ℒ)ߩ ∶= {λ ∈ ℂ ∶  ℒ(λ) ∶  ࣞ(A) × ࣞ(A) → ℋ × ℋ  is bijective,   ℒ(λ)ିଵ  is bounded} 

and its spectrum σ(ℒ) as σ(ℒ) ∶= ℂ\ߩ(ℒ). For  λ ∈ ℂ, the operator ℒ(λ) is called Fredholm 
if ℒ(λ) is closed, its kernel is finite dimensional and its range is finite codimensional (see 
e.g. [48]). A point λ଴ ∈ ℂ is said to be an eigenvalue of ℒ if ℒ(λ) is not injective. An eigen-
value λ଴  ∈  ℂ of ℒ  is called normal (or of finite type) if  λ଴ is isolated and ℒ( λ଴)  is 
Fredholm. The essential spectrum of ℒ is defined as                 

         σୣୱୱ(ℒ) ∶= {λ ∈  ℂ ∶  ℒ(λ) is not Fredholm}.    
     In order to determine the essential spectrum of the operator pencil ℒ, we consider the 
transformed pencil ℒୢ given by ℒୢ(λ) ∶=  Sିଵℒ(λ) S on ࣞ(A) × ࣞ(A) for λ ∈ ℂ where the 
operator matrix S in ℋ × ℋ is of the form 

ܵ ∶=  ቀ ܫ ܫ݅
ܫ݅ ܫ ቁ. 

Then, for λ ∈ ℂ, 

ℒௗ(ߣ) ∶= ଶߣ ቀ0 ܫ  
0 ܫ ቁ  + ߣ  ቌ

ܣߙ + ଵ
ଶ

ଵܭ) + (ଶܭ ௜
ଶ

ଵܭ) (ଶܭ−

− ௜
ଶ

ଵܭ) (ଶܭ− ܣߙ + ଵ
ଶ

ଵܭ) + (ଶܭ
ቍ +  ൬

(1 + ܣ(ߚ݅ 0
0 (1 −     ,൰ܣ(ߚ݅

and ℒୢ(λ) is closed (Fredholm) if and only if ℒ(λ) is closed (Fredholm). 
Theorem(6.1.1)[51]: The essential spectrum of ℒ consists of the two points  

−
1 + ߚ݅ 
 ߙ

 ,−  
1 – ߚ݅ 
 ߙ

 . 
The other points of the spectrum of ℒ are normal eigenvalues which accumulate at most at 
the points − ଵ ା ௜ఉ

ఈ 
 ,−  ଵ – ௜ఉ

ఈ 
,and at ∞.  

Proof. Let λ ∈  ℂ. If we write ℒୢ(λ) in the form  
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൮
ߙߣ) + (1 + ܣ((ߚ݅ + ܫଶߣ + ߣ

1
2

ଵܭ) + (ଶܭ ߣ
݅
2

ଵܭ) − (ଶܭ

ߣ−
݅
2

ଵܭ) (ଶܭ− ߙߣ) + (1 − ܣ((ߚ݅ + ܫଶߣ + ߣ
1
2

ଵܭ) + (ଶܭ
൲, 

it is not difficult to see that ℒୢ(λ) (with domain ࣞ( A) × ࣞ( A)) is closed if and only if 
λ ≠ − ଵ ± ୧ஒ

஑ 
 . Now let ߣ ≠ − ଵ ± ௜ఉ

ఈ 
  . Since 

ℒௗ(ߣ) ቀܣ
ିଵ 0
0 ଵିܣ

ቁ = ଶߣ ቀܣ
ିଵ 0
0 ଵିܣ

ቁ+ ൮ ߣ
ܫߙ +

1
2

ଵܭ) + ଵିܣ(ଶܭ
݅
2

ଵܭ) ଵିܣ(ଶܭ−

−
݅
2

ଵܭ) − ଵିܣ(ଶܭ ܫߙ +
1
2

ଵܭ) + ଵିܣ(ଶܭ
൲ 

+ ൬
(1 + ܫ(ߚ݅ 0

0 (1 − ൰ܫ(ߚ݅ = ൬
(1 + ߚ݅ + ܫ(ߙߣ 0

0 (1 − ߚ݅ + +൰ܫ(ߙߣ ,(ߣ)ܭ (8) 

where K(λ) is a compact operator in ℋ ×  ℋ, the operator on the left hand side of (8) is 
Fredholm (see e.g. [127]). Hence the same is true for ℒୢ(λ). On the other hand, since ℋ is 
infinite dimensional, it follows from (8) that ℒௗ ቀ−

ଵ ± ௜ఉ
ఈ 

ቁ. is not Fredholm. Moreover, the 
operator in (8) is bijective for λ =  0. Now the theorem follows e.g. from a theorem about 
analytic Fredholm operator valued functions (see [127]).  
Theorem(6.1.2)[51]: Assume that there exists a μ > 0 with ܭଵ ≥ μܭ,ܫଶ ≥ μܫ, and such that  

μ ߙ ≥  and ߜ 
ଶߚ

4μߙ
  <  1, or   

μ
ߙ

 <  and ߜ 
ߜଶߚ

ߜߙ) + μ)ଶ   <  1              (9) 

Then the spectrum of ℒ lies in the open left half plane.  
Proof. If ߣ଴ ∈ (଴ߣ) ܴ݁ ௘௦௦(ℒ), then obviouslyߪ < 0 by the above theorem. Otherwise, if 
଴ߣ ∈  .଴ is an eigenvalue of ℒߣ ௘௦௦(ℒ), thenߪ\(ℒ)ߪ
Let  ܻ = ,ݕ) ௧(ݖ ∈ (ܣ)ࣞ × ,(ܣ)ࣞ ଶ‖ݕ‖ + ଶ‖ݖ‖ = 1, be a corresponding eigenvector. Then 
(ℒ(ߣ଴)ܻ,ܻ)  =  0 implies that   

 Re (ߣ଴)ଶ − Im (ߣ଴)ଶ + Re (ߣ଴) ቀߙ൫(ݕ,ݕܣ) + ,ݖܣ) ൯(ݖ + ( ݕ,ݕଵܭ) ,ݖଶܭ) +  ቁ(ݖ

,ݕܣ)+ (ݕ + ,ݖܣ) (ݖ = 0 ,                                                                         (10) 

2Re (ߣ଴) Im (ߣ଴) +  Im (ߣ଴) ቀߙ൫(ݕ,ݕܣ) + ,ݖܣ)  ൯(ݖ + ( ݕ,ݕଵܭ) + ,ݖଶܭ)        ቁ(ݖ
(ݕ,ݖܣ) Imߚ2 +  =  0,                                                                               (11) 

Calculating Im( ߣ଴) from (11), using the estimate 
                        |2 Im( ݕ, ݖܣ)| ≤ |(ݕ, ݖܣ) |2  =  2ห ൫Aଵ ଶ⁄ ଵܣ, ݖ   ଶ⁄  ൯หݕ 

                          ≤  ฮܣଵ ଶ⁄ ฮଶݖ  + ฮܣଵ ଶ⁄ ฮଶݕ  = (ݕ,ݕܣ)  ,ݖܣ) +   (ݖ
 and substituting it into (10), we arrive at  

     Re(ߣ଴)ଶ −  
(ݕ,ݕܣ)ଶ൫ߚ + ,ݖܣ)  ൯ଶ(ݖ

ቀ2Re(ߣ଴) + (ݕ,ݕܣ)൫ߙ + ,ݖܣ) ൯(ݖ + (ݕ,ݕଵܭ) + ቁ(ݕ,ݕଶܭ)
ଶ   

+ Re(ߣ଴) ቀߙ൫(ݕ,ݕܣ) + ,ݖܣ) ൯(ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ)  ቁ(ݖ (ݕ,ݕܣ) + + ,ݖܣ)  (ݖ ≤ 0.   (12) 
The left hand side is monotonically increasing for Re(ߣ଴) ∈ [0,∞). But the condition (9) 
and ܣ ≥ ߜ  > 0 imply that  

−
(ݕ,ݕܣ)ଶ൫ߚ + ,ݖܣ) ൯ଶ(ݖ

ቀߙ൫(ݕ,ݕܣ) + ,ݖܣ) ൯(ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ) ቁ(ݖ
ଶ  + (ݕ,ݕܣ) + ,ݖܣ) (ݖ > 0, 

a contradiction to (12). Hence ܴ݁(ߣ଴)  <  0.  
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In case ܭଵ = ଶܭ = the operator pencil ℒௗ in ℋ ܭ × ℋ is the orthogonal sum of two 
quadratic operator pencils ℒ± in ℋ, 

                                  ℒௗ(ߣ) =  ൬ℒା
(λ) 0 
0 ℒି(ߣ) ൰   , ∋ ߣ  ℂ, 

where ℒ± (ߣ) ∶= ܫଶߣ  + ܣߙ)ߣ + (ܭ + (1 ± ,ܣ(ߚ݅  ∋ ߣ  ℂ.  
      In the following we are going to show minimality, completeness and basis results for the 
eigenvectors and associated vectors corresponding to various branches of eigenvalues of ℒ.  
      With regard to the eigenvalues which will show to accumulate at ∞, we introduce the 
auxiliary operator pencils ℒ±

ଵ  
 given by 

                       ℒ±
ଵ (ߣ) ≔   

ଶߣ

ߙ
ଵିܣ  ଶ⁄  ℒ± ൬

1
ߣ
൰ ଵିܣ  ଶ⁄  

                     = ଶߣ 
 1 ± ߚ݅
 ߙ

ܫ  + ߣ ൬ܫ + ൬
1
ߙ
൰ିܣଵ ଶ⁄ ଵିܣܭ ଶ⁄ ൰ + ൬

1
ߙ
൰ ߣ   ,ଵିܣ  ∈ ℂ. 

Lemma(6.1.3)[51]: The spectrum and the essential spectrum of ℒ± 
ଵ  are given by:  

      (i) ߪ൫ ℒ±
ଵ  ൯ = ൜

1
ߣ 
∶ ∋ ߣ  ൠ(±ℒ)ߪ  ∪ {0};   

      (ii) ߪ௘௦௦൫ℒ±
ଵ൯ = ൜0,   

ߙ−
1 ± ߚ݅

ൠ . 

Proof. The assertions are immediate from Theorem (6.1.1) and from the definition of  ℒଵ± . 
      The numerical range (or root domain) of a quadratic operator polynomial ࣮ in ℋ is the 
set of all roots of all possible polynomials (࣮( · )ݕ, ݕ), ∋ ݕ  ℋ, ≠ ݕ  0 (see [137]). It 
consists of at most two components. If the numerical range of ࣮ consists of two disjoint 
components (called the root zones of ࣮), then, clearly, for any ݕ ∈  ℋ, ≠ ݕ  0, the poly-
nomial (࣮( · )ݕ,ݕ) has exactly one root in each component.  
Lemma(6.1.4)[51]: The numerical range of  ℒାଵ  consists of two components ∆ାଵ ,∆෨ାଵ   which 
are bounded and separated by the strip  

൜ߣ ∈  ℂ ∶  0 < Im (ߣ) <  
ߚߙ

1 + ଶߚ
ൠ .                                        (13) 

say ∆ାଵ  below and ∆෨ାଵ  above this strip. There exists a simple contour ߁ା 
ଵ surrounding 

∆ା
ଵ
∪ {0} and separating ∆ା

ଵ
∪ {0}  from ∆෨ାଵ , and such that          

inf
ఒ∈௰శభ,‖௬‖ୀଵ

  |( ℒାଵ |(ݕ,ݕ(ߣ)  >  0. 

Proof. The first assertion follows from the fact that  ℒାଵ  is a pencil of bounded operators. 
For the proof of the second statement, fix an element ݕ ∈  ℋ, ‖ݕ‖  =  1, consider the 
function  

,ߣ)߮ (ߟ ଶߣ =∶  
1 + ߚ݅
 ߙ

+ ߣ ቆ1 +  ߟ
1
ߙ
൫ ିܣܭଵ ଶ⁄ ଵିܣ,ݕ ଶ⁄ ൯ቇ ݕ + ߟ 

1
ߙ
൫ିܣଵ ଶ⁄ ଵିܣ,ݕ ଶ⁄   ൯ݕ

for ߣ ∈ ℂ,ߟ ∈ [0,1], and assume that there exists a point ߣ଴ in the strip (13) and an ߟ ∈ [0,1] 
such that ߮(ߣ଴, (ߟ = 0. The point ߣ଴ has a representation ߣ଴ = ݐ + ݅݀ with ݐ ∈ ℝ and 
0 < ݀ <  ఈఉ

ଵାఉమ
 . Hence 

ଶݐ) + ݀ݐ2݅ − ݀ଶ)
1 + ߚ݅
ߙ

 + ݐ) + ݅݀) ቆ1 +  ߟ
1
ߙ
൫ ିܣܭଵ ଶ⁄ ଵିܣ,ݕ ଶ⁄ ൯ቇ ݕ +  ߟ

1
ߙ
ฮିܣଵ ଶ⁄ ฮݕ

ଶ
 =  0. 

Taking the imaginary part and multiplying by  ఈ
ఉ

  yields  

ଶݐ +
dݐ 2
ߚ

 − ݀ଶ + ݀ 
ߙ
ߚ

 ቆ1 + ߟ
1
ߙ
൫ ିܣܭଵ ଶ⁄ ଵିܣ,ݕ ଶ⁄ ൯ቇ ݕ   =  0. 
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This is equivalent to  

൬ݐ +
݀
ߚ
൰
ଶ

=
݀
ଶߚ

 ൭݀(1 + (ଶߚ − ቆ1 ߚߙ +  ߟ
1
ߙ
൫ ିܣܭଵ ଶ⁄ ଵିܣ,ݕ ଶ⁄  , ൯ቇ൱ ݕ

which implies, since ܭ ≥ 0, that 

݀ ≥  
ߚߙ

1 + ଶߚ
   , 

a contradiction. Thus ߮(ߣ, (ߟ ≠ ߟ ,0 ∈ [0,1], and in particular(ℒାଵ (ݕ,ݕ(ߣ) = ,ߣ)߮ ଶ‖ݕ‖ 1) 
≠ 0 for all ߣ in the strip (13).  
      The zeros ߣଵ (ߟ), (ߟ)ଶߣ ∘ ݂ ߮( · , (ߟ  =  0 depend continuously on the parameter ߟ, and 
ଵ (0)ߣ = 0, ଶ(0)ߣ = − ఈ

ଵା௜ ఉ
 are separated by the strip (13). Then, according to what was 

proved above, so are ߣଵ (ߟ), ߟ for all (ߟ)ଶߣ ∈ [0,1]. In particular, the zeros of ( ℒାଵ ,ݕ(∙)
(ݕ = , ∙ )ଶ߮‖ݕ‖ 1) are separated by the strip (13). This proves the second statement. The 
remaining assertions are immediate.   
      The subsequent corollary about the existence of a spectral root of  ℒାଵ  (or, equivalently, 
of a canonical factorization of ିߣଵ(ℒାଵ  follows from the above lemma by some general ((ߣ )
results of Markus and Matsaev ([45], [44],[137]).  
Corollary(6.1.5)[51]: The operator pencil  ℒା 

ଵ  has a spectral root  ܼାଵ  such that   
ାଵܼ )ߪ  ) = ℒାଵ )ߪ  ) ∩ ∆ାଵ . 

     In the following let ࣭௣ ≤ ≥ ݌  ∞, denote the von Neumann-Schatten classes of compact 
operators (see [154], [137]). Further, for an operator ܶ ∈ ࣭ஶ we denote by ݊(߬,ܶ) the sum 
of the algebraic multiplicities of the eigenvalues of ܶin {ߣ ∈ ℂ ∶ |ߣ| > ߬ିଵ}. For a quadratic 
operator pencil ࣮ the nonzero spectrum of which in some bounded domain ܩ containing 0 
consists of a sequence of eigenvalues of finite algebraic multiplicity converging to 0, we 
denote by ݊(߬,ܩ,࣮) the sum of the algebraic multiplicities of the eigenvalues of ࣮ in 
∋ ߣ} ℂ ∶ |ߣ|  > ߬ିଵ} ∩   , Using a theorem of Markus, Matsaev and Russu[32] .(see [137]) ܩ
we obtain:  
Theorem(6.1.6)[51]: (i) The set of eigenvectors and associated vectors Corresponding to 
the eigenvalues of  ℒାଵ  in  ∆ାଵ   is minimal in ℋ.  
      (ii) If ିܣଵ ∈  ࣭௣ for some ݌ < ∞, then the set of eigenvectors and associated vectors 
corresponding to the eigenvalues of  ℒାଵ  in  ∆ାଵ  is complete in ℋ. If, in addition,  
݊ ቀ߬, ଵ

ఈ
߬  ݏܽ  ଵቁ~ ܿଵ߬௖మିܣ  → ∞ with some 0 <  ܿଵ, ܿଶ <  ∞, then ݊(߬,ܩାଵ ,ℒାଵ ) ∼ ܿଵ߬௖మ, 

where  ܩାଵ  is the interior of the curve  ߁ାଵ .  
     (iii) If  ݊(߬,ିܣଵ) = ߛ for some (ఊ߬)ߧ ∈ (0, ଵ

ଶ
], then the set of eigenvectors and associated 

vectors corresponding to the eigenvalues of  ℒାଵ  in ∆ାଵ   is a Riesz basis with parentheses in 
ℋ. If, in addition, ݊ ቀ߬, ଵ

ఈ
ଵቁିܣ  = ܿଵ߬௖మ + ܱ(߬ఉ) for some 0 < ܿଵ, ܿଶ < ∞, 0 ≤ ߚ < ߙ ≤

ߚ + ,߬) ݊ then also ,ߛ , ାଵܩ   ℒାଵ ) = ܿଵ߬௖మ + ܱ(߬ఉ).  
Proof. The theorem follows from a general result of Markus, Matsaev and Russu (see [32]) 
which is contained in [137]. To apply the statements therein, we choose ܪ = ଵ

ఈ
ܶ,ଵିܣ  = 0 

for (ii) and ܪ = ଵ
ఈ

଴ܦ,ଵିܣ  = 0, ଵܦ = ቀଵ
ఈ
ቁ ଵିܣ  ଶ⁄ ܣ ܭ

షభ
మశം  where ߛ ቀ0, ଵ

ଶ
ቃ for (iii). 

Note that: Analogous assertions hold for the pencil ℒିଵ . 
     With regard to the branches of eigenvalues possibly accumulating at − ଵ±௜ఉ

ఈ
 , we first 

consider the pencils ℒ± themselves. 
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Lemma(6.1.7)[51]: the numerical rang of ℒା consists of two components ∆ା,∆෨ା which are 
separated by the strip  
∋ ߣ}                                                 ℂ ∶ ଶߜ−  <  Im(ߣ)  <   {ଶߜ 
Where  

ଶߜ ∶= ଶߙ ))ߚ + ‖ܭ‖ߙ2)  + ଵିߜ(4  + ଶ)ଶିߜଶ‖ܭ‖ + ି(ଶିߜଶߚ16
ଵ
ସ. 

The component located in the half plane { ߣ ∈  ℂ ∶  Im ( ߣ)  ≤  ,ଶ}, say ∆ା, is boundedߜ −
and there exists a simple closed curve ߁ା surrounding ∆ା and separating it from ∆෨ା and such 
that  

inf
ఒ∈௰శ

௬∈ࣞ(஺),‖௬‖ୀଵ

|(ℒା(ߣ)ݕ,ݕ)| > 0

 
    . 

Proof.   Let ݕ ∈ ,(ܣ)ࣞ ‖ݕ‖ = 1. Then the solutions ݂݋ (ݕ)±ߣ ((ℒା(ߣ)ݕ,ݕ)) = 0 are given 
by 

(ݕ)±ߣ  =  −  
(ݕ,ݕܣ)ߙ + ,ݕܭ) (ݕ

2
±  ඨ

൫(ݕ,ݕܣ)ߙ + ൯ଶ(ݕ,ݕܭ)

4
− (1 + ,ݕܣ)(ߚ݅  (14)         .(ݕ

Hence        

      ቚIm ቀ(ݕ)±ߣቁቚ =  
1
2
อIm ൬൫(ݕ,ݕܣ)ߙ + ൯ଶ(ݕ,ݕܭ) − 4(1 + ൰(ݕ,ݕܣ)(ߚ݅

ଵ
ଶ
อ 

                       =  
1

2√2
 ൭4(ݕ,ݕܣ)– ൫(ݕ,ݕܣ)ߙ + ൯ଶ(ݕ,ݕܭ)   

+ ൬ቀ൫(ݕ,ݕܣ)ߙ ൯ଶ(ݕ,ݕܭ) + −  4(Aݕ,ݕ)ቁ
ଶ

 + ଶ൰(ݕ,ݕܣ)ଶߚ16 
ଵ
ଶቇ

ଵ
ଶ

    

                          ≥ ߚ  ቌ൭
൫(ݕ,ݕܣ)ߙ + ൯ଶ(ݕ,ݕܭ) − (ݕ,ݕܣ)4

ଶ(ݕ,ݕܣ) ൱
ଶ

+  
ଶߚ16

ଶቍ(ݕ,ݕܣ)

ିଵଶ

   ≥  .ଶߜ 

This proves the first assertion. The second statement follows from the fact that the root 
ߣ} lying in the half plane (ݕ)ାߣ ∈ ℂ ∶  Im (ߣ)  ≤ − ଶ} tends toߜ− ଵା௜ ఉ

ఈ
 when (ݕ,ݕܣ) tends 

to infinity. The remaining assertions are then immediate.  
      In order to apply the results of Markus, Matsaev and Russu used before we need to 
consider pencils of bounded operators. Therefore we introduce 

                   ℒଶ±(ߣ) ∶=  ൬
1
ߙ
൰ିܣଵ ଶ⁄ ℒ± ൬ߣ −

1 ± ߚ ݅
ߙ

൰ିܣ
ଵ
ଶ 

                  =  
ଶߣ

 ߙ
ଵିܣ + ߣ ቆܫ −

2(1 ± (ߚ ݅
ଶߙ

ଵିܣ  + ൬
1
ߙ
൰ ଵିܣ  ଶ⁄ ଵିܣܭ ଶ⁄ ቇ +  ±ܤ

where  

±ܤ  =  
(1 ± ଶ(ߚ݅ 

ଷߙ
ଵିܣ  −  

1 ± ߚ݅
ଶߙ

ଵିܣ  ଶ⁄ ଵିܣ ܭ ଶ⁄ . 
Corollary(6.1.8)[51]: The numerical range of ℒାଶ  consists of two components ∆ାଶ ,∆෨ାଶ   which 
are bounded and separated by the strip 

൜ߣ ∈  ℂ ∶  
ߚ
ߙ

 – ଶߜ   <  Im (ߣ)  <  
ߚ
ߙ

 ,ଶ ൠߜ + 

say ∆ାଶ  below and ∆෨ାଶ  above this strip. There exists a simple closed curve ߁ାଶ surrounding 
∆ାଶ ∪  {0} and separating it from ∆෨ାଶ , and such that                            
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inf
ఒ∈௰శమ ,‖௬‖ୀଵ  

|(ℒାଶ ,ݕ(ߣ) |(ݕ > 0
 

  

Theorem(6.1.9)[51]: (i) The set of eigenvectors and associated vectors corresponding to 
the eigenvalues of ℒାଶ  in ∆ାଶ  is minimal in ℋ .  
      (ii) If ିܣଵ ∈ ࣭௣ for some ݌ < ∞, then the set of eigenvectors and associated vectors 
corresponding to the eigenvalues of ℒାଶ  in ∆ାଶ  is complete in ℋ. If, in addition, ݊( ߬ ,ܤା) ∼
ܿଵ ߬௖మ ܽݏ ߬ → ∞ with some 0 < ܿଵ , ܿଶ < ∞, then ݊(߬,ܩାଶ,ℒାଶ ) ∼ ܿଵ ߬௖మ , where ܩାଶ is the 
interior of the curve ߁ାଶ.  
Proof. As in the proof of Theorem (6.1.6), we use [137]. To apply the statements therein, 
we now choose ܪ = ܶ,ାܤ = 0 for (ii), and we note that if ିܣଵ ∈ ࣭௣ for some ݌ < ∞, then 
also ܤା ∈ ࣭௣ (see e.g. [154]).  
Note that: Analogous assertions hold for the pencil ℒିଶ . 
      In order to formulate statements for the original pencil ℒ, we first note that  

(ℒ)ߪ  = (ℒௗ)ߪ   = (ℒା)ߪ   ∪  .(ℒି)ߪ 
We denote by ߣ௞ଵ   and ߣ௞ଶ ,݇ = 1, 2, . . ., the eigenvalues of the pencil ℒା located in the upper 
and lower half plane, respectively (counted according to their algebraic multiplicities). It is 
not difficult to see that then the complex conjugates ߣ௞ଵ   and ߣ௞ଶ , ݇ = 1, 2, . . ., are the eigen-
values of the pencil ℒି  located in the lower and upper half plane, respectively. We denote 
the corresponding eigenvectors and associated vectors of ℒା by ݕ௞ଵ and ݕ௞ଶ, and those of 
ℒି by ݕ௞ଵ and ݕ௞ଶ.  
      Then the eigenvalues of ℒௗ (and hence those of ℒ) can be separated into the 4 branches 
௞ଶߣ},{௞ଵߣ} and{௞ଶߣ},{௞ଵߣ} , which lie symmetrically to the real axis. The corresponding eigen-
vectors and associated vectors of ℒௗ are of the form  

, ௞ଵݕ) 0)௧, ,௞ଶݕ) 0)௧, ቀ0,ݕ௞ଵቁ
௧

, ቀ0,ݕ௞ଶቁ
௧
. 

The respective eigenvectors of  ℒ are given by  

, ௞ଵݕ) ,௞ଵ)௧ݕ݅ ,௞ଶݕ) ,௞ଶ)௧ݕ݅ ൫݅ݕ௞
ଵ ௞ݕ,

ଵ൯
௧
, ቀ݅ݕ௞ଶ,ݕ௞ଶቁ

௧
, 

and there are analogous formulas for the associated vectors of ℒ.  
Theorem(6.1.10)[51]:(i) The set of eigenvectors and associated vectors of ℒ corresponding 
to the eigenvalues ߣ௞ଵ  and  ߣ௞ଵ , ݇ = 1,2, . . ., is minimal in the space ℋ஺షభ ×  ℋ஺షభ where 
ℋ஺షభ = (ℋ, ଵିܣ) ଵିܣ, · · )), complete in ℋ஺షభ ×  ℋ஺షభ if ିܣଵ ∈  ࣭௣  for some ݌ < ∞, and 
a Riesz basis with parentheses in ℋ஺షభ ×  ℋ஺షభ if  ݊(߬,ିܣଵ)  = ܱ(߬ఊ) for some ߛ ∈ (0, ଵ

ଶ
]. 

     (ii) The set of eigenvectors and associated vectors of ℒ corresponding to the eigenvalues 
௞ଶߣ  and ߣ௞ଶ ,݇ = 1,2, . . ., is minimal in the space ℋ஺షభ × ℋ஺షభ and complete in ℋ஺షభ × ℋ஺షభ 
if ିܣଵ ∈ ࣭௣   for some ݌ < ∞.   
    In particular, ߣ௞ଵ , ௞ଵߣ ⟶∞, ௞ଶߣ ⟶−  ଵା௜ ఉ

ఈ
 , ௞ଶߣ ⟶− ଵି௜ఉ

ఈ
 for ݇ ⟶ ∞ if ିܣଵ ∈ ࣭௣ for 

some  ݌ < ∞.  
Proof. The assertions in (i) and (ii) follow from Theorems (6.1.6) and (6. 1.9) The statement 
about the accumulation at the points of the essential spectrum follows from Theorem (6.1.1) 
together with the minimality and completeness from (i) and (ii). 
Now we consider the general case of a quadratic block operator matrix pencil (1) with 
possibly different ܭଵ,  ଶ. In this case ℒ cannot be written as the orthogonal sum of twoܭ
pencils in ℋ, and hence there exists no decomposition of the spectrum as it was used in 
above. 
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     In order to guarantee a certain subdivision of the spectrum of ℒ also here and to obtain 
minimality, completeness and basis results for the eigenvectors and associated vectors, we 
have to assume in addition that 

< ߜ   4 ⁄ଶߙ   .                                                                             (15) 
We choose ߩ > 0 such that 

< ߩ  
ߜߙߚ

− ߜଶߙ  4
  .                                                                 (16) 

Lemma(6.1.11)[51]: On the segment  

ଵ߁ ∶= ߣ} ∈ ℂ ∶ Re (ߣ) = −
2
ߙ

 , |Im (ߣ)| ≤  {ߩ
we have the estimate 

 
inf
ఒ∈ ௰భ

௒∈ࣞ(஺)×ࣞ(஺),‖௒‖ୀଵ 

|(ℒ(ߣ)ܻ,ܻ)| > 0

 
 . 

Proof. Let ߣ = −  ଶ
ఈ

 + ݅߬ with ߬ ∈ ℝ,ܻ = ,ݕ) ,ݕ ௧ with(ݖ ݖ ∈ ଶ‖ݕ‖ and (ܣ)ࣞ + ଶ‖ݖ‖ = 1. 
Then 

|(ℒ(ߣ)ܻ,ܻ)| =  ቮ൬−
2
ߙ 

 + ݅߬൰
ଶ

+ ൬−
2
ߙ 

+ ݅߬൰ ൫(ݕ,ݕܣ)ߙ + ,ݖܣ)ߙ (ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ) ൯(ݖ

(ݕ,ݕܣ)+ + ,ݖܣ) (ݖ + ,ݕܣ)ߚ–(ݕ,ݖܣ)ߚ  (ݖ
ቮ 

                      ≥  ฬ 
4
ଶߙ

 –  ߬ଶ – (ݕ,ݕܣ)– (ݖܣ,  –(ݖ
2 
ߙ

 –(ݕ,ݕଵܭ)
2 
ߙ

,ݖଶܭ)  ฬ(ݖ  ≥ − ߜ   
4
ଶߙ

 >  0 

by assumption (15).  
Lemma(6.1.12)[51]: On the rays 

ଶ߁
± ∶= ∋ ߣ}   ℂ ∶  Re (ߣ)  ≥  −  

2 
ߙ

 , Im (ߣ)  =  {ߩ± 
we have the estimate  

inf
ఒ∈௰మ

±

௒∈ࣞ(஺)×ࣞ(஺),‖௒‖ୀଵ 

|(ℒ(ߣ)ܻ, ܻ)| > 0

 
 .  

Proof. Let ߣ = ݐ + ≤ ݐ with ߩ݅ − ଶ 
ఈ

 ,ܻ = ,ݕ) ,ݕ ௧ with(ݖ ݖ ∈ ଶ‖ݕ‖ and (ܣ)ࣞ + ଶ‖ݖ‖ = 1. 
Then 

    ห ℒ൫( ߣ)ܻ ,ܻ൯ห ≥ |Im(ℒ( ߣ)ܻ ,ܻ)| 

             = ห2ߩݐ + , ݕܣ )ߙ൫ߩ (ݕ + , ݖܣ )ߙ (ݖ + (ݕ, ݕ ଵܭ ) + , ݖ ଶܭ ) ൯(ݖ +  ห(ݕ, ݖܣ )Im ߚ2
             = ห 2 ݐ + ൫ (ݕ, ݕܣ )ߙ + , ݖܣ )ߙ (ݖ + (ݕ, ݕ ଵܭ ) + , ݖ ଶܭ ) ൯ห(ݖ  

· ቤߩ +
(ݕ,ݖܣ)Im ߚ2

ݐ2 + ൫ ݕܣ)ߙ, (ݕ + α(ݖܣ, (ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ)  ൯(ݖ
ቤ 

             ≥ ൬−  
4
ߙ

 + ൰ߜߙ ቤ ߩ −
|(ݕ,ݖܣ)Im| ߚ2

ห2ݐ + ൫ (ݕ,ݕܣ)ߙ + ,ݖܣ)ߙ (ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ) ൯ห(ݖ
ቤ  

            ≥ ߙ ൬ߜ −
4
ଶߙ

 ൰    ቤ ߩ −
,ݖܣ)|ߚߙ2 |(ݕ
ߜଶߙ −  4

ቤ ≥ ߙ ൬ߜ −
4
ଶߙ

 ൰    ቤ ߩ −
ଵܣฮߚߙ2 ଶ⁄ ଵܣฮฮݖ ଶ⁄ ฮݕ

ߜଶߙ −  4
ቤ 

≥ ߙ ൬ߜ −
4
ଶߙ

 ൰ ቮߩ –
ߚߙ ቀฮܣଵ ଶ⁄ ฮଶݖ + ฮܣଵ ଶ⁄ ฮଶቁݕ

ߜଶߙ −  4
ቮ ≥ ߙ ൬ߜ −

4
ଶߙ

 ൰ ฬߩ −
ߜߚߙ2

ߜଶߙ −  4
ฬ > 0  

by assumption (15) and the choice of ߩ according to (16).        
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Lemma(6.1.13)[51]: On the segment 
ଷ߁ ∶= ߣ}  ∈ ℂ ∶  Re(ߣ) = ,ଵߩ  |Im(ߣ)|  ≤ ଵߩ with {ߩ  >  ߩ

we have   
inf
ఒ∈௰య

௒∈ࣞ(஺)×ࣞ(஺),‖௒‖ୀଵ 

|(ℒ(ߣ)ܻ,ܻ)| > 0

 
 . 

Proof. Let ߣ = ଵߩ + ݅߬ with |߬|  ≤ ܻ,ߩ = ,ݕ) ,ݕ ௧ with(ݖ ݖ ∈ ଶ‖ݕ‖ and (ܣ)ࣞ  + ଶ‖ݖ‖ = 1. 
Then  
    |(ℒ(ߣ)ܻ,ܻ)|  ≥  |Re (ℒ(ߣ)ܻ,ܻ)| 

 = ቤߩଵ
ଶ – ߬ଶ + (ݕ,ݕܣ)ߙଵ൫ߩ + ,ݖܣ)ߙ (ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ) ൯(ݖ

(ݕ,ݕܣ)+ + ,ݖܣ) (ݖ
ቤ  > ଵߩߜߙ)2 + (ߜ  >  0  

since ߩଵ >  .ߩ
      By ߁ we now denote the rectangle the sides of which are ߁ଵ,߁ଷ and parts of the rays 
 without the) ߁ ା the exterior ofܩ the interior and by ିܩ ଶି . Further, we denote by߁, ଶା߁
boundary of ߁).  
Lemma(6.1.14)[51]: For any fixed ܻ ∈ (ܣ)ࣞ ×  has one (ܻ,ܻ(ߣ)ℒ) the polynomial ,(ܣ)ࣞ
root in ିܩ and one root in ܩା.  
Proof. Consider the auxiliary pencil 

ℒଵ(ߣ)  =  ℒ ൬ߣ −
2
ߙ
൰   , ߣ ∈ ℂ, 

and the corresponding polynomial (ℒଵ(ߣ)ܻ,ܻ) for fixed ܻ = ,ݕ) ݕ ௧ with(ݖ ∈ ,(ܣ)ࣞ ݖ ∈
,(ܣ)ࣞ ଶ‖ݕ‖ + ଶ‖ݖ‖ = 1. The roots of (ℒଵ(ߣ)ܻ, ܻ) = 0 are the roots of the equation 

ଶߣ   + ߣ ቆ−
4
ߙ

+ (ݕ,ݕܣ)ߙ + ,ݖܣ)ߙ (ݖ + (ݕ,ݕଵܭ) + ,ݖଶܭ) ቇ(ݖ +
4
ଶߙ

− (ݕ,ݕܣ) − ,ݖܣ) (ݖ

−
2
ߙ

(ݕ,ݕଵܭ) −
2
ߙ

,ݖଶܭ) (ݖ + ,ݖܣ)Im ߚ2݅ (ݕ = 0.                                             (17) 
Due to assumption (15) the quadratic equation  

ଶߣ  + − ߜߙ൬ ߣ   
4 
ߙ
൰  +

4 
ଶߙ

 −  δ =  0                                        (18) 

possesses exactly one solution on the positive half axis and exactly one on the negative half 
axis (excluding 0). Now we consider ܣ and ܭ௜ , ݅ = 1,2,as perturbations of ܫߜ and 0, 
respectively, i.e., we consider  

(ߟ)ܣ ∶= ܣ)ߟ  − (ܫߜ + (ߟ)௜ܭ,ܫߜ = ,௜ܭߟ  ݅ = 1, 2, 
for ߟ ∈ [0,1] and the pencil ℒଵ(ߟ, ,௜ܭ and ܣ which arises if we substitute (ߣ ݅ = 1, 2,  
in ℒଵ(ߣ) ܾ(ߟ)ܣ ݕ and ܭ௜(ߟ), ݅ = 1, 2, i.e.,  

ℒଵ(ߟ, (ߣ ∶= ଶߣ  ቀܫ 0
0 ቁܫ + ൮ ߣ

(ߟ)ܣߙ + (ߟ)ଵܭ −
4 
ߙ

0

0 (ߟ)ܣߙ + (ߟ)ଶܭ −
4 
ߙ

൲ 

                                 +൮
(ߟ)ܣ− −

2
ߙ
(ߟ)ଵܭ +

4 
ଶߙ

ܣߚ

ܣߚ− (ߟ)ܣ− −
2
ߙ

(ߟ)ଶܭ  +
4 
ଶߙ

൲ , 

ߟ ∈ [0, 1], ߣ ∈ ℂ. Then ℒଵ(1, (ߣ = ℒଵ(ߣ) and the equation (ℒଵ(0, (ܻ,ܻ(ߣ = 0 is just the 
equation (18). The quadratic form (ℒଵ(ߟ,  The .ߣ and ߟ is analytic with respect to (ܻ,ܻ(ߣ
roots ߣଵ(ߟ) and ߣଶ(ߟ) of (ℒଵ(ߟ, (ܻ,ܻ(ߣ = 0 are piecewise analytic, they may fail to be 
analytic in [0, 1] only if for some ߟ ∈ [0,1], we have ߣଵ(ߟ) =  ଶ(0)ߣ ଵ(0) andߣ Since .(ߟ)ଶߣ



200 
 

are the roots of (18), one of them, say ߣଵ(0), lies in the open left half plane and the other in 
the open right half plane. According to Lemmas (6.1.11), (6.1.12) and (6.1.13), we have 

inf
ఒ∈௰෡

௒∈ࣞ(஺)×ࣞ(஺),‖௒‖ୀଵ 

|(ℒଵ(ߣ)ܻ,ܻ)| > 0

 
 , 

where ߁෠  ⊂ ∋ ߣ} ℂ ∶ Re (ߣ) >  0} is the rectangle ߁෠  ∶= ߣ} + ଶ
ఈ

 ∶ ∋ ߣ  Now we choose .{߁ 
ଵߩ > ଵߩ such that ߩ >  ෠ for all߁ outside (ߟ)ଵߣ ෠ and߁ remains inside (ߟ)ଶߣ ଶ(0). Thenߣ
ߟ ∈ [0, 1]. The roots of (ℒ(ߣ)ܻ,ܻ) are given by ߣଵ(1) − ଶ

ఈ
 and ߣଶ(1) − ଶ

ఈ
 . Hence the first 

one lies outside ߁ and the second one inside ߁.  
      In order to prove results about the eigenvectors and associated vectors corresponding to 
the branches of eigenvalues possibly accumulating at ∞, we introduce 

ሚିଵܣ ∶=
1
ߙ

 ቀܣ
ିଵ 0
0 ଵିܣ

ቁ, 
and consider the pencil  

                   ℒଶ( ߣ)  ∶=   
ଶߣ

ߙ
ሚିଵܣ   ଶ⁄ ℒ ൬

1
ߣ
൰ ሚିଵܣ  ଶ⁄  = ଶߣ   

1
ߙ

  ൬ ܫ   ߚ
ߚ − ܫ ൰  

൮ ߣ  +                      
ܫ  +

1
ߙ

ଵିܣ  ଶ⁄ ଵିܣ ଵܭ ଶ⁄ 0

0 ܫ  +
1
ߙ

ଵିܣ  ଶ⁄ ଵିܣ ଶܭ ଶ⁄
൲ +

1
ߙ

 ቀܣ
ିଵ 0
0 ଵିܣ

ቁ 

for ߣ ∈ ℂ.  
      By ߁෨ we denote the closed simple curve obtained from the rectangle ߁ aftere the trans-
formation ߣ ⟶ ଵ

ఒ
  .෨߁ denote the interior (exterior) of (෨ିܩ) ෨ାܩ ݐ݁ܮ  . 

Theorem(6.1.15)[51]: (i) The set of eigenvectors and associated vectors corresponding to 
the eigenvalues of ℒଶ in ܩ෨ାis minimal in ℋ ×  ℋ. 
      (ii) If ିܣଵ ∈ ࣭௣  for some ݌ < ∞, then the set of eigenvectors and associated vectors 
corresponding to the eigenvalues of ℒଶ in ܩ෨ା is complete in ℋ × ℋ. If, in addition, 
݊(߬, ଵ

ఈ
(ଵିܣ  ∼ ܿଵ߬௖మ ܽݏ ߬ ⟶ ∞ with some 0 < ܿଵ, ܿଶ < ∞, then ݊(߬,ܩ෨ା,ℒଶ) ∼ 2ܿଵ߬௖మ .  

     (iii) If ݊(߬,ିܣଵ) = ܱ(߬ఊ) for some ߛ ∈ (0, ଵ
ଶ
], then the set of eigenvectors and associated 

vectors corresponding to the eigenvalues of ℒଶ in ܩ෨ା is a Riesz basis with parentheses in 
ℋ × ℋ. If, in addition, ݊(߬, ଵ

ఈ
= (ଵିܣ ܿଵ߬௖మ + ܱ(߬ఉ) for some 0 < ܿଵ, ܿଶ < ∞, 0 ≤ ߚ <

ߙ ≤ ߚ + (෨ା,ℒଶܩ,߬)݊ then also ,ߛ =  2ܿଵ߬௖మ + ܱ(߬ఉ).  
Proof. Again we invoke the results contained in [137] and apply them with  

= ܪ  
1
ߙ

   ቀܣ
ିଵ 0
0 ଵିܣ

ቁ   ,ܶ =  0 

for (ii) and 

= ܪ                       ଵ
ఈ

   ቀܣ
ିଵ 0
0 ଵିܣ

ቁ   ,  

଴ܦ  =  0, ଵܦ  =  
1
ߙ

   ቆܣ
ିଵ ଶ⁄ ଵିܣ ଵܭ ଶାఊ⁄ 0

0 ଵିܣ ଶ⁄ ଵିܣ ଶܭ ଶାఊ⁄ ቇ  . 

where ߛ ∈ (0,12] for (iii).  
Theorem(6.1.16)[51]: The set of eigenvectors and associated vectors of ℒ corresponding to 
the eigenvalues in the half plane {ߣ ∈ ℂ ∶ Re(ߣ) < − ଶ

ఈ
 }) is minimal in the space ℋ஺షభ ×

ℋ஺షభ where ℋ஺షభ= (ℋ,(ିܣଵ ଵିܣ,·  · )). It is complete in ℋ஺షభ × ℋ஺షభ if ିܣଵ ∈ ࣭௣ for 
some ݌ < ∞, and a Riesz basis with parentheses in ℋ஺షభ × ℋ஺షభ if ݊(߬,ିܣଵ) = ܱ(߬ఊ) for 
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some ߛ ∈ (0, ଵ
ଶ
]. In particular, the eigen-values in {ߣ ∈ ℂ ∶  Re(ߣ) < −  ଶ

ఈ
 }) accumulate at ∞ 

if ିܣଵ ∈  ࣭௣   for some ݌ < ∞.  
      we are going to apply the previous results to the system (2), (3) of partial differential 
equations with boundary conditions (4). After the separation of variables (5) (and assuming 
݉ ≡ 1 for simplicity), it takes the form  

ଵݕܫܧ
(ସ)  + ଶݕܫܧߢ߱ 

(ସ) + ଵݕܫܧߢ൫ߣ 
(ସ)  + ଵ൯ݕ ଵߝ  + ଵݕ ଶߣ =  0 ,         (19)             

ଶݕܫܧ
(ସ) − ଵݕܫܧߢ߱

(ସ) + ଶݕܫܧߢ൫ߣ 
(ସ)  + ଶ൯ݕ ଶߝ  + ଶݕ ଶߣ =  0 ,           (20)               

with boundary conditions  
ଵ(0)ݕ = (݈)ଵݕ = ᇳଵ(0)ݕ = (݈ )ᇳଵݕ =  0 ,  
ଶ(0)ݕ = (݈ )ଶݕ  = ᇳଶ(0)ݕ  = (݈ )ᇳଶݕ =  0.                                    (21) 

      Here the operators ܣ and ܭଵ,ܭଶ are determined by (6) and (7), and the constants ߚ,ߙ 
by ߙ = ߚ and (the coefficient of inner damping) ߢ =  where ߱ is the angular frequency) ߢ߱
of the rotation of the beam).  
      Obviously, the operator ܣ has compact resolvent, and it is not difficult to see that the 
eigenvalues ߣ௞,݇ =  1, 2, . . ., of ܣ are all simple and given by 

௞ߣ  = ܫܧ  ൬
ߨ݇
݈
൰
ସ

 , ݇ =  1, 2, …  . 
Hence the lower bound ߜ of ܣ is its least eigenvalue,  

= ߜ ቀ  ܫܧ 
ߨ
݈
ቁ
ସ

. 
It is also easy to see that the number ݊(߬,ିܣଵ) of eigenvalues of ିܣଵ greater than ߬ିଵ, i.e., 
the number of eigenvalues of ܣ less than ߬ satisfies 

(ଵିܣ,߬)݊  ∼  
݈
ߨ

  ൬ 
1
ܫܧ
൰
ଵ ସ⁄

   ߬ଵ ସൗ .                                    (22) 
      An immediate consequence of Theorem(6.1.1) is the following statement.  
Theorem(6.1.17)[51]: The essential spectrum of the problem (19)–(21) consists of the two 
points  

−  
1
 ߢ
−  ݅߱,−  

1
 ߢ

 +  ݅߱. 
The other points of the spectrum of the problem (19)–(21) are normal eigenvalues which 
accumulate at most at the points − ଵ

఑ 
− ݅߱, − ଵ

఑ 
+ ݅߱, and at ∞.  

      From Theorem(6.1.2) we immediately get the following stability result. 
Theorem(6.1.18)[51]: Set μ ∶=  min௜ୀଵ,ଶ min ௫∈[଴,௟]{ߝ௜(ݔ) } . Then the spectrum of the 
problem (19)–(21) lies in the open left half plane if  

μ ≥ ቀ ܫܧߢ 
ߨ 
݈ 

 ቁ
ସ

 and μ >
߱ଶߢ

4
, 

or if  

μ < ቀ ܫܧߢ
ߨ 
݈ 

 ቁ
ସ

 and ൬ܫܧߢ ቀ
ߨ 
݈ 

 ቁ
ସ

+  μ൰
ଶ

>  ߱ଶߢଶܫܧ ቀ
ߨ 
݈ 

 ቁ
ସ

 . 
      Concerning results about the minimality, completeness and basis properties of the 
eigenvectors of the problem (19)–(21) corresponding to certain branches of eigenvalues, we 
have to distinguish the case when the outer medium is homogeneous, i.e., ߝଵ ≡ ଶߝ ≡∶  and ߝ
hence ܭଵ = ଵߝ ,.ଶ,  and the case when the outer medium is inhomogeneous, i.eܭ ≢  ଶ andߝ
hence ܭଵ ≠   .ଶܭ
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      In the case of a homogeneous outer medium, according to above , the eigenvalues of the 
given problem (19)−(21) split into 4 branches {ߣ௞ଵ}  ∪ {௞ଶߣ}   ∪  ቄߣ௞ଵቅ  ∪ ௞ଵߣ where {௞ଶߣ}   and 
௞ଶߣ , ݇ = 1, 2, . . ., are the eigenvalues of the problem  

ቊ
(1 + (ସ)ݕܫܧ(ߢ߱݅ + (ସ)ݕܫܧߢ൫ߣ + ൯ݕߝ + = ݕଶߣ  0,

(0)ݕ  = (݈)ݕ   = (0)″ݕ   = (l)″ݕ   =  0
                            (23) 

located in the upper and lower half plane, respectively (counted according to their algebraic 
multiplicities). The respective eigenfunctions and associated functions of the problem of 
(19)–(21) can be obtained from the eigenfunctions and associated functions ݕ௞ଵ and ݕ௞ଶ of the 
problem (23) and from the eigenfunctions and associated functions ݕ௞ଵ and  ݕ௞ଶ of the  
problem  

ቊ (1 − (ସ)ݕܫܧ(ߢ߱݅ + (ସ)ݕܫܧߢ൫ߣ + ൯ݕߝ + = ݕଶߣ  0,
(0)ݕ  = (݈)ݕ   = (0)″ݕ   = (݈)″ݕ   =  0.

                            (24) 

For instance, the eigenfunctions of (19)–(21) are given by the formulas                           

, ௞ଵݕ) ,௞ଵ)௧ݕ݅ ,௞ଶݕ) ,௞ଶ)௧ݕ݅ ቀ݅ݕ௞ଵ,ݕ௞ଵቁ
௧

, ቀ݅ݕ௞ଶ,ݕ௞ଶቁ
௧
. 

     In the following we denote by ଶܹ
ସ(0, ݈) the Sobolev space of order 4 associated with 

,ଶ(0ܮ ݈).  
Theorem(6.1.19)[51]: (i) The set of eigenfunctions and associated functions of problem 
(19)–(21) corresponding to the eigenvalues ߣ௞ଵ  and ߣ௞ଵ  , ݇ = 1, 2, . .. ,forms a Riesz basis 
with parentheses in the space ଶܹ

ସ(0, ݈) × Wଶ
ସ(0, ݈) .  

      (ii) The eigenvalues ߣ௞ଵ  ( and hence ߣ௞ଵ ) accumulate at ∞; if enumerated such that 
௞ଵߣ| | ≤ ௞ାଵଵߣ|  | , they satisfy the asymptotics  

௞ଵߣ  = ൬  ܫܧߢ− 
ߨ݇
݈
൰
ସ

+ ݅߱ ௞ଵߦ +  + ௞ଵߟ݅   ,݇ → ∞, 
where ߦ௞ଵ, ௞ଵߦ ௞ଵ are real andߟ  = , (ସ݇)݋  ௞ଵߟ  =   . (1)݋ 
Proof. The assertion in (i) and the first assertion in (ii) follow from Theorem (6.1.10) which 
we can apply due to (22) with ߛ =  ଵ

ସ
. From Theorem (6.1.10) we also obtain that 

௞ଵߣ| | ∼ ൬  ܫܧߢ 
ߨ݇
݈
൰
ସ

 ,   ݇ →  ∞.                                                (25) 
Now let ݕ௞ଵ, ‖௞ଵݕ‖ = 1, be an eigenfunction of (23) (i.e., of ℒା) at ߣ௞ଵ . Then 

ଶ(௞ଵߣ) + ௞ଵߣ (௞ଵݕ, ௞ଵݕܣ)ߙ) + ((௞ଵݕ, ௞ଵݕܭ) + (1 + (௞ଵݕ, ௞ଵݕܣ)(ߚ݅ =  0.         (26) 

From this it follows that |(ݕܣ௞ଵ ,ݕ௞ଵ)| → ∞, ݇ → ∞, because otherwise 
௞ଵߣ)௞ଵߣ | + (௞ଵݕ, ௞ଵݕܣ)ߙ  +  |((௞ଵݕ, ௞ଵݕܭ)

would also be bounded, a contradiction to (25). Then the assertion follows from the formula 
for the solutions of the quadratic equation (26) (see (14)) and from (25).    
Theorem(6.1.20)[51]: The set of eigenfunctions and associated functions of problem (19)-
(21) corresponding to the eigenvalues ߣ௞ଶ  and ߣ௞ଶ , ݇ = 1,2, ..,is minimal and complete in the 
space ଶܹ

ସ(0, ݈) × ଶܹ
ସ(0, ݈). In Particular,  ߣ௞ଶ → −  ଵ

఑
 − ݅߱, ௞ଶߣ  → −  ଵ

఑
 + i߱ for ݇ → ∞.  

      In the case of an inhomogeneous outer medium we obtain:  

Theorem (6.1.21)[51]:  Assume that ܫܧ ቀగ
௟
ቁ
ସ

 >  ସ
఑మ

 . Then:  
    (i) The set of eigenfunctions and associated functions of problem (19)-(21) corresponding 
to the eigenvalues located in the half plane {ߣ ∈ ℂ ∶ Re(ߣ) < − ଶ

 ఑
 } forms a Riesz basis with 

parentheses in the space ଶܹ
ସ(0, ݈) × ଶܹ

ସ(0, ݈).  
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    (ii) The eigenvalues ߣ௞ of problem (19)-(21) in {ߣ ∈ ℂ: Re(ߣ) < − ଶ
 ఑

} accumulate at ∞; 
if enumerated such that |ߣ௞| ≤  ௞ାଵ|, they satisfy the asymptoticsߣ| 

௞ߣ  = ൬  ܫܧߢ− 
ߨ݇ 
2݈
൰
ସ

+ ݇   ,(ସ݇)݋  → ∞. 
Proof. The first assertion follows immediately from Theorem (6.1.16). The proof of the 
second statement is similar to the proof of Theorem (6.1.19) (ii). 
Sec(6.2): Non-Selfadjoint Pencils with an Application to Hagen-Poiseuille Flow  
      In this section we show some eigenvalue enclosures and basisness results for eigen-and 
associated functions of non-selfadjoint linear operator pencil equations  

= ݑࣛ                 ݑ    ,ݑℬߣ  ∈ ࣞ(ࣛ) ⊂ ࣞ(ℬ).                                     (27) 
     The original motivation for this section is twofold. Firstly, it came from [111] in which 
proved that, for a certain operator pencil arising in the study of Hagen–Poiseuille flow, the 
essential spectrum is empty. Secondly, the refrernces [28, 26] showed that analytic spectral 
enclosures combined with interval arithmetic eigenvalue computations may be used to show 
linear instability results for non-selfadjoint spectral problems from hydrodynamics. How-
ever linear stability results require not only eigenvalue enclosures, but also basisness results 
for the eigen-and associated functions. This is the problem we address in this section. 
      At the abstract level, the precise type of basisness result obtained depends only on the 
distribution of the eigenvalues. In all cases the eigenvalue spacing must tend to infinity and 
the imaginary parts of the eigenvalues must be bounded: in this case, at least a Riesz 
basisness result is obtained (i.e. equivalence to an orthonor-mal basis). If one has more 
information–for instance, if the eigenvalues are quadratically large with respect to their 
index – then a stronger Bari basisness result is obtained (i.e. quadratic closeness to an 
orthonormal basis). All these basisness results are obtained by reducing the pencil to an 
operator and invoking basisness results for non-selfadjoint operators having certain 
eigenvalue distributions.  
      The reduction of the pencil (27) to a linear operator in a suitable Hilbert space is 
therefore very important. However, as pointed out by Kato [17], at a formal level there are a 
number of different operators which might be considered as possible replacements for the 
pencil, with ℬିଵࣛ, ࣛ ℬିଵ ,ℬିଵ ଶ⁄ ࣛℬିଵ ଶ⁄  , all being possible choices provided they exist. 
A priori the choice of operator seems somewhat arbitrary and the relationships between the 
spectra of these operators and the spectrum of the original pencil are, in general, unclear. 
      In this section we assume that the operator ℬ on the right-hand side of (27) is uniformly 
positive, in which case all the above possibilities are available. Following ideas of [114] for 
the Orr–Sommerfeld problem, developed simultaneously and independently in [104], we 
introduce the Hilbert space ℋଵ ଶ⁄ ∶= ࣞ(ℬଵ ଶ⁄ ) and consider therein the operator ℬିଵࣛ. 
Thanks to an additional abstract hypothesis–which, in the Hagen–Poiseuille case, forces one 
to consider only the physical boundary conditions which are usually imposed – it turns out 
that ℬିଵࣛ is closable in the space ℋଵ ଶ⁄  and, with ℳ ∶= ℬିଵࣛ denoting its closure, the 
nonclassical spectral problem (27) is equivalent to the classical spectral problem 

ℳݑ = ∋ ݑ   ,ݑߣ  ࣞ(ℳ). 
The spectral enclosures and basisness results are based on a decomposition of the operator 
ℳ = ℳ଴ + ℳଵinto a self-adjoint operator ℳ଴in ℋଵ ଶ⁄  and a bounded perturbation ℳଵ. The 
Bari basisness is obtained by means of a result of A.S. Markus (see [154]) which gives a 
criterion for bases in terms of the convergence of a certain series involving only the eigen-
values. An interesting aside is that the proof of the boundedness of ℳଵ in ℋଵ ଶ⁄  depends on 
a 1947 result of Krein (Lemma (6.2.6) below), originally stated for self-adjoint operators 
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and later rediscovered and generalized by a number of authors (see the translation [115] and 
the historical remarks at the end). 
      Finally, in preparation for the eventual application to the linear stability of an incom-
pressible flow in a circular pipe, we recall the coupled system of differential equations 
describing the so-called Hagen–Poiseuille flow with non-axisymmetric disturbances, even 
though these will not be seen again until mention it in this section . These equations have 
the form 

⎝

⎛
࣮(݇ଶݎଶ ࣮) + ࣮ܷܴߙ݅ + ܴߙ݅

1
ݎ
൬
ܷᇱ

݇ଶݎ
൰
ᇱ

࣮݊ߙ2

࣮݊ߙ2 − ܴ݅݊
ܷᇱ

ݎ
࣭ + ⎠ଶݎଶܷܴ݇ߙ݅

⎞൬
ߔ
ߗ
൰ = ܴܿߙ݅ ቀ࣮ 0

0 ݇ଶݎଶቁ ൬
ߔ
ߗ
൰ 

on the interval (0, 1] (see [105, 25]). Here ܴ ≥ 0 is the Reynolds number, ߙ ∈ ℝ is the 
streamwise wave number, ݊ ∈ ℤ is the azimuthal wave number, and ܿ is a complex wave 
speed which result from an exponential dependence on the axial, angular, and space co-
ordinate, respectively, of the form  

exp(݅(ݔߙ + − ߔ݊   .((ݐܿߙ 
The function ܷ: [0,1] → ℝ is the axial mean flow while the function ݇: (0,1] → ℝ is given 
by ݇(ݎ)ଶ ∶= ଶߙ + ௡మ

௥మ
  , ݎ ∈ (0,1]. The differential expressions ࣮,࣭ have the form  

࣮ ∶=
1
ଶݎ
−

1
 ݎ
݀
ݎ݀
൬

1
ݎଶ(ݎ)݇

 
݀
ݎ݀
൰ , ࣭ ∶= ଶݎସ(ݎ)݇  −  

1
 ݎ
݀
ݎ݀
൬݇(ݎ)ଶݎଷ

݀
ݎ݀
൰ . 

With ߣ =  and by choosing suitable operator realizations of the various differential ,ܥܴߙ݅
expressions determined by boundary conditions, Hagen-Poiseuille flow problem can be cast 
in the form (27). We show that it satisfies all assumptions of the abstract theorems, we work 
out the corresponding basis results, and we establish explicit estimates for the real and 
imaginary parts of the eigenvalues in terms of the coefficients ߙ,ܴ,݊, and the axial mean 
flow ܷ; for parabolic ܷ, the estimates yield new linear stability regions in the (ߙ,ܴ) − 
plane.  
      In the following, we study linear operator pencils 

ℒ଴(ߣ) =  ࣛ଴ − ;ℬߣ   ℒ(ߣ) = ࣛ଴ + ࣛଵ − ;ℬߣ ߣ  ∈ ℂ,                       (28) 
in a Hilbert space ℋ, for which the domains ࣞ(ℒ(ߣ)) do not depend on ߣ, and are always 
equal to ࣞℒ ∶= ࣞ(ࣛ଴). The spectrum of ℒ, denoted ߪ(ℒ), is defined to be the set of λ ∈ ℂ  
for which 0 ∈  ௉(ℒ), continuousߪ with corresponding definitions of point spectrum ,((ߣ)ℒ)ߪ
spectrum ߪ௖(ℒ), residual spectrum ߪ௥(ℒ), essential spectrum ߪ௘௦௦(ℒ), and resolvent set 
 Eigenvalue problems of the form .(ℒ)ߩ

                    (ࣛ଴ + ࣛଵ)ݔ = ,ݔℬߣ ݔ ∈ ࣞ(ࣛ଴),                                             (29) 
can then be written as ℒ(ߣ)ݔ = 0, ݔ ∈ ࣞℒ. Under the hypotheses, the spectra of ℒ and ℒ଴ 
will turn out to be purely discrete. The aim is to show that the corresponding eigenfunctions 
and associated functions of ℒ form a Bari basis, i.e., a basis quadratically close to an 
orthonormal basis, in a suitable Hilbert space.  
      We denote the scalar product and corresponding norm on ℋ by (·  , ·) and ‖·‖ , 
respectively. The operators ࣛ଴ ,ࣛଵ , and ℬ are assumed to satisfy the following: 
    (i) ࣛ଴  is self-adjoint; 
   (ii) ℬ is self adjoint, uniformly positive, ࣞ(ࣛ଴) ⊂ ࣞ(ℬ), and ℬ is ࣛ଴-compact; 
  (iii) ࣛଵ is closable with ࣞ(ℬ) ⊂ ࣞ(ࣛଵ) and ࣞ(ℬ) ⊂ ࣞ(ࣛଵ

∗
 ). 
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      We start with several abstract lemmas.  
Lemma(6.2.1)[31]: . Let ܧ, ,be reflexive Banach spaces, let ଴ܶ ܨ ଵܶ , ܵ be linear operators 
from ܧ to ܨ, and let ଴ܶ be closable. If ܵ is ଴ܶ-compact, ଵܶ is ܵ-bounded, and ܵ is 
boundedly invertible, then ଵܶ is ଴ܶ-compact and ܵ is ( ଴ܶ + ଵܶ)-compact.  
Proof. By the assumptions we have the inclusions ࣞ( ଴ܶ) ⊂ ࣞ(ܵ) ⊂ ࣞ( ଵܶ)  and hence 
ࣞ( ଴ܶ + ଵܶ) = ࣞ( ଴ܶ).  
      In order to prove that ଵܶ is ଴ܶ-compact, let (ݔ௝) ⊂ ࣞ( ଴ܶ) be a sequence such that (ݔ௝) 
and ( ଴ܶݔ௝) are bounded. Since ܵ is ଴ܶ-compact, there exists a subsequence (ݔ௝௞) ⊂  (௝ݔ)
such that (ܵݔ௝௞) converges. Since ଵܶ is ܵ-bounded, the sequence ( ଵܶݔ௝௞) = ( ଵܶܵିଵܵݔ௝௞) 
converges as well.  
      In order to show that ܵ is ( ଴ܶ + ଵܶ)-compact, let (ݔ௝) ⊂ ࣞ( ଴ܶ) be a sequence such that 
)) and (௝ݔ) ଴ܶ + ଵܶ)ݔ௝) are bounded, ฮݔ௝ฮ ≤ ݉, ฮ( ଴ܶ + ଵܶ)ݔ௝ฮ ≤ ݆ for ܯ ∈ ℕ. Since ଵܶ is 
଴ܶ-compact, ܨ,ܧ are reflexive and ଴ܶ is closable, ଵܶ is ଴ܶ-bounded with relative bound 0 

(see [62]). In particular, there exists ܽ ≥  0 so that  

‖ ଵܶݔ‖  ≤ ‖ݔ‖ܽ  + 
1
2

 ‖ ଴ܶݔ‖, ∋ ݔ  ࣞ( ଴ܶ)  ⊂  ࣞ( ଵܶ). 
Thus 

ฮ ଴ܶݔ௝ฮ ≤  ฮ( ଴ܶ + ଵܶ)ݔ௝ฮ + ฮ ଵܶݔ௝ฮ ≤ ܯ + ܽ݉ +  
1
2

 ฮ ଴ܶݔ௝ฮ, ݆ ∈  ℕ, 

and hence ฮ ଴ܶݔ௝ฮ ≤ ܯ)2  + ܽ݉).  Now the ଴ܶ-compactness of ܵ shows that there exists a 
subsequence (ݔ௝௞) ⊂   .converges (௝௞ݔܵ) such that (௝ݔ)
      The following property of the adjoint of a sum of unbounded operators was first proved 
in [29] (see also [19] or [102]). 
Lemma(6.2.2)[31]: Let ܧ, ,ܶ be Banach or Hilbert spaces and let ܨ ܵ be densely defined 
linear operators from ܧ to ܨ. If  ܶ is Fredholm, ܵ is ܶ − compact, and ܵ∗ is ܶ∗ −compact, 
then (ܶ + ܵ)∗ =  ܶ∗ + ܵ∗.  
      Note that, if ܵ is T-compact, then ܵ∗ need not be ܶ∗-compact; in fact, it may happen that 
ࣞ(ܶ∗) ∩  ࣞ(ܵ∗) = {0} even if ܶ is the inverse of a positive definite compact operator in a 
Hilbert space (see [29]).  
     In the next two propositions we use the preceding lemmas to deduce various properties 
of the operators ࣛ଴,ࣛଵ , and ℬ from the assumptions (i)–(iii). First we consider several 
compactness properties of the operator pencil ℒ and its essential spectrum which we define 
as  

௘௦௦( ℒ)ߪ ∶= ൛ߣ ∈ ℂ ∶  0 ∈ ൯ൟ(ߣ)௘௦௦൫ ℒߪ = ߣ} ∈ ℂ: ℒ(ߣ) is not Fredholm}. 

Here a linear operator ܶ in a Banach space is called Fredholm if its kernel is finite- 
dimensional and its range is finite co-dimensional (and hence closed); the index of 
a Fredholm operator is defined as ind ܶ ∶= codim ran ܶ − dim kerܶ. 
Proposition(6.2.3)[31]: Under the assumptions (i), (ii), and (iii) the following hold: 
      (I)  ࣛ଴ has compact resolvent; 
      (II) ࣛଵ and ࣛଵ

∗ are ࣛ଴-compact;  
      (III) ℬ is (ࣛ଴ + ࣛଵ)-compact;  
      (IV) ߪ௘௦௦(ℒ) = ௘௦௦(ࣛ଴ߪ + ࣛଵ) = ௘௦௦(ࣛ଴)ߪ = ∅, and  
               ind ℒ(ߣ) = ind ࣛ଴ = 0, ∋ ߣ ℂ; 
      (V) ߪ( ℒ)  =   .௉(ℒ)ߪ 
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Proof.(I)For ߤ ∈ observe that (ࣛ଴ ,(଴ࣛ)ߩ − ଵି(ߤ = ℬିଵℬ(ࣛ଴ −  ଵ is compact becauseି(ߤ
ℬ is boundedly invertible and ℬ(ࣛ଴ −   .ଵ is compact by assumption (ii)ି(ߤ
     (II) and (III) Since ℬ is closed and ࣛଵis closable, the inclusion ࣞ(ℬ) ⊂ ࣞ(ࣛଵ) already 
implies that ࣛଵ is ℬ −bounded, and similarly for ࣛଵ

∗. Now both claims follow from Lemma 
(6.2.1).  
     (IV) The operator ࣛ଴ is Fredholm with index 0 since ࣛ଴ has compact resolvent by (I) 
and ࣛ଴ is self-adjoint so that (ran ࣛ଴)ୄ  =  ker ࣛ଴. Now all claims follow from (II), (III), 
and (I) by means of the stability theorems for Fredholm operators (see [127]).  
(V) By (IV) it follows that ߪ௖(ℒ) ⊂ ௘௦௦(ℒ)ߪ = ∅  and that dim ker ℒ(ߣ) = dim൫ran ℒ(ߣ)൯ୄ   
for every ߣ ∈ ℂ, which implies that ߪ௥(ℒ) = ∅.   
Proposition(6.2.4)[31]: Under the assumptions (i), (ii), and (iii) the following are true: 
      (I) ࣛ∗ =  (ࣛ଴ + ࣛଵ)∗ =  ࣛ଴ + ࣛଵ

∗ ,  
      (II) (ࣛ − ∗(ℬߣ  = ࣛ∗ − ,ℬߣ ∋ ߣ  ℂ,  
and hence  

ℒ(ߣ)∗ =  ࣛ଴ + ࣛଵ
∗ − (∗(ߣ)ℒ)ࣞ       ,ℬ ߣ = ࣞ(ࣛ଴ ),   ߣ ∈  ℂ. 

Proof. (I) We apply Lemma (6.2.2) with ܵ = ࣛଵ and ܶ = ࣛ: as a consequence, (I) holds 
provided ࣛଵ  and ࣛଵ

∗  are, respectively, ࣛ଴-compact and ࣛ଴
∗ −compact. Since ࣛ଴  is self-

adjoint, the required relative compactness properties are both guaranteed by Proposition 
(6.2.3). 
      (II) This time we apply Lemma (6.2.2) with ܵ = ℬ and ܶ = ࣛ = ࣛ଴ + ࣛଵ. Since ℬ is 
selfadjoint, it suffices to check that ℬ is both ࣛ-compact and ࣛ∗-compact. Applying 
Lemma (6.2.1) and the result of part (I) we see that it is sufficient now to check that ℬ is 
ࣛ଴-compact, which is assumption (ii); and that ࣛଵ and ࣛଵ

∗ are ℬ-bounded, which is 
guaranteed by assumption (iii).  
     The last claim follows from (I), (II) and assumptions (ii), (iii).   
Proposition(6.2.5)[31]: Let ℋଵ ,ℋଶ be Hilbert spaces, let ܣ଴,ܦ଴ be self-adjoint operators in 
ℋଵ and ℋଶ, respectively, and let ܤ଴ be a densely defined closable linear operator from ℋଶ to 
ℋଵ . Suppose that ܤ଴∗ is ܣ଴-bounded with relative bound ߜ஻బ∗  ଴-bounded withܦ ଴ isܤ, 
relative bound ߜ஻బand ߜ஻బ∗ ஻బߜ  < 1. Then the block operator matrix  

ࣛ଴ ∶= ൬ܣ଴ ଴ܤ
∗଴ܤ ଴ܦ

൰   ,ࣞ(ࣛ଴) ∶= (଴ܣ)ࣞ   ⊕  ,(଴ܦ)ࣞ 

is self-adjoint in ℋଵ⊕ℋଶ. If ܣ଴ and ܦ଴ are bounded below, then so is ࣛ଴. 
Proof. Since ܤ଴ is closable, ܤ଴∗ is densely defined and hence so is ࣛ଴. A direct calculation 
shows that ࣛ଴ is symmetric. Therefore it is sufficient to find two points ±݅߱ ∈  with (଴ࣛ)ߩ
߱ > 0 or, in the case where ܣ଴ and ܦ଴ are bounded below, to show that there exists a 
଴ߞ ∈  ℝ such that (−∞, (଴ߞ ⊂  .The proof is closely  modelled on [17] .(଴ࣛ)ߩ
      Since ߜ஻బ∗ ஻బߜ  < 1, we can choose ߚ > 0 such that ߜ஻బ∗ ⁄ߚ < 1 and ߜ஻బߚ < 1. Observe 
that, for ߞ ∈  ℂ,  

      ൭
1 0

0
1
ߚ

  ൱ (ࣛ଴ − (ߞ ൬1 0
0 ൰ ߚ  = ൬ܣ଴ 0

0 ଴ ൰ܦ  + ቌ
0 ଴ܤߚ

1
ߚ
∗଴ܤ  0 ቍ −   ߞ

 =:  ܶ + ܵ −  (30)                                                    .ߞ
Since, for ߞ ∈   ,( ܶ)ߩ

ܶ + ܵ − = ߞ ܫ) +  ܵ(ܶ − ܶ)(ଵି(ߞ −  ,(ߞ
to show bounded invertibility of ܶ + ܵ − ܶ)ܵ‖ it suffices to show that ߞ − ‖ଵି(ߞ < 1. 
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     In (30), due to the choice of ߚ, the operator ܵ is ܶ-bounded with relative bound ߜௌ ≤
max൛ߜ஻బ∗ ⁄ߚ , ൟߚ஻బߜ < 1. Hence there exist ܽௌ ≥ 0 and ܾௌ ∈ ,ௌߜ) 1) such that 

‖ݔܵ‖  ≤  ܽௌ‖ݔ‖  +  ܾௌ‖ܶݔ    ,‖ݔ ∈  ࣞ(ܶ ). 
In particular, for ߞ ∈  ,( ܶ)ߩ

‖ܵ(ܶ − ‖ݕଵି(ߞ ≤ ܽௌ‖(ܶ − ‖ݕଵି(ߞ + ܾௌ‖ܶ(ܶ − ,‖ݕଵି(ߞ ݕ ∈ ℋଵ⊕ℋଶ. 

By the spectral theorem for the selfadjoint operator ܶ, 
     ‖ܵ(ܶ − ‖ଵି(ߞ  ≤  ܽௌ sup

ఒ∈ఙ(் )
 ଵ

|ఒି఍|
 + ܾௌ sup

஛∈஢(୘ )
 ቚ ఒ
ఒି఍

ቚ  .                      (31) 

If ߞ = ±݅߱ with ߱ > 0 is purely imaginary, then for all ߣ ∈ ( ܶ)ߪ ⊂ ℝ we have 
1

∓ ߣ|  ݅߱| 
≤

1
߱

 , ฬ
ߣ

∓ ߣ  ݅߱
ฬ   ≤  1, 

and hence 
‖ܵ(ܶ ∓  ݅߱)ିଵ  ‖ ≤

ܽௌ
߱

  + ܾௌ. 
Since ܾௌ ∈ (0,1), we can choose  ߱ sufficiently large to ensure that ܽௌ/߱ + ܾௌ < 1 and 
hence ±݅߱ ∈ ܶ)ߩ + ܵ) =  .(଴ࣛ)ߩ
       If ܣ଴ and ܦ଴ are bounded from below, then so is ܶ, 

ܶ ≥  min{min ߪ ,(଴ܣ) minߪ {(଴ܦ)  =:  .ܶߛ 
Now (31) yields that, for ߞ <   ,ܶߛ 

       ‖ܵ(ܶ − ‖ଵି(ߞ ≤    ௔ೄ
ఊ்ି఍

 +  ܾௌ max ቄ1, |ఊ்|
ఊ்ି఍

ቅ  .                               (32) 
 Since aௌ/(ܶߛ − (ߞ → 0 and |ܶߛ)/|ܶߛ − (ߞ → 0 as ߞ → −∞, there exists ߞ଴ <  such that ܶߛ
‖ܵ(ܶ − ‖ଵି(ߞ < 1 for all ߞ ≤ ,∞−) ଴ and henceߞ (଴ߞ ⊂ ܶ)ߩ + ܵ) =   .(଴ࣛ)ߩ
      We reduce the spectral problem ℒ(ߣ)ݔ = (ࣛ଴ + ࣛଵ − ݔ(ℬߣ = 0 for the linear operator 
pencil ℒ in the Hilbert space ℋ to a classical spectral problem (ℳ− ݕ(ߣ = 0 in another 
Hilbert space induced by the operator ℬ. Here we always assume that the operators ࣛ଴, 
ࣛଵ , and ℬ satisfy the pervious assumptions (i)–(iii). 
      Since ℬ is uniformly positive by assumption (ii), we may introduce two new Hilbert 
spaces, ℋଵ ଶ⁄  and ℋିଵ ଶ⁄ , as follows. The space ℋଵ ଶ⁄  with scalar product [·,·] ଵ ଶ⁄  and 
corresponding norm ‖·‖ଵ ଶ⁄   is defined by  

       ℋଵ ଶ⁄ ∶=  ࣞ൫ℬଵ ଶ⁄ ൯   , [·,·] ଵ ଶ⁄ ∶=   ൫ℬଵ ଶ⁄  ·,ℬଵ ଶ⁄  ·൯;                      (33) 
the space ℋିଵ ଶ⁄  is defined as the completion of ℋ with respect to the norm induced by the 
inner product [·,·] ିଵ ଶ⁄  given by 

         [·,·] ିଵ ଶ⁄  =  ൫ℬିଵ ଶ⁄  ·,ℬିଵ ଶ⁄  ·൯.                                      (34) 
      In the following, in view of the formal identity  

     ℒ(ߣ) = ࣛ଴ + ࣛଵ − ℬߣ = ℬ(ℬିଵࣛ଴ + ℬିଵࣛଵ − ߣ   ,(ߣ ∈ ℂ,                    (35) 
we consider the operators ℬିଵࣛ଴,ℬିଵࣛଵ in the Hilbert space ℋଵ ଶ⁄  . To this end, from now 
on we additionally assume that  
     (iv)   ࣞ(ࣛ଴) is a core for  ℬଵ ଶ⁄  and ࣞ(ࣛଵ) ⊂ ࣞ(ℬଵ ଶ⁄ ).  
Note that the property that ࣞ( ࣛ଴) is a core of ℬଵ ଶ⁄  does not follow from the previous 
hypotheses (i),(ii), and(iii). To see this one may choose ℬ to be the shifted one-dimensional 
Neumann Laplacian ℬ = − ௗమ

ௗ௫మ
+ 1 in ܮଶ(0,1) with domain equipped with boundary condi-

tions (0)′ݑ = 0 = while ࣛ଴ ,(1)′ݑ = ௗర

ௗ௫ర
+ 1 in ܮଶ(0,1) equipped with boundary conditions 

(0)ݑ = (0)′ݑ = 0 = (1)ݑ =  Both ࣛ଴ and ℬ are self-adjoint and uniformly positive .(1)′ݑ
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and ℬ is ࣛ଴-compact. The closure of ࣞ(ࣛ଴) in the graph norm of ℬଵ ଶ⁄  is ℋ଴
ଵ(0,1), but 

the domain of ℬଵ ଶ⁄  is ℋଵ(0, 1).  
Lemma(6.2.6)[31]: Let ܧ be a Banach space with norm ‖· ‖ and let [·,·] be a positive 
definite continuous inner product on ܧ (i.e. , |[ݕ,ݔ]| ≤ , ‖ݕ‖ ‖ݔ‖ߛ ∋ ݕ,ݔ  for some ,ܧ
ߛ > 0). Let ܵ be a bounded operator in ܧ and suppose that there exists a bounded operator 
ܵା in ܧ such that [ܵݔ, [ݕ = ,ݔ] ܵାݕ], ݕ,ݔ ∈  :Then .ܧ

(I) ܵ is bounded with respect to the norm generated by the inner product [·,·] and 
,ݔܵ] [ݔܵ  ≤  max{‖ܵ‖, ‖ܵା‖}[ݔ, ,[ݔ ∋ ݔ   .ܧ 

(II) If ܵ is compact in ܧ, then ܵ is compact with respect to the norm generated by the 
inner product [·,·]. In this case, if ሚܵ denotes the continuous extension of ܵ to the 
completion ܧ෨ of ܧ with respect to the norm generated by [·,·], then ߪ(ܵ) = )ߪ ሚܵ) 
and the algebraic eigenspaces of ܵ in ܧ and of ሚܵ in ܧ ෩ corresponding to the same 
non-zero eigenvalue coincide. 

      In the sequel we use Lemma (6.2.6) with ܧ = ℋ equipped with the norm ‖·‖ of ℋ, 
with the inner product [·,·] = [·,·] ିభమ

 and with ܧ෨ =  ℋିభమ
 .  

Proposition(6.2.7)[31]: Under the assumptions (i), (ii), (iii), and (iv) the following hold: 
      (I) ℬିଵ ଶ⁄ ࣛ଴ℬିଵ ଶ⁄  is densely defined; 
      (II) ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄  is densely defined and bounded with  

ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮ  ≤ max {‖ࣛଵℬିଵ‖ ,‖ࣛଵ
∗ℬିଵ‖} . 

Proof. (I) The domain of ℬିଵ ଶ⁄ ࣛ଴ℬିଵ ଶ⁄  is the set ℬଵ ଶ⁄ ࣞ(ࣛ଴). To see that this set is dense 
in ℋ, let ݔ ∈ ℋ and ߝ > 0 be arbitrary and set ݕ = ℬିଵ ଶ⁄ ݔ  ∈ ࣞ൫ℬଵ ଶ⁄ ൯. Since ࣞ(ࣛ଴) is a 
core of the closed operator ℬଵ ଶ⁄  by assumption (iv), there exists a ݖ ∈ ࣞ(ࣛ଴) such that 
ฮݕ – ฮ ݖ < ݔand ฮ ߝ − ℬଵ ଶ⁄ ฮݖ = ฮℬଵ ଶ⁄ ݕ − ℬଵ ଶ⁄ ฮݖ <   .ߝ
      (II) The domain of ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄  is the set ℬଵ ଶ⁄ ࣞ(ࣛଵ). By assumption (iii) we have 
ࣞ(ℬ) ⊂ ࣞ(ࣛଵ) and hence ℬ

భ
మࣞ(ࣛଵ) ⊃ ℬ

భ
మࣞ(ℬ) = ࣞ(ℬ

భ
మ), which is dense.  

       In order to prove the remaining claims, we apply Lemma (6.2.6) with ܧ =  ℋ and 
෨ܧ = ℋିଵ ଶ⁄ . Since ࣞ(ℬ) ⊂ ࣞ(ࣛଵ) and ࣞ(ℬ) ⊂ ࣞ(ࣛଵ

∗) by assumption (iii), the operators 
ܵ ∶=  ࣛଵ ℬିଵ and ܵା ∶= ࣛଵ

∗  ℬିଵ are both bounded on ℋ. Moreover,  
[ࣛଵℬିଵݕ,ݔ]ିଵ ଶ⁄ = ൫ℬିଵ ଶ⁄ ࣛଵ ℬିଵݔ,ℬିଵ ଶ⁄ ൯ݕ  =  (ࣛଵℬିଵݔ,ℬିଵݕ)  

                                                = (ℬିଵݔ,ࣛଵ
∗  ℬିଵݕ) = ൫ℬିଵ ଶ⁄ ℬିଵ,ݔ ଶ⁄  ࣛଵℬିଵݕ൯ 

                                                = ଵࣛ,ݔ] 
∗  ℬିଵݕ]ିଵ ଶ⁄ ∋ ݕ,ݔ,   ℋ. 

Now Lemma (6.2.6) (I) shows that ࣛଵ ℬିଵ is bounded with respect to the norm induced by 
[·,·] ିଵ ଶ⁄  and, for ݕ ∈ ࣞ൫ℬଵ ଶ⁄  ൯,  

ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ = ฮଶݕ  ൣࣛଵ ℬିଵ ℬଵ ଶ⁄ ଵ ℬିଵℬଵࣛ,ݕ  ଶ⁄ ൧ݕ 
ିଵ ଶ⁄

 
                                  ≤ ℬଵൣ ܥ  ଶ⁄ ℬଵ,ݕ  ଶ⁄ ൧ݕ 

ିଵ ଶ⁄
 =   ଶ‖ݕ‖ܥ 

with ܥ = max{ ‖ࣛଵℬିଵ‖, ‖ࣛଵ
∗  ℬିଵ‖}. We have already seen that ࣞ൫ ℬଵ ଶ⁄ ൯ is dense in 

ℬଵ ଶ⁄  ࣞ(ࣛଵ) = ࣞ(ℬିଵ ଶ⁄ ࣛଵ ℬିଵ ଶ⁄ ), the estimate holds for all ݕ ∈ ℬିଵ)ܦ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ).   
Proposition(6.2.8)[31]: Under the assumptions (i), (ii), (iii), and (iv) with ߚ ∶= minߪ(ℬ) 
(>  0), the following hold: 

(I) ℬିଵࣛ଴ is densely defined and essentially self-adjoint in ℋଵ ଶ⁄ ; for its self-
adjoint closure ℳ଴ ∶=  ℬିଵ ࣛ଴ we have  

ࣛ଴ ≥ ଴ߙ   ⇒  ℳ଴ ≥  min{0,ߙ଴/ߚ}. 
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(II) ℬିଵ ࣛଵ is densely defined and bounded in ℋଵ ଶ⁄  ; for its bounded closure 
ℳଵ ∶=  ℬିଵࣛଵ we have   

‖ℳଵ‖ ≤  ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮ  . 
Proof. (I) Since ࣞ(ࣛ଴) ⊂ ࣞ(ℬ) ⊂ ࣞ൫ℬଵ ଶ⁄ ൯ = ℋଵ ଶ⁄ , the domain of ℬିଵࣛ଴ as an operator 
in ℋଵ ଶ⁄  is ࣞ(ࣛ଴) . The set ࣞ(ࣛ଴)   is dense in ℋଵ ଶ⁄  if and only if the set ℬଵ ଶ⁄ ࣞ(ࣛ଴) is 
dense in ℋ. The latter was shown in Proposition (6.2.7) (I) and its proof.  
      The symmetry of ℬିଵࣛ଴ in ℋଵ ଶ⁄  is immediate from the self-adjointness of ࣛ଴ and ℬ 
in ℋ: 

[ℬିଵࣛ଴ݔ, ଵ [ݔ
ଶ

= ൬ℬ
ଵ
ଶ ℬିଵࣛ଴ݔ,ℬ

ଵ
ଶݔ൰ = (ࣛ଴ݔ, (ݔ ∈ ℝ,   ݔ ∈ ࣞ(ࣛ଴).            (36) 

Hence for the first claim it remains to be shown that ൫ran( ℬିଵࣛ଴ ∓ ݅)൯
ୄభ
మ = {0},  where 

⊥ଵ ଶ⁄  denotes the orthogonal complement in ℋଵ ଶ⁄  . By the definition of [·,·] ଵ ଶ⁄  in (33) and 
by Proposition (6.2.4) (with ࣛଵ =  0), we have  

 ൫ran( ℬିଵࣛ଴ ∓ ݅)൯ୄభ మ⁄ =  ൫ran(ࣛ଴ ∓ ݅ℬ)൯ୄ =  ker((ࣛ଴ ∓ ݅ℬ)∗) 
                                             =  ker( ࣛ଴ ± ݅ℬ). 

If ݕ ∈ ker( ࣛ଴ ± ݅ℬ), then 
0 = ൫(ࣛ଴ ± ݅ℬ)ݕ,ݕ൯ = ( ࣛ଴ݕ,ݕ) ± ݅( ℬݕ,ݕ). 

Since ࣛ଴ and ℬ are selfadjoint, we conclude that ( ℬݕ,ݕ) = 0; as ℬ is uniformly positive, 
this implies ݕ =  0.  
      The last claim in (I) is immediate from (36) and from the estimate  

(ࣛ଴ݔ, (ݔ  ≥ ,ݔ)଴ߙ  (ݔ ≥  min{0,ߙ଴/ߚ}[ݔ, ଵ[ݔ ଶ⁄   , ∋ ݔ  ࣞ(ࣛ଴). 

      (II) Since ࣞ(ࣛଵ) ⊂ ࣞ(ℬ
భ
మ) by assumption (iv), the domain of ℬିଵࣛଵ as an operator in 

ℋଵ ଶ⁄  is ࣞ(ࣛଵ). The set ࣞ(ࣛଵ)  is dense in ℋଵ ଶ⁄  if and only if the set ℬଵ ଶ⁄ ࣞ(ࣛଵ) is dense 
in ℋ. The latter was shown in Proposition (6.2.7) (II) and its proof. 
By Proposition (6.2.7) (II) the operator ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄  is bounded. Hence, by the definition 
of the norm of ℋଵ ଶ⁄  in (33), 

‖ℬିଵ ࣛଵݔ‖ଵ ଶ⁄   =  ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ൫ℬଵ ଶ⁄   ൯ฮݔ 
                                 ≤  ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮ   ฮℬଵ ଶ⁄  ฮݔ 

                              =  ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮ   ‖ݔ‖ଵ ଶ⁄  
for ݔ ∈ ࣞ(ࣛଵ) ⊂ ࣞ(ℬଵ ଶ⁄ ) This implies that ℬିଵࣛଵ is bounded in ℋଵ ଶ⁄  and hence so is its 
closure ℳଵ. 
Proposition (6.2.9)[31]: In the Hilbert space ℋଵ ଶ⁄  define the linear operator ℳ by  

             ℳ ∶=  ℳ଴ + ℳଵ = ଵ( ࣛ଴ିܤ + ࣛଵ),                                           (37) 
where the closure on the right-hand side is taken in ℋଵ ଶ⁄  . Then  

             ℳ− = ߣ  ℬିଵ ଶ⁄  ℬିଵ ଶ⁄  ℒ(ߣ) ℬିଵ ଶ⁄ ℬଵ ଶ⁄ ∋ ߣ,   ℂ,                      (38) 
where the closure on the right-hand side is taken in ℋ and the operator ℬଵ ଶ⁄  is regarded as 
an isometric isomorphism from ℋଵ ଶ⁄  to ℋ with inverse ℬିଵ ଶ⁄    .  

Proof. Since ℬିభమ ℬ
భ
మ = ൫ ℬభࣞ|ܫ మ⁄ ൯  and ࣞ൫ℒ(ߣ)൯ ⊂ ࣞ(ࣛ଴) ⊂ ࣞ(ℬ) ⊂ ࣞ(ℬ

భ
మ), we can rewrite 

the operator identity (35) as  

ℬିଵ( ࣛ଴ + ࣛଵ) − ߣ = ℬିଵ ଶ⁄  ℬିଵ ଶ⁄ ℒ(ߣ) ℬିଵ ଶ⁄  ℬଵ ଶ⁄ ∋ ߣ,  ℂ.                  (39) 
The middle factor ℬିଵ ଶ⁄  ℒ(ߣ) ℬିଵ ଶ⁄  on the right-hand side of (39) can be written as 

ℬିଵ ଶ⁄  ℒ(ߣ)ℬିଵ ଶ⁄  =  ℬିଵ ଶ⁄  ࣛ଴ ℬିଵ ଶ⁄  + ℬିଵ ଶ⁄  ࣛଵ ℬିଵ ଶ⁄ −  .ߣ
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Here the operator ℬିଵ ଶ⁄ ࣛ଴ℬିଵ ଶ⁄  is densely defined by Proposition (6.2. 7) (I) and clearly 
symmetric in ℋ, thus closable in ℋ, while ℬିଵ ଶ⁄ ࣛଵ ℬିଵ ଶ⁄  is densely defined and bounded 
in ℋ by Proposition (6.2.7) (II), thus also closable in ℋ. Hence ℬିଵ ଶ⁄ ℒ(ߣ)ℬିଵ ଶ⁄   is a 
densely defined closable operator in ℋ.  
   The factors ℬିଵ ଶ⁄ , ℬଵ ଶ⁄  bordering the operator ℬିଵ ଶ⁄  ℒ(ߣ) ℬିଵ ଶ⁄  on the right-hand side 
of (39) are, respectively, an isometric isomorphism from ℋଵ ଶ⁄  to ℋ, and an isometric 
isomorphism from ℋ to ℋଵ ଶ⁄ . Taking closures in ℋଵ ଶ⁄ in (39), and bearing in mind the 
definition (37), we obtain (38).   
   Note that: In the proof of Proposition (6.2.9), we have shown that ℬଵ ଶ⁄ ℒ(ߣ)ିଵℬଵ ଶ⁄  is 
bounded in ℋ with dense domain ࣞ(ℬଵ ଶ⁄ ), while ℬ ℒ(ߣ)ିଵ is bounded in ℋିଵ ଶ⁄  with 
dense domain ℋ. Since ℬଵ ଶ⁄  is an isometric isomorphism from ℋ to ℋିଵ ଶ⁄  , the relation, 

ℬଵ ଶ⁄ ℒ(ߣ)ିଵℬଵ ଶ⁄ = ℬିଵ ଶ⁄  ℬ ℒ(ߣ)ିଵℬଵ ଶ⁄  
shows that the closure of ℬଵ ଶ⁄  ℒ(ߣ)ିଵ ℬଵ ଶ⁄  in ℋ satisfies  

ℬଵ ଶ⁄  ℒ(ߣ)ିଵ ℬଵ ଶ⁄  =  ℬିଵ ଶ⁄  (ℬ ℒ(ߣ)ିଵ)~ ℬଵ ଶ⁄                       (40) 
where (ℬ ℒ(ߣ)ିଵ)~  is the continuous extension of ℬ ℒ(ߣ)ିଵ to the space ℋିଵ ଶ⁄ . 
     In Proposition (6.2.3) (V) we have shown that, under the assumptions (i), (ii), and (iii), 
the spectrum of  ℒ consists only of eigenvalues, but not that  ߪ( ℒ ) is discrete. If we 
additionally suppose assumption (iv), we are able to prove that the operator ℳ in ℋଵ ଶ⁄  has 
compact resolvent and hence discrete spectrum and that the spectra of ℳ and of the linear 
operator pencil ℒ coincide. Moreover, we employ Lemma (6.2.6) (II) to show that the 
algebraic eigenspaces of ℒ and of ℳ at each eigenvalue coincide. 
      Recall that a sequence ൫ݔ௝൯଴

௟ ⊂ ࣞ(ࣛ଴) with ݈ ∈ ℕ଴ ∪ {∞} is a Jordan chain of ℒ at an 
eigenvalue ߣ ∈   ଴ ifݔ ௉( ℒ) corresponding to an eigenvectorߪ

             (ࣛ଴ + ࣛଵ − ௝ݔ(ℬߣ =  ℬݔ௝ିଵ, ݆ = 0, 1, . . . , ݈,                              (41) 
where we have set ିݔଵ ∶=  0 in the eigenvalue relation (see [137)] and note that ℒ′(ߣ) =
− ℬ and ℒ (௝)(ߣ) = 0 for ݆ > 2 since ℒ is linear). 
Theorem(6.2.10)[31]: Under the assumptions (i), (ii), (iii), and (iv), the operator ℳ has 
compact resolvent in ℋଵ ଶ⁄  and  

௉ (ℒ)ߪ  = (ℒ)ߪ   = (ℳ)ߪ   =  ;௉(ℳ)ߪ 
moreover, the algebraic eigenspaces of ℳ at an eigenvalue ߣ଴ and of the linear operator 
pencil ℒ at ߣ଴ coincide.  
Proof. First we prove that ߩ(ℒ) ⊂ ∋ ߣ To this end, let .(ℳ)ߩ  By (38), we have .(ℒ)ߩ 
ߣ ∈ if ℬିଵ (ℳ)ߩ ଶ⁄ ℒ(ߣ)ℬିଵ ଶ⁄  is boundedly invertible in ℋ. To prove the latter, we first 
show that ℬଵ ଶ⁄ ℒ(ߣ)ିଵ ℬଵ ଶ⁄  , which has dense domain ࣞ(ℬଵ ଶ⁄ ), is bounded in ℋ. Since 
ࣞ(ℒ(ߣ)) = ࣞ(ࣛ଴) ⊆ ࣞ(ℬ), the operator ℬ ℒ(ߣ)ିଵ is bounded in ℋ. We apply Lemma 
(6.2.6) (I) with the inner product [ݔ, భమି[ݕ

∶= ൫ℬିଵ ଶ⁄ ℬିଵ,ݔ ଶ⁄ ݕ,ݔ ,൯ݕ ∈ ℋ, defined in (34). 

Since ࣞ(ℒ(ߣ)∗) = ࣞ(ࣛ଴) ⊆ ࣞ(ℬ) by Proposition(6.3.5), the operator ℬ ℒ(ߣ)ି∗is bounded 
on ℋ and we have 
     [ℬ ℒ(ߣ)ିଵݕ,ݔ ]ିଵ ଶ⁄  =   ൫ℬିଵ ଶ⁄  ℬ ℒ(ߣ)ିଵݔ,ℬିଵ ଶ⁄ ൯ݕ    =  (ℒ(ߣ)ିଵݔ,  (ݕ

  = (ݕ∗ି(ߣ)ℒ,ݔ) = ൫ℬିଵ ଶ⁄ ℬିଵ,ݔ  ଶ⁄  ℬ ℒ(ߣ)ି∗ݕ൯ = ଵି[ݕ∗ି(ߣ)ℬ ℒ,ݔ ] ଶ⁄  , ݕ,ݔ ∈ ℋ. 

Now Lemma (6.2.6) shows that ℬ ℒ(ߣ)ିଵ is bounded with respect to the norm induced by 
[·,·] ିଵ ଶ⁄  . Thus there exists ܥ ≥  0 such that  

ฮℬିଵ ଶ⁄  ℬ ℒ(ߣ)ିଵݕฮଶ ≤ ฮℬିଵ ܥ   ଶ⁄ ∋ ݕ,ฮଶݕ   ℋ; 
setting ℬିଵ ଶ⁄ = ݕ    we obtain ,ݔ 
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              ฮℬଵ ଶ⁄  ℒ(ߣ)ିଵ ℬଵ ଶ⁄ ฮଶݔ   ≤ ,ଶ‖ ݔ‖ܥ  ∋ ݔ  ࣞ( ℬଵ ଶ⁄ ) .                                (42) 

Since ࣞ(ℬ
భ
మ) is dense in ℋ, it follows that the operator ℬ

భ
మℒ(ߣ)ିଵℬ

భ
మ is closable in ℋ with 

everywhere defined bounded closure ℬ
భ
మ ℒ(ߣ)ିଵ ℬ

భ
మ.  

      From the relation  
ℬଵ ଶ⁄ ℒ(ߣ)ିଵℬଵ ଶ⁄ ℬିଵ ଶ⁄ ℒ(ߣ) ℬିଵ ଶ⁄ = ℬଵ ଶ⁄ ℒ(ߣ)ିଵℒ(ߣ)  ℬିଵ ଶ⁄ =  ℬଵ ଶ⁄ ℬିଵ(బࣛ )ࣞ|ܫ  ଶ⁄  

= ℬభ|ܫ   మ⁄ ࣞ( ࣛబ) , 

it follows that the operator (ߣ)ܩ = ℬିభమ ℒ(ߣ) ℬିభమ in ℋ, which is closable by Proposition 
(6.2.9), is injective. By (42), the inverse (ߣ)ܩିଵ = ℬ

భ
మℒ(ߣ)ିଵℬ

భ
మ is bounded with dense 

domain, thus closable. Hence (see, e.g.,[101]) the closure (ߣ)ܩ =  ℬିభమℒ(ߣ) ℬିభమ is also 

injective with inverse  (ߣ)ܩ 
ିଵ

= ଵି(ߣ)ܩ =  ℬ
భ
మℒ(ߣ)ିଵ ℬ

భ
మ, which is bounded and every-

where defined.  
      Now we are ready to prove that ℳ has compact resolvent. Let ߣ ∈ (ℒ)ߩ   .(ℳ)ߩ ⊃
Since ℬ is (ࣛ଴ + ࣛଵ)-compact by Proposition (6.2.3) (III) and, clearly, ℬ-bounded, 
Lemma (6.2.1) implies that ℬ is ℒ(ߣ)-compact. Now we apply Lemma (6.2.6) (II) to the 
compact operator ℬ ℒ(ߣ)ିଵ in ℋ (see above). As a consequence, we obtain that the 
continuous extension (ℬ ℒ(ߣ)ିଵ)~ of ℬ ℒ(ߣ)ିଵ to the space ℋିଵ ଶ⁄  is compact in ℋିଵ ଶ⁄  and 
hence, by (38) and (40),  

(ℳ ଵି(ߣ− = ℬିଵ ଶ⁄ ℬଵ ଶ⁄  ℒ(ߣ)ିଵ ℬଵ ଶ⁄  ℬଵ ଶ⁄ = ℬିଵ(ℬℒ(ߣ)ିଵ)~ ℬ           (43) 
is compact in ℋଵ ଶ⁄  .  
      Next we show the equality of the spectra and point spectra of ℒ and ℳ. Due to (37), 
(41) and the inclusion ࣞ(ࣛ଴) ⊂ ࣞ(ℳ), if ߣ଴ ∈ ௉(ℒ) with algebraic eigenspace ܼఒబߪ ⊂
ࣞ( ࣛ଴ ), then ߣ଴ ∈ ௉( ℳ ) with the same algebraic eigenspace ఒܼబߪ ⊂  ࣞ( ℳ ). Together 
with the inclusion ߩ(ℒ) ⊂  proved above and the fact that the spectrum of ℒ consists (ℳ)ߩ
only of eigenvalues by Proposition (6.2.3) (V), we find 

௉(ℒ)ߪ  ⊂ ௉(ℳ)ߪ  ⊂ (ℳ)ߪ   ⊂ (ℒ)ߪ   =  ,௉(ℒ)ߪ 
and hence equality prevails everywhere. 
      It remains to be proved that if  ߣ଴ ∈ ௉(ℳ)ߪ = ௉(ℒ) and ఒܼబߪ ⊂ ࣞ(ℳ) ⊂ ℋଵ ଶ⁄  is the 
algebraic eigenspace of ℳ at ߣ଴, then ܼఒబ ⊂ ࣞ(ࣛ଴) = ࣞ(ℒ (ߣ଴)); then, since ℳ|ࣞ(ࣛబ) −
଴ߣ =  ℬିଵ(ࣛ଴ + ࣛଵ) −  .଴ߣ ଴, it is immediate that ܼఒబis the algebraic eigenspace of ℒ atߣ
Let ߤ ∈ be arbitrary, but fixed. It is not very difficult to show that ܼఒబ (ℳ)ߩ ⊂ ࣞ(ℳ) ⊂
ℋଵ ଶ⁄  is the algebraic eigenspace of ℳ at ߣ଴ if and only if ܼఒబ is the algebraic eigenspace of 
the operator (ℳ− ଴ߣ) ଵ atି(ߤ − ⊃ ଵ . By (43) we see that ℬܼఒబି(ߤ ℋିଵ ଶ⁄  is the algebraic 
eigenspace of the operator (ℬℒ(ߤ)ିଵ)~  in ℋିଵ ଶ⁄   at (ߣ଴ −   ଵ ; in fact, the relationି(ߤ

((ℳ ଵି(ߤ− − ଴ߣ) − ௝ݔ (ଵି(ߤ = ݆     ,௝ିଵݔ = 0, 1, . . . , ݈,  
for a Jordan chain ൫ݔ௝൯଴

௟ ⊂ ℋଵ ଶ⁄ = ࣞ(ℬଵ ଶ⁄ ) of (ℳ− ଴ߣ) ଵ atି(ߤ −   ଵ can be written asି(ߤ
 ℬିଵ((ℬ ℒ(ߣ)ିଵ)~ − ଴ߣ) − ௝ݔଵ)  ℬି(ߤ = ℬିଵ ℬݔ௝ିଵ,    ݆ = 0,1, . . . , ݈.  

Now Lemma (6.2.6)(II) yields that ℬ ఒܼబ is the algebraic eigenspace of the operator ℬℒ(ߤ)ିଵ 
in ℋ at (ߣ଴ − ଵ and hence, in particular, ℬି(ߤ ఒܼబ ⊂ ℋ . The latter implies that ܼఒబ ⊂ ࣞ(ℬ) 
and that ఒܼబ  is the algebraic eigenspace of the operator ℒ(ߤ)ିଵℬ in ℋ at (ߣ଴ −  ଵ. Theି(ߤ
corresponding relation for Jordan chains  

(ℒ(ߤ)ିଵℬ − ଴ߣ) − ௝ݔ (ଵି(ߤ  = = ݆       ,௝ିଵݔ   0, 1, . . . , ݈, 
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shows that ݔ଴ = ଴ߣ)  − ଴ݔଵ ℬି( ߤ )ℒ (ߤ ∈  ࣞ൫ℒ( μ )൯  =  ࣞ(ࣛ଴ ) and hence, by induction, 
௝ݔ  = ଴ߣ)  − ௝ݔଵ ℬି(ߤ)൫ℒ(ߤ + ௝ିଵ൯ݔ ∈ ࣞ൫ℒ(ߤ)൯  =  ࣞ(ࣛ଴), ݆ = 1, 2, . . . , ݈. This proves that 
ఒܼబ ⊂ ࣞ(ࣛ଴).  

Theorem(6.2.11)[31]: Under the assumptions (i), (ii), (iii), and (iv), the spectrum of the 
linear operator pencil ℒ(ߣ) = ࣛ଴ + ࣛଵ − ,ℬߣ ߣ ∈ ℂ, is discrete, consists only of eigen-
values of finite algebraic multiplicity and lies in the horizontal strip  

௉(ℒ)ߪ  ⊂  ൛ߣ ∈  ℂ ∶ | (ߣ)ॅ|   ≤  ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮൟ  . 
Proof. All claims follow from Theorem (6.2.10) and from the fact that ℳ = ℳ଴ + ℳଵ is a 
perturbation of the selfadjoint operator ℳ଴ in ℋଵ ଶ⁄  by the operator ℳଵ which is bounded in 
ℋଵ ଶ⁄  with norm ‖ℳଵ‖ ≤ ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮ  by Proposition (6.2.8) (II).  
      The above spectral inclusion may be improved if e.g. ࣛ଴ is semi-bounded and the 
structure of the perturbation ࣛଵ is taken into account using a numerical range argument.  
Theorem(6.2.12)[31]: Let the assumptions (i), (ii), (iii), and (iv) be satisfied and let 
ܾଵ , ܾଶ  ∈  ℝ be such that for the bounded operator ℬିଵ ଶ⁄ ࣛଵ ℬିଵ ଶ⁄   
       (I) ܾଵ ≤  ॅ( ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ (ݕ,ݕ  ≤  ܾଶ,ݕ ∈  ℬଵ ଶ⁄ ࣞ( ࣛଵ), ‖ݕ‖ = 1.  
Then the spectrum of the linear operator pencil ℒ(ߣ) = ࣛ଴ + ࣛଵ − ,ℬߣ ߣ ∈ ℂ, is contained 
in the horizontal strip  

௉(ℒ)ߪ  ⊂ ∋ ߣ}   ℂ ∶  ܾଵ ≤  ℑ(ߣ) ≤  ܾଶ}; 
if ܽଵ ∈  ℝ is such that 
      (II) ℜ( ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ (ݕ,ݕ   ≥  ܽଵ,ݕ ∈  ℬଵ ଶ⁄ ࣞ( ࣛଵ), ‖ݕ‖ = 1,  
and we suppose, in addition, that ࣛ଴ is semi-bounded with ܽ଴ ∈ ℝ such that  
      (III) ℬିଵ ଶ⁄ ࣛ଴ ℬିଵ ଶ⁄ ≥ ܽ଴ ,  
then the spectrum of ℒ is contained in the horizontal semi-strip  

௉(ℒ)ߪ ⊂ ∋ ߣ}   ℂ ∶  ℜ(ߣ) ≥ ܽ଴ + ܽଵ, ܾଵ ≤  ℑ(ߣ) ≤  ܾଶ}. 
Proof. Let ߣ ∈ (ℒ)ߪ = ݔ ௉(ℒ). Then there is anߪ ∈ ൯(ߣ)൫ℒܦ = ࣞ(ࣛ଴), ݔ ≠ 0, with 

( ࣛ଴ݔ, (ݔ + (ࣛଵݔ, (ݔ  = ,ݔℬ)ߣ   .(ݔ
As ℬ is uniformly positive, we have ݕ ∶= ℬଵ ଶ⁄ ݔ ≠ ݕ,0 ∈ ℬଵ ଶ⁄ ࣞ(ࣛ଴) ⊂ ℬଵ ଶ⁄ ࣞ(ࣛଵ),and 

= ߣ  
൫ ℬିଵ ଶ⁄ ࣛ଴ℬିଵ ଶ⁄ ൯ݕ,ݕ

ଶ‖ݕ‖
 + 

൫ ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ൯ݕ,ݕ
ଶ‖ݕ‖

 . 

Since  ࣛ଴ is self-adjoint, all claims follow if we take real and imaginary parts.   
Note that: The spectral inclusions in Theorem (6.2.12) also follow if we note that ߪ௉(ℒ) =
௉(ℳ)ߪ ⊂  ܹ(ℳ) and that the numerical range of ℳ = ℬିଵ(ࣛ଴ + ࣛଵ) as an operator in 
ℋଵ ଶ⁄  satisfies ܹ(ℳ) ⊂ ܹ(ℬିଵ(ࣛ଴ + ࣛଵ)) and  
 

ܹ൫ ℬିଵ(ࣛ଴ + ࣛଵ)൯ = ቐ
( ℬିଵ(ࣛ଴ + ࣛଵ)ݔ, ଵ(ݔ

ଶ
ଵ‖ݔ‖

ଶ

ଶ  ∶ ∋ ݔ  ࣞ( ࣛ଴), ݔ ≠ 0ቑ  

                                   =  ൜
( (ࣛ଴ + ࣛଵ)ݔ,  (ݔ

‖ℬଵ ଶ⁄  ‖ݔ
ଶ ∶ ∋ ݔ    ࣞ( ࣛ଴), ≠ ݔ  0ൠ . 

Hence, according to Proposition (6.2.8), one can always choose  

ܽ଴  =  min ൜0,
଴ߙ
ߚ
ൠ ,     ܽଵ = ܾଵ =  ܾଶ = ฮℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ฮ  . 

      We study the basis properties of the eigenvectors and associated vectors of the linear 
operator pencil ℒ(ߣ) = ࣛ଴ + ࣛଵ − ,ℬߣ ߣ ∈ ℂ, by means of the linear operator ℳ = ℳ଴ +
ℳଵ introduced in the previous part.  
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Throughout this part we assume that the operators ࣛ଴, ࣛଵ , and ℬ satisfy the assumptions 
(i), (ii), (iii) and assumption (iv). We begin by showing that a system of eigen−and 
associated vectors of ℒ can be chosen to form a so-called Riesz basis in ℋଵ ଶ⁄  , that is, a 
basis equivalent to an orthonormal basis (see [154]). Here we use the following perturbation 
result for semi-bounded self-adjoint operators.  
Theorem(6.2.13)[31]: Let ଴ܶ be a semi-bounded self-adjoint operator in a Hilbert space ܩ 
with compact resolvent whose eigenvalues ߣଵ଴ ≤ ଶ଴ߣ ≤ ··· are eventually simple and satisfy 
௟଴ߣ − ௟ିଵ଴ߣ → ∞, ݈ → ∞, and let ଵܶ be a bounded operator in ܩ. Then the operator ܶ ∶= ଴ܶ +
ଵܶ has compact resolvent, its eigenvalues are eventually simple, and its eigen-and associated 

functions can be chosen to form a Riesz basis in ܩ.  
Theorem(6.2.14)[31]: Suppose that the eigenvalues ߣଵ଴ ≤ ଶ଴ߣ  ≤ ··· of the linear operator 
pencil ℒ଴(ߣ) =  ࣛ଴ − ௟଴ߣ ℬ are eventually simple and satisfyߣ − ௟ିଵ଴ߣ → ∞, ݈ → ∞. Then 
the eigen- and associated functions of the operator pencil ℒ(ߣ) = ࣛ଴ + ࣛଵ −  ℬ can beߣ
chosen to form a Riesz basis in ℋଵ ଶ⁄  . 
Proof. Due to Theorem (6.2.10), the eigenvalues of ℒ and ℳ = ℳ଴ + ℳଵ and the corres-
ponding algebraic eigenspaces coincide. By Proposition (6.2.8), ℳ଴  =  ℬିଵ ࣛ଴ is self-
adjoint in ℋଵ ଶ⁄  , while ℳଵ = ℬିଵ ࣛଵis bounded and everywhere defined in ℋଵ ଶ⁄  . Now 
Theorem (6.2.13) applied to the operators ℳ଴ and ℳଵ in ℋଵ ଶ⁄  yields the claim.  
     The next aim is to show that the eigen- and associated vectors of the linear pencil ℒ even 
form a Bari basis, that is, a basis quadratically close to an orthonor-mal basis (see [154]). To 
this end, we employ a result due to A.S. Markus (see [154], [114]) which requires more 
detailed knowledge about the asymptotic behaviour of the eigenvalues. 
      Recall that an operator ܶ in a Hilbert space ܩ is called dissipative if 

ℑ(ܶݔ, (ݔ  ≥ ∋ ݔ         ,0  ࣞ(ܶ ), 
and quasi-dissipative if there exists a ߛ ∈ ℝ such that ܶ +  .is dissipative ߛ݅
Theorem(6.2.15)[31]: Suppose that ܶ is a bounded dissipative operator in a Hilbert space 
,ଵஶ(ఔߣ) with compact imaginary part which has a sequence of eigenvalues ܩ ఔߣ ≠   ఓߣ
for ߥ ≠  ܶ ఒഌdenote, respectively, the geometric and algebraic eigenspaces ofܮ Let ఒܰഌand .ߤ
at ߣఔ and define ݊ఔ ∶= dim ଴ߥ ఒഌ .Suppose that there existsܮ ∈ ℕ such that ఒܰഌ =  ఒഌ  forܮ
ߥ ≥  ଴, and suppose that the system of all eigen-and associated vectors of  ܶ is complete inߥ
  If .ܩ

෍ min൛݊ఔ,݊ఓൟ  
ℑ(ߣఔ)ℑ൫ߣఓ൯

หߣఔ − ఓหߣ 
ଶ

ஶ

ఔ,ఓୀଵ
ఔஷఓ

    <  ∞, 

then a sequence consisting of orthonormal bases of all the algebraic eigenspaces ܮఒഌ forms 
a Bari basis of ܩ.  
    In the following we show that there exists a point ߞ ∈ ℂ such that the operator (ℳ−  ଵି(ߞ
satisfies the assumptions of Theorem (6.2.15). To this end, we show the following auxiliary 
result.  
Theorem(6.2.16)[31]: Suppose that the eigenvalues ߣଵ଴ ≤ ଶ଴ߣ   ≤ ··· of the linear operator 
pencil ℒ଴(ߣ) = ࣛ଴ − ௟଴ߣ ℬ are eventually simple and satisfyߣ − ௟ିଵ଴ߣ →  ∞, ݈ → ∞. Let 
ଵஶ(௟ߣ) ⊂ ℂ denote the eigenvalues of ℒ and hence of ℳ. Choose ߞ ∈ ℂ such that (ℳ−
෩௟ ߣ ଵ exists and is dissipative and setି(ߞ ∶= ௟ߣ) − , ଵି(ߞ ݈ ∈ ℕ. If  

෍
ℑ൫ߣሚఔ൯ℑ൫ߣሚఓ൯

ቚߣሚఔ − ሚఓቚߣ
ଶ

ஶ

ఔ,ఓୀଵ
ఔஷఓ

    <  ∞,                                                            (44) 



214 
 

then the eigen-and associated functions of the linear operator pencil ℒ can be chosen to 
form a Bari basis in ℋଵ ଶ⁄ .  
Proof. By Proposition (6.2.8), the operator ℳଵ is bounded in ℋଵ ଶ⁄ . Hence we can choose 
ߞ ∈ ℂ such that (ℳ−   ଵ exists andି(ߞ

ܻ ∶= −ℑ(ߞ) + 
1

2݅ 
 (ℳଵ −ℳଵ

∗) ≤  0. 
By Theorem (6.2.10), (ℳ −  .ଵ is compact and has, thus, also compact imaginary partି(ߞ
Moreover, a short calculation shows that  

ℑ((ℳ− (ଵି(ߞ = −(ℳ− −ℳ)ܻ    ∗ି(ߞ ଵି(ߞ  ≥  0. 
Theorem (6.2.14) also yields that the eigenvalues of ℳ are eventually simple and the 
eigen-and associated vectors of ℳ are complete in ℋଵ ଶ⁄  . Hence Theorem (6.2.15)  applies 
to the operator (ℳ −  ሚ௟ are the eigenvalues ofߣ ଵ. It is not difficult to see that the pointsି(ߞ
(ℳ− ௟ and of (ℳߣ ଵ and the algebraic eigenspaces of ℳ atି(ߞ  −  .ሚ௟ coincideߣ ଵ atି(ߞ
Now Theorem (6.2.15), together with the fact that the eigenvalues and algebraic eigen-
spaces of ℒ and ℳ coincide by Theorem (6.2.10), completes the proof.   
      In view of applications to differential equations, the next observation is useful.  
Proposition(6.2.17)[31]: Let (ߣ௟)ଵஶ  ⊂ ℂ be a sequence and suppose that there exist 
constants ܿ,݀ ∈ ℝ such that ߣ௟ = ݈ܿଶ + ݈݀ + ܱ(1) for ݈ → ∞. Let ߞ ∈ ℂ and set ߣሚ௟ ∶=
௟ߣ) − , ଵି(ߞ ݈ ∈ ℕ. Then the sequence ൫ߣሚ௟൯ଵ

ஶ
 satisfies the condition (44).  

      The Hagen-Poiseuille problem arises in the linear stability analysis of incompressible 
flow in a circular pipe subject to non-axisymmetric disturbances (see [105]); it leads to a 
spectral problem for a system of singular differential equations of the form  

⎝

⎛
࣮(݇ଶݎଶ ࣮) + ࣮ܷܴߙ݅ + ܴߙ݅

1
ݎ
൬
ܷᇱ

݇ଶݎ
൰
ᇱ

࣮݊ߙ2

࣮݊ߙ2 − ܴ݅݊
ܷᇱ

ݎ
࣭ + ⎠ଶݎଶܷܴ݇ߙ݅

⎞൬
ߔ
ߗ
൰ 

                  = ܴܿߙ݅ ቀ࣮ 0
0 ݇ଶݎଶቁ ൫

ః
ఆ൯                                                      (45) 

on the interval (0,1] where ܴ ≥ 0 is the Reynolds number, ߙ ∈ ℝ is the streamwise wave 
number, ݊ ∈ চ is the azimuthal wave number, ܿ is a complex wave speed, and ߣ =  is ܴܿߙ݅
considered as the spectral parameter. The differential expressions ࣮ and ࣭ are given by  

                                                 ࣮ ∶=
1
ଶݎ
−

1
ݎ
݀

ݎ݀ 
൬

1
ݎଶ(ݎ)݇

݀
ݎ݀ 

൰,  

࣭ ∶= ଶݎସ(ݎ)݇ −
1
ݎ
݀

ݎ݀ 
൬݇(ݎ)ଶݎଷ

݀
ݎ݀ 

൰ ,                                          (46) 

where  
ଶ(ݎ)݇               = ଶߙ   + ݊ଶ/ݎଶ,          ݎ ∈  (0, 1],                                (47)  

and the axial mean flow ܷ ∶ [0, 1] → ℝ is assumed to be twice differentiable with  
              lim௥⟶଴ܷ′(ݎ)  =  0 ,       ܷ″ bounded on [0, 1].                        (48)  

In the applications literature the system (45) is supplemented by what we shall term 
‘physical’ boundary conditions, such as those in [105]: 
(1)ߔ              = ᇱ(1)ߔ = (1)ߗ  = 0, 

lim
௥→଴

(ݎ)ߔ  = lim
௥→଴

(ݎ)ᇱߔ = 0 if ݊ =  0,                                 (49) 
(1)ߔ               = ᇱ(1)ߔ = (1)ߗ  = 0, lim

௥→଴
(ݎ)ߔ = 0, 

                      lim௥→଴(ݎ)′ߔ finite, lim௥→଴(ݎ)ߗ   = 0 if ݊ =  ±1,         (50) 
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(1)ߔ                = ᇱ(1)ߔ  = (1)ߗ  = 0, 
lim
௥→଴

(ݎ)ߔ = lim
௥→଴

(ݎ)ᇱߔ = lim
௥→଴

(ݎ)ߗ = 0  if |݊| ≥  2.      (51) 
Reference [111] discussed the extent to which these conditions appear in the construction of 
operator realizations of the differential expressions. It turns out that some of the conditions 
at ݎ = 0 need not be imposed, as they are satisfied automatically in the natural Hilbert space 
setting. In order to understand these and other issues, we now establish some notation and 
review results from [111]. The characterization of the operators involved, and their 
properties, depends on whether or not ݊ = 0 because the coefficient ݇(ݎ) behaves rather 
differently as ݎ ⟶ 0 for ݊ ≠ 0 and for ݊ = 0.  
      In the Hilbert space ܮଶ((0, 1]; )ࣞ let the operator ෨ܶ଴ be defined by (ݎ  ෨ܶ଴) = ,଴ஶ(0ܥ 1) 
with ෨ܶ଴ݑ = ∋ ݑ for ݑ࣮  ࣞ( ෨ܶ଴). Integration by parts shows that ෨ܶ଴ is symmetric in 
;[ଶ((0,1ܮ -and hence closable. It is a well-known result in the standard theory of Sturm  (ݎ
Liouville problems (see e.g. [24]) that its closure ଴ܶ, called the minimal operator associated 
with ࣮, has domain 

ࣞ( ଴ܶ) = ݑ} ∈ ࣞ( ଴ܶ
(1)ݑ:(∗ = ᇱ(1)ݑ = ݒ∀ ;0 ∈ ࣞ( ଴ܶ

∗), ,ݑ} {ݒ = 0},             (52) 
where  

ࣞ( ଴ܶ
∗) = ൜ݑ ∈ ,ଶ((0ܮ 1]; ,ݑ :(ݎ 

ᇱݑ

݇ଶݎ
∈ ,௟௢௖([0ܥܣ ݑ࣮,([1 ∈ ,ଶ((0ܮ 1]; ൠ(ݎ  ,   (53) 

,ݑ} {ݒ ∶=  lim
௥⟶଴

อ
(ݎ)ݑ (ݎ)ݒ

1
݇ଶݎ

(ݎ)ᇱݑ
1
݇ଶݎ

อ(ݎ)ᇱݒ  .                                              (54) 

If ݊ ≠ 0 then ݎ = 0 is a limit point singularity and so the condition {ݑ, {ݒ = 0 is satisfied 
for all ݑ and ݒ in ࣞ( ଴ܶ

∗); it can therefore be dropped. 
Lemma(6.2.18)[31]:  For every ݊ ∈  চ  the minimal operator  ଴ܶ  associated with  ࣮ in 
,ଶ((0ܮ 1];  is uniformly positive and admits a self-adjoint Friedrichs extension ଵܶ with (ݎ 
domain 

             ࣞ( ଵܶ) = ∋ ݑ} ࣞ( ଴ܶ
(1)ݑ :(∗ =  0}       if    ݊ ≠  0,                          (55)  

             ࣞ( ଵܶ) = ∋ ݑ} ࣞ( ଴ܶ
(1)ݑ :(∗ =  0, ,ݑ} {ݒ = 0}     if  ݊ = 0,             (56)  

(Here ݒ is the solution of the differential equation ࣮ݒ =  0 having the asymptotic behavior 
(ݎ)ݒ = ଶݎ  + ସݎܽ   + ··· when ݎ ⟶ 0.) A lower bound for ଵܶ is given by  

ଵܶ  ≥  ߬ఈ,௡ ∶= minߪ( ଵܶ) ≥  ߬̃ఈ,௡ ∶=

⎩
⎨

⎧1 +
݆଴,ଵ
ଶ

ଶߙ + ݊ଶ
    if  ݊ ≠  0,

1 +
ଶߨ

ଶߙ
             if  ݊ =  0,

.                 (57) 

Moreover, ଵܶ has compact resolvent.  
Proof. Since ଴ܶ and ଵܶ have the same lower bound, we may consider ݕ ∈ ࣞ( ଴ܶ). By [111] 
we know that lim௥→଴ (ݎ)ݕ = (1)ݕ = 0 for every ݊ ∈ চ.  
      For ݊ ≠ 0 we use the estimate ݇(ݎ)ଶݎଶ = ଶݎଶߙ + ݊ଶ ≤ ଶߙ + ݊ଶ, ݎ ∈ [0,1], to obtain 

               ( ଴ܶݕ,ݕ)௅మ൫(଴,ଵ]; ௥൯  =   නቆ
ଶ|(ݎ)ݕ|

ݎ
 +  

ଶ|(ݎ)ᇱݕ|ݎ

ଶݎଶ(ݎ)݇
ቇ

ଵ

଴

  ݎ݀ 

             ≥ ଶ௅మ൫(଴,ଵ]; ௥൯‖ݕ‖  +  
1

ଶߙ + ݊ଶ
 නݕ|ݎᇱ(ݎ)|ଶ
ଵ

଴

  ݎ݀ 

                    ≥  ቀ1 + ఔబ
ఈమ  ା ௡మ

ቁ ௅మ((଴,ଵ]; ௥)‖ ݕ‖  
ଶ  ,                                                   (58) 

where ߥ଴ is the smallest eigenvalue of the spectral problem 
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ᇱ(ᇱݕݎ)− = (1)ݕ   ,ϐinite(0)ݕ   ,ݕݎߣ  = ݕ   ,0  ∈ ,ଶ((0ܮ 1];  (59)                  .(ݎ 
Eq. (59) is a Bessel differential equation for which ߥ଴ = ݆଴,ଵ

ଶ  is the square of the first zero of 
the Bessel function ܬ଴ (see [18]). 
      For ݊ = 0 we use the estimate ݇(ݎ)ଶݎ = ݎଶߙ ≤ ,ଶߙ ݎ ∈ [0,1], to obtain  

( ଴ܶݕ,ݕ)௅మ൫(଴,ଵ]; ௥൯  =   නቆ
ଶ|(ݎ)ݕ|

ݎ
 + 

ଶ|(ݎ)ᇱݕ|

ቇ ݎଶߙ
ଵ

଴

  ݎ݀ 

                                                ≥ ଶ௅మ൫(଴,ଵ]; ௥൯‖ݕ‖   + 
1
 ଶߙ

 න|ݕᇱ(ݎ)|ଶ
ଵ

଴

  ݎ݀ 

                                                                    ≥  ቀ1 + గమ

ఈమ
ቁ ௅మ((଴,ଵ]; ௥)‖ ݕ‖  

ଶ  ,  
where ߨଶ is the smallest eigenvalue of the Sturm–Liouville problem 

= ″ݕ− (0)ݕ    ,ݕߣ   = (1)ݕ   = ∋ ݕ    ,0  ,ଶ((0ܮ  1];  1). 
The compactness of the resolvent of ଵܶ was proved in [111]. 
   For ݊ ≠ 0, we work in the space ܮଶ((0,1];  and we define ܵ଴ to be the minimal operator (ݎ
associated with ࣭ in the same way as we defined the minimal operator ଴ܶ associated with 
࣮.  
Lemma(6.2.19)[31]: For ݊ ≠ 0 the minimal operator ܵ଴ associated with ࣭ in ܮଶ((0, 1];  (ݎ 
is uniformly positive and admits a self-adjoint Friedrichs extension ܵଵ with domain  

ࣞ(ܵଵ ) =  ቊݕ ∈ ,ଶ൫(0ܮ  1]; ᇱݕଷݎଶ݇,ݕ :൯ݎ  ∈ ,୪୭ୡ ൫(0ܥܣ  1]൯ ,
∋ ݕ࣭  ,ଶ((0ܮ  1]; (1)ݕ, (ݎ   =  0

ቋ   . 

satisfying ࣞ(ܵଵ) ⊂ ࣞ( ଵܶ) ⊂ ࣞ( ଴ܶ
∗), and lower bound given by  

                                      ଵܵ ≥ ఈ,௡ߪ  = min (ଵܵ)ߪ ≥  ෥ఈ,௡ߪ  

           ∶= ଶߙ  +  ݊ଶ݆଴,ଵ
ଶ + ൜(ߙ

ଶ  +  ݊ଶ)ଶ     if  ߙ <  ݊
≤ ߙ  ଶ݊ଶ               ifߙ4  ݊

   .               (60)  

(Here ݆଴,ଵ is the first zero of the Bessel function ܬ଴.) Moreover, ܵଵ has compact resolvent.  
Proof. By [111], we know that lim௥→଴ (ݎ)ݕ = 0 for every ݕ ∈ ࣞ(ܵଵ). From the differential 
expression ࣭ defining ܵଵ (see (46)), 

(ܵଵݕ,ݕ)௅మ൫(଴,ଵ]; ௥൯ = න ଶ|(ݎ)ݕ|ଶ(ݎ)ℎݎ 
ଵ

଴

ݎ݀  + න  ℎ(ݎ) |(ݎ)′ݕݎ|ଶ
ଵ

଴

, ݎ݀  (61) 

in which ℎ(ݎ) ∶= ݎଶ(ݎ)݇  = ݎଶߙ + ௡మ

௥
  , ݎ ∈ (0,1]. We immediately bound the first integral 

from below by (min௥∈(଴,ଵ]  ℎ(ݎ)ଶ)‖ݕ ‖௅మ((଴,ଵ]; ௥)
ଶ  

 and we easily check that 

min
௥∈(଴,ଵ]

 ℎ(ݎ) = ൝
ℎ(1) = ଶߙ  +  ݊ଶ        if ߙ <  ݊,

ℎ ቀ
݊
ߙ
ቁ = ≤ ߙ if                ݊ߙ2  ݊, 

For the second integral we note that ݎଶℎ(ݎ) = ଷݎଶߙ + ݊ଶݎ, ݎ ∈ (0, 1], and that  
 

න  ℎ(ݎ) |(ݎ)′ݕݎ|ଶ
ଵ

଴

= ݎ݀  ଶߙ   නݎଷ |ݕᇱ(ݎ)|ଶ
ଵ

଴

+ ݎ݀     ݊ଶන ଶ|(ݎ)ᇱݕ| ݎ
 ଵ 

଴

 ݎ݀  

                                                     ≥ ଴ߤଶߙ)  +  ݊ଶߥ଴)‖ݕ ‖௅మ((଴,ଵ]; ௥)
ଶ , 

in which ߥ଴ =  ݆଴,ଵ
ଶ  is the smallest eigenvalue of the spectral problem (59) and ߤ଴ is the 

infimum of the spectrum of the Sturm–Liouville problem 
– ᇱ(ᇱݕଷݎ) = (1)ݕ   ,ݕݎߣ  = ݕ   ,0  ∈ ,ଶ൫(0ܮ 1];  ൯,                           (62)ݎ 
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Eq.(62) can be solved explicitly in powers of ݎ to show that the spectrum is purely essential 
and covers the semi-axis [1,∞), whence ߤ଴ =  1. 
    The compactness of the resolvent of ܵଵ was proved in [111].  
    For ݊ = 0, the system of differential equations (45) decouples, but in the second equation 
the coefficient ݇ଶݎଶ of the spectral parameter ߣ =  .is no longer uniformly positive ܴߙ݅
Therefore, in this case we work in the space ܮଶ൫(0, 1];  ଷ൯. We shall need the followingݎ 
results. 
Lemma(6.2.20)[31]:  For ݊ =  0 the Sturm–Liouville differential expression ଵ 

ఈమ௥మ
 ࣭ is 

formally symmetric in the space ܮଶ൫(0,1]; ݎ ଷ൯. It is regular atݎ = 0 and limit point (see, 
e.g., [24]) at ݎ =  0. Moreover, the non-trivial solutions of the differential equation 
ଵ 

ఈమ௥మ
= ݑ࣭  ,ݑߣ  ∋ ߣ  ℝ, always have at most finitely many zeros in (0, 1].  

Proof. A standard Frobenius ansatz ݎ)ݑ; (ߣ  = ఔݎ ∑ ௝ܽݎ௝ஶ
௝ୀ଴   yields the indicial equation  

ߥ)ߥ + 2) = 0 together with recurrence relations for the coefficients ௝ܽ of the form 
ߥ) + + ߥ)(݆ ݆ +  2) ௝ܽ  = ଶߙ)   − (ߣ ௝ܽିଶ. 

For ߥ = 0 we obtain a solution ݑ଴(ݎ;  in even powers of  ݆ which is an entire function of (ߣ
= ߥ For . ݎ  −2 only the trivial solution is obtained; however Liouville’s formula for a 
second solution (see [103]),  

;ݎ)ଵݑ (ߣ  = ;ݎ)଴ݑ  න (ߣ 
1

;ݏ)଴ݑଷݏ (ߣ 

௥

 

 ݏ݀   

yields a second solution with the asymptotic behaviour ݎ)ݑ; (ߣ ∼  Since .ݎ ଶ for smallିݎ
; ·)଴ݑ (ߣ  ∈ ,ଶ൫(0ܮ 1]; ; ·)ଵݑ ଷ൯ andݎ  (ߣ  ∉ ,ଶ൫(0ܮ 1]; ݎ ଷ൯, the singular point atݎ  =  0 is of 
limit point type. Moreover since ݑ଴(·;  ,ߣ has only finitely many zeros in (0,1), for each (ߣ 
the same is true for any non-trivial solution ݑො(·,ߙ), for any real ߣ, by the Sturm Interlacing 
Theorem.  
In the Hilbert space ܮଶ൫(0, 1]; )ࣞ ଷ൯ we consider the operator ෨ܴ଴ given byݎ  ෨ܴ଴) = ,଴ஶ(0ܥ 1) 
and ෨ܴ଴ݑ = ଵ 

ఈమ௥మ
∋ ݑ for ݑ࣭   ࣞ( ෨ܴ଴). Integration by parts shows that ෨ܴ଴ is symmetric in 

,ଶ൫(0ܮ  ଷ൯ and hence closable; its closure, denoted by ܴ଴, is the so-called minimalݎ ;[1
operator associated with ଵ 

ఈమ௥మ
 ࣭ in ܮଶ൫(0, 1];   .ଷ൯ݎ 

Lemma(6.2.21)[31]: For ݊ = 0 the minimal operator ܴ଴ associated with ଵ 
ఈమ௥మ

 ࣭ in the space 
,ଶ൫(0ܮ  ଷ൯. is uniformly positive and admits a self-adjoint Friedrichs extension ܴଵ withݎ ;[1
domain and lower bound given by 

ࣞ(ܴଵ) = ൜ ݑ ∈ ,ଶ൫(0ܮ 1]; ,ݑ :ଷ൯ݎ  ᇱݑଷݎ ∈ ,୪୭ୡ൫(0ܥܣ  1]൯,
1
ଶݎ
ݑ࣭ ∈ ,ଶ൫(0ܮ  1]; (1)ݑ,ଷ൯ݎ  = 0ൠ ,  

ܴଵ ≥   rఈ ∶= minߪ(ܴଵ) ≥ ఈݎ̃  ∶= ଶߙ   +  ଵ݆,ଵ
ଶ .                          (63) 

Moreover, ܴଵ has compact resolvent.  
Proof. Integration by parts shows that, for ݑ ∈  ࣞ(ܴ଴),  

(ܴ଴ݑ,ݑ)௅మቀ(଴,ଵ]; ௥యቁ  =  න(ߙଶݎଷ |(ݎ)ݑ|ଶ  + (ଶ|(ݎ)′ݑ|ଷݎ 
ଵ

଴

 (64)              .ݎ݀   

It is not difficult to see that the smallest eigenvalue of the spectral problem    
– ᇱ(ᇱݑଷݎ) = (1)ݑ    ,ϐinite (0)ݑ     ,ݑଷݎߣ   =  0, 

is the square of the first zero ଵ݆,ଵ of the Bessel function ܬଵ (see [18]). This means that in (64) 
we can estimate ∫ ଶଵ|(ݎ)′ݑ|ଷݎ

଴ ≤ ݎ݀    ଵ݆,ଵ
ଶ ∫ ଶଵ|(ݎ)ݑ|ଷݎ

଴ and hence that ܴ଴ ݎ݀ ≥ ଶߙ  + ଵ݆,ଵ
ଶ  is 
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a uniformly positive symmetric operator. The same lower bound holds for ܴଵ , which is the 
Friedrichs extension of ܴ଴.  
      Standard Sturm-Liouville theory (see e.g. [109, 110]) guarantees that at the regular 
endpoint ݎ =  1, functions ݑ ∈ ࣞ( ܴଵ) satisfy the boundary condition (1)ݑ  =  0; no 
boundary condition is obtained at ݎ =  0 since this is a limit point endpoint by Lemma 
(6.2.20) (comp. [111]).  
      It was proved in Lemma (6.2.20) that, by [23], the solutions of  ଵ 

ఈమ௥మ
ݑ࣭  = ,ݑߣ ߣ ∈ ℝ, 

are non-oscillatory. By [23], this implies that ߪ௘௦௦(ܴଵ) =  ∅. Together with the selfadjoint-
ness of ܴଵ , this shows that ܴଵ has compact resolvent.  
      For ݊ ≠  0 there are many possibilities, including ଵܶ ݇ଶ ݎଶ ଵܶ and ଴ܶ

∗
  ݇

ଶ ݎଶ ଴ܶ  = 
ݎ݇) ଴ܶ)∗ (݇ݎ ଴ܶ). The operator ଴ܶ

∗
 ݇
ଶݎଶ ଴ܶ is the one whose domain carries the boundary 

conditions (1)ݑ = 0 = ଶݎspecified in the physical problem, whereas ଵܶ݇ଶ (1)′ݑ ଵܶ involves 
the boundary conditions (1)ݑ = 0 = It turns out that ଴ܶ .(1)(ݑ࣮)

∗
 ݇
ଶݎଶ ଴ܶ is the Friedrichs 

extension of the minimal operator associated with the expression ࣮݇ଶݎଶ࣮, and is uniformly 
positive with  ଴ܶ

∗
 ݇
ଶݎଶ ଴ܶ ≥  ݊ଶ. 

      For ݊ = 0, multiplication by ݇ݎ is no longer boundedly invertible so ݇ݎ ଴ܶ may not be 
closed; thus  (݇ݎ ଴ܶ)∗(݇ݎ ଴ܶ) may not be self-adjoint. The self-adjoint Friedrichs realization 
of the expression ࣮݇ଶݎଶ࣮ is described in [111], where it is denoted ܮଵ. Following the 
results at the end of the proof of [111],  

(ଵܮ)ࣞ = ቊ ݕ ∈ ,ଶ൫(0ܮ 1]; ൯ݎ  ∶  ࣮݇ଶݎଶ࣮ݕ ∈ ,ଶ൫(0ܮ 1]; ,൯ݎ
(1)ݕ = 0 = (ݎ)ݕ   ,ᇱ(1)ݕ = (ݎ)ᇱݕ   ,(ଶݎ)ܱ = ݎ)(ݎ)ܱ ⟶ 0)

ቋ .          (65) 

Because ܮଵ is a Friedrichs extension, we can calculate a lower bound for ܮଵ by using the 
fact that it has the same lower bound on ܥ଴ஶ(0,1)-functions as on elements of its domain. 
Integration by parts then yields no boundary terms, and 

௅మ൫(଴,ଵ]; ௥൯(ݕ,ݕଵܮ) = ,ݕ࣮ ݎߙ) ௅మ൫(଴,ଵ]; ௥൯(ݕ࣮ ݎߙ =  නݎ ฬ 
ߙ
ݎ

–(ݎ)ݕ  ߙ 
݀
ݎ݀
൬

1
ݎଶߙ

 
݀
ݎ݀
൰ ฬ(ݎ)ݕ

ଶଵ

଴ 

 ݎ݀

= න
ଶߙ

ݎ
ଶ|(ݎ)ݕ| 

ଵ

଴

ݎ݀  + 2න
หݕᇱ(௥)หଶ

ݎ
 

ଵ

଴

ݎ݀ + නߙݎଶ ฬ 
݀
ݎ݀
൬

1
ݎଶߙ

 
݀
ݎ݀

 ൰ ฬ(ݎ)ݕ
ଶଵ

଴ 

 ݎ݀

≥ ଶߙ)    + ௅మ((଴,ଵ]; ௥)‖ ݕ‖(ଶߨ2 
ଶ ,                                                                    (66) 

where, in the last line, we have omitted the third integral and used a Poincaré estimate of the 
second. A tighter lower bound for ܮଵ is given in Lemma (6.2.37) below. 
      The system of differential equations (45) with the boundary conditions (49), (50), and 
(51) can now be written as a spectral problem for an operator pencil  

( ࣛ଴ + ࣛଵ)ݑ =  ,ݑℬߣ
in the Hilbert space ܮଶ((0,1]; (ݎ ,ଶ((0ܮ⊕ 1];  where the coefficients ࣛ଴, ࣛଵ , and ℬ are (ݎ 
block operator matrices given by  

ࣛ଴ ∶= ൬ ଴ܶ
∗

 ݇
ଶݎଶ ଴ܶ nߙ2 ଴ܶ

∗

݊ߙ2 ଴ܶ ܵଵ
൰ ,   ࣞ( ࣛ଴) ∶=  ࣞ൫ ଴ܶ

∗
 ݇
ଶݎଶ ଴ܶ൯ ⊕ ࣞ(ܵଵ);     (67) 

ࣛଵ ∶= ܴߙ݅

⎝

⎛
ܷ ଵܶ +

1
ݎ
൬
ܷᇱ

݇ଶݎ
൰
ᇱ

0

−
݊
ߙ
ܷᇱ

ݎ
ܷ݇ଶݎଶ⎠

⎞ ,   ࣞ(ࣛଵ) ∶= ࣞ( ଵܶ) ;[ଶ൫(0,1ܮ⊕  ൯;   (68)ݎ

 ℬ ∶=  ቀ ଵܶ 0
0 ݇ଶݎଶ

ቁ ,   ࣞ(ℬ) ∶=  ࣞ( ଵܶ) ,ଶ((0ܮ⊕  1];  (69)                               .(ݎ 
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Remark(6.2.22)[31]: To justify this choice of domains we need to make two observations. 
(I) By hypothesis (48), ܷ′(ݎ) = ∫  ௥(ݏ)″ܷ

଴ ,ݏ݀ ݎ ∈ [0,1], and ܷ″ is essentially 
bounded. Thus also  ௎ᇱ

௥
 is essentially bounded with ܮஶ((0, 1])-norm bound 

 ቛ௎
ᇲ

௥
ቛ
ஶ

 ≤  ‖ܷᇳ‖ஶ.                                                          (70)  

(II) As established in [111], the function ଵ
௥
ቀ ௎ᇲ

௞మ௥
ቁ
ᇱ
 is essentially bounded when 

݊ ≠  0; in fact,  

  ብ
1
ݎ
൬
ܷᇱ

݇ଶݎ
൰
ᇱ

ብ
ஶ

= ብ 
1

ଶݎଶߙ + ݊ଶ
ܷᇳ +

ଶݎଶߙ− + ݊ଶ

ଶݎଶߙ) + ݊ଶ)ଶ
ܷᇱ

ݎ
ብ
ஶ
≤  

2
݊ଶ
‖ܷᇳ‖ஶ,    (71) 

where we have used some simple analysis to show that the coefficients of ܷᇳand ܷ′/ݎ are 
both bounded by 1/݊ଶ.  
Remark(6.2.23)[31]: The operator ࣛ଴ can also be written as  

ࣛ଴  = ൬ ଴ܶ
∗

 ݇
ଶݎଶ ଴ܶ ݊ߙ2 ଵܶ

݊ߙ2 ଵܶ ܵଵ
൰  .                                                (72)  

In fact, in (67), the (2, 1) term acts on functions in ࣞ൫ ଴ܶ
∗

  ݇
ଶ ݎଶ ଴ܶ ൯ ⊆  ࣞ( ଴ܶ ), while for 

݊ ≠ 0 the (1, 2) term acts on functions in ࣞ(ܵଵ) ⊆ ࣞ( ଵܶ). Thus the operator ଴ܶ in the off-
diagonal corners may be replaced by its extension ଵܶ.  
Lemma(6.2.24)[31]:(Checking assumption (i) for ݊ ≠ 0). The operator ࣛ଴ is self-adjoint.  
Proof. We shall use Proposition (6.2.5). Since ܣ଴ ∶=  ଴ܶ

∗
  ݇

ଶ ݎଶ ଴ܶ =  it is ,(଴ܶ ݎ ݇) ∗(଴ܶ ݎ ݇)
sufficient to show that ଴ܶ is (݇ݎ ଴ܶ)∗(݇ݎ ଴ܶ) −bounded with relative bound zero, and that ଴ܶ

∗ 
is ܵଵ −bounded. The fact that ࣞ(ܵଵ) ⊆ ࣞ( ଵܶ) was established in [111]; a fortiori ࣞ(ܵଵ) ⊆
ࣞ( ଴ܶ

∗) and so ଴ܶ
∗ is ܵଵ -bounded. We shall prove slightly more than required by showing 

that ଴ܶ is (݇ݎ ଴ܶ)∗(݇ݎ ଴ܶ)-compact. 
      The operator ܣ଴ is uniformly positive, ܣ଴ ≥ ݊ଶ, and the quadratic form of ܣ଴ is given 
(see [17]) by  

१஺బ(ݕ) = ݎ݇‖ ଴ܶݕ ‖ଶ௅మ൫(଴,ଵ];௥൯ = න(ݎ)(ݕ࣮ )ݎ(ݎ)݇| ݎ|ଶ
ଵ

଴

ݕ   ,ݎ݀  ∈ ࣞ൫ १஺బ൯ = ࣞቆܣ଴
ଵ
ଶቇ ,    (73) 

and its domain ࣞ( १஺బ) consists of those y which can be approximated in the norm defined 
by (73) by elements of ࣞ(ܣ଴). Since ࣞ(ܣ଴) ⊆ ࣞ(T଴) and since ݇ݎ is boundedly invertible, 
this immediately establishes that ࣞ( १஺బ) ⊂ ࣞ( ଴ܶ), and hence ଴ܶ is ܣ଴

ଵ ଶ⁄  −bounded. But ܣ଴ 
has compact inverse, so ܣ଴

ିଵ ଶ⁄  is compact. Hence ଴ܶ is ܣ଴ −compact.  
Lemma(6.2.25)[31]: (Checking assumption (ii) for ݊ ≠ 0). The operator ℬ is selfadjoint, 
uniformly positive with ℬ ≥ min (ℬ)ߪ = min{߬ఈ,௡,݊ଶ} ≥ 1, and ࣛ଴-compact.  
Proof. The operator ଵܶ is selfadjoint and ଵܶ  ≥  ߬ఈ,௡ ≥  1 by Lemma (6.2.18). Because 
ଶݎ ଶ(ݎ)݇  = ଶݎ ଶߙ  + ݊ଶ ≥  ݊ଶ, ݎ ∈  (0, 1], the corresponding multiplication operator in 
,ଶ((0ܮ 1]; (ଶݎ ଶ݇)ߪis also selfadjoint and uniformly positive with min (ݎ   =  ݊ଶ ≥ 1 for 
݊ ≠ 0. This proves the first two claims about ℬ.  
      Using the alternative form of ࣛ଴ in (72) and [111] it is sufficient to check the following: 
ࣞ൫ ଴ܶ

∗
 ݇
ଶݎଶ ଴ܶ൯ ⊆ ࣞ( ଵܶ);  ࣞ(ܵଵ) ⊆ ࣞ(݇ଶݎଶ);  ଵܶ is ଴ܶ

∗
 ݇
ଶݎଶ ଴ܶ-compact; ݇ଶݎଶ is ܵଵ-compact. 

      Clearly, ࣞ( ଴ܶ
∗

 ݇
ଶ ݎଶ ଴ܶ) ⊆ ࣞ( ଴ܶ) ⊆ ࣞ( ଵܶ). The fact that ଵܶ is ଴ܶ

∗
 ݇
ଶ ݎଶ ଴ܶ-compact is 

immediate from the fact that ଵܶ is a finite-dimensional extension of ଴ܶ and, as established in 
the proof of Lemma (6.2.24), ଴ܶ is ଴ܶ

∗
 ݇
ଶݎଶ ଴ܶ-compact.  
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      Finally, it was proved in [111] that ܵଵ has compact resolvent. Since ݇(ݎ)ଶݎଶ = ଶݎଶߙ +
݊ଶ, ݎ ∈ (0,1), the multiplication operator ݇ଶݎଶ is bounded and everywhere defined in 
;[ଶ((0,1ܮ Thus ࣞ(ܵଵ) .(ݎ  ⊆ ࣞ(݇ଶݎଶ) and ݇ଶݎଶ is ܵଵ-compact.  
Lemma(6.2.26)[31]: (Checking assumption (iii) for ݊ ≠ 0). The operator ࣛଵ is closable 
and satisfies ࣞ(ℬ) = ࣞ(ࣛଵ),ࣞ(ℬ) ⊂  ࣞ(ࣛଵ

∗).  
Proof. To prove that ࣛଵ  is closable it is sufficient to check that ࣛଵ

∗ is densely defined. 
Thus it suffices to prove the claims for the domains.  
      By the definitions in (68) and (69), we have ࣞ(ℬ) = ࣞ(ࣛଵ). According to Remark 
(6.2.22), the multiplication operators by ܷ, ଵ

௥
ቀ ௎ᇱ
௞మ௥మ

ቁ
ᇱ

, ௎ᇱ
௥

 , and ܷ݇ଶݎଶ which occur in ࣛଵ by 
(68) are bounded, everywhere defined and self-adjoint in ܮଶ((0, 1]; -Moreover, ଵܶ is self .(ݎ 
adjoint so that we have the operator identity (ܷ ଵܶ)∗  =  ଵܷܶ. Hence ࣛଵ

∗ is given by  

ࣛଵ
∗  = ቌ ܴߙ݅−  ଵܷܶ +

1
ݎ
൬
ܷᇱ

݇ଶݎ
 ൰
ᇱ

−݊
ܷᇱ

ݎߙ
 

0 ܷ݇ଶݎଶ
ቍ ,   ࣞ(ࣛଵ

∗) = ࣞ( ଵܷܶ) ,ଶ ൫(0ܮ⊕ 1];  ൯ .    (74)ݎ 

In order to show that ࣞ(ℬ) ⊂ ࣞ(ࣛଵ
∗), we thus have to show that ࣞ( ଵܶ) ⊂ ࣞ( ଵܷܶ). To this 

end, let ݕ ∈  ࣞ( ଵܶ). Since ܷ ∈ ,ଶ([0ܥ  1]), we clearly have ܷݕ, ଵ
௞మ௥

′( ݕܷ )  = ଵ
௞మ௥

ᇱݕܷ)  +
ܷᇱݕ) ∈ ,௟௢௖([0ܥܣ 1]) and 

= ݕܷ࣮  ܷ ଵܶݕ −  2
ܷ′
ݎ

′ݕ
݇ଶݎ

 −  
1
ݎ

 ൬
ܷᇱ

݇ଶݎ
൰
ᇱ

 (75)                                     .ݕ

According to the assumptions on ܷ and the properties deduced from them in Remark 
(6.2.22), the first and the last terms belong to ܮଶ((0, 1]; and the coefficient 2 (ݎ  ௎ᇱ

௥
 of the 

second term is essentially bounded. Since ( 1 )ݕ =  0 for ݕ ∈  ࣞ( ଵܶ ), we trivially have 
(1)(ݕܷ) = 0 also, and so to show that ܷݕ ∈ ࣞ( ଵܶ) it suffices to show that ௬ᇱ

௞మ௥
∈ ;[ଶ((0,1ܮ  .(ݎ

In fact, if we use ݇(ݎ)ଶ ≥ ଶߙ  + ݊ଶ  , ∋ ݎ  (0,1], and (58), we find 

       ฯ
ᇱݕ

݇ଶݎ
ฯ
௅మ൫(଴,ଵ];௥൯

ଶ

 =   නݎ ቤ
(ݎ)ᇱݕ
ݎଶ(ݎ)݇

ቤ
ଶଵ

଴

= ݎ݀    න
1

ଶ(ݎ)݇
ଶ|(ݎ)ᇱݕ|

ݎଶ(ݎ)݇

ଵ

଴

  ݎ݀ 

   ≤  
1

ଶߙ + ݊ଶ
න

ଶ|(ݎ)ᇱݕ|

ݎଶ(ݎ)݇

ଵ

଴

≥  ݎ݀   
1

ଶߙ + ݊ଶ
 ( ଵܶݕ,ݕ)௅మ((଴,ଵ];௥)  < ∞.        (76) 

Remark(6.2.27)[31]: The operators ࣛଵℬିଵ and ࣛଵ
∗

 ℬ
ିଵ are bounded with the following 

bounds, in which ߬ఈ,௡ = minߪ( ଵܶ) ≥ 1 is the positive lower bound on ଵܶ:  

‖ࣛଵ ℬିଵ‖  ≤ ܴ|ߙ|  ቆ‖ܷ‖ஶ +
1
߬ఈ,௡

 max ቊ
|݊|
|ߙ| ,

2
݊ଶ
ቋ ‖ܷᇳ‖ஶቇ ,              (77) 

 ‖ࣛଵ
∗  ℬିଵ‖  ≤ ܴ|ߙ|  ቆ‖ܷ‖ஶ + ቆ

2
ඥ߬ఈ,௡

  
1

ଶߙ√ + ݊ଶ
+

1
ቇ|ߙ||݊|

‖ܷᇳ‖ஶቇ ,              (78) 

These bounds follow if we use the explicit forms of ࣛଵ ℬିଵ and ࣛଵ
∗

 ℬ
ିଵ  according to (68) 

and (74), (75), respectively, together with the bounds for ܷ, ௎ᇱ
௥

 , ଵ
௥
ቀ ௎ᇱ
௞మ௥

 ቁ
ᇱ
 given in Remark 

(6.2.22), the estimate for ௬
ᇲ

௞మ௥
 derived in (76), and the inequality 

( ଵܶݕ,ݕ)௅మ൫(଴,ଵ]; ௥൯ =  (݂ , ଵܶ
ିଵ݂)௅మ൫(଴,ଵ]; ௥൯  ≤  

1
߬ఈ,௡

‖݂ ‖௅మ((଴,ଵ];௥)
ଶ               (79) 

for ݕ =  ଵܶ
ିଵ݂ ∈ ࣞ( ଵܶ). 



221 
 

Lemma(6.2.28)[31]: (Checking assumption (iv) for ݊ ≠ 0). ࣞ(ࣛ଴) is a core for ℬଵ ଶ⁄  
and we have the domain inclusion ࣞ(ࣛଵ) ⊆  ࣞ( ℬଵ ଶ⁄ ).  
Proof. The operator ℬ has domain ࣞ( ଵܶ)  ⊕ ,ଶ((0ܮ  1];  and is block diagonal, and so (ݎ 
ࣞ(ℬଵ ଶ⁄ )  =  ࣞ( ଵܶ

ଵ ଶ⁄  )⊕ ,ଶ((0ܮ  1];  .(ݎ 
      Since ଵܶ is the Friedrichs extension of the (symmetric) minimal operator ଴ܶ, which in 
turn is the closure of ෨ܶ଴ having domain ࣞ( ෨ܶ଴) =  ଴ஶ[0,1] is a core forܥ ଴ஶ[0,1], the setܥ

ଵܶ
ଵ ଶ⁄ . Thus ܥ଴ஶ[0, 1]  ⊕ ,ଶ((0ܮ  1]; is a core for  ℬଵ (ݎ  ଶ⁄ . Because ࣞ(ࣛ଴)  ⊇ ,଴ஶ[0ܥ  1]  ⊕

;[ଶ((0,1ܮ   .the first part of assumption (iv) is checked ,(ݎ
      Since the domains of ࣛଵ and ℬ coincide by definition, it is immediate that ࣞ(ࣛଵ) =
ࣞ(ℬ) ⊂ ࣞ(ℬଵ ଶ⁄ ).   
      As a consequence of Lemmas (6.2.24), (6.2.25), (6.2.26), and (6.2.28), all the hypothesis 
of the abstract study are satisfied by the Hagen–Poiseuille system for ݊ ≠ 0. So there is 
only one obstacle left to applying Theorem (6.2.16) to obtain a Bari basisness result for the 
eigen-and associated functions of the Hagen-Poiseuille operator: we must verify that the 
spectral asymptotics given in Proposition (6.1.17) are satisfied.  
      To this end we note that in the purely self-adjoint case ܷ ≡ 0, which is equivalent to 
ࣛଵ ≡ 0, the eigenvalues were calculated explicitly as long ago as 1969 by Burridge and 
Drazin in [25, 19]. In particular, the asymptotics were also calculated  

௟ߣ
(଴)  =  

1
4

 ൬݈ + ݊ +  
1
2

 ൰
ଶ

ଶߨ  +  ܱ(1), ݈ → ∞.                        (80) 
 Lemma(6.2.29)[31]: (Checking eigenvalue asymptotics in Proposition (6.2.17)). Both for 
݊ = 0 and for ݊ ≠ 0, the eigenvalues of the Hagen–Poiseuille problem (45), (50), (51) 
satisfy  

=  ௟ߣ  
1
4

 ൬݈ +  ݊ + 
1
2

 ൰
ଶ

ଶߨ  +  ܱ(1), ݈ → ∞.                           (81) 
Proof. By Theorem (6.2.10) the eigenvalues (ߣ௟ )ଵஶ of the Hagen−Poiseuille problem  
coincide with the eigenvalues of the operator ℳ; in the case ࣛଵ = 0, the eigenvalues  
൫ߣ௟

(଴)൯
ଵ

ஶ
 coincide with those of the self-adjoint operator  ℳ଴.  Since ℳ is a bounded 

perturbation of ℳ଴, (81) is immediate from (80).   
Theorem(6.2.30)[31]: For ݊ ≠  0, the eigen- and associated functions of the Hagen–
Poiseuille problem (45), (50), (51) may be chosen to form a Bari basis of the Hilbert space 
ℋଵ ଶ⁄ = ࣞ( ଵܶ

ଵ ଶ⁄ )  ⊕ ;[ଶ((0,1ܮ   equipped with the scalar product (ݎ

 ቆ൬
ߔ
ߗ
൰ , ൬

ߔ
ߗ
൰ቇ

ᇱ

ଵ ଶ⁄
 = ൬ 

ߔ
ݎ

,
ߔ
ݎ
൰
௅మ൫(଴,ଵ];௥൯

+ ൬ 
ᇱߔ

ݎ݇
,
ᇱߔ

ݎ݇
൰
௅మ൫(଴,ଵ];௥൯

+  ௅మ((଴,ଵ];௥).          (82)(ߗ,ߗ) 

Proof. Since all assumptions have been verified, Theorem (6.2.16) yields the Bari basis 
property in ℋଵ ଶ⁄ = ࣞ( ℬଵ ଶ⁄ )  = ࣞ( ଵܶ

ଵ ଶ⁄ ) ⊕ ;[ଶ((0,1ܮ   equipped with the scalar product (ݎ
(·,·)ଵ ଶ⁄ =  ( ℬଵ ଶ⁄  · ,ℬଵ ଶ⁄  ·) given by 

 ቆ൬
ߔ
ߗ
൰ , ൬

ߔ
ߗ
൰ቇ

 

ଵ ଶ⁄
= ൫ ଵܶ

ଵ ଶ⁄ ,ߔ  ଵܶ
ଵ ଶ⁄ ൯ߔ 

௅మ((଴,ଵ];௥)
+ (kߗݎ݇,ߗݎ)௅మ((଴,ଵ];௥). 

By (58) the first term on the right-hand side coincides with the first two terms on the right-
hand side of (82). Since ݇ଶݎଶ· is a bounded and boundedly invertible operator in ܮଶ((0,
1]; ݎ݇) the scalar product ,(ݎ · , ݎ݇ ·)௅మ((଴,ଵ];௥) is equivalent to the usual scalar product in 
;[ଶ((0,1ܮ Hence the scalar product (·,·)ଵ .(ݎ ଶ⁄

ᇱ
 
 in (82) is equivalent to the original scalar 

product (·,·)ଵ ଶ⁄  on ℋଵ ଶ⁄  .  
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       In case ݊ = 0 we have ݇(ݎ)ଶ = ,ଶߙ ݎ ∈ [0,1], and the system of differential equations 
(45) decouples into the two scalar differential equations 

 ൭࣮(ߙଶݎଶ ࣮) + ܴߙ ݅ ቆܷ ࣮ + 
1
ݎ

 ൬
ܷᇱ

ݎଶߙ
൰
ᇱ

ቇ൱ߔ =   ,ߔ࣮ ߣ 

( ࣭ + = ߗ (ܷܴߙ ݅  ,ߗ ߣ ଶݎ ଶߙ  
with ߣ =  While the abstract results still apply to the linear operator pencil induced by .ܴߙ݅ 
the first equation in ܮଶ((0, 1];  they no longer apply to the linear operator pencil induced ,(ݎ 
by the second equation since the coefficient ߙଶݎଶ of ߣ does not induce a uniformly positive 
multiplication operator in ܮଶ((0, 1];   Thus we obtain basis properties of the eigen- and .(ݎ 
associated functions for the second component in a different Hilbert space, formally by 
dividing by ߙଶݎଶ. 
      A convenient formulation in terms of operators in the Hilbert spaces ܮଶ((0,1];  and (ݎ
,ଶ((0ܮ 1];   ଷ), respectively, is now the followingݎ 

൭ܮଵ + ܴߙ݅ ቆܷ ଵܶ +
1
ݎ
൬
ܷᇱ

ݎଶߙ
൰
ᇱ

 ቇ൱ߔ = ߣ  ଵܶߔ   ,ߔ ∈ ࣞ൫(ݎߙ ଴ܶ)∗(ݎߙ ଴ܶ)൯,        (83) 

(ܴଵ  + =  ߗ(ܷܴߙ݅  ,ߗߣ  ߗ ∈ ࣞ(ܴଵ),                              (84) 
where ܮଵ , ଵܶ , and ܴଵ are the operators introduced in the present section .  
      We treat the two components separately. For the first spectral problem we apply the 
abstract results for linear operator pencils developed in the preceding parts; for the second 
problem, which is a classical spectral problem, we apply the abstract results in the particular 
case ℬ =   .ܫ
     We begin with the problem (83) and introduce the linear operator pencil ℒଵ in the Hilbert 
space ܮଶ((0, 1];  by (ݎ 

 ℒଵ(ߣ) ∶= ଴ܣ  + ଵܣ − ൯(ߣ)൫ℒଵࣞ    ,ܤߣ ∶= ,(଴ܣ)ࣞ ∋ ߣ ℂ,                      (85)  
where  

଴ܣ ∶= ଵܣ   ,ଵܮ  ∶= ൬ܷ ܴߙ݅  ଵܶ  + ଵ
௥

 ቀ ௎ᇲ

ఈమ௥
ቁ
ᇱ
 ൰ ܤ   , ∶=  ଵܶ.                   (86)  

The following proposition shows that the linear operator pencil ℒଵ satisfies the abstract 
assumptions (i)-(iv) and of Proposition (6.2.17) (i.e. the results of Lemmas (6.2.26), (6.2. 
24), (6.2.25), (6.2. 28), and Proposition (6.2.4) all continue to hold with ࣛ଴, ࣛଵ, and ℬ 
replaced by ܣ଴, ܣଵ , and ܤ, respectively).  
Lemma(6.2.31)[31]: (Checking assumptions (i)– (iv) for ݊ = 0). The operator ܣ଴ is self-
adjoint with ܣ଴ ≥ ଶߙ + ܤ;ଶߨ2 = ଵܶ is uniformly positive with ଵܶ ≥ ߬ఈ,଴ ≥ 1, has compact 
inverse, and is ܣ଴-compact; ܣଵ is closable with ࣞ(ܤ) = (ܤ)ࣞ and (ଵܣ)ࣞ ⊆ ;(∗ଵܣ)ࣞ  (଴ܣ)ࣞ 
is a core for ܤଵ ଶ⁄   and ࣞ(ܣଵ) ⊆ ଵܤ)ࣞ  ଶ⁄ ).  
Proof. The first claim was established in above and (66). All claims for ܤ = ଵܶ except for 
the last were showed in Lemma (6.2.18).      
      To check that ܤ is ܣ଴-compact, first observe that ܮ෨ଵ ∶= ( ଵܶݎߙ)(ݎߙ ଵܶ) is self-adjoint by 
Von Neumann’s theorem, because ൫ݎߙ ଵܶ൯

∗
= ଵܶ

ݎߙ∗ = ଵܶݎߙ. We also note that both ܮଵ and 
 ଶ࣮. Thisݎ෨ଵ  are selfadjoint realizations of the same ordinary differential expression ࣮݇ଶܮ
means that the difference of their resolvents is a finite rank operator, and so it suffices to 
check that ଵܶ ൫ ܮ෩ଵ −  ൯ିଵ is compact. Following the method in the proof of [111], we ߣ 
observe that 0 ∈ ෨ଵିଵܮand that ଵܶ (෨ଵܮ)ߩ = ൫ܮ෨ଵ ଵܶ

ିଵ
 ൯
ିଵ

. However, since (ݎߙ ଵܶ)|ࣞ( భ்) = ݎߙ ଵܶ, 
we have      

෨ଵܮ ଵܶ
ିଵ

  =  ( ଵܶݎߙ)(ݎߙ ଵܶ) ଵܶ
ିଵ  =  ଵܶߙଶݎଶ. 
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Thus ଵܶܮ෨ଵିଵ  =  ଵ
ఈమ௥మ

 ଵܶ
ିଵ. This is compact by [111]. 

    Unlike in the case ݊ ≠  0, the multiplication operator ܴ݅ߙ ଵ
௥

 ቀ ௎ᇲ

ఈమ௥
ቁ
ᇱ
· is no longer bounded 

in ܮଶ((0, 1];  But, by [111], we have .(ݎ 

ࣞ( ଵܶ)  ⊂  ࣞቆܴ݅ߙ 
1
ݎ

 ൬
ܷᇱ

ݎଶߙ
൰
ᇱ

.ቇ ,                                                (87) 

which shows that ࣞ(ܤ) = ࣞ( ଵܶ) = (ଵܣ)ࣞ and also (ଵܣ)ࣞ ⊂   .(ଵ/ଶܤ)ࣞ
      As in the proof of Lemma (6.2.26), to prove that ࣛଵ is closable it is sufficient to check 
that ࣞ(ܤ) ⊂ ࣛଵ

∗ which implies that ࣛଵ
∗ is densely defined. To this end, let ݕ ∈ ࣞ( ଵܶ) =

݊ As in the case .(ܤ)ࣞ ≠ 0 (see the proof of Lemma (6.2.26), we have ܷݕ, ଵ
௞మ௥

ᇱ(ݕܷ)  =
ଵ
௞మ௥

ᇱݕ ܷ)  + ܷᇱ ݕ)  ∈ ,௟௢௖([0ܥܣ 1]) and formula (75) now reads, because ݇ (ݎ)ଶ  = ,ଶߙ  ݎ ∈
[0,1], 

= ݕܷ࣮  ܷTଵݕ −  2 
ܷ′
 ݎ

 ′ݕ
ݎଶߙ

 −  
1
ݎ

 ൬
ܷᇱ

ݎଶߙ
൰
ᇱ

 (88)                                       .ݕ 

By the assumptions on ܷ and the properties deduced from them in Remark (6.2. 22), the 
first term belongs to ܮଶ((0, 1] ; the coefficient 2 ௎ᇱ ,(ݎ 

௥ 
 of the second term is essentially 

bounded, and the last term belongs to ܮଶ((0, 1],  because of (87). The proof that ௬ᇱ (ݎ
ఈమ௥

∈
,ଶ((0ܮ 1], ݊ is analogous to the proof in the case (ݎ ≠ 0 (comp. (76)): 

ብ
 ′ݕ
ݎଶߙ

ብ
௅మ((଴,ଵ];௥)

ଶ

=  
1
ଶߙ

 න
 ଶ|(ݎ)ᇱݕ|
ݎଶߙ

ଵ

଴

≥ ݎ݀   
1
ଶߙ

 ( ଵܶݕ,ݕ)௅మ((଴,ଵ];௥) <  ∞. 

Thus it remains to be shown that ܷݕ satisfies the boundary condition {ܷݕ, {ݒ = 0 for ݒ 
with (ݎ)ݒ = ,(ଶݎ)ܱ ݎ ⟶ 0 (see remarks following (6.2.27)). By (54) we have  
,ݕܷ}               {ݒ  =  lim௥⟶  ଴(ܷ(ݎ)) ,ݕ} {ݒ − lim

௥⟶  ଴
ቀ ଵ
ఈమ௥

 ܷᇱ(ݎ)(ݎ)ݒ(ݎ)ݕቁ, 
and {ݕ, {ݒ  =  0 since ݕ ∈ We know that ܷᇱ( 0 ) .( ଵܶ )ܦ   =  0 by hypothesis on ܷ. The 
condition ݕ ∈ )ܦ ଵܶ) implies that (0)ݕ = 0 through the Cauchy-Schwarz inequality 

|(ݎ)ݕ| ≤ ቌන
 ଶ|(ݏ)ᇱݕ|

ݏ

ଵ

଴

ቍݏ݀ 

ଵ ଶ⁄

ቌනݏ
௥

଴

ቍݏ݀ 

ଵ ଶ⁄

≤  
ݎ

ଶߙ2√
 ( ଵܶݕ,  .௅మ((଴,ଵ];௥)(ݕ

Hence lim
௥⟶  ଴

ቀ ଵ
ఈమ௥

 ܷᇱ(ݎ)(ݎ)ݒ(ݎ)ݕቁ =  0 and so {ܷݕ, {ݒ = 0 as required.  
      The fact that ࣞ(ܣ଴) is a core for ܤଵ ଶ⁄ follows in the same way as for the case ݊ ≠ 0 in 
the proof of Lemma (6.2.28): precisely because ܤ = ଵܶ is the Friedrichs extension of  ଴ܶ, 
the operator ܤଵ ଶ⁄  has ܥ଴ஶ [0,1] as a core, and hence has ࣞ(ܣ଴) as a core.  
      As a consequence of Lemma (6.2.31) and of the eigenvalue asymptotics in Lemma 
(6.2.29) , the pencil ℒଵ(ߣ) = ଴ܣ + ଵܣ − ,ܤߣ ߣ ∈ ℂ, in (83) satisfies all the hypotheses of 
the abstract study; in particular, Proposition (6.2.3) shows that ℒଵ has empty essential 
spectrum (comp. [111]). Theorem (6.2.16) now yields the following basis result in the 
Hilbert space ℋଵ,ଵ ଶ⁄ = ଵ ܤ)ࣞ ଶ ⁄ ) if we note that ܤ = ଵܶ and observe formula (58). 
Theorem(6.2.32)[31]: For ݊ = 0, the eigen- and associated functions of the linear operator 
pencil ℒଵ( ߣ ) = ଴ܣ + ଵܣ − ,ܤ ߣ ∋ ߣ  ℂ, may be chosen to form a Bari basis of the space 
ℋଵ,ଵ ଶ⁄ = ࣞ( ଵܶ

ଵ ଶ ⁄ )  equipped with the scalar product  

ଵ,ଵ(ߔ,ߔ)  ଶ⁄  =  ൫ ଵܶ
ଵ ଶ ⁄ ,ߔ  ଵܶ

ଵ ଶ ⁄ ൯ߔ
௅మ((଴,ଵ];௥)

 = ൬
ߔ 
 ݎ

,
ߔ 
 ݎ
൰
௅మ((଴,ଵ];௥)

  +  ቆ
′ߔ 
 ݎߙ

,
′ߔ 
 ݎߙ

ቇ
௅మ((଴,ଵ];௥)

.   
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      Finally we consider the second spectral problem (84). 
Theorem(6.2.33)[31]:  For ݊ = 0, the eigen- and associated functions of the linear operator 
ଶܮ ∶= ܴଵ + ,ଶ((0ܮ in ܷܴߙ݅ 1]; ,ଶ((0ܮ ଷ) may be chosen to form a Bari basis ofݎ 1];   .(ଷݎ 
Proof. By Lemma (6.2.21), ܴଵ is a selfadjoint semi-bounded operator in ܮଶ((0,1];  ଷ) withݎ
compact resolvent. The eigenvalue asymptotics (80) for the case ࣛଵ = 0 and ݊ = 0 imply a 
fortiori that the eigenvalues of ܴଵ, being a subset of ൫ߣ௟

(଴)൯
଴

ஶ
 , have the asymptotic behaviour 

ܱ(݈ଶ). Since ܷ ∈  is bounded in ·ܷܴߙ݅ ଶ([0,1]) by assumption, the multiplication operatorܥ
,ଶ ((0ܮ 1];   .(ଷݎ 
      Theorem (6.2.13) readily shows that the eigen-and associated functions of the operator 
,ଶ((0ܮ ଶ may be chosen to form a Riesz basis ofܮ 1];  ଷ). In order to see that they even formݎ 
a Bari basis, we note that the linear operator pencil ℒଶ( ߣ ) ∶= ଶܮ  − ,ߣ ∋ ߣ  ℂ, trivially 
satisfies the abstract assumptions (i)–(iv) with ℬ = ,ଶ((0ܮ in  ܫ  1] ;  ଷ) because  ܴଵ hasݎ 
compact inverse and ࣛଵ =  .is bounded and everywhere defined. Now Theorem (6.2 ·ܷܴߙ݅
16) yields the claim.   
     While Burridge and Drazin give information about the asymptotic location of eigen-
values in [25], Theorems (6.2.11) and (6.2.12) yield global bounds for the whole set of 
eigenvalues, which depend on estimates for the operators ࣛ଴, ࣛଵ , and ℬ respectively. We 
estimate these eigenvalue bounds for the Hagen–Poiseuille problem in terms of the para-
meters ߙ,ܴ,݊, and of the axial mean flow ܷ. 
      Here we consider the case ߙ ≥ 0; the formulation of the results for α < 0  requires only 
minor modifications.  
      For the refined spectral inclusion in Theorem (6.2.12) we first estimate the constants 
ܽ଴,ܽଵ , ܾଵ , and ܾଶ for the operators ࣛ଴, ࣛଵ , and ℬ introduced in (67), (68), and (69).  
Lemma(6.2.34)[31]: (Bounds involving ࣛ଴). The operator ࣛ଴ is semi-bounded with  

ℬିଵ ଶ⁄  ࣛ଴ ℬିଵ ଶ⁄ ≥  ܽఈ,௡ ≥   ෤ܽఈ,௡ > 0                                       (89) 
Where 

ܽఈ,௡ ∶=
 1
2
ቌ݊ଶ߬ఈ,௡ + 

ఈ,௡ߪ

ଶߙ + ݊ଶ
−ඨቀ݊ଶ߬ఈ,௡ −  

ఈ,௡ߪ

ଶߙ + ݊ଶ
ቁ
ଶ

+
ଶ݊ଶߙ16

ଶߙ + ݊ଶ
 ቍ              (90) 

and ෤ܽఈ,௡ arises from ܽఈ,௡ by replacing ߬ఈ,௡,ߪఈ,௡ by their lower bounds ߬̃ఈ,௡  ෤ఈ,௡ defined inߪ,
(57) and (60), respectively.  
Proof. Suppose that ݑ = (݂,݃)் ∈ ࣞ( ࣛ଴) = ࣞ( ଴ܶ

∗݇ଶݎଶ ଴ܶ) ⊕ࣞ(ܵଵ) ⊂ ࣞ( ଵܶ) ⊕ࣞ(ܵଵ). 
A direct calculation yields  
(  ࣛ଴ ݑ,ݑ)௅మ൫(଴,ଵ];௥൯ 

 =   නݎ(ݎ)݇| ݎ( ଴݂ܶ )(ݎ)|ଶ
ଵ

଴ 

+ ݎ݀  න ݎ݀(ݎ)݃(ݎ)(ଵ݃ܵ)ݎ
 ଵ

଴

   + )ݎℜ ቌන ݊ߙ4 ଴݂ܶ )(ݎ)݃(ݎ)
ଵ

଴

 ቍݎ݀ 

≥ ݊ଶ‖ ଵ݂ܶ‖௅మ൫(଴,ଵ];௥൯
ଶ + ఈ,௡‖݃‖௅మ൫(଴,ଵ];௥൯ߪ

ଶ − |݊|ߙ4  ቚ( ଵ݂ܶ,݃)௅మ൫(଴,ଵ];௥൯ቚ 

≥ (݊ଶ − ‖(߳|݊|ߙ4 ଵ݂ܶ‖௅మ൫(଴,ଵ];௥൯
ଶ + ቆߪఈ,௡ –

|݊|ߙ 
߳

ቇ ‖݃‖௅మ൫(଴,ଵ];௥൯
ଶ ,                                            (91) 

where we have used Young’s inequality |ܾܽ| ≤ ߳|ܽ|ଶ + |ܾ|ଶ/(4߳) with some ߳ > 0  in the 
last step. Now let ݑ =  ℬିଵ ଶ⁄ ݒ .i.e ,ݒ  = ℬଵ ଶ⁄ ݑ  = ,ݔ) ்(ݕ  ∈  ℬଵ ଶ⁄  ࣞ(ࣛ଴)  and (݂,݃)் =

ቀ ଵܶ
ି ଵ ଶ⁄

,ݔ  ଵ 
௞௥
ቁݕ

்
. Using the lower bounds  
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ଵܶ ≥   ߬ఈ,௡;   
1

ଶݎଶ(ݎ)݇
 ≥  

1
ଶߙ  +  ݊ଶ

∋ ݎ   ,   (0, 1], 

in (91), we obtain  
 
         ൫ࣛ଴ℬିଵ ଶ⁄ ℬିଵ,ݒ  ଶ⁄ ൯ݒ

௅మ ൫(଴,ଵ];௥൯
 

≥ (݊ଶ − ௅మ൫(଴,ଵ];௥൯‖ݔ‖ఈ,௡߬(߳|݊|ߙ4
ଶ +

− ఈ,௡ߪ ߳/|݊|ߙ
ଶߙ + ݊ଶ

௅మ൫(଴,ଵ];௥൯‖ݕ‖ 
ଶ .      (92) 

By the intermediate value theorem it is easy to see that the equation  

(݊ଶ − ఈ,௡߬(߳|݊|ߙ4  =  
−  ఈ,௡ߪ ߳ /|݊|ߙ 

ଶߙ  + ݊ଶ
 

always has a solution ߳ ∈ (0,∞); this solution can easily be found explicitly, 

߳ =  ߳ఈ,௡ =  
1

|݊|ߙ8
ቌ݊ଶ −  

  ఈ,௡ߪ
߬ఈ,௡(ߙଶ +  ݊ଶ)  + ඨቆ݊ଶ −  

  ఈ,௡ߪ
߬ఈ,௡(ߙଶ + ݊ଶ)ቇ

ଶ

+
ଶ݊ଶߙ16

߬ఈ,௡(ߙଶ + ݊ଶ)ቍ  . 

Then ൫݊ଶ − ఈ,௡൯߬ఈ,௡߳|݊|ߙ4 = ܽఈ,௡ with ܽఈ,௡ as in (90) and hence the best lower bound in 
(92) is ቀܽఈ,௡‖ݔ‖௅మ൫(଴,ଵ];௥൯

ଶ + ௅మ൫(଴,ଵ];௥൯‖ݕ‖
ଶ ቁ, as required.  

      Finally, it is easy to see that ܽఈ,௡ is monotonically increasing as a function of both ߬ఈ,௡ 

and ߪఈ,௡ , which gives ܽఈ,௡ ≥  ෤ܽఈ,௡; the inequality ෤ܽఈ,௡ > 0 follows, e.g. by contradiction, if 
we note that ߬̃ఈ,௡ ≥ 1 and ߪ෤ఈ,௡ ≥   .ଶߙ4
Lemma(6.2.35)[31]: (Bounds involving ࣛଵ ). The bounded (and densely defined) operator 
ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄   satisfies the estimates 
      (I) ℜ( ℬିଵ ଶ⁄ ࣛଵℬିଵ ଶ⁄ ,ݒ  (ݒ   ≥  ,஑,௡‖ܷᇳ‖ஶܾܴߙ−
      (II) ܴߙ൫ܷ୫୧୬ − ܾఈ,௡‖ܷᇳ‖ஶ൯ ≤ ℑ ൫ ℬିଵ ଶ⁄  ࣛଵ ℬିଵ ଶ⁄ ,ݒ   ൯ݒ
                                                           ≤ ୫ୟ୶ܷ)ܴߙ + ܾఈ,௡‖ܷᇳ‖ஶ),  
for ݒ ∈ ℬଵ ଶ⁄  ࣞ(ࣛଵ), = ݒ 1, with 

ܷ୫୧୬ ∶=  min௥∈[଴,ଵ]  ܷ(ݎ),      ܷ୫ୟ୶ ∶=  max௥∈[଴,ଵ]  ܷ(ݎ), 

 ܾఈ,௡  ∶=  
1

ඥ߬ఈ,௡
  

1
2

 ቌ
1

ଶߙ√ + ݊ଶ
 +  ඨ

1
ଶߙ + ݊ଶ

  +  
1
ଶߙ
ቍ  ≤   ෨ܾఈ,௡  

where ߬ఈ,௡  = min )ߪ ଵܶ) ≥  ߬̃ఈ,௡ is defined as in Lemma (6.2.18) and ෨ܾఈ,௡ arises from ܾఈ,௡ 

if we replace ߬ఈ,௡ by its lower bound ߬̃ఈ,௡.  
Proof. Let ݒ = ்(ݕ,ݔ) ∈ ℬଵ ଶ⁄  ࣞ(ࣛଵ), ‖ ݒ‖ − ,ଶ((0ܮ 1]; (ݎ  = 1, and set ݑ ∶=  ℬିଵ ଶ⁄  =∶ ݒ
(݂,݃)் ∈ (ଵܣ)ࣞ = ࣞ( ଵܶ) ;[ଶ((0,1ܮ⊕ ݂ Then .(ݎ = ଵܶ

ି ଵ ଶ⁄ ݃,ݔ = ଵ
 ௞௥

 and we have ݕ 

 ‖݂‖௅మ൫(଴,ଵ];௥൯
  = ฮ ଵܶ

ି ଵ ଶ⁄ ฮݔ 
௅మ൫(଴,ଵ];௥൯

 
 ≤  

1
ඥ߬ఈ,௡

௅మ൫(଴,ଵ];௥൯‖ݔ‖ 
 ,             (93) 

‖݃‖௅మ൫(଴,ଵ];௥൯
  =  ฯ

1
ݎ݇ 

ฯݕ 
௅మ൫(଴,ଵ];௥൯

 

  ≤
1

|݊|
௅మ൫(଴,ଵ];௥൯‖ݕ‖  

 .                     (94) 

By the definition of ࣛଵ in (68), 

(ࣛଵݑ,ݑ)௅ଶ൫(଴,ଵ];௥൯  = ܴߙ݅  ቌ൭ቆܷ ଵܶ  + 
1
ݎ

 ൬
ܷᇱ

݇ଶݎ
൰
ᇱ

 ቇ݂, ݂൱
௅మ൫(଴,ଵ];௥൯

   −  ൬
ߙ
݊

 
ܷᇱ

ݎ
 ݂,݃ ൰

௅మ൫(଴,ଵ];௥൯
  

+( ܷ݇ଶݎଶ݃,݃)௅మ((଴,ଵ];௥)൯.                                                                              (95) 
Integrating by parts in the first term, we find  
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൭ቆܷ ଵܶ  + 
1
ݎ

 ൬
ܷᇱ

݇ଶݎ
൰
ᇱ

 ቇ   ݂, ݂൱
௅మ൫(଴,ଵ];௥൯

  

 =  න (ݎ)ܷݎ  ൬
1
ଶݎ

ଶ|(ݎ) ݂|   + 
1
ݎ   

1
ݎଶ(ݎ)݇  ห݂

ᇱ(௥)หଶ൰
ଵ

଴

ݎ݀   −  න  
ܷᇱ(ݎ)
݂(ݎ) ݂ ݎଶ(ݎ)݇ ᇱ(ݎ)

ଵ

଴

 (96)    .ݎ݀ 

The first term in (96) and the last term within the brackets in (95) are both real. Using the 
Cauchy-Schwarz inequality and the estimates (70), (93), (94), the second term within the 
brackets in (95) can be estimated by  

         ቤ൬
ߙ
݊

 
ܷᇱ

ݎ
 ݂,݃ ൰

௅మ൫(଴,ଵ];௥൯
ቤ ≤   

|݊|
ߙ

 ‖ܷᇳ‖ஶ‖݂‖௅మ൫(଴,ଵ];௥൯
 ‖݃‖௅మ൫(଴,ଵ];௥൯

   

                 ≤
1
ߙ

 ‖ܷᇳ‖ஶ  
1

ඥ߬ఈ,௡
௅మ൫(଴,ଵ];௥൯‖ݔ‖ 

௅మ൫(଴,ଵ];௥൯‖ݕ‖ 
  

≤  
1

ߙ2
 ‖ܷᇳ‖ஶ

1
ඥ߬ఈ,௡

 ൬ݔ‖ߜ‖௅మ൫(଴,ଵ];௥൯
ଶ

 

 + 
1
 ߜ
௅మ൫(଴,ଵ];௥൯‖ݕ‖

ଶ ൰     (97) 

for some ߜ > 0. Using the Cauchy–Schwarz inequality and the estimates (70), ݇(ݎ)ଶ ≥
ଶߙ  + ݊ଶ, ∋ ݎ (0, 1], and (93), we estimate the second term in (96) by 

         ቮනݎ 
ܷᇱ(ݎ)
(ݎ)ᇱ݂(ݎ) ݂ ଶݎଶ(ݎ)݇

ଵ

଴

ቮݎ݀ ≤  ‖݂‖௅మ൫(଴,ଵ];௥൯
  ቌනݎ ቤ

ܷᇱ(ݎ)
ቤ(ݎ)ଶ ݂ᇱݎଶ(ݎ)݇

ଶଵ

଴

ቍݎ݀ 

ଵ ଶ⁄

= ‖݂‖௅మ൫(଴,ଵ];௥൯
 ቌන  

1
  ଶ(ݎ)݇

ቤ
ܷᇱ(ݎ)
ቤ  ݎ

ଶଵ

଴

|݂ᇱ(ݎ)|ଶ

ቍݎ݀   ݎଶ(ݎ)݇

ଵ ଶ⁄

≤
1

ଶߙ√ +  ݊ଶ
‖ܷᇳ‖ஶ‖݂‖௅మ൫(଴,ଵ];௥൯

 ቌන  
ଵ

଴

|݂ᇱ(ݎ)|ଶ

ቍݎ݀  ݎଶ(ݎ)݇

ଵ ଶ⁄

≤  
1

ଶߙ√ +  ݊ଶ
‖ܷᇳ‖ஶ‖݂‖௅మ൫(଴,ଵ];௥൯

  ( ଵ݂ܶ,݂ )௅మ൫(଴,ଵ];௥൯
ଵ ଶ⁄  

≤
1

ଶߙ√ +  ݊ଶ
‖ܷᇳ‖ஶ

1
ඥ߬ఈ,௡

௅మ൫(଴,ଵ];௥൯‖ݔ‖ 
ଶ

 

 .                                                        (98) 

Hence, if we take the real part in (95), use (97), (98), and recall that we have assumed that 
≤ ߙ  0, we arrive at  
ℜ൫ࣛଵ ℬିଵ ଶ⁄ ℬିଵ,ݒ  ଶ⁄ ൯ݒ 

௅మ൫(଴,ଵ];௥൯

= ℑቌ−൬ܴߙ− 
ߙ
݊

 
ܷᇱ

ݎ
 ݂,݃ ൰

௅మ൫(଴,ଵ];௥൯
 –  න  

ܷᇱ(ݎ)
ݎଶ(ݎ)݇ ݂(ݎ) ݂   ᇱ(ݎ)

ଵ

଴

ቍ ݎ݀

≥ ܴߙ−  ቌ ቤ൬
ߙ
݊

 
ܷᇱ

ݎ
 ݂,݃ ൰

௅మ൫(଴,ଵ];௥൯
ቤ  + ቮන  

ܷᇱ(ݎ)
ݎଶ(ݎ)݇ ݂(ݎ) ݂   ᇱ(ݎ)

ଵ

଴

ቮቍݎ݀

≥ ᇳ‖ஶܷ‖ ܴߙ− 
1

ඥ߬ఈ,௡
 ൬
ߜ

ߙ2
 + 

1
ଶߙ√ + ݊ଶ

൰ ௅మ൫(଴,ଵ];௥൯‖ݔ‖
ଶ + 

1
ߜߙ2

௅మ൫(଴,ଵ];௥൯‖ݕ‖ 
ଶ . 

This lower bound is optimized by the choice  
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= ߜ  −   
ߙ

ଶߙ√ + ݊ଶ
 + ඨ

ଶߙ

ଶߙ + ݊ଶ
+ 1 

and, using ‖ݒ‖௅మ൫(଴,ଵ];௥൯
ଶ = ௅మ൫(଴,ଵ];௥൯‖ݔ‖

ଶ + ௅మ൫(଴,ଵ];௥൯‖ݕ‖
ଶ = 1, we obtain  

ℜ൫ࣛଵ ℬିଵ ଶ⁄ ℬିଵ,ݒ  ଶ⁄ ൯ݒ 
௅మ൫(଴,ଵ];௥൯

≥ ᇳ‖ஶܷ‖ ܴߙ−
1

ඥ߬ఈ,௡
 
1
2
ቌ

1
ଶߙ√ + ݊ଶ

 + ඨ 1
ଶߙ + ݊ଶ

+
1
ଶߙ

 ቍ. 

Taking the imaginary part in (95) and using (97), (98) again yields  

          ℑ൫ࣛଵ ℬିଵ ଶ⁄ ℬିଵ,ݒ  ଶ⁄ ൯ݒ 
௅మ൫(଴,ଵ];௥൯

 

=  ܴߙ

⎝

⎜
⎜
⎜
⎜
⎛ න(ݎ)ܷݎ ൬

1
ଶ|(ݎ)݂| ଶݎ +

 1
 ݎ

1
ݎଶ(ݎ)݇

 |݂ ᇱ(ݎ)|ଶ൰
ଵ

଴

ݎ݀

+(ܷ݇ଶݎଶ݃,݃)௅మ൫(଴,ଵ];௥൯

+ℜቌ−ቆ
ߙ
݊
ܷ′
ݎ
݂,݃ቇ

௅మ((଴,ଵ];௥)
– න  

ܷᇱ(ݎ)
݂(ݎ)݂  ݎଶ(ݎ)݇ ᇱ(ݎ)

ଵ

଴

ቍ ݎ݀
⎠

⎟
⎟
⎟
⎟
⎞

.           (99)  

In order to show the estimate from above, we use the inequality ܷ(ݎ) ≤ ܷ୫ୟ୶, ݎ ∈ [0, 1], to 
estimate the first two terms in (99) by  

න(ݎ)ܷݎ ൬
1
ଶ| (ݎ)݂| ଶݎ +

1
ଶݎଶ(ݎ)݇

 |݂ ᇱ(ݎ)|ଶ൰
ଵ

଴

 ݎ݀ 

≤  ܷ୫ୟ୶  නݎ ൬
1
ଶ| (ݎ)݂| ଶݎ +

1
ଶݎଶ(ݎ)݇

 |݂ ᇱ(ݎ)|ଶ൰
ଵ

଴

= ݎ݀   ܷ୫ୟ୶( ଵ݂ܶ, ݂ )௅మ൫(଴,ଵ];௥൯
 

=  ܷ୫ୟ୶‖ݔ‖௅మ൫(଴,ଵ];௥൯
ଶ  

and  
(ܷ݇ଶݎଶ݃, ݃)௅మ൫(଴,ଵ];௥൯ ≤   ܷ୫ୟ୶(݇ଶݎଶ݃,݃)௅మ൫(଴,ଵ];௥൯  

                        =  ܷ୫ୟ୶‖ݕ‖௅మ൫(଴,ଵ];௥൯
ଶ . 

For the last two terms we proceed in the same way as for the term ℜ൫ࣛଵℬିଵ ଶ⁄ ℬିଵ,ݒ ଶ⁄    ൯௅మ((଴,ଵ];௥)ݒ
and we conclude that  

ℑ൫ࣛଵℬିଵ ଶ⁄ ℬିଵ,ݒ ଶ⁄ ൯ݒ
௅మ൫(଴,ଵ];௥൯

≤ ܴߙ ൮ܷ௠௔௫ +
‖ܷᇳ‖ஶ
2ඥ߬ఈ,௡

 ቌ
1

ଶߙ√ + ݊ଶ
+ ඨ 1

ଶߙ + ݊ଶ
+

1
ଶߙ

 ቍ൲  

The proof of the estimate from below is analogous. 
      Using the above estimates we now obtain the following spectral inclusion.  
Theorem(6.2.36)[31]: Suppose ݊ ≠  0. Then the set of eigenvalues ߣ ܴܿߙ݅ = ∈  ௉( ℒ) ofߪ
the Hagen– Poiseuille problem (45), (49), (50),(51)satisfies the inclusion 

௉( ℒ)ߪ   ⊂ ൛ ߣ ∈  ℂ ∶  ℜ(ߣ) ≥  ܽఈ,௡ − ൫ܷ୫୧୬ܴߙ,ఈ,௡‖ܷᇳ‖ஶܾܴߙ − ܾఈ,௡‖ܷᇳ‖ஶ൯ ≤ ℑ(ߣ)
≤ ൫ܷ୫ୟ୶ܴߙ + ܾఈ,௡‖ܷᇳ‖ஶ൯ൟ 

with ܽఈ,௡ ,ܾఈ,௡,ܷ୫୧୬,ܷ୫ୟ୶ defined as in Lemmas (6.2.34) and (6.2.35). 
The inclusion continues to hold with ܽఈ,௡, ܾఈ,௡ replaced by their lower and upper,  
respectively, bounds ෤ܽఈ,௡ , ෨ܾఈ,௡.  
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Proof. The claim is immediate from Theorem (6.2.12) and Lemmas (6.2.34) and (6.2.35).   
      In case ݊ = 0 the problem splits into the two uncoupled problems, (83) and (84). We 
first estimate the bounds needed for the application of Theorem (6.2.12) to the first spectral 
problem (83).  

Lemma(6.2.37)[31]:(Bounds involving ܮଵ). The operator ଵܶ
ିభమܮଵ ଵܶ

ିభమ, with ଵܶ ,  ଵ defined inܮ
above, is semi-bounded with  

݈ఈ ∶= min (ଵܮ)ߪ  ≥  ሚ݈ఈ  ∶= ଶߙ  +  ଵ݆,ଵ
ଶ   

ଶߙ + ݆଴,ଵ
ଶ

ଶߙ + ଵ݆,ଵ
ଶ                               (100) 

where ݆଴,ଵ , ଵ݆,ଵ are the smallest zeros of the Bessel functions ܬ଴ and ܬଵ, respectively.  
Proof. Let ݕ ∈ (ଵܮ)ࣞ  ⊂ ࣞ( ଵܶ) (see [111]). In above (see (66)) it was shown that 

,ݕଵܮ)             ௅మ൫(଴,ଵ];௥൯(ݕ  =  න
ଶߙ

ݎ
ଶ|(ݎ)ݕ| 

ଵ

଴

+ ݎ݀    2න
ଶ|(ݎ)ᇱݕ|

ݎ
 

ଵ

଴

  ݎ݀

                 + නߙݎଶ  ฬ
 ݀
ݎ݀

 ൬
1
ݎଶߙ

 
݀
ݎ݀
൰ ฬ(ݎ)ݕ

ଶଵ

଴

= ݎ݀    )ଶߙ  ଵܶݕ,ݕ)௅మ൫(଴,ଵ];௥൯  + න
ଶ|(ݎ)ᇱݕ|

ݎ
 

ଵ

଴

 ݎ݀ 

+නݎαଶ  ฬ
 ݀
ݎ݀

 ൬
1
ݎଶߙ

 
݀
ݎ݀
൰ ฬ(ݎ)ݕ

ଶଵ

଴

 (101)                                                                     ݎ݀

where we have used that  

( ଵܶݕ, ௅మ൫(଴,ଵ];௥൯(ݕ  =  න
ݕ| ଶ|(ݎ) 

ݎ
 

ଵ

଴

 + ݎ݀
1
ଶߙ

  න
ଶ|(ݎ)ᇱݕ|

ݎ
 

ଵ

଴

 (102)                   .ݎ݀

In order to estimate the third integral in the last line of (101), we use that the smallest 
eigenvalue of the spectral problem (59) is ݆଴,ଵ

ଶ  (see [18]). Letting (ݎ)ݑ =  in (59) ݎ/(ݎ)′ݕ
and using this estimate in (101), we obtain 

,ݕଵܮ) ௅మ൫(଴,ଵ];௥൯(ݕ ≥ )ଶߙ  ଵܶݕ, ௅మ൫(଴,ଵ];௥൯(ݕ + ൫ߙଶ + ݆଴,ଵ
ଶ ൯

1
ଶߙ

 න
ଶ|(ݎ)ᇱݕ|

ݎ
 

ଵ

଴

 .ݎ݀

We split the last integral into two parts weighted by (1 − ߤ for some ,ߤ and (ߤ  ∈ [0,1]. 
The first part is estimated by observing that the lowest eigenvalue of the problem  

−  ቀଵ
௥

ቁ ′ݑ 
ᇱ
 = ଵ ߣ 

௥
(1)ݑ    ,finite (0)ݑ   ,ݑ   =  0,                             (103)  

is ଵ݆,ଵ
ଶ  (see [18]), and so with the additional help of (102) we obtain  

1
ଶߙ

  න
ଶ|(ݎ)ᇱݕ|

ݎ
 

ଵ

଴

≤ ݎ݀  (1 − (ߤ  ଵ݆,ଵ
ଶ

ଶߙ
  න

ݕ| ଶ|(ݎ) 

ݎ
 

ଵ

଴

ݎ݀ +  ߤ 
1
ଶߙ

  න
ଶ|(ݎ)ᇱݕ|

ݎ
 

ଵ

଴

  ݎ݀ 

          ≥  min ቊ(1 – (ߤ  ଵ݆,ଵ
ଶ

ଶߙ
, ቋߤ  ( ଵܶݕ,ݕ)௅మ((଴,ଵ];௥) 

for arbitrary ߤ ∈ [0,1]. If we choose ߤ = ଵ݆,ଵ
ଶ ଶߙ)/ + ଵ݆,ଵ

ଶ ), then the above minimum becomes 
maximal and we arrive at the estimate  

௅మ൫(଴,ଵ];௥൯(ݕ,ݕଵܮ) ≥ ቆߙଶ + ൫ߙଶ + ݆଴,ଵ
ଶ ൯ ଵ݆,ଵ

ଶ

ଶߙ + ଵ݆,ଵ
ଶ ቇ ( ଵܶݕ,ݕ)௅మ൫(଴,ଵ];௥൯       (104) 

from which the result is immediate.   
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Lemma(6.2.38)[31]: (Bounds involving ܣଵ ). The bounded (and densely defined) operator 
ଵିܤ ଶ⁄ ଵିܤଵܣ ଶ⁄  satisfies the estimates  
      (I) ℜ(ିܤଵ ଶ⁄ ଵିܤଵܣ ଶ⁄ ,ݒ (ݒ  ≥  ,ఈ,଴‖ܷᇳ‖ஶܾܴߙ− 
      (II) ܴߙ൫ܷ୫୧୬ – ܾఈ,଴‖ܷᇳ‖ஶ൯ ≤  ℑ൫ିܤଵ ଶ⁄ ଵିܤ ଵܣ  ଶ⁄ ,ݒ  ൯ݒ
                                                        ≤ ൫ܷ୫ୟ୶ܴߙ    + ܾఈ,଴‖ܷᇳ‖ஶ൯ , 
for ݒ ∈  ܤ 

భ
మ ࣞ(ܣଵ), ‖ݒ‖  =  1, where 

ܷ୫୧୬ ∶=  min௥∈[଴,ଵ]  ܷ(ݎ),      ܷ୫ୟ୶ ∶=  max௥∈[଴,ଵ]  ܷ(ݎ), 

ܾఈ,଴  ∶=  
1

ඥ߬ఈ,଴
  

1
ߙ

 ≤
1

ඥ߬̃ఈ,଴
  

1
ߙ

 ≤   ෨ܾఈ,଴, 

with ߬ఈ,଴ ≥ ߬̃ఈ,଴ defined as in Lemma (6.2.18).  
Proof. We proceed in a way similar to the proof of Lemma (6.2.35). Let ݔ ∈  ܤ

భ
మ ࣞ(ܣଵ),

‖ݔ‖ = 1, and set ݂ ∶=  ܤ 
భ
మ ݔ ∈ (ଵܣ)ࣞ = ࣞ( ଵܶ). Then we have the estimates 

‖݂‖௅మ൫(଴,ଵ];௥൯
 =   ฯ ଵܶ

షభ
మ ฯݔ 

௅మ((଴,ଵ];௥) 
≤   ଵ

ඥఛഀ,బ
௅మ൫(଴,ଵ];௥൯‖ݔ‖

 .                      (105)  

By the definition of ܣଵ in (86) and by integration by parts, we have 

  ൫ܣଵିܤଵ ଶ⁄ ଵିܤ,ݔ  ଶ⁄ ൯ݔ 
௅మ൫(଴,ଵ];௥൯

  

                       = ,ଵ݂ܣ)  ݂ )௅మ൫(଴,ଵ];௥൯ = ൭ቆܷ ܴߙ݅ ଵܶ +  
1
ݎ

 ൬
ܷᇱ

ݎଶߙ
൰
ᇱ

 ቇ  ݂, ݂൱
௅మ൫(଴,ଵ];௥൯

 

 =  ܴߙ݅ 

⎝

⎜⎜
⎜
⎛න(ݎ)ܷݎ ൬

1
ଶ| (ݎ)݂| ଶݎ +

 1
 ݎ

1
ݎଶߙ

 |݂ ᇱ(ݎ)|ଶ൰
ଵ

଴

ݎ݀

 −න  
ܷᇱ(ݎ)
݂(ݎ)݂  ݎଶߙ ᇱ(ݎ)

ଵ

଴

 ݎ݀
⎠

⎟⎟
⎟
⎞

.                 (106) 

The second integral within the brackets can be estimated by  

ቮන  ݎ
ܷᇱ(ݎ)
ଶݎଶߙ ݂(ݎ)݂   ᇱ(ݎ)

ଵ

଴

ቮݎ݀   ≤ ‖݂‖௅మ൫(଴,ଵ];௥൯
  ቌනݎ ቤ

ܷᇱ(ݎ)
݂  ଶݎଶߙ ᇱ(ݎ)ቤ

ଶଵ

଴

ቍݎ݀ 

ଵ
 ଶ 

=  
1
ߙ

 ‖݂‖௅మ൫(଴,ଵ];௥൯
  ቌනݎ ቤ

ܷᇱ(ݎ)
ݎ

ቤ
 ଶ |݂ ᇱ(ݎ)|ଶ

  ଶݎଶߙ

ଵ

଴

ቍݎ݀ 

ଵ
 ଶ 

≤
1
ߙ

 ‖ܷᇳ‖ஶ‖݂‖௅మ൫(଴,ଵ];௥൯
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|݂ ᇱ(ݎ)|ଶ

   ݎଶߙ

ଵ

଴

ቍݎ݀ 

ଵ
 ଶ 

 

≤
1
ߙ

 ‖ܷᇳ‖ஶ‖݂‖௅మ൫(଴,ଵ];௥൯
 ( ଵ݂ܶ, ݂ )௅మ((଴,ଵ];௥)

ଵ
ଶ  ≤  

1
ߙ

 ‖ܷᇳ‖ஶ
1

ඥ߬஑,଴
௅మ൫(଴,ଵ];௥൯‖ݔ‖

ଶ
 

 . 

The first term within the brackets in (106) is real and can be estimated from above using the 
inequality ܷ(ݎ) ≤  ܷ୫ୟ୶, ∋ ݎ  [0, 1]:  
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න(ݎ)ܷݎ ൬
1
ଶ| (ݎ)݂| ଶݎ +

1
ଶݎଶߙ

 |݂ ᇱ(ݎ)|ଶ൰
ଵ

଴

 ݎ݀ 

≤  ܷ୫ୟ୶  නݎ ൬
1
ଶ| (ݎ)݂| ଶݎ +

1
ଶݎଶߙ

 |݂ ᇱ(ݎ)|ଶ൰
ଵ

଴

= ݎ݀   ܷ୫ୟ୶( ଵ݂ܶ, ݂ )௅మ((଴,ଵ];௥)  

=   ܷ୫ୟ୶‖ݔ‖௅మ൫(଴,ଵ];௥൯
ଶ ; 

the estimate from below is analogous. Taking real and imaginary parts in (106) yields the 
claimed bounds.   
Theorem(6.2.39)[31]: Suppose ݊ =  0. Then the set of eigenvalues ߣ = ܴܿߙ݅ ∈  ௉(ℒ) ofߪ
the Hagen-Poiseuille problem (45), (49), (50), (51) satisfies the inclusion  
௉(ℒ)ߪ ⊂  ൛ߣ ∈ ℂ: ℜ(ߣ)  ≥  min൛݈ఈ − ,ఈ,଴‖ܷᇳ‖ஶܾܴߙ  ൫ܷ୫୧୬ܴߙ, ఈൟݎ − ܾఈ,଴‖ܷᇳ‖ஶ൯  ≤  ℑ(ߣ)

≤ ୫ୟ୶ܷ)ܴߙ + ܾఈ,଴‖ܷᇳ‖ஶ)ൟ 
where ݈ఈ, ܾఈ,଴, ܷ୫୧୬ and ܷ୫ୟ୶ are defined as in Lemmas (6.2.37) and (6. 2.38) and ݎఈ is 
defined in Lemma(6.2.21). The inclusion continues to hold with ܾఈ,଴ replaced by its upper 
bound ෨ܾఈ,଴ and with 

min൛݈ఈ − ,ఈ,଴‖ܷᇳ‖ஶܾܴߙ  ,ఈൟݎ
replaced by its lower bound  

min ൛ሚ݈ఈ − ܴߙ ෨ܾఈ,଴‖ܷᇳ‖ஶ, ఈൟݎ̃  = ሚ݈ఈ − ܴߙ  ෨ܾఈ,଴‖ܷᇳ‖ஶ. 
Proof. We have ߪ௉(ℒ) = ௉(ℒଵ)ߪ ∪  where the linear operator pencil ℒଵ is given by (ଶܮ)௉ߪ
ℒଵ(ߣ) = ଵܮ + –ଵܣ ߣ ଵܶ , ߣ ∈ ℂ,  (see (85),(86)) and ܮଶ is the linear operator ܮଶ = ܴଵ +  ܷܴߙ݅
with ܴଵ defined in Lemma (6.2.21).  
      For ߣ ∈  ௉(ℒଵ) we use Lemmas (6.2.37) and (6.2.38) which yield thatߪ

ℜ(ߣ) ≥  ݈ఈ −  ఈ,଴‖ܷᇳ‖ஶܾܴߙ 
and that ℑ(ߣ) satisfies the claimed estimate. For ߣ ∈  we use Lemma (6.2.21) to ,(ଶܮ)௉ߪ 
conclude that ℜ(ߣ) ≥ U୫୧୬ܴߙ ఈ, while the boundsݎ  ≤  ℑ(λ) ≤  U୫ୟ୶  are immediateܴߙ
from (84). Hence both σ୔(ℒଵ)  and σ୔(Lଶ) satisfy the claimed inclusion. For the last claim 
we note that ݆଴,ଵ <  ଵ݆,ଵ for the smallest zeros of the Bessel functions ܬ଴ and ܬଵ, respectively, 
and hence ሚ݈ఈ <   .ఈ by (134) and (63)ݎ̃
      It is important to emphasize that the spectral bounds obtained in the preceding part, 
based on numerical range estimates, are rather coarse. However, it should also be stressed 
that numerical approximations of eigenvalues for non-selfadjoint spectral problems may not 
be reliable. A promising way to address this problem is to combine analytical estimates with 
validated numerics. This was done successfully in [26] for plane Poiseuille flow where a 
linearly unstable eigenvalue was proved to exist at the Reynolds number 5772.221818, thus 
providing the first guaranteed upper bound for the critical Reynolds number.  
      Besides numerical ranges, which we have discussed here, other approaches are possible, 
e.g. methods based on attempting to bound the resolvent of an appropriate operator. With 
the latter approach, for the particular case of a parabolic flow profile ܷ(ݎ) = 1 −  ଶ, Åsénݎ
and Kreiss [30] showed that all eigenvalues must satisfy ℜ(ߣ) > 0 if either 16|ܴߙ| ≤
max{1,݊ଶ} ߙ| ݎ݋|ଶ ≤ ܴ.  
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      Figs. 1 and 2 below compare the neutral (linear) stability regions for parabolic flow 
profiles to those of Åsén and Kreiss for the case ݊ = 0 and for ݊ = 1 since the latter is 
believed to be the least stable case. Here we have used Theorems (6.2.39) and (6.2.36), 
respectively, with the lower bounds established in this section. It turns out that the stability 
regions are quite different from theirs.  
      In the case ݊ = 0, the stability region contains the part of the plane not yet covered by 
Åsén and Kreiss, thus rendering all pairs (ߙ,ܴ) linearly stable. In the case ݊ = 1, the 
stability region improves that of Åsén and Kreiss for all ߙ  ≈வ  5.25; the region in the right 
upper corner in Fig. 2 remains uncovered by either set of results. 
      However, Fig. 2 suggests that the results yield a critical Reynolds number ܴ௡,௖௥௜௧ for 
݊ ≠ 0 such that all pairs (ߙ,ܴ) with ܴ ≤ ܴ௡,௖௥௜௧ are linearly stable, while the estimates of 
Åsén and  

 
Fig. 1. ݊ =  0: Area below the blue curve is stable by Theorem (6.2.39). Area to the left of 
the red curve is stable by [30]. Thus all pairs (α, R) are linearly stable.  

 
Fig. 2. ݊ = 1: Area below the blue curve is stable by Theorem (6.2.36). Area to the left of 
the red curve is stable by [30]. The region in the top right-hand corner is not guaranteed 
stable by either set of estimates.  
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Kreiss require that ܴ → 0 when ߙ → ∞. In fact, the estimates can be used to show that for 
݊ ≠  0,  

ܴ௡,௖௥௜௧ ≥ limఈ→ஶ    
෤ܽఈ,௡

‖ܷ″‖ஶߙ ෨ܾఈ,௡
  =  

1
‖ܷ″‖ஶ

 
5݊ଶ + 1 − ඥ(3݊ଶ + 1)ଶ + 16 

1 + √2 
>  0. 

This limit is increasing in n which supports that ݊ = 1 is the least (linearly) stable case; in 
particular, for ݊ = 1 and parabolic ܷ we obtain, in agreement with Fig. 2, 

ܴ௡,௖௥௜௧ ≥   
1
2

  
6 − 4√2
1 + √2

 ∼  0.0711, ݊ ≠  0. 

      Note that all the estimates apply not only to pipe Poiseuille flow, but to any other flow 
profile ܷ that is twice differentiable with ܷ′(ݎ) → 0 for ݎ → 0 and bounded ܷ″, e.g. 
velocity profiles with inflection points.  
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List of symbols 

symbol Page 
ܹଵ,௣ : Sobolev space 1 
 ଶ : Hilbert space 1ܮ
dist : distant 1 
Sup ∶ Supremum  1 
 ஶ : essential Lebesque space 6ܮ
min ∶  minimum  9 

S. E. I. D ∶ strong energy image density   10 

 ଵ : Lebesque integral on the real line 11ܮ
 ଵ : Sobolev space 12ܪ
௣ܮ  : Lebesque space 17 
Loc : locally 17 

det ∶ determinant  18 

max ∶ maximum  21 

Rad ∶ radius   29 

Diam ∶ diameter  38 

 ௤ : Lebesque dual space 41ܮ

a. e ∶ almost everywhere  69 

Ker ∶ kernel   69 

Im ∶ imaginary  69 

dim ∶ dimension  69 

codim ∶ codimension  69 

⊖ : direct difference 69 

sign ∶ signature  71 

arg : argument  71 

sub ∶ the category of subanalytic subset  101 

⊗ ∶ tensor product   103 

sem ∶ semialgebraic  106 

≡௡ : equivalence relation modulo 106 

int ∶ interior  108 

supp ∶ support  125 

inf : inϐimum  176 

ess ∶ essential  193 
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Re ∶ real  194 

⊕ ∶ direct sum  207 

 


