Chapter 5
Quantitative and Spectral Stability Estimates

In this chapter we show that if 2 and 2" are close enough for the complementary Hausdorff
distance and their boundaries satisfy some geometrical and topological conditions then

I - 4] < CleAQ|N
where A, (resp. 1';) is the first Dirichlet eigenvalue of the Laplacian in 2 (resp. 2 and
|2AQ] is the Lebesgue measure of the symmetric difference. Here the constant @ < 1 could be
taken arbitrary close tol(but strictly less) and C is a constant depending on a lot of parameters
including a, dimension N and some geometric properties of the domains. the argument also
relies on suitable extension techniques and on an estimate on the decay of the eigenfunctions at
the boundary which could be interpreted as a boundary regularity result.

Sec(5.1): The First Dirichlet Eigenvalue in Reifenberg Flat Domains in RV

We show a stability result for the first Dirichlet eigenvalue of the Laplacian in some bounded
open sets in RY. We estimate the difference

=251 < CloaQ|¥ ©
where A, (resp. 1) is the first Dirichlet eigenvalue of the Laplacian in £ (resp.2’), and |QAQ’|
= |2\ U N\2'| is Lebesgue measure of the symmetric difference between Q2 and 02'.
Stability results for the eigenvalues were studied a lot (see [155,152,95]) and have many
applications, for instance in shape optimization problems (see [153,99]). On the other hand, as
far as we know, estimates with a precise quantitative bound as (1) were only recently
investigated [158, 156, 61], and always for regular domains, C1* or at least Lipschitz domains.
We would like to mention also [1] where a weaker inequality than (1) is proved for a very large
class of domains including for instance bounded connected John sets with a “twisting external
cone condition”. The proof of Pang [1] uses a Brownian motion and is based on estimates on
the Poisson kernel. In this section we present a simpler proof in the case of Reifenberg-flat
domains.

We seek some geometrical conditions to impose on the domains in order to guarantee that
(1) is true. What we obtain is that a “strong” —Reifenberg flat boundary is sufficient. In
particular, domains with cracks are not permitted. Roughly, in terms of regularity, such domains
have boundaries which are well approximated by hyperplanes at every scales (see Definition
(5.1.1)). This is weak enough to permit Holderian spirals or snowflake-like boundaries (in
particular it is weaker than Lipschitz domains) but at the same time the geometry of a
Reifenberg flat set is sufficiently under control in order to make some sharp estimates. See
[76,81,16] for some earlier works on the analysis of operators in Reifenberg flat domains.

Notice that one could expect (1) to be true with @« = 1 for the case of Lipschitz domains. In
this section, since we work with Reifenberg flat domains we only get (1) with @ < 1 which is
optimal in the class of domains.

It is worth mentioning that (1) cannot be true without assuming any kind of regularity on the
boundary of the domains. For example in R?, the domains 2 := B(0,1)\{x; = 0,x, < 0} and
N':= B(0,1) are such that |2AQ'| = 0 but clearly A; # 1. Inequality (1) can either not be true
without adding some topological assumptions. Indeed, the Lipschitz domains 2 := B(0,1)\
{x; = 0}and Q' := B(0,1) are again such that [2 A 2’| =0but A, # A].
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We denote dj the Hausdorff distance, namely for two compact sets A and B
dy (A, B) := supdist(x, B) + sup dist(y,A).

XEA YEB
We consider the case of Reifenberg flat Domains which are defined as follows.

Definition(5.1.1)[80]: An (&, p)-Reifenberg-flat domain 2 < R¥ is an open and bounded set
such that for each x € 92 and forany r < r,, 2 N B(x,r)is connected and there exists a hyper
plane P(x,r) containing x which satisfies

% dy (002 0 B(x,7), P(x,r) N B(x,7)) < &. @)

Let us mention the remarkable theorem of Reifenberg ([64], see also [60],[68]) known as the
“topological disk theorem”, which in the setting says the following.
Theorem(5.1.2)[80]: There exists a constant ¢, depending only on the dimension, such that for
any (&,1,)-Reifenberg-flat domain 2 ¢ RN with £ < g, and for any point x € 412, one has that
0 N B(x,1,/32) is a topological disk.
We devote to some preliminary results, especially a covering lemma and a geometrical fact

1

saying that d (2'°,2¢) and |2AQ'|~ are equivalent for two Reifenberg flat domains. Next we
show some boundary estimates for both eigenfunctions and their gradients near the boundary of
a Reifenberg flat domain. The more difficult part is to control the gradient. We first show a
decay result on balls centered at the boundary and then use the covering lemma to estimate the
gradient in a region close to the boundary. We show an extension result for functions in Hg (2).
This extension lemma is a powerful tool which is used to compare two Dirichlet eigenvalues.
We remark that the extension lemma implies a y-convergence result from which we auto-
matically obtain the stability for Dirichlet eigenvalues.

Finally we provide the Theorem (5.1.17) and it is proof using the Min-Max principle.

D*(z,7)
JQ
P(x,v) —_—
D~ (z,7)
Fig . 1.

We start by giving some useful and classical facts about the Dirichlet eigenvalue problem
for the Laplacian, that can be found for instance in [27].
Proposition(5.1.3)[80]: Let 2 be a domain in RY. Then —A has a countably infinite discrete set
of eigenvalues, whose eigenfunctions span Hj(£2). Moreover each eigenfunction v belongs to
L*(0) and we have

Ivlle < C @120 IVl

For a Reifenberg-flat domain 2 and for any ball B(x,r) centered at 42 and radius r < r,,
let us define the sets D*(x, r) in the following way. Let P(x,r) be the hyperplane given by the
definition of Reifenberg flatness of 2. Denote by z*(x,r) the two points that lie at distance
3r/4 from P(x,r) and whose orthogonal projection on P(x,r) is equal to x. Then we set
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D*(x,7r) :=B(z*(x,1),1r/4) )

as in Fig. 1.

We have the following useful fact regarding the sets D*.
Lemma(5.1.4)[80]:Let 2 be an (&, ry)-Reifenberg flat domain. Then forall x € 92 and r < %
the balls D*(x,7) and D~(x, r) lie in different connected components of B(x,r)\d..
Proof . This can be seen as a consequence of the topological disk Theorem of Reifenberg [64].
Actually one could also prove it directly without using the whole result of Reifenberg but just
the very beginning of Reifenberg’s construction.

In the situation we find it convenient to simply apply the Theorem. More precisely, we use
the statement of Theorem 1.1. in [68] (which holds for N # 3 for the case of hyperplanes) that
gives for every r < rpand x € 92 a hyperplane P through x and a continuous homeomorphism

f: B(x,% r) = f(B(x,zir)) C B(x,2r) such that
B(x,r)c f (B (xzir)) c B(x, 2r), 4)

NNB(x,r)ycf (PnB(x,ZEr» c 3 N B(x,2r). (5)
Now if we denote by v any normal vector to P and consider
Pr:={xeRV: x.v>0}, P :={xeR": x.v <0},
itis clear from(4) and (5) that 912 separates the domains f (Pi NnB (x Sr)) and in particular
the sets D*(x, ).

a0,
"

79
/

Pz, r)

Py, r)

Fig . 2.
We have the following lemma.
Lemma(5.1.5)[80]: Let 2, and £2, be two (&, 1y)-Reifenberg flat domains such that
dy(025,05) < r,/3.Then
d,y (0, 05) < Cl,A |V
where C depends only on N.
Proof . Let x € 0, , be such that r :=dist(x, d2,) is maximum, and let y € 002, be such that
dist(x, 002,) = d(x,y) = r. Let us set D = D*(x,r) and D; = D*(y,r) as being the balls
defined in (3). Under the assumptions we know that only one of D" lies in 2, and only one of
D5 lies in £2,. Let us simply denote by D; those two balls.
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Now by the definition of y, we know that B(y,r) n df; is empty. In particular, the two
“approximating” hyperplanes P(x,r) and P(y,r) are almost parallel (with error less than
2.¢ < 2107%?)asin Fig. 2.

Then it is not difficult to show, considering also a similar situation in B(x, 3r) and B(y, 3r)
with the corresponding selection of domains D;(3r) € {D*(x, 3r), D*(y, 3r)}, that whatever
the positions of the D; and D;(3r) with respect to the lines P(x, 3r) and P(y, 3r) are, one can
always find a ball of radius equivalent to r that lies in the symmetric difference of 2, and 0,.
We conclude the proof by exchanging the role of 2, and {2, and using the same argument.

We provide the following elementary covering lemma.

Lemma(5.1.6)[80]: Let 2 < RN be an (&, ry)-Reifenberg flat domain such that 0 < #N-1 (902)
=L < +oo. Then for every r < r,/2 we can extract among {B(x,7)},cao @ subfamily of at

most L/(Cyr¥ 1) balls that forms a covering of Uxe[mB(x,li0 r) where Cy is a dimensional

constant. Moreover, for all x we have that
#i:x€B;}<C (6)

where C is again a dimensional constant.
Proof . Since r < r,, we have that

dy (02 N B(x,7),P(x,7) N B(x,7)) <107 ?%r. @)
We also know that 002 separates D*(x,r) from D~ (x,r) and since the set of minimal HN-1
area having this property and satisfying (7) is the corresponding part of a hyperplane, we
deduce that there exists a dimensional constant C such that forall x € 0 and all r < r,

HN1(02NnB(x, 1)) = Cyr¥ L.

Now let B(x;, 1;), be a subfamily of {B(x,7)},es, indexed by i € I, maximal for the property

that %OBL- N %OB]- = . Using this fact (6) comes from a classical geometric argument in RY.

Now we claim that #1 is finite. Indeed, since 110 B; are disjoint balls we have

1
L>HN1 (U an N 0 Bl-) > #ICyrN~t 10tV
i€l
thus
Hl < ——— (8)

Finally, it remains to prove that the family {B;};c; forms a covering of UxeaﬂB(x,li0 ).
Lety € UanQB(x,l% r) and let x € 82 be such that y € B(x,l%r). Then by the maximality

of the {B,}, there exist an index i and a point z € iBl- N B(x,r/10). Then if x; denotes the
10 L

center of B; , we have

8 2
d(y,x;) <d(y,x)+d(x,z)+d(z,x;) < ) r+E r=r

which proves that y € B(x;, 1).
We will need the following boundary version of the classical Sobolev inequality when 2 is a
Reifenberg flat domain.
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Proposition(5.1.7)[80]: Let 2 be an (&, 1y)-Reifenberg flat domain in RN and u € Wol‘”(ﬂ)
forsomep > 1.Thenforallx € 2 and r < r, we have
lull e Beeringy < CrllVullie geoprng)
where C := C(p,N) and b := b(N).
Proof . The proof is a small modification of the classical proof of the Sobolev inequality that
we will write here with full details for the convenience of the reader.
Without loss of generality, we may assume that u € C3 (), x is the origin and that P(x,)
is the hyperplane {x; = 0}. We shall show that
llull» (2nQ(xr)) = Crl|Vull e (2nQ(x,1))" 9)
where Q(x,) is a cube centered at x, and with faces orthogonal to the axis of R¥. Observe that
(9) implies the desired inequality with constant b coming from the comparison between cubes
and euclidian balls in RV,
By changing the orientation of x, we can assume that Q (x,r) n 2 (which is connected by
the assumptions) contains the upper part Q(x,r) N {x, > r/2}. Itis clear that for any
u € Cg (),

1 r
luxy,x" )| < fIDlu(t,x’)I dt < f|D1u|(t,x’) dt .

Integrating over x; we obtain
r

r
flu(xl,x’)l dx, < 2r f|D1u(t,x’) | dt.

Now integrating the last inequality between —r and r successively over each variable
X, ..., Xy We get

f lu(x)|dx < 2r f |D;u(x)| dx < Cr f [|Dul|(x) dx.
Q(x,r)nn Q(x,r)nn Q(x,r)nn
Then (9) follows if we apply this last inequality to uP and use the Holder’s inequality.
Corollary(5.1.8)[80]: Let 2 be an (&, r,)-Reifenberg flat domain in RY and for § < r,/2 set
As = 2 n{d(x,002) <5}
Then for any function u € W,"? (£2) we have
1

T

P
flulp dx | < C6 fIVulp dx

Azps
where b is the dimensional constant of Proposition (5.1.7).

Proof . Let {B; };e; be the subfamily of balls {B(x, 26)}eca0, given by Lemma (5.1. 6). Then

A5:=Qn{x:d(x,6Q)S6}cU (x—6> UB

XEIN i€l
Moreover the covering is bounded by a dimensional constant C. Then,

flulp dx < Z f |ul? dx
As

i€l B;nn
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and using Proposition (5.1.7), together with the fact that the B; are centered at 912, we obtain
flulp dx < C Z(S” f |[Vul? dx < C6P f |[Vul? dx

i€l bB;NN Azps
which proves the corollary
Proposition(5.1.9)[80]:Let 2 be an (g, 1,)-Reifenberg flat domain in RY, and let u be an
eigenfunction for the Dirichlet Laplacian in £, associated to the eigenvalue A. Then for every
B > 0 thereisaconstant C, depending on N, |£2] and £ such that for every x € 42 and for all
r < 1y, we have that

2 2 r\"F
f Vul? dx < Co Allull? ) <E> | (10)
B(x,r)nn
Proof . Foragiven § > 0, define
2
a := 28, (11)

Without loss of generality we assume that r, = 1 and |[u||, = 1. Now let x € d02. We will
obtain the appropriate decay by showing that for k € N and a specific selection of the constant
C, we have

|Vu|?> dx < C; Aa=*N=B), (12)
B(x,a"%)nn
We will prove (12) inductively. It is clear that(12) is true for k =0 if C; = 1.

Suppose now that (12) is true for k and denote by v the “harmonic” replacement of u in
Sk := B(x,a™*) n 0; that is a harmonic function v € H(S,) which satisfies u — v € HJ (Sy).
Such a function v can be obtained by minimizing the Dirichlet integral, and since u is a
competitor we have that

fIVvI2 dx < fIVul2 dx < C; Aa kW=B),

by the inductive hypothesrs On the other hand w := |Vv|? is subharmonic. Therefore by the
classical mean value inequality applied to w we have

fleI2 dx <aV fIVvI2 dx,

Sk+1

that is
fleI2 dx < C; da=N a kW-8), (13)

Sk+1
Now we want to estimate fsklv(u — v)|? dx. Notice that for all k, u is the unique solution of

the problem
{—VW = Aw inS,
therefore u is minimizing the energy

1/2 fIVWIZ dx — f/luw dx .
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among all functions w such thatu — w € H;}(S,). Therefore we deduce that
1/2 f|Vu|2 2 f|u|2 < 1/2 f|Vv|2 “2 fuv .
Sk Sk Sk Sk

Hence

f|Vu|2— f|Vv|2 < 22 f|u|2 -fuv < CAIS, Il

k
< AC(N,|2)a™*N < AC, a™ N, (14
where |v| was estimated in terms of ||u||,,by the maximum principle and |Jull., < C(N, |2])
by Proposition (5.1.3).
Now since v is harmonic in S, and u — v € H}(Sy), we deduce that Vv and V(u — v) are
orthogonal in L?(S,,) thus (14) implies

fWu Vol? = f|Vu|2 f|Vv|2 AC,a-N. (15)
Gathering (13) and (15) together we complete the |nduct|on as follows:

fIVuI2 dx < 2 fIVv|2+2 fIV(u—v)I2 dx,

Sk+1 Sk+1 Sk+1

< 2C,2a7N a7 ¥N=B) + 2)C,a™*N < CAq”kFDWN=F),

where the last inequality holds by the definition of a and provided for instance that
2(N+1)
c, =C2 F . (16)
Now to finish the proof, since (12) is true, for every r < 1 one can find an integer k such that
r < a’* < ar, thus

[Vul? dx < f |Vul? dx < C;2a*W-B) < ¢, A(ar)V-F
B(x,r) B(x,a=k)
so the proposition is true with C, :=a"=# ¢, .
A consequence of the above proposition is the following.

Corollary(5.1.10)[80]: Let 2 be an (e, 7,)-Reifenberg flat domain in RM such that 0 <
HN"1(902) = L < +oo. Then for any a < 1 there is a constant C; := C,(]2],7,, N, «) such that
for any eigenfunction u for the Dirichlet Laplacian associated to the eigenvalue 4 in 2 and for
any 6 < ry/2 we have

[Vul? dx < CllLlluIIfZ(ﬂ)éa.
2n{d(x,002,) <6}
Proof . We argue as in Corollary (5.1.8). Let {B;};c; be the subfamily of balls {B(x, 256)},ca0
given by Lemma (5.1.6). By (8) we know that
#1 < L/ (2N cy6NY)
and that

0Nn{x: d(xd0) < 8} U B(x,16/10 &) c U B, .
X€0N i€l
Moreover the covering is bounded by a dimensional constant C. Then,
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[Vul|? dx < Z fIVuI2 dx .

on{d(x,001)<6} i€l B;nn
and using Proposition (5.1.9) (applied with r = § and 8 = 1 — ) together with the fact that
the B; are centered at 02 we obtain

[Vul? dx < C/lllullfz(ﬂ) Z gN-1+a
on{d(x,002)<8} i€l
< CAllull oy #HSN 1 < € LAllullz2(g) 6%
where C = C(ry, N, a, |2]|) and the proof is complete.

We need the following extension lemma for Sobolev functions in Reifenberg flat domains.
The proof relies on a Whitney extension which is now well established. A first result of this
kind (but however slightly different) is probably due to P. Jones in [88] which has been used by
several authors, particularly by scientists working on quasi-conformal maps (see for instance
[157]). However, in the case the extension will be much more simpler than the original one of
P. Jones since we allow ourselves to modify the function inside the domain in a small neigh-
borhood of the boundary. We would like to mention that [81] contains a lemma similar to the
following one but for Neumann extensions and for domains with cracks. One can also find
again the same sort of extension lemma used together with a stopping time argument to show
some thin convergence results in [74].

Lemma(5.1.11)[80]:Let £2, and £2, be two (&, ry)-Reifenberg flat domains such that

dy (25,05) < 6 <(100b)7! 7,
where b is the dimensional constant of Proposition (5.1.7) and set

As :={x:d(x,002,) < 6}.
Then for any v € W,"? (12,) there exists a function & € W, " (12,) such that v = 7 in 2;\A,s
and
IPr,y =< lVilpcay) 17
1VBIFo g0,y < 19910, + CIVYIL, (18)

LP(Q1NA4ps)
Proof . Let {B;}; ¢, be the subfamily of balls {B(x, 28)}, a0, given by Lemma (5.1.6). We
will denote by x; the center of B; and r; its radius. Since 2,AQ, < U;¢; B;, to define a function
7 € W 12(£2,), itis sufficient to define an extension of v in 2, N U; ¢, B;.

For all i, define a function ¢; € C! (5B;), such that ¢; =1 in2B;, |[Vp| <& ! and let ¢,
be a function that is equal to 1 in 2\ U;e;4B;, 9o =0 in Ui, 2B; and @g + X jc;0; =1 in
2,\ U¢; 5B; .Moreover, we can assume that for all x € 4B;\2B;, |V¢, (x)| < §~". Indeed,
such a function ¢, can be obtained by setting

Po (x) = 1_[ I (d(X(S,'Xl)>

i€l
where [ is a Lipschitz function equal to 0 in [0, 2], equal to 1 in [4,+c0) and I’ (x) < 1. Finally,
define

Pi

0, :=
" (@0t Zier 1)
This allows us to obtain a partition of the unity in 2, U U;¢;5B;.

for i e 1 U{0}.
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Next we simply define ¥ by
7(x) := 0y(x)v(x). (19)

in such a way that ¥(x) vanishes on U;¢,;2B; 2 d2,. We claim that ¥ € Wol’”(ﬂz) and that
(17), (18) are satisfied. The first estimate (17) comes directly from the fact that 6,(x) < x,,.
So we only have to prove (18), which will also imply that & € W1?(1,).

We have that

Vi(x) = v(x)VO,(x) = 0y(x)Vv(x).
thus
IVoGr@y < Vo) Xsuppienl .y + 1PV lir(ay)

< VeI, + V() VO ()L (q,).
therefore it is enough to prove that
lv(VO()lpa,y < ClIIVVE)Lpeay - (20)
with

A:=10,n U AbB; C Ags.
i€l
On the other hand, from the construction of 8, we have
166 (1 < ) tan (57" (2)
i€l
Therefore, since the sum in (21) is locally finite we conclude that
14

W0y < [ [ Y tas (57

jeJ

< sz 5P f WGP, 22)

i€l 4B;
Now since B; is centered on a4, , from Proposition (5.1.7) we get

flvlp dx < C6P fIVulp dx

4B; 4bB;
(the definition of v outside {2, is considered being 0). Then,

W0,y < €Y [P <c [ 1w
i€l 4bB; AgpsN 21
which concludes the proof.

As in [81], the extension Lemma will imply the Mosco-convergence of Hg (£2,,) to Hj (2)
while 2,, tends to Q2 for the complementary Hausdorff distance. It is well known that this
notion is equivalent to the y-convergence of £2,, to 2 which will in particular imply a stability
result for eigenvalues.

For u € H}(22) we will identify u as a function in H1(R") by extending them being zero
outside 1.
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Definition(5.1.12)[80]: (Mosco-convergence). Let 2,, and 2 be open subsets of RY. We say

that H (£2,,) converges to H} (2) in the sense of Mosco if the following two properties hold:

(M1) for every u € Hj (£2), there exists a sequence u,, € Hj (£2,,) such that u,, converges to u

strongly in H1(RY);

(M2) if hy is a sequence of indices converging to +oo, u, is a sequence such that u, €

Hg (42y,, ) for every k, and w, converges weakly in H'(R") to a function @, then @ € Hg(12).
The Mosco convergence is a great tool to study stability for elliptic problems. Indeed, for

any bounded open set 2 ¢ RY and any f € H1() let us denote by u£ € H} () the unique
solution of the equation —Au = f inf .
Definition(5.1.13)[80]: Let D ¢ RY be bounded. We say that the sequence of open sets

0, c Dy -converges to 2 c D if forany f € H~1(D) we have that uﬁn strongly converges to

u! in HX(D).
The following classical result shows the link between Mosco convergence and y-convergence

(see [99)).
Proposition(5.1.14)[80]: 2,, y-converges to 2 if andonly if HJ (2,,) converges to Hg (£2) in the
sense of Mosco.
Theorem(5.1.15)[80]:Let ry,e >0 and let {2, },ey and 2 be some (&, 1,)-Reifenberg flat
domains. Assume that (2, converges to 2 for the complementary Hausdorff distance. Then
H}(92,) converges to H(£2) in the sense of Mosco.
Proof . The proof is the same as for Theorem 11 in [81], using this time the extension lemma
for H} (Lemma (5.1.11)).

A useful consequence of y-convergence is the stability of eigenvalues, which is again very
standard (see [153,99]).
Proposition(5.1.16)[80]: Let 15, € > 0 and let {2,,},,eny and 2 be (&1,) —Reifenberg flat.
Assume that ,, converges to 2 for the complementary Hausdorff distance. Then the k-th
eigenvalue in £2,, converges to the k-th eigenvalue in 0.

We are now ready to show Theorem (5.1.17). Notice that the theorem contains in particular
a second proof of Proposition (5.1.16) for the case of the first eigenvalue.

Next we present the main result concerning the Dirichlet eigenvalues.
Theorem(5.1.17)[80]: Let 2 be an (g, 1y)-Reifenberg flat domain in R such that

0 < HV"Y(90n) =L < +oo,
Let B be a ball such that 10B is contained in £2 and let y, be the first eigenvalue of B. Then for
every a < 1 and for every M > L there is a constant C depending on a, N, ||, y; .19 and M
such that the following holds. Let 2’ be an (e r,)-Reifenberg flat domain such that 0 <
HN-1(002') < Mand let A,(resp.A;) be the first eigenvalue for the Dirichlet Laplacian in £
(resp. Q). If
dy('°,0°) < ¢t
then
|-, | < ClaQ'|v .,

The proof relies on a different approach than the technics in [158] and [1]. The principal
idea is to obtain some estimates on the behavior of eigenfunctions near the boundary and
combine them with the Min-Max principle using a good extension lemma to compare two
functions defined on different domains.
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Proof. Let a, M and y, be given as in the statement of the theorem. Let u, (resp.u;) be an
eigenfunction of unit L2-norm associated to the first eigenvalue A, (resp.1}) in 2(resp.2").
We denote by & :=dy (2°,02'°). Let u, be the first eigenvalue of the Laplacian in a ball
contained in both 2 and 2, in such a way that the inequality max(4,,1}) < u; <y, holds by
the monotonicity property for Dirichlet eigenvalues. We finally denote by C, := min(C,, C;)
where C, and C, are the constants of Corollary (5.1.8) and Corollary(5.1.10), depending on
N, a and max(]2],|2']) < 10]2| (provided that the constant C in the statement of the theorem
is big enough).
We know that
2
Ay = inf fﬂlvul = flvu1|2 .

ueH} (2) fﬂ|u|2

0
Let @i} € HJ(12) be the extension of u] given by Lemma (5.1.11). In particular we have

f|val|2 dx < f|w1|2 dx+C f Vi |2 dx
0 ol 0'NAyps
< X +CAHLSY < X +Cy, L% < A, +C8%.  (23)

where (23) comes from Corollary (5.1.10) and here A, := {d(x,d2) < t}. Further , since
uy = @iy in the complement of 2" N A, 5 we also have that

f )2 > f A, f el |2 (24)
0 Q' 0'NAys

which implies, using this time Corollary (5.1.8) and then Corollary (5.1.10) again,

f|a;|2 > 1-(5? f Vil = 1—C82C0, L6% = 1 —C82+,  (25)

0 N'NAps
Now using (24) and (25) we can compute
A1 = f|Vu |2 < Jolvil® dx < At (67
! YT [laglrde T 1-C8%e
)
. Csr-ca6%t a
< A+ <A +C6%. (26)

1 —C52+a
provided that § is small enough depending on C, « and y,. The constant C in (26) depends on

¥1.C2,N,a, |2], and M. Then by the same argument and exchanging the role of 1, and 17 we
get the desired inequality, namely
|4, — A1 | < C6%.

1
We conclude the proof by observing that the estimate involving [2,A02; |V is a direct
consequence of Lemma (5.1.5).
Corollary(5.1.18)[206]: Let £2,,_, be an (&, 1,)-Reifenberg flat domain in R such that

0 < HN"1(00,_1) =L <+,
Let B be a ball such that 10B is contained in 2,,_; and let y,, be the first eigenvalue of B.
Then for every € > 0 and for every M > L there is a constant C,,_, depending on &, N, |2,,-11,
Ym .To and M such that the following holds. Let £2;,_, be an (&, r,)-Reifenberg flat domain
such that 0 < #V~1(00,,_,) < M and let A,,(resp.4},) be the first eigenvalue for the Dirichlet
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Laplacian in 2,,_, (resp. 2,,_,). If

dH(Qm—ll rcn—l) < CTZEZ
then

1-¢

|/1m_/1;n | < Cm—ZI-Qm—lA Q;n—llT .
Proof.
Let &, M and y,, be given as in the statement of the theorem. Let u,,, (resp.u;,) be an eigen
function of unit L?-norm associated to the first eigenvalue A,,,(resp. 1;,) in 2,,_1 (resp. 2,,_,).

We denote by 6§ :=dy (£25,_1, ;fl_l ). Let u,, be the first eigenvalue of the Laplacian in a ball
contained in both £2,,_; and £2;,,_;, in such a way that the inequality max(1,,, A,) < tm < ¥m
holds by the monotonicity property for Dirichlet eigenvalues. We finally denote by G,
:=min(C,,-,, C,,) Where C,,_, and C,, are the constants of Corollary (5.1.23) and Corollary
(5.1.25), depending on N,e and max(|Q2,-1], [2,,-1]) <10 |2,,_1| (provided that the
constant C,,_, in the statement of the theorem is big enough).
We know that
2
A 1= inf Joy, Itm1| = f [V, |2 .
Dm—1

Um—1€HF (Qm—1) fﬂm_llum—llz

Let i), € Hy(£2,,_,) be the extension of u}, given by Corollary (5.1.26).
In particular we have

[ 1080 des < [ 1Vl s+ Gy [ i ds
Q1 oy Qp_1NAsps
S A+ Cpp Ay L6 < A+ Copey Y LY%< A+ Cp_p 6175, (23)*
where (23)* comes from Corollary (5.1.25) and here A, := {d(x;,—-1,002,,—1) < Tt}. Further,
since u,, = i, in the complement of 12,,_; N A,s we also have that

| A G- Ry VA (24y
Q1 Q Qn_1NAss

which implies, using this time Corollary (13) and then Corollary (15) again,

f ]2 > 1=Cp_y 8 f Vil |2 = 1—C,_, 62C, 2 L'

Qm—1 Q1 NAgps
> 1 —Cp_p63°¢ (25)*
Now using (24)* and (25)* we can compute
~ 2 ’ 1_
e [ Bl s
fg _1|u;n|2 AXm—1 1-Cpmp 63

Qm—1
Cm—z §17F - m—2 A;née_s
1-C,_, 6375
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provided that § is small enough depending on C,,_,,€ and y,, . The constant C,,_, in (26)*
depends on ¥, , Cpptq N, €, |2,,-1], and M. Then by the same argument and exchanging the
role of 4,, and A;,, we get the desired inequality, namely

A — A | < Cprppy 6175,
We conclude the proof by observing that the estimate involving IQmAQmHI% is a direct
consequence of Lemma (10).
Corollary(5.1.19)[206]: Let 2,,_, be an (&, 1y)-Reifenberg flat domain. Then for all x,,_; €
00,,_, and ry < 2¢, the balls D*(x,,_1, 15 — €) and D~ (x,,,_1, 7o — €)lie in different connected
components of B(x;,—1,79 — €) \042,,,_;.
Proof . This can be seen as a consequence of the topological disk Theorem of Reifenberg [64].
Actually one could also prove it directly without using the whole result of Reifenberg but just
the very beginning of Reifenberg’s construction. In our situation we find it convenient to
simply apply the Theorem. More precisely, we use the statement of Theorem1.1. in [68] (which
holds for N # 3 for the case of hyperplanes) that gives for every € > 0 and x,,_, € 92,,_; a

hyperplane P through x,,_; and a continuous homeomorphism f,, : B(Xm-lé (ro—¢)) -

fn(Bmor, 2 (1o — £))) € B(xm1, 2(r, — €)) such that

B(Xm-1,T0 — &) € fm <B (xm—bzi(ro - 8))) c B(Xm—1: 2(ro — 8)), (4)

00,1 NB(x,_1,79 — €) C [y, <P N B (xm_l,zi(ro - 8)))

Now if we denote by v,,,_; any normal vector to P and consider
Pt:={x,_,€RN: x, ;. v,_, >0}, P :={x,,_; €RN: x,,_; .v,,,_; <O},

itis clear from (4)* and(5)* that 0.2, , separates the domains f, <Pi NB (xm_l, Zi(r0 — e)))
and in particular the sets D*(x,,,_1, 79 — €) .
Corollary(5.1.20)[206]: Let £2,, and £2,,,, be two (&, 1y)-Reifenberg flat domains such that

dy (25, 025.1) <ry/3.Then

Ay (250, 1) < Conal Vynh Oy [

where C,,_, depends only on N.

Proof . Let x,,_; € 012,, , be such that r, — e :=dist(x,,_1,02,,,+,) IS maximum, and let
Vm—1 € 002,41 be such that dist(x,,_1, 02m41) = d(Xp_1, Ym_1) = 7o — &. Letusset D; =
D*(Xm-1.70 — €) and Dy = D*(y,_1,7o — €) as being the balls defined in (3)*. Under the
assumptions we know that only one of D" lies in 2,,, and only one of D" lies in 2,,,,. Let us
simply denote by D, those two balls.
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Now by the definition of y,,,_,, we know that B(y,,_1, 7o — €) N 012, IS empty. In particular,
the two “approximating” hyperplanes P(x,,_,,7o — €) and P(y,,,_,,7, — €) are almost parallel
(with error less than 2. £ < 2.107%) as in Fig. 2.

Then it is not difficult to show, considering also a similar situation in B(xm_l, 3(ry — e)) and
B(ym_1,3(ry — €)) with the corresponding selection of domains D;(3(r, — €)) € {D*(xp_1,
3(rg — €)), D*(Y—1. 3(ry — €))}, that whatever the positions of the D; and D;(3(r, — €)) with
respect to the lines P(x,,_1,3(ry — €)) and P(y,,_,,3(r, — €)) are, one can always find a ball
of radius equivalent to r, — ¢ that lies in the symmetric difference of £2,, and 0,,,,. We
conclude the proof by exchanging the role of 2,,, and £2,,,,., and using the same argument.

Corollary(5.1.21)[206]: Let 2,,_, € RN be an (& 1,) —Reifenberg flat domain such that
0 <HN"1(00,,-,) = L < +oo. Then for every r, < 2& we can extract among {B(x,,,_1,7o —
&)}x,._,con,,_, a subfamily of at most L/(C,,4n-1(ro — €)V71) balls that forms a covering of

8 . . .
Uxm_leagm_13<xm_1,1—o(r0 — e)) where C,,,y—1 IS @ dimensional constant. Moreover, for

all x,,,_, we have that
#Hi: xp_1 €B;i}< oy (6)"

where C,,_, is again a dimensional constant.
Proof . Since € > 0, we have that

dy (002,10 B(xXp—1.70 — €),P(Xpy_1.To — ) N B(Xpy_1.79 — €)) <107 %2(ry—¢). (7)*
We also know that 012,,_, separates D*( x,,_1,79 — €) from D~(x,,_1,79 — €) and since the
set of minimal 7£N~1 area having this property and satisfying (7)* is the corresponding part of
a hyperplane, we deduce that there exists a dimensional constant C,,,y_, such that for all
Xm-1 €002,,_;andalle >0

HN 001 N B(Xmm—1,79 — €)) = Cppyn-1 (o — )V 7.

Now let B(xyn4i-1, (o — €);), be a subfamily of {B(x,,,—1,7 — €)}x,,_,con,,_, iNdexed by i €

I, maximal for the property that %OBL- N %OB]- = @. Using this fact (6)* comes from a classical

geometric argument in RV, Now we claim that # is finite. Indeed, since 110 B; are disjoint balls
we have

1
L 2 :]'[N_l <U a.Qm_l N 1_0 Bl) 2 #I Cm+N_1(T0 - g)N_l 101_N
i€l
thus
10V-1 L

#] < . 8)*
Cm+N—1(To — )Nt ®)

Finally, it remains to prove that the family {B;};c; forms a covering of U, cap,, , B (Xm—1,

1%(r0 - g)). Let Y1 € Uy, _,con,,_, B (xm_l,l%(ro - e)) and let x,,_, € 042,,_, be such
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that y,,_, € B (xm_l,l% (ro — e)). Then by the maximality of the {B;}, there exist an index i

and a point z,,_; € %oBi n B(xm_l,r‘i—;s). Then if x,,,,;_, denotes the center of B; , we have

d(}’m—ln xm+i—1) < d(}’m—l: xm—l) + d(xm—llzm—l) + d(zm—lx xm+i—1)

2
< 1—0(r0—£)+1—0(r0—£)=r0—£

which proves that y,,,_; € B(X;p4i-1,70 — €)-
Corollary(5.1.22)[206]: Let 2,,_, be an (g, 1,)-Reifenberg flat domain in RY and u,,_, €
W, (2,,—,) for some . Then for all x,,,_; € 32,,_, and & > 0 we have
[t [ 1+ (B(xm-1.T0—&)N2m-1) = Cm—z(ro - g)llvum—lllL“'s (B(xm-1.b(ro—€))N2yn—1)

where C,,_, := Cp,—,(g,N) and b := b(N).
Proof . The proof is a small modification of the classical proof of the Sobolev inequality that
we will write here with full details for the convenience of the reader.

Without loss of generality, we may assume that u,,_; € C}_;(2,-1), Xm—1 is the origin
and that P(x,,,_1,7 — €) is the hyper plane {x,,, = 0}. We shall prove that

-1l 2+e (2m-1NQ(m1.70-8)) = Cin—2(ro = VU [l 142 (2m-10QCtm-1.10—8))" 9)

where Q(x,,_1,7y — €) is a cube centered at x,,,_;, and with faces orthogonal to the axis of RY.
Observe that (9)* implies the desired inequality with constant b coming from the comparison
between cubes and euclidian balls in RY.

By changing the orientation of x,, we can assume that Q(x,,—1, 7o — €) N £2,,_1 (Which is
connected by our assumptions) contains the upper part Q (x,,—1. 7o — €) N {x,,, > (1, — €)/2}.

It is clear that for any u,,_; € Ch_; (2pm_1),

Xm To—&

|um—1(xmxxr’n—1)| < fIDlum—l(tlxr,n—l)l dt < f IDlum—ll(tlxr,n—l) dt .

— Q0

Integrating over x,,, we obtain

To—€& To—€&

f Ium—l(xmlxr,n—l)l dxm < 2(1”0 - 8) f IDlum—l(tl xr’n—l) I dt-

Now integrating the last inequality between —(r, — ) and (r, — €) successively over each
variable x,,41,. ., Xmen—1 WE get

Ium— 1 (xm— 1) I de_ 1

Q(Xm—1.70—E)N2pm_1

< 20r,—¢) f 1Dyt Gom )] s

Q(xXm-110=E)N2m—1
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< Cnao=) [ DUl Gines) s
QCrm-1.10—E)N2m—1
Then (9)* follows if we apply this last inequality to w5 and use the Holder’s inequality.

Corollary(5.1.23)[206]: Let 2,,_, be an (&, 1,)-Reifenberg flat domain in RY and for § < r,/2
set
As =y N {d(xm—lxaﬂm—l) = 6}

Then for any function u,,_; € W,""** (2,,_,) we have

1 1
1+¢ 1+¢&

flum—1|1+£ de_1 = Cm—z 6 f Ivum—1|1+£ de_1
As A2bs
where b is the dimensional constant of Corollary (5.1.22).

Proof .Let {(By,); }ie; be the subfamily of balls {B(xp,_1,28)}x, _.con,, given by Corollary
(5.1.21). Then

16
As = Oy N { Xy’ Az, 00_y) < 6} U B (xm_l,l—oa) c U(Bm)i .

Xm—-1€002m—1 i€l
Moreover the covering is bounded by a dimensional constant C,,_,. Then,

flum—1|1+£ de_1 < Z f Ium—1|1+£ de_1

As i€l (Bm)in2m—1
and using Corollary (5.1.22), together with the fact that the (B,,); are centered at d.2,,_,, we
obtain

f|um—1|1+'S AXm-1 < Cm—zz gi+e f Vi1 |8 Aoy

As i€l b(Bin)in2m—1

< Cpop 61%° f Vi1 | dxyy_y
Azps
which proves the corollary.
Corollary(5.1.24)[206]: Let 0,,_, be an (&, r,)-Reifenberg flat domain in R, and let u,,_, be
an eigenfunction for the Dirichlet Laplacian in £2,,,_,, associated to the eigenvalue A,,_,. Then
for every g > 0 there is a constant C,,_, depending on N, |2,,_,| and S such that for every
Xm-1 € 002,,_; and for all ¢ > 0, we have that

1"0 — & N *
Vil Ay < Gt AmealltnaliZa g, () - (10)
0

B(xm-1.T0=E)N2m-1
Proof . Foragiven g > 0, define

2
a = 285, (11):



Without loss of generality we assume that r, = 1 and ||u,,,—,||, = 1. Now let x,,,_, € 342,,,_;.
We will obtain the appropriate decay by showing that for k € N and a specific selection of the
constant C,, we have

Vit 1|? dxm-1 < Crm /1m—1a_k(N_B)- (12)"
B(xm-1,a"%)N2pm_1
We will prove (12)* inductively. It is clear that (12)* is true for k = 0if C,, = 1.

Suppose now that (12)* is true for k and denote by v,,_, the “harmonic” replacement of
Up_q IN S, := B(x,,_1,a” )N Q,_;; that is a harmonic function v,,_; € H'(S,) which
satisfies u,,_; — V1 € H(S,). Such a function v,,_, can be obtained by minimizing the
Dirichlet integral, and since u,,,_, is a competitor we have that

flvvm_llz dXp-1 < flvum—llz dxm-1 = CpAm-1 a *N=F),
Sk Sk

by the inductive hypothesis. On the other hand w,,,_; := |Vv,,_,|? is subharmonic. Therefore
by the classical mean value inequality applied to w,,,_; we have

f|va_1|2 dxp_q <a™V f|va_1|2 dXm-1,
Sk+1 Sk

that is

[ 190l ity < G Ay a5V 13y
Sk+1
Now we want to estimate fskW(um—l —v,_)|? dx,,_;. Notice that for all k,u,,_, is the
unique solution of the problem
Vw1 = /1m—1Wm—1 in Sk
{ Wm—1 — Up-1 € H(% (Sk)
therefore u,,_, is minimizing the energy

1/2 f|VWm—1|2 dXm—1 — f’lm—1um—1Wm—1 dXm-1 -

Sk Sk
among all functions w,,,_, such that u,,,_; — w,,_; € H3(S,). Therefore we deduce that

1/2 flvum—llz _Am—l flum—llz < 1/2 flvvm—llz _Am—l fum—lvm—l '

Sk Sk Sk Sk
Hence

f|Vum_1|2 - f|vvm—1|2 < 21 f|um—1|2 - fum—lvm—l
Sk Sk Sk

Sk
< Cm—z/lm—llsk”lum—lllgo < /1m—1Cm—2(N: I-Qm—ll)a_kN
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= /1m—1Cm+1 a_kN- (14)*
where |v,,_;| was estimated in terms of ||u,,—1 || by the maximum principle and
-1l < Co—n (N, |2,,_1|) by Proposition (5.1.3).
Now since v,,_; is harmonic in S, and u,,_; — v,,_; € Hj(S,), we deduce that Vv,,_; and
V(U1 — V1) are orthogonal in L2(S;,) thus (14)* implies

f|Vum_1 —Vup,q|? = f|Vum_1|2 - f|va_1|2 < Am-1Cmeq @™, (15)
Sk Sk Sk
Gathering (13)* and (15)* together we complete the induction as follows:

| Wil dxnos < 2 [ 1W0maP+2 [ 19 = v DI i,
Sk+1 Sk+1 Sk+1
< 2C Ay g aWNTRN=P) 423 C..a”*N < C A, a"*FDWN=B),
where the last inequality holds by the definition of a and provided for instance that

2(N+1)
C. = Cpir2 B . (16)"

Now to finish the proof, since (12)* is true, for every & > 0 one can find an integer k such
that 1 — ¢ < a™® < a(l — ¢) thus

Ivum—llz Axpm_1 < f Ivum—1|2 AxXpmoq < Cm/lm_la_k(N_B)

B(xm_l,l—s) B(xm_l,a_k)

< Cp Am_l(a(l — e))N_B
so the proposition is true with C,,_; :=a"=# C,,.
Corollary(5.1.25)[206]: Let 02,,_, be an (e ,1)-Reifenberg flat domain in RY such that
0 < HN"1(00,,-1) = L < +oo. Then for any £ > 0 there is a constant C,, := Cp,,(|25—1]. 7o,
N, €) such that for any eigen-function u,,_, for the Dirichlet Laplacian associated to the eigen
value A,,_; in 2,,_; and for any § < r,/2 we have

Ivum—llz dxm—l = Cm /1m—1 L”um—llliZ(gm_l)(sl_s-
Om-10{d(xXm-1,002p) <6}
Proof . We argue as in Corollary (5.1.23). Let {(B,,,) ;}ic; be the subfamily of balls
{B(xpm-1,26)}x,,_,coa,, , diven by Corollary (5.1.21). By (8)* we know that
#I <L/ (2N Cpon_16V 1)
and that

s N mer t G100 )< 83 | ] Bnon26/200) < | J(B): -

xm_leaﬂm_l i€l
Moreover the covering is bounded by a dimensional constant C,,,_,. Then,
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Vit |? dxpy < Z f \ATHSY s PR
Qm—1n{d(%m-1,02m—1 )<6} i€l (By)iN2m—-1
and using Corollary (5.1.24) (applied with r, — e = § and 8 = ¢) together with the fact that the
(B,,); are centered at d12,,,_, we obtain

Vi a2 Aoy < Copohoms Mt sl ) 87
Qo1 n{d(xp—1,002m,-1)<6} i€l
< Cnoadm-tllttmo iz #ISN
< Cm— L/lm—1||um—1||]%2(gm_1) §te.
where C,,_5 = Cpp—_2 (10, N, &, |2,,—1]) and the proof is complete.
Corollary(5.1.26)[206]: Let £2,,, and £2,,,,.; be two (&, r,)-Reifenberg flat domains such that
dy (25,05.,) < 6§ <(100b)71 n,
where b is the dimensional constant of Corollary (5.1.22) and set
As ={xp_1: d(xp_q,002,) < 6}.
Then for any v,,_, € W,"'**(2,,) there exists a function #,,_; € W,""**(2,,,,) such that
Vm—1 = Um—1 IN 2,,\A4,5 and

”ﬁm—1”L1+€(gm+1) < ”vm—1”L1+€(gm): a7y
~ 1 1 1
”va—llll;"'sf(gm_'_l) < ”va—lllLffS( Qm) + Cm—Z ”va—lllLffS( DmNAps)’ (18)*

Proof .Let {(B,,);}i e, be the subfamily of balls {B(x,,_1,28)},_ caq,, 9iven by Corollary
(5.1.21). We will denote by x,,,;,_, the center of (B,,); and (r, — ¢€); its radius. Since
0,A0,,., € U;(B,,); to define a function ©,,_, € W 12(2,,,,,), it is sufficient to define an
extension of v,,,_; iN Q01 N U; e, (B -

For all i, define a function (@,,_,); € Cpic—q (5(B,);), such that(¢,,_,); =1 in 2(B,,); ,
IV@,—o] < 671 and let ¢,,_; be a function that is equal to 1 in 2,,\U;¢;4(B,)i, @m-1 =0
iN Uier 2B and @1 + X jej(@m-2); = 1in 2,\U;e;5(B,,); .Moreover, we can assume
that for all x,;,_; € 4(B,)i \2(Bp)i, V@ m—1 (xm-1)| < 8~ 1.Indeed, such a function ¢,,_, can

be obtained by setting
d(Xm—1, Xmsi-
P11 (X_1) = 1_[ l( (Xm 16 m+i 1))
€]
where [ is a Lipschitz function equal to 0 in [0,2], equal to 1 in [4,+o0) and ' (xp,—1) < 1.
Finally, define

(Qom—z)i
6,,-,); = for i €1U{0}.
mo (Pm—1 + Zicl{Pm—2):)
This allows us to obtain a partition of the unity in 2,,, U U;¢; 5(B,,);.
Next we simply define ¥,,,_; by
17m—1(xm—1) = em—l(xm—l)v(xm—l)- (19)*
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in such a way that ©,,_,(x,,—;) vanishes on U;c;2(B,,); 2 02,,+,. We claim that ©,,_; €
Wol’”‘g(ﬂmﬂ) and that (17)*, (18)* are satisfied. The first estimate (17)* comes directly from
the fact that 6,,_1(xm—1) < xq,,- SO We only have to prove (18)*, which will also imply that
Upyeq €E WIITE(Q, 1 1).
We have that
Vim—1(Xm=1) = Vm—1(Xn—1)VOm—1 (Xm—1) = Opm—1 (K1) VU1 (K1),
thus
”Vﬁm—l(xm—l)“Ll"'g(.Qm_,_l)
< ”va—l(xm—l))(supp(ﬂm_l)||L1+g(ﬂm+1) + ”vm—l(xm—l)vem—l(xm—l)||L1+€(.Qm+1)
< ”va—l(xm—l)“L“'S(.Qm) + ||Um—1(Xm—1)V9m—1(Xm—1)||L1+€(nm+1)-
therefore it is enough to prove that
”vm—l(xm—l)vem—l(xm—l)“L1+5(_Qm+1) < Cm—z||va—1(xm—1)||L1+€(A) : (20)*
with
A:=0,n U 4b(B,); € Aups.
i€l
On the other hand, from the construction of 8,,,_, we have

196m 1 Cim I < ) Koy, Cim-1)87 (21
i€l
Therefore, since the sum in (21)* is locally finite we conclude that
1+e
”vm—l(xm—l)vem—l(xm—l) ||11,1|-+85(!2m+1) S f vm—l(xm—l) Z )(4(Bm)i(xm—1)6_1
Qs JE€J
< Cp—sy Z §5—(1+e) f [V Gen_ ) I1HE. (22)
L€l 4(Bm)i

Now since (B,,); is centered on 412, , from Corollary (5.1.22) we get

[Vt '8 dXpoy < Gy 614° f Vit 1114 doxpy
4(Bm)i 4b(Bm)i
(the definition of v,,,_; outside £, is considered being 0). Then,

”vm—l(xm—l)vem—l(xm—l)”ll,fff(gmﬂ) < Cm—z Z f Ivvm—l(xm—1)|1+8
Lel 4b(Bm)i

< Cros f V01 Gom_ )1

AypsN 2m
which concludes the proof.
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Corollary(5.1.27)[206]: by considering the assumptions appear in Corollary (5.1.18) show the
sharp estimate

|Am — Anl < Cy_p(L + )67,
Where N < 8.

Proof: From Corollary (5.1.24) we have
2\N-B

Cn-1 = <2E> G,

2 2
Where a = 28 and C,,,_, = (C"Zfl) ,Ch=0+¢g),e=0.

m

From the proof of Corollary (5.1.18) we have
|Am — | < Cy_p (1 + )85,

2 2(N-B)
Where Cy_pz = <2ﬁ>

Hence the result follows when N < S.

Sec(5.2): The Dirichlet and Neumann Laplacien in Rough Domains.

We deal with the eigenvalues of the Laplace operator for the Dirichlet and the Neumann
problems in rough domains. Let O € RY be an open and bounded set. If 9 satisfies suitable
mild regularity assumptions, then we can apply the classical results concerning the spectrum of
compact operators and infer that both the Dirichlet and the Neumann problems admit a
sequence of nonnegative eigenvalues, which we denote by

0< 2 =4HLQ) << ()., — +o0
and

0= (Q) < () < < (Q) <. — +oo,
respectively. Each eigenvalue is counted according to its multiplicity.

The problem of investigating the way that the eigenvalues 4, and p; depend on the domain
Q has been widely studied. We refer to Bucur and Buttazzo [59] and by Henrot [52]. See also
the expository work by Hale [152]. In the present section we establish new stability estimates
concerning the dependence of the eigenvalues on domain perturbations. The most relevant
features of the section are the following.

We apply to both the Dirichlet and the Neumann problem, while many of the previous
results were concerned with the Dirichlet problem only. The key argument in the present
section is based on an abstract lemma (Lemma (5.2.12)) which is sufficiently general to apply
to both Dirichlet and Neumann problems. Lemma (5.2. 12) has an elementary proof which
uses ideas due to Birkhoff, de Boor, Swartz and Wendroff [58]. Although in this section we
choose to mainly focus on domains satisfying a specific regularity condition, first introduced
by E. R. Reifenberg [64], Lemma (5.2.12) can be applied to other classes of domains. As an
example, we consider the case of Lipschitz domains, see Theorem (5.2.4).

We impose very weak regularity conditions on the domains Q, and ;. The exact
definition of the regularity assumptions we impose is given later, here we just mention that
Reifenberg flatness is a property weaker than Lipschitz continuity and that Reifenberg flat
domains are relevant for the study of minimal surfaces [64] and of other problems, see Toro
[72].
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In the present section we establish quantitative estimates, while much of the analysis
discussed in [59, 52] aimed at proving existence and convergence results. More precisely, we
will obtain estimates of the following type:

12 (Qa) — 4.(Q) < Cdy(Qg, QF)7,
(27)
e (Q0) — 1 (Qp)] < € max(dy (05, 05)  dy(Qq, Q) ) “.
In the previous expressions, Q¢ := R¥\(Q stands for the complement of the set Q and d, for
the Hausdorff distance, namely
dy(X,Y) :=max {sup yex d(x,Y),supyey d(y,X)}. (28)
In the following we will discuss both the admissible values for the exponent a and the reasons
why the quantity d,( Q,4, Q, ) only appears in the stability estimate for the Neumann eigen
values.

Note that quantitative stability results were established in a series of references by Burenkov,
Lamberti, Lanza De Cristoforis and collaborators (see [155] for an overview). However, the
regularity assumptions we impose on the domains are different than those in [155] and,
moreover, the approach relies on different techniques. Indeed, the analysis in [155] is based on
the notion of transition operators, while as mentioned before the argument combines real
analysis techniques with an abstract lemma whose proof is based on elementary tools.

We also refer to a very recent work by Colbois, Girouard and Iversen [57] for other quantitative
stability results concerning the Dirichlet problem.

As a final remark, we point out that Lemma 19 in [63] ensures that, given two sufficiently close
Reifenberg flat domains Q,,Q, € RY, the Hausdorff distance is controlled by the Lebesgue
measure of the symmetric difference, more precisely

1 1
dy(Q5,Q5) < ClQu A QN , dy(Qy,Q,) < ClQq A QN
where the constant C only depends on the dimension N and on a regularity parameter of the
domains. Hence, an immediate consequence of (27) is that the corresponding estimates in terms

1
of |Q, A Q,|~. Before introducing the results, we specify the exact regularity assumptions we
impose on the sets Q, and Q,,.
Definition(5.2.1)[65]: Let &,y be two real numbers satisfying 0 <& < 1/2 and r, > 0. An
(g,19)-Reifenberg-flat domain QO € RY is a nonempty open set satisfying the following two
conditions:
i) for every x € 90 and for every r < r,, there is a hyperplane P(x,r) containing x which
satisfies

%dH(OQ NB(x,r),P(x, 1) N B(x,1)) < . (29)

ii) For every x € 01}, one of the connected component of
B(x,1y) N{x : dist(x, P(x,1y)) = 2¢er,}
is contained in Q and the other one is contained in R¥ \ (.

A direct consequence of the definition is that if &; < &,, then any (&;,1p)-Reifenberg flat
domain is also an (&,,7y) —Reifenberg flat domain. Note also that, heuristically speaking,
condition 1) ensures that the boundary is well approximated by hyperplanes at every small
scale, while condition ii) is a separating requirement equivalent to those in [20, 70, 71, 16]. The
notion of Reifenberg flatness is strictly weaker than Lipschtiz continuity and appears in many
areas like free boundary regularity problems and geometric measure theory (see [66, 67, 68, 20,
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70,71,74,75, 80, 81, 16, 64, 72, 73]).

We now state the main result concerning the Dirichlet problem. We denote by H'¥~1 the
Hausdorff (N — 1)-dimensional measure.
Theorem(5.2.2)[65]:(Dirichlet Problem). Let By, D € R" be two given balls satisfying B, S D
and denote by (y,,) ren the spectrum of the Dirichlet Laplacian in B, and by R the radius of D.
For any a €]0, 1 there is € = &(a) such that the following holds. For any n € N, r, > 0 and
Lo, > 0 there are constants 6, = §o(V. 1, @, 75, N, Ly, R) and € = C(a, 1y, N) such that when-
ever Q, and Q, are two (&,1,)-Reifenberg flat domains in RY such that

(@) B, € Q,NnQ, and Q, U Q, S D;

(b) L :=max(H""1(0Q,), HN"1(00)) < Lo;

(c) du(Q5.08) <&,

then
N

1A% — 28] < Cny, (1 +y? )Ldy(ﬂz, 0% (30)

where {14} and {12} denote the sequences of eigenvalues of the Dirichlet Laplacian in Q, and
Q,, respectively.

Proof. First, we recall that max{1%,12} < y,,.. Next, we fix n € N and we denote by u?,..., u2
the first n eigenfunctions of the Dirichlet Laplacian in H}(Q,). Given u = YF_, cuf, by
applying Proposition (5.2.15) we get

n

Z cr(Vuf — vpPy. uk)
k=1

2

||Vu - fo?au“ iZ(D) =

n
< nzkzlc,% |Vug — VRS, ug| 200

L?(D)
N N

n
N ) N
=n Zk—l c,%C)/n (1 N ynz )L(S“”u’g”LZ(D) = nCyn(1+ Vnz )L6“||u||f2(D). (31)

To get the last equality we have used the fact that the eigenfunctions associated with different
eigenvalues are orthogonal with respect to the standard scalar product in L2,
We use (31) and the Sobolev-Poincar’e inequality in the ball D, which has radius R, and we
conclude that the assumptions of Lemma (5.2.12) are verified provided that:
N

(i) A= nCy,(1 + y>)LS% B= C(N,R)Aand
(i) B<1,

N

Hence, we fix a threshold 6,(N, n, y,,, 1o, @, R, L) satisfying nCy,, (1 + yn? 6§ < i , and we get
that for any § < &, one has 1/(1 —+vB) < 2. By applying Lemma (5.2.12) we then get
N

A N
A8 — b < =75 < 24 < 2nCy,(1 +y2 )L6*
The theorem follows by exchanging the roles of Q, and Q, .

Before stating the precise result, we have to introduce the following definition.
Definition(5.2.3)[65]: Let O € RY be an open set, then Q satisfies a uniform (p,8)-cone
condition if for any x € aQ there is a unit vector v € R¥N~1, possibly depending on x, such that

B(x,3p) N Q —C,p(v) € Qand B(x,3p)\R" + C, 4(v) € O\R",
where B(x,3p) denotes the ball centered at x with radius 3p and C,¢(v) is the cone with

height p > 0 and opening 6 €]0, r],
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Cpo (v) :={h€RY : h-v > |h|cos6}n B(C,p).
We now state the stability result for Lipschitz domains.
Theorem(5.2.4)[65]:(Dirichlet Problem in Lipschitz domains). Let B,,D € RN be two given
balls satisfying B, € D and denote by (y,,) »en the spectrum of the Dirichlet Laplacian in B,
and by R the radius of D.

For an p > 0,0 €]0, ] there are constants C = C(p,0,n,N,y,,R) and 6, = §,(p,0,n, N,
Yn, R) such that the following holds. Let Q, and Q, be two open sets satisfying a (p, 8)-cone
condition and the following properties:

(d) B,c€Q,n Q,andQ, U Q, S D;
(e) 6:=dy(Q5, Q5) < 6,
Then
|22 — 22| < C6.
Proof. Let Q, and Q, be as in the statement of Theorem. We fix n € Nand k < n and we
denote by uk € H}(Q,) and uk € H}(Q,)the eigenfunctions associated with A¢ and A% ,
respectively. In particular, uf solves —Au = A¥u¥ in Q,. Letu, € H}(Q,) be the distributional
solution of
{—Au =My, in Q
u=0 on 9dQ,
We can now apply Theorem 1 in the reference by Savar’e and Schimperna [61]. Then formula
(3.4) in [61] yields

|Vuy — VPG, ug| 20y < ||Vl — Vit || 120y
dy(Qg, QF)

< C(p. N.R) [ A5us| 20 125U || 110y psing

where the projection P(?a is the same as in (68). Then, by using the definition of eigenfunction,
we get

508 sy < €D 25T

We recall that A% <y, and that S}’ is the eigenspace of H}(€,) generated by the first n

eigenfunctions and by arguing as (31), we get that, for any u € S},
||Vu — VP(?a u || iZ(D) < C(0,p,Yn, N,R,n)d,(QS, Q5)||ull iz(D) .
Hence, by proceeding as in the proof of Theorem (5.2.2) we can conclude.

We now state the stability result concerning the Neumann problem.
Theorem(5.2.5)[65]:(Neumann Problem). For any a €]0, 1] there is € = e(a) such that the
following holds. Let Q, and Q, be two bounded, connected, (&, r,)-Reifenberg flat domains in
RY such that

(@) L:= max(HN"1(00Q,), HN"1(0Q,)) < Ly;

(b) both Q, and Q, are contained in the ball D, which has radius R.

Let u4 and p2 be the corresponding sequences of Neumann Laplacian eigenvalues and denote
by ui := max{u%,u2}. For any n € N, there are constants §, = 8, (), @, 75,
n,N,R, Ly) and C = C(N, ry, a, R) such that if
max {dH(Q'gl g) ) dH('Q'al 'Q'b) } < 60:
then
2y(N)+2

L(max (dy(QS,Q8) ,dy(Q.9,))%),  (32)
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where y(N) = max {; ﬁ}

Proof. By comparing (100) with Proposition (5.2.17) and by arguing as in (31) we get that the
hypotheses of Lemma (5.2.12) are satisfied provided that A = B = nC(1 + w)?™+2 1§ and
hence by repeating the same argument as in the Dirichlet case, we conclude.

We start by quoting a covering lemma that we need in the following.
Lemma(5.2.6)[65]:Let O € RY be an (&, ry)-Reifenberg flat domain such that 0 < HV¥-1(30Q)
< + o0, Given r < ry/2, consider the family of balls {B(x, 7)},c5q- We can extract a subfamily
{B(x;, 1)} satisfying the following properties:

()  {B(x; 1)}, is a covering of uxeaQB(x,g r)

(ii)  we have the following bound: #I < C(N)HN-1(0Q)/rN~1;

(iii)  the covering is bounded, namely

r - . .
B(xl'lo)nB(Xj’l_O): @ if i#]j. (33)
Note also that, by applying a similar argument, we get the estimate
forany x € U B(x;,r), #{i: x € B(x;,2r)} < C(N). (34)

i€l
In the following we need cut-off functions 6,,..., 6 4, satisfying suitable conditions. The
construction of these functions is standard, but for completeness we provide it.
Lemma(5.2.7)[65]: Under the same hypothesis as in Lemma (5.2.6), there are Lipschitz contin-
uous cut-off function ; : R¥ — R,i = 0,..., #I, that satisfy the following conditions:

N
0<0;(x)<1vxe RN |VO;(x)| < ) a.e.x €ERNi=0,..., #I
0,(x) =0ifx € UB(xi,r) 0o(x) =1ifx e RV \ U B (x;,2r)  (35)

i€l i€l
#I

0;(x) = 0if x € R"N\B(x;,2r) ,i= ., H#1, ZB(x)-leERN

Proof. Let #,h : [0,+) — [0, 1] be the Lipschitz contlnuous functlons defined as
follows:

(0 ifo<t<1 ( . 3
| 3 | 1 ifo<t< >
2(t-1) ifl1<t<-=
£(t h(t 3
@) {, 2 o= {-2(&2) it S<t<2
\1 fe=3 Lo if £ > 2
First, we point out that |[# |, |h '| < 2. Next, we set
#1
d(x, x;)
Polx) := 1_[ {’( " : ) Y;(x) :=h(d(x,x))/r),i=1,..., #I.
i=1
The goal is now showing that
#1
1< Z Di(x) < C(N),Vx € RV, (36)
i=0
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To establish the bound from below, we make the following observations: first, all the functions
Y;,i =0,..., #I take by construction only nonnegative values. Second,

#I
3
Yo(x)=1vxe ]R’“UB(xi,%) ,
i=1

and hence the lower bound holds on that set. If x € Ui#=llB (xlgz—r) then at least one of the

Y;, i =1,..., #I, takes the value 1. This establishes bound from below in (36).

To establish the bound from above, we point out that, for any i = 1,..., #I,y;(x) =0 if
x € RM\B(x;,2r). By recalling (34) and that 1;(x) < 1 for everyx € RN andi =0,..., #I,
we deduce that

#1
lei(x) < C(N)+1<C(N),Vvx€eRN

1=0
and this concludes the proof of (36).
Due to the lower bound in (36), we can introduce the following definitions:

0;(x) :z;_fli i=0,..., #I,x e RV,

Zi =0 lpl(x)

We now show these functions satisfy (35): the only nontrivial point is establishing the bound on
the gradient. To this end, we first point out that

2
VPl <5 WxeRVi=0,.., #L

Next, we recall that y;(x) =0 for every x € RV\B(x;,2r) and every i =1,..., #I. By
combining these observations with inequalities (34) and (36) we get

i) P RE W@ 2 cv) _cv)

S (B p0) ror r
vx eRN, i=0,..., #I.
This concludes the proof of the lemma.

We now state a result ensuring that the classical Rellich-Kondrachov Theorem applies to
Reifenberg flat domains. The proof is provided in [63]. For simplicity, here we only give the
statement in the case when the summability index is p = 2, but the result hold in the general
case, see [63].

Proposition(5.2.8)[65]: Let & < R" be a bounded, connected, (¢, ,)-Reifenberg flat domain
and assume that € < 1/600. Then the following properties hold:
2N

(i) if N> 2 H(Q)is continuously embedded in L% (Q),2* := o=

ly embedded in L2(Q) for any q € [1, 2*[. Also, the norm of the embedding operator
only depends on N, 1y, g and on the diameter Diam(().
(i) if N =2, HY(Q)is compactly embedded in L1(Q) for every q € [1,+][. Also, the
norm of the embedding operator only depends on r,,, g and Diam().
A consequence of Proposition(5.2.8) is that Neumann eigenfunctions defined in Reifenberg
flat domains are bounded (see again [63] for the proof).
Proposition(5.2.9)[65]: Let @ € R" be a bounded, connected, (&, ,)-Reifenberg flat domain
and let u be a Neumann eigenfunction associated with the eigenvalue p. If € < 1/600, then u
is bounded and

VO, (x)| =

and it is compact-
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y(N)
lullioy < C(1+) 7 Null 2y . (37)
where y(N) = max {g ﬁ} and C = C(N,ry, Diam(Q)).

The following result ensures that Dirichlet eigenfunctions satisfy an inequality similar to
(37). Note that in this case no regularity requirement is imposed on the domain.
Proposition(5.2.10)[65]:Let O < R be a bounded domain and let v be an eigenfunction for
the Dirichlet Laplacian in Q and let A be the associated eigenvalue. Then v is bounded and

N

Ae \4
e < (57) e - (38)
To conclude this part we quote a result from [74] concerning harmonic functions satisfying
mixed Neumann-Dirichlet conditions.
More precisely, let Q be an (&, ry)-Reifenberg-flat domain and let u € H(Q). Given x € 09
and r < r, consider the problem

Av=0 in QnB(x,1)

v=u on dB(x,r) N Q
dv ' (39)
6_:0 on o N B(x,r)

v
The existence of a weak solution of (39) can be obtained by considering the variational
formulation

min f [Vw|? dx:w € HY(B(x,7) N Q), w=uonoB(x,r)NQ (40)
B(x,r)nQ
and by then applying the argument in [55]. We state the result that we need in the following.
Theorem(5.2.11)[65]: For every f > 0 and a €]0,1/2[ there is a positive € = &(f,a) such
that the following holds. Let Q be an (&, ,)-Reifenberg flat domain, u € H*(Q), x € 9Q and
r < 1,. Then the solution of the minimum problem (40) satisfies

|Vv|? dx < aV=B f |Vv|? dx. (41)
B(x,ar)nQ B(x,r)NQ
We study the abstract eigenvalue problem and we establish Lemma (5.2.12), which roughly
speaking says that controlling the behavior of suitable projections is sufficient to control the
difference between eigenvalues. The abstract framework is sufficiently general to apply to both
the Dirichlet and the Neumann problem: these applications are discussed in this section.
The abstract framework is composed of the following objects:
Q) H is a real, separable Hilbert space with respect to the scalar product #H (:,-),
which induces the norm ||-||4 .
(i) h : Hx H — R s a function satisfying:

h(au + pv,z) = ah(u,z) + ph(v,z), h(u,v) = h(v,u), h(u,u) = 0, (42)

for allu,v,z € Hand a, B € R. Note that we are not assuming that h is a scalar product,
namely h(u,u) = 0 does not necessarily imply u = 0. We also assume that there is a constant
Cy > 0 satisfying

h(u,u) < CyH (u, u), VYu€EH. (43)
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(iii) V is a closed subspace of the Hilbert space H such that the restriction of the bilinear
form h(:,-) to V x V is actually a scalar product on IV, namely
forevery v € V, h(v,v) =0 implies v = 0. (44)
We denote bthhe closure of VV with respect to the norm |[|-||,, induced by h on V and we
also assume that the inclusion
i (V) = (VI ). (45)
u—->u
IS compact.
Now, we introduce an abstract eigenvalue problem associated with the function h defined
above: we are interested in eigencouples (u, 1) € V\{0} x R satisfying
H(u,v) = 2 h(u,v), (46)
foreveryv eV.
We first check that (46) admits a solution. In view of (42) and (43) we obtain that, for any
fixed f € V , the map
v = h(f,v)
is a linear, continuous operator defined on the Hilbert space (V,||-||3). As a consequence,
Riesz’s Theorem ensures that there is a unique element u, € V such that
}[(uf,v) = h(f,v), YvevV. 47
Consider the map
T: (Villle) = @01 lls)
f = u
which is linear and since by setting v = u, in (47) and by using (43) one gets ”uf“g{ <., Cy
|| £1l,,. Let i be the same map as in (45), then the composition T o i is compact.

Also, in view of (47) we infer that it is self-adjoint. By relying on classical results on compact,
selfadjoint operators we infer that there is a sequence of eigencouples (v,,, u,,) such that

u, #0, Tu, =vyu,, lim_,0 v,=0, H(uyu,) =0 if m=+n.
As usual, each eigenvalue is counted according to its multiplicity. Note that v,, > O for every n
by (44) and (47), and that (u,,1, = 1/v,) is a sequence of eigencouples for the eigenvalue
problem (46).

As a final remark, we recall that the value of 1,, is provided by the so-called Reyleigh min-
max principle, namely

An = MiN ge5. MaXyes00) T w) = MaX yes; {0} h(u,u)
H(u,,u
— M ,Vn € N. (48)
h(u,,u,)

In the previous expression, §,, denotes the set of subspaces of VV having dimension equal to n
and S,, denotes the subspace generated by the first n eigenfunctions.
We now consider two closed subspaces V,,V,, € H satisfying assumptions (44) and (45) above
and we denote by (u,2%) and (u2, A2) the sequences solving the corresponding eigenvalue
problem (46) in V =V, and V = V,, respectively. We fix n € N and as before we denote by S2
the subspace

Sh = span(u?,... ub). (49)
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We denote by P: H — V, the projection of H onto V/,, namely

Vu€eH H(u-Puv)=0, Vv el (50)
By relying on an argument due to Birkhoff, De Boor, Swartz and Wendroff [58] we get the
main result of the present part.
Lemma(5.2.12)[65]:Fix n € N and assume there are constants A and B, possibly depending on
n, such that A > 0,0 < B < 1 and, for every u € SZ,

Py —ull3; < Allull 7. (51)
and

|Pu —ullf < Bllull 7. (52)
Then

2% <2+ A/(1—-+B)?. (53)

Proof. We proceed in several steps.
o Step 1. From (52) we get that for every u € S? one has
1Pully, = l1Pu—u~+ully = llull, — IPu-ull, = [lull,(1-VB). (54)
In particular the restriction of the projection P to S? is injective because S2 < V, and hence
||ull, = O implies u = 0. Hence, from the min-max principle (48) we get
A £ MAXyeehrgey H(Pu, Pu)/h(Pu, Pu). (55)
o Step 2. To provide an estimate on the right hand side of (55),we introduce the auxiliary
function p,,: H — S? defined as follows: for every z € H, p,,z € S? is the unique solution of the
minimum problem
h(z — ppz,z — ppz) = infcop {h(z — v,z — V)}. (56)
Loosely speaking, p,, is the orthogonal projection of H onto S2 with respect to the bilinear form
h. The argument to show that the minimum problem (56) admits a solution which is also
unique is standard, but for completeness we provide it.
We introduce a minimizing sequence {v,} € S , then we have that the sequence h(z — vy,
z — vy) is bounded. From (42) we infer that the bilinear form h satisfies the Cauchy-Schwarz
inequality and hence that
Jh(z — v,z — ) = Jh(ve,vi) —h(z,2),
which implies that the sequence h(v,, v;) is also bounded. Since S2 < V,, then by (44) we
have that the bilinear form h is actually a scalar product on S2. Since S2 has finite dimension,
from the bounded sequence {v,} we can extract a converging subsequence {vk].}, namely
h(vk; — Vo, Vk; — Vo) = 0as j - +oo, for some v, € Sb. Hence,
h(z — Vkjr Z = V; )— h(z —v,z—1v,)
asj — +oo. This implies that v, is a solution of (56) and we set v, = p,z. To establish uni-
queness, we first observe that, given z € H, any p,,z solution of the minimization problem (56)
satisfies the Euler-Lagrange equation
h(z — p,z,v) =0, VveSk. (57)
Assume by contradiction that (56) admits two distinct solutions piz and p2z, then from (57)
we deduce that h(plz — p2z,v) = 0 for every v € S2. By taking v = plz — p2z and in view
of (44) we obtain plz = p2z.
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o Step 3. Next we show that
H(Pu — p,, o Pu, Pu—p,, o Pu)
h(Pu, Pu) '
where p,, o P denotes the composition of p,, and P. To obtain(58) we observe that for every
u € St we have
H(Pu, Pu)
= H(Pu — p,, o Pu+ p, o Pu,Pu—p,, o Pu+p, o Pu)
= H(Pu— p,, o Pu,Pu—p, o Pu)
+ H (p,, ° Pu,p,, ° Pu), (59)
where we have used that

H(Pu—p,° Pu,p,°o Pu)=0. (60)
Note also that
h(Pu, Pu) = h(p, o Pu,p, ° Pu), (61)
for every u € S2. We assume for the moment that (60) and (61) are true as their proof will be
provided in Step 5 and Step 6.
Combining (59) and (61) we obtain that for every u € S2\{0} such that p,, o Pu # 0 we have
H(Pu,Pu)  H(Pu—py° Pu,Pu—py,e° Pu) N H(p,, ° Pu,p, ° Pu)

h(Pu, Pu) h(Pu, Pu) h(Pu, Pu)

- H(Pu—p, °Pu,Pu—p,°Pu) N H (p,, © Pu,py ° Pu)

- h(Pu, Pu) h(p,, ° Pu,p, ° Pu)

H (Pu — py, e Pu,Pu— p, o Pu)
< + AP, 62
- h(Pu, Pu) " (62)
In the previous chain of inequalities we have used that p,, o P attains values in S? and that
b H(w,w)
An = MaAX,esp03 Thwow)

If p, o Pu=0,we have
H (Pu, Pu) < H(Pu — p, ° Pu,Pu— p, o Pu) .2 63)
h(Pu, Pu) h(Pu, Pu)
since A2 > 0. By combining (62) and (63) with (55) we eventually get (58).
o Step 4. We now conclude the argument by establishing (53). First, observe that, for every
u € SP  onehas
H(Pu—p,, ° Pu,Pu—p, o Pu)
< H(Pu—p,eoPuPu—p,oPu)+H(p,oPu—up,oPu—u),
= }[(Pu—pnoPu+pnoPu—u,Pu—pnoPu+pnoPu—u),
= H(Pu—u,Pu—u).
In the previous formula we have used the equality
H(Pu—p, o Pu,p, o Pu—u) =0, (64)
which is proved in Step 5. Combining (63), (64) along with (51) and (54) we finally obtain
H(Pu—u,Pu—u)

h(Pu, Pu)

b Ah(u,u)

< Ap+ ,
" (1=-VB)h(uu)
which concludes the proof of Lemma (5.2.12) provided that (60), (61) and (64) are true.

173

(65)



o Step 5. We establish the proof of (60) and (64). Observe that, if z € V},, then the following
implication holds true:

h(z,v) =0, VveE S = #(z,v)=0, VveSt. (66)
Indeed, v is a linear combination of the eigenfunctions u?,...,ub and hence

H(z,v) = Zv}[(z u?) _Zab vih(z,ul) = 0.

i=1
To establish (60), we observe that p,, o Pu € S2. Also by the property (57) of the projection p,,
we have h(Pu — p,, o Pu,v) = 0 for every v € S2. Hence by applying (66) we obtain (60). To
prove (64) we can repeat the same argument. Indeed, if u € S2, then [u — p,, o Pu] € S2 and
(64) follows from (66).
o Step 6. Finally we establish (61). Note that (57) implies

h(p,, e Pu,Pu—p, o Pu)=0
for every u € S2. Hence

h(p, ° Pu,p, o Pu) < h(p, ° Pu,p, ° Pu) + h(Pu — p, o Pu,Pu — p,, o Pu)
= h(Pu, Pu)
for every u € S2.
Given an open and bounded set Q, (u,1) € (H3(@)\{0}) x Ris an eigencouple for the

Dirichlet Laplacian in € if

f Vu(x) - Vo(x) dx = A f u(x) v(x) dx, Vv eH;(Q). (67)

Q Q
We apply the abstract framework to study how the eigenvalues A satisfying (67) depend on
Q. Let Q, and Q, two Reifenberg flat domains and denote by D a ball containing both Q, and
Q. We set

H:=H}(D),H (u,v) := fVu(x) -Vu(x)dx, h(u,v) := fu(x)v(x) dx.

D D

Note that (43) is satisfied because of Poincar’e- Sobolev inequality. We also set

Vo:=Hy (Q0),  Vp:= Hp(p)
and observe that they can be viewed as two subspaces of H; (D) by extending the functions of
H}(Q,) and Hj(Q,) by 0 outside Q, and €, respectively. The compactness of the inclusion
(45) is guaranteed by Rellich-Kondrachov Theorem. Also, the projection P = P(?a defined by
(50) satisfies in this case

IV(u = P, wll 2y = MiNuensap IV = Wllzy} . (68)
By using the above notation, the Dirichlet problem (67) reduces to (46) and hence it is solved
by a sequence of eigencouples (4,,,u,,) with 4,, > 0 for every nand lim,,_,, o, 4, = +oo.

We employ the same notation as in above and we denote by {14} and {12} the eigenvalues of
the Dirichlet problem in Q, and Q,, respectively. By applying Lemma (5.2. 12), we infer that
to control the difference M% — Ab| it is sufficient to provide an estimate on suitable projections.
This is the content of the following part.

Boundary estimate on the gradient of Dirichlet eigenfunctions. We now establish a decay result
for the gradient of Dirichlet eigenfunctions. The statement is already in [ 80], but the proof
contains a gap. This is why we hereafter give a different and complete proof, which is based on
techniques from Alt, Caffarelli and Friedman [106]. We begin with a monotonicity Lemma.
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Lemma(5.2.13)[65]: Let @ € RN be a bounded domain and let x, € dQ. Given a radius
r >0, we denote by Qf :=B(x,,r)NQ, bySt:=0B(xy,7v)NQ and by o(r) the first
Dirichlet eigenvalue of the Laplace operator on the spherical domain S;*. If there are constants
ro > 0and ¢* €]0, N — 1[ such that

info<r<r, (r?o(r)) = o,
then the following holds. If (u, A) is an eigencouple for the Dirichlet Laplacian in £, then the
function

1 |Vu|?

rf ) |x — xo|N2
af

is non decreasing on ]0,7,[. In the previous expression, the exponent 8 €]0, 2[ is defined by

the formula

dx | + Cor?5. (69)

B = (N=2)% + 46" — (N —2)
and C, is a suitable constant satisfying

Co= (BC(N)/(2—=B)AIull3 . (70)
We also have the bound
[Vul? N 2
_ Iy < C(N,ro,ﬁ)/1<l + 22 )llull2 , (71)
|x — X0|N 2
ro/2

where
_ - 2—-N 1 3B p -B..2
C(N,1,8) = C(N)2Pr, P [ro 2 + 7, +_/>’ 2 ﬁro] .

Proof. We assume without loss of generality that x, = 0 and to simplify notation we denote
by B, the ball B(0,7). Also, in the following we identify u € Hj () with the function u €
HY(RM) obtained by setting u(x) = 0 if x € Q°.

The proof is based on the by now standard monotonicity Lemma of Alt, Caffarelli and
Friedman [106] and is divided in the following steps.
o Step 1. We prove the following inequality: for a.e. r > 0,

5 f|Vu|2|x|2—N dx

o

< r2N f2ua—u ds + (N — 2)rt-N fuz ds + 24 fu2|x|2‘N dx (72)
st ov st ot

We recall that the eigenfunction u € C*(Q) (see the book by Gilbarg and Trudinger [27 ]).

Although (72) can be formally obtained through an integration by parts, the rigorous proof is

slightly technical. Given ¢ > 0, we set

eles= [ +od+ oo wxfre
so that | x|, is a C* function. A direct computation shows that
A(lx|e") = (2 = N)N

<0,

x|f*+2 —
in other words |x|2~" is superharmonic.
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Let u, € C(Q) be a sequence of functions converging in H1(RN) to u. By using the
equality

A@W?2) = 2|Vu,|? + 2u,Au, (73)
we deduce that
2 fIVun|2|x|§‘N = fA(u,%)|x|§‘N -2 f(unAun)leg‘N. (74)
of of of
Since A(Jx|>~) < 0, the Gauss-Green Formula yields
[ 2@z dr = [ s dx+ ) S L) (75)
of of
where
2—-N ou r
Li(r)=0*+¢e) 2 f 2u, 3 2 dS+(N—-2)— f u? ds.
ant v (Tz + 8)7 ant
In other words, (74) reads
2 fIVun|2|x|§‘N dx < I, (r) -2 f(unAun)leﬁ‘N dx. (76)
of of

We now want to pass to the limit, first as n — +oo, and then as € — 0*. To tackle some techni-
cal problems, we first integrate over r € [r,r + §] and divide by &, thus obtaining

r+é
2
<[ | [Ptz x| dp < 4y - R, 77)
r Q;
where
r+é
1
An = Ef In,s(p) dp
T
and

r+é

1
R, = ZEf f(unAun)leﬁ‘N dx | dp.
T ot

First, we investigate the limit of A,, as n — +oo: by applying the coarea formula, we rewrite

A, as
2-N x
/2 f (Jx|* + &) 2 unVun-m dx+\

| ofis\ef |
|x|

I
(N —2) f —  —uldx
Q:_'_S\Q;f ( lez + 8)5

Since u,, converges to u in H1(RY) when n — +oo, then by using again the coarea formula we
get that

S

A =
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r+8

1
Ay — gf I.(p)dp n — +oo,
T

where
2-N ou T
I, (p) = (p> + ) 2 f 2u——dS+(N-2)——— f W2 dS.
90} (p? + )7 501

Next, we investigate the limit of R,, as n —» +00.By using Fubini’s Theorem, we can rewrite R,,
as

Ru= [ i) f)

QO
where
r+é
2—N 2
f@ =™ 5 [ 1as()dp.
Since
1r+6 (1 5] ifx € Qf
r+d6—|x .
Ef 1Q;(X)dp - {T ifx € Q,T+5 \Qﬁ )

Lo ifx g O,
then £ is Lipschitz continuous and hence by recalling u,, € C;° () we get

f(Aun — Au)u, fdx| + U(un —u)Aufdx
Q Q

<

f (u,Au,, — ulAu) fdx
Q

= f(Vun — Vu)(u,Vf + Vu,f )dx
Q

+ f Vu((Vu,, — Vu)f + (u, — u)Vf) dx

0
< IV — Vuullzgy (tnll iz 19F oy + 1Vl 2oy 11 s ay)

+ Ve llzy (IVun — Vu llzy If oy + N = w N2y llVf llieogqy)
and hence the expression at the first line converges to 0 as n —» +co.
By combining the previous observations and by recalling that u is an eigenfunction we

infer that by passing to the limit n — oo in (77) we get
r+6 r+d r+d

2 1 2
Ef fIVu|2|x|§‘Ndx dr < Ef Is(P)dP—gf fxlu2|x|§"vdx dp.
T ot T T ot

Finally, by passing to the limit § - 0" and then ¢ —» 0% we obtain (72).
o Step 2. We provide an estimate on the right hand side of (72). First, we observe that

f W2 [x P Nedx < lull2 f 2N dx < COV) lullZ 2 (78)
ot ot
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and we recall that C(N) denotes a constant only depending on N, whose exact value can

change from line to line.
Next, we point out that the definition of a* implies that

1
fuz ds < —r? fIVTuIZdS r €101, [, (79)
st ? st
where V. denotes the tangential gradient on the sphere. Also, let « > O be a parameter that will
be fixed later, then by combining Cauchy-Schwarz inequality, (79) and the inequality ab <

1
Za?+ — b2, we get
2 2a

1 1
2 2 2
ou ou
u— dS| < fuzdS f|— ds
av av
st St St
T T T l l
2 2
< L f|v 2 ds “auzds
== U 7y
st st
< aflv |2d5+1f|a”2d5 (80)
" Vo |2 ot 2a ) lov '
st st
Hence,
ou
r2-n f2ua— ds + (N = 2)rt=vN fuz ds
st Y st
2r |a 1 ou|®
< r# ¥ = ||V 2dS+—f|—|dS
=T Vo© [2 fl ul 2a ) lov
st st
1
+(N = 2)riN = p2 f IV, ul? dS
o A
a N-2 1 du|?
<r3N <—+ ) fIVTuI2 ds + f|—| ds|. (81)
Vo* o avo* v
st st
Next, we choose a > 0 in such a way that
a N N-2 1
Vo* ot aVor
namely
1
a= N —2)?>+40* — (N —2)]|.
= V=2) N -2)]
Hence, by combining (72), (79) and (81) we finally get
fIVu|2|x|2‘Ndx < r3Ny(N,o*) fIV ul?ds + C(N)A||ul|37?, (82)
of st
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where

-1
y(N.o*) = [N =2)Z+4s" ~(N-2) | .
o Step 3. We establish the monotonicity property. We set

() = f IVl x>V dx
,Q+
and we observe that

f'(r) = r#=¥ fquI2 a.e.r €]0,79[,
st

hence (82) implies that

f() < yrf'(r)+ Kr?, (83)
withy = y(N, o*) and K = C(N)A|ul|%. This implies that

(f(r) v B s ) > 0,

b (2-P)

with 8 = 1/y = /(N — 2)2 + 40* — (N — 2) €]0,2[. This establishes the monotonicity
result.
o Step 4. We establish (71).

First, we observe that by combining the coarea formula with Chebychev inequality we get
that for any a > 0

1
H {t € [r0/2,75] : fIVuI2 dS > a} | < - f |V ul? dx.
st QN
By applying this inequality with a = ri Jor ot ) |V u|? dx we get that there is at least
0 T0o ro /2

a radius r; € [ry,19/2] such that

4 4 5
fIVuI2 ds < — fIVuI2 dx < — [[Vullz(qy -
To To
st o,
By combining (82) with the fact that r,/2 < r;, < r, we infer

[ vl ax < cQuyg vl g, + CODALIE TS
o
and by monotonicity we have that
To\ P Vul? _ Vul?
() L e [ L
2 |2 — x|V 2 |2 — x|V 72
T0/2 7-"-1
< 26C(NYry PNVl 22 gy + 28 CN)AlullZry? + Cory P
N

Finally, by using that C, = szT(Z; Alull%, that |lulle < C(N)Ax ||u||L2(Q) (see Proposition

N
(5.2.10)), that [|Vull72q) < Allullz(qy , and that max{A, A**V2} < A(1 + 22 ) we get (71).

dx + C0r12—ﬁ
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We now provide an estimate on the energy of a Dirichlet eigenfunction near the boundary.
Proposition(5.2.14)[65]: For every n € ]0, 1[ there is a positive constant ¢ := &(n) such that
the following holds. Given r, € ]0,1[, let @ € RY be an (&,7,) —Reifenberg flat domain,
X, € 0Q and let u be a Dirichlet eigenfunction in  associated with the eigenvalue A. Then

N
[Vul? dx < CA(L+ A2 )rV"||u||3V r €]0,7,/2], (84)

B(xq,7)NQ
for a suitable positive constant C = C(N, 1y, 7n7).
Proof. We fix n € ]0,1[ and we recall that the first eigenvalue of the spherical Dirichlet
Laplacian on a half sphere is equal to N — 1. Fort €] —1,1[, let S; be the spherical cap
St = 0B(0,1) n{xy >t},sothatt = O corresponds to a half sphere. Let 1,(S;) be the first
Dirichlet eigenvalue in S;. In particular, t = 1,(S;) is monotone in t. Therefore, sincen <1
and 1,(S;) = 0ast —» —1, thereist* (n) < O such that

LE)<N-1 —"z 2N —17).
By relying on Lemma 5 in [63](see also [20]), we infer that, if € < t*()/2, then B (x,, 1)
N Q is contained in a spherical cap homothetic to S;- for every r < r,. Since the eigenvalues

scale of by factor 2 when the domain expands of a factor 1/r, by the monotonicity property of
the eigenvalues with respect to domains inclusion, we have

inf <. 720, (0B(x7) N Q) = A,(S-) = N — 1-% (N —n).  (85)

As a consequence, we can apply Lemma (5.2.13) which ensures that, if u is a Dirichlet eigen
function in Q and x, € 9Q, then (69) is a non decreasing function of r, provided that

B=J(N-2)2 + 4(N-1)— n@@N —n) = (N -2) =2 -1, (86)

and C, is the same as in (70). In particular, by monotonicity we know that for every r < r, <1,

1 1 |Vul?
2 2—
NZ7F fIVuI dx < 7 —IX_XOIN_Z dx |+ Cor?=F
,Q+ +

r

SR T dx |+ Cc,r2 7P (87)
B rOB ) |x — xo |72 oo

To

and we conclude that for every r < r,/2,

fIVuI2 dx < KrN—2+B,
ot
with

K = 1 |Vu|? i |+ Cors2ys
T\ G/2F ) vz T e
T0/2

Let us now provide an estimate on K. By using equations (86) and (70) and Proposition (5.2.
10) we get

2C(N) 14N
Co = Tlllullﬁo < C(N ' A 2 |ull?2 gy - (88)
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To estimate the first term in K we use (71) and the fact that 8 = 2 — 7 to obtain
1 |Vul?

(ry/2)5 ; |x — xo|V—2
QTQ/Z

Finally, by combining (88) and (89) we obtain (84) and this concludes the proof.

Note that: By relying on an argument similar, but easier, to the one used in the proofs of
Lemma (5.2.13) and Proposition (5.2.14), we get the following estimate. Let n, ry, Q and x, be
as in the statement of Proposition (5.2.14), and assume that u is an harmonic function in Q
satisfying homogeneous Dirichlet conditions on the boundary dQ n B(x,, r). For everyn €
10, 1] we have

N
dx < C(N, 7, m)A (1 +27 ) lulz. (89)

T
IVul2dx < CrV¥"|lullZ, Vre ]0,50[, (90)
B(xq,7)NQ
for a suitable positive constant C = C(N, 1y, 7n).
Note that the decay estimate (90) is sharp, in the sense that we cannot take n = 0, as the
following example shows. Let N = 2 and let Q be an angular sector with opening angle w,
Q:={(r0):—w/l2<6 < w/2}
By recalling that the Laplacian in polar coordinates is
A= 92 N 10 N 1 02

~or r or r? 00"’
we get that the function u(r,0) := r% cos(8 Z) satisfies the homogeneous Dirichlet condition
on dQ and is harmonic provided that d = m/w. Also, by computing the gradient in the circular
Frenet basis (t,v) and by using formulas

ou 1 du T, M (9 n) q ou Jdu mw m_, © n)
— =——=—70w ~ —sin{8 —)Jand —=— =— rw ~cos(f —),
Jr r 06 4 w w dv r wr w
we get
w
ou?  oul? nzr : (n ) T .
2 _ gu el Y ALS 2(—=-1 _ 2=
f |[Vul* = f 3 + 6v| _(w) f fs w )sdsdf = > 19,
B(0,7)NQ B(0,r)NnQ 0 _%

which leads to the following remarks:

(1) if Q is the half-space (i.e., if w = ), then the Dirichlet integral decays like r2 =
rV.

(i) If the opening angle w < m, then we have a good decay of the order r* for some
a>2.

(ili))  The most interesting behavior occurs when the opening angle w > m, then the
Dirichlet integral decays like r* with « < 2. Note, moreover, that if we want that «
gets closer and closer to 2, we have to choose w closer and closer to  and this
amounts to require that Q is an (&, ry)—Reifenberg flat domain for a smaller and
smaller value of e.

Difference between the projection of eigenfunctions. By relying on the analyis in [80] we get
the following result. Note that we use the convention of identifying any given u € Hg () with
the function defined on the whole R" by setting u = 0 outside .

181



Proposition(5.2.15)[65]: For any a € ]0,1[ there is threshold e(a) € ]0,1/2[ such that the
following holds. Let Q, and Q,, be two (&, r,)-Reifenberg flat domains in RY, both contained
in the disk D, which has radius R. If
c Oc "o
dy(Q,08) < 6 < ik (91)
then there is a constant C = C(N, ry, @) such that, if u € Hj(Q,) is a Dirichlet eigenfunction
associated with the eigenvalue A, then

N
IV = VPR (W) 2y < €A (1 + 22 )5aL [ )
where L := HN~1(0Q,) and the projection P}fu is defined by (68) .

Proof. We proceed in two steps.
o Step 1. We first fix u € HJ(€,,) and construct & € Hg (Q,) which is “close” to u, in the sense
specified in the following.

To begin with, we point out that (91) implies that {B(x,28)} xeaq, is a covering of Q,\(Q,,.
Indeed, by contradiction assume there is y € Q,\Q, such that

26 <d(y,09Q,) = d(y,Qp) < supyeqq d(y, Q).

This would contradict (91) and hence the implication holds true.

By applying Lemma (5.2.6) withr = 58/2 we can find a finite set I, such that #I <
C(N)L/8"~1 and {B(x;,56/2)};c; is a covering of Q,\(Q,.

Next, we use the function 6, given by Lemma (5.2.7) (with r = 56/2) and we set #i(x) :=
0, (xx)u(x). We observe that, since

Qc c Q5 U (Q\Q,) € Q5 U UB(xl-,56/2) |
i€l

then @i € H3(Q,). Also, Vii = uVé, + 8,Vu and hence

IV — Vull2¢py < (1 = 680)Vull 2(py + [[uVE,ll 2(p) (93)
Next, by recalling that 8, = 1 outside the union of the balls {B(x;,568)}, ¢;, We get
IQ-6)Vullsgy = [ Q-g)verax <y [ verax (94
Uier B(x,56) L€l B(x;56)
Also, by recalling that |[V8,|(x) < C(N)/6, we obtain
C(N
IIuVBOIIfz(D) = f [VOo|?u? dx < ((32) Z f u? dx
UiB(x;,56) i B(xi56)
C(N)
< 2(55)2 f IVul? dx. (95)
L B(xi,5VN&)

To get the last inequality we have used [80, Proposition 12] and the fact that one can take b(N)

= v/N in there.
o Step 2. We now restrict to the case when u is an eigenfunction for the Dirichlet Laplacian,
and A is the associated eigenvalue. By using Proposition (5.2.14) and Lemma (5.2.6) we get

N N
Z f Vul? dx < ZCA(l + Az )5N-n i < Cxl(l + ﬁ)wl—vuuug, (96)

i B(x;4VNS) i
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By choosing n := (1 — a), inserting (96) into (94) and (95) and recalling (93) we finally get
[Vu = VPR W Z2py < IV = Vil 20
N
< C(N, 1y, )AL+ A2)L5*||ull3.

Given an open and bounded set Q, (u, ) € H1(Q) \{0} x R is an eigencouple for the Neumann
Laplacian in Q if

with C = C(N, 1y, n) and provided that § < 1,/8VN.

f Vu(x) - Vu(x)dx = pf u(x) v(x)dx Vv € H(Q). (97)

Q Q
We apply the abstract framework to study how the eigenvalues u satisfying (97) depend on the
domain Q. We set
H = L*(RM,R) x L*(RM RV)
and we equip it with the scalar product

H (g, v1), (i, 1)) = f 0y () (1) dx + f 7() - va(x) dx.  (98)

RN RN
Also, we set

A0, 92)) = [ 1@ (). (99)
N
Note that h is a symmetric, positive bilinear form (ilila., it satisfies properties of abstract frame-
work), although it is not a scalar product on H. Inequality (43) is trivially satisfied.

As before, Q, and Q,, are two Reifenberg-flat domains contained in R and we denote the
Sobolev spaces by H(Q,) and H1(Q,). The spaces V, and V, are defined by considering the
map

joi: HY(Q) » LA(RY) x L*(RY,RY)
u - (ulg,Vuly),
where 1, denotes the characteristic function of Q. Note that the ranges V, = jg (H' (Q,)) and
Vp zjﬂb(Hl(Qb)) are closed and that (44) is satisfied. Note also that the inclusion (45) is
compact because, in virtue of Proposition (5.2.8), we can apply Rellich’s Theorem.

The Neumann problem (97) reduces to (46) provided that A = p + 1 and hence it is solved
by a sequence of eigencouples (u,, u,) with lim,,_, ., 1, = +oo . By relying on Lemma (5.2.
12), we deduce that to control the difference |u% — u2 | it is sufficient to provide an estimate on
the projection operator defined by (50), which can be identified by a map P({‘g : H - HY(Q,)
satisfying the following property: V u € H'(Q,),

” jﬂb(u)_ Pé\g ]Qb(u)”j{

= ||1q,u- 1g, P u|’

L?(RN)

2

+ ||1q,Vu - 1o V[ Py u]||L2(RN)

= minvEH1(Qa){”1Qbu — 1Qav||i2(RN) + ”19qu — 1QaVv||i2(RN) } (100)

To provide an estimate on (100) we first establish a preliminary result concerning the decay
of the gradient of a Neumann eigenfunction.

183



Proposition(5.2.16)[65]: For every n > 0O there is a positive constant € := &(n) such that, for
every connected, (&,1,)-Reifenberg flat domain Q € RV, the following holds. Let u be a
Neumann eigenfunction in Q associated with the eigenvalue p, let x € dQ and let r <
min{r,, 1}. Then there is a constant C = C(N, r,, n, Diam(£)) such that

IVul? dx < cu(@ + ./ W)>™ Jlull
B(x,r)nQ
where y(N) = max {g ﬁ} 0 as in the statement of Proposition (5.2.9).
Proof. For a given n > 0 we choose f in such a way that 0 < f < n and that
1 1
a:= 8811 < 5 (102)
Also, we choose € smaller or equal to the constant given by Theorem (5.2.11) with this choice
of a and . Note that € only depends on 7.
We now consider a Neumann eigencouple (u, i), while the point x € dQ is fixed. We may
assume without losing generality that v, < 1, up to redefine r, by min{1, r,}.

We first use the induction principle in order to show that, for a suitable constant C, =
C,(N, 1y, Diam(Q)) that will be chosen later, and for any k € N,

IVul? dx < Cuu(L +/ )™ a*O=m Ju||% o . (103)

B(x,akry)nQ
If k = 0 the inequality (103) is satisfied provided that C, = 1 because [,|Vul® dx = p [[ull5.

Next, we consider the inductive step and we assume that (103) holds for a given k = 0. We
term v the solution of Problem (80) in Q, := B(x, a*ry) N Q. Then Theorem (5.2.11) gives

fIVvI2 dx < aV=B fIVvI2 dx. (104)

Qpe+1
Note that since a < 1, then Q;,; S Q. We now compare Vu and Vv in B(x, a®**1r,) by using

the inequality |la + b||?* < 2||a|l* + 2| b]|?:
fIVuI2 dx < 2 fIVuI2 dx + 2 fIV(u—v)I2 dx

r N=n
@) (min{ro, 1}) (101)

Qg1 Qg1 Qg1
< 2aN-F fIVvI2 dx + 2 flV(u—v)I2 dx
Q Q
< 2aN-FP fIVuI2 dx + 2 fIV(u— v)|? dx. (105)

k k
Since v is harmonic and u is a competitor, then V(u — v) is orthogonal to Vv in L?(Q,) and
hence

fIV(u —v)|?dx = fIVuI2 dx — fIVvI2 dx. (106)

Moreover, u minimizes the functional w - f |Vw|2 dx — pr wu dx with its own Dirichlet
conditions on dB(x, a*r,) N Q, and hence by taklng vasa competltor we obtain
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fIVuI2 dx — fIVvI2 dx < 2u f[u —vu] dx < dpowya"*lull2.  (107)

To get the above mequallty we have used that ro < 1 and the estimate

1 [l < Ml . (108)
which can be established arguing by contradiction. Indeed, set M := |[u|| 0 qy. If (108) is viol-
ated, the truncated function w := min{M, max{v, —M}} would be a competitor of v satisfying
VW22 @y < IVV 172 (qy, Which contradicts the definition of v.

By plugging (106) and (107) in (105) and using the inductive hypothesis (103), we get the
estimate

_ 2y(N) _
[ vt < 20%eau(a + )" @O + Buoya e e,

Qg1
where wy is the measure of the unit ball in RY. By using (37), the above expression reduces to

f Vul? < (1 + /) Oa®+ DN y|2[2¢,a7F + Csa™®HDN] | (109)
Qk+1
for some constant Cs = Cs(N, ry, Diam(Q)). We claim that by choosing in (103)
C, = 8Csa™ VN (110)
then the right hand side of (109) is less than C,u(1 + /i)Y g+ DW=1) \which proves (103).

Indeed, the choice of a implies a”~# = 1/8 and hence (110) implies
kn

2 a 2 1 3
2C4a77_ﬁ + Csan(k+1)_N - C4 g + (8C5an_N)? S C4 g + (8C5an_N)§ - g C4, (111)
which concludes the proof of (103).

To conclude the proof of the Proposition we observe that, given r < r,, we can select an
integer k > 0 such that r < a*r, < ra™1, which yields

|[Vul? dx < f [Vul? dx

B(x,r)nQ B(x,akry)nQ

2y(N) _
< Gr(+ W) a D [l

r \N-7
< o+ Ol gy (5)
0

and this implies (101) provided that C := C,/a™~".

By combining a covering argument from [81] with the previous proposition we establish the
projection estimate provided by the following result.
Proposition(5.2.17)[65]: For any a € ]0,1] there is a constant € = e(a) < 1/600 such that the
following holds. Let Q, and Q, be two connected (8,7,) -Reifenberg flat domains of R¥
satisfying

max{dy(Q4,Qp); dy(Qg Qf)} < 6, (112)

where 0 < § < min{r,/5,1}. Then there is a constant C = C(N, ry, Diam(£;), @) such that, if
u € H(€,) is a Neumann eigenvector associated with the eigenvalue p, then there is @i €
H(Q,) satisfying

110, 1Qbu”L2(RN) + {10, = 10, Vul| 2 gy < CQ + PO LS ullfy g,

Z(RN) -
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where L := #V"1(9Q,) and y(N) = max {Zﬂ , ﬁ } as in the statement of Proposition (5.2.9).

Proof. The goal of the first part of the proof is to construct a function % which only differs from
u in a narrow strip close to the boundary: this is done by relying on a covering argument
similar to those in [81]. The proof is then concluded by relying on Theorem (5.2.9) and
Proposition (5.2.16). The details are organized in the following steps.

o Step 1. We construct a partition of unity. First, we observe that (112) implies that {B(x,
268)}xeaq, Is a covering of Q, A Q, and by relying on Lemma (5.2. 6) we can find a finite set I,
such that (i) #I < C(N)L/8N™1; (ii) {B(x;,56/2)};¢, is a covering of Q, A Q,. To simplify
the exposition, in the following we use the notations

#1

56
Bi =B (Xi,?> ZBl = B(Xl,56) GBl = B(Xi, 156) W = U ZBl .

i=1
Note that property (33) in the statement of Lemma (5.2.6) implies that, for every x € RY, #{i :
x € 2B;} < C(N) and hence, in particular, that, for every integrable function v,

#1
Z_ f lv(x)| dx < C(N) f v(x)| dx. (113)
l=12Bi Ui 2B;
Next, we apply Lemma (5.2.7) with r := 5§/2 and we obtain Lipschtz continuous functions
90, 91, ey 9#] : RN - [0,1] Satleylng

( C(N
VO, (x)| < )a.e.xERN, i=0,..., #I
) QO(X) =0ifx € U Bi, QO(X) =1lifx € RN\ U ZBl (114)
i€l i€l

#1
L61-(x) =0 ifx e RM\2B;, i=1,..., #I, Z 0;(x) = 1 for every x € RV,

i=0
o Step 2. We define the function @i. Fori € [ we term Y; the point in Q, N 2B; such that
d(Y;,x;) = 36 and the vector Y;— x; is orthogonal to P(x;,568). Note that such a point exists
provided 56 < r and € < 3/10 due to Lemma (5) in [63] (see also [20]). Then we define the

domain D; := B(Y;,8) €S Q, N 2B; and we set

1
c = =1,... I.
m; D1 fu(x) dx i N 5

Note that (1o, u(x)) 6,(x) is well defined for x € RY and belongs to H'(R") because
b

0,(x) = 0in a neighborhood of dQ,,. This allows us to define
#1

fi(x) := (1Qbu(x)) 0o(x) + Zmiei(x) vx € RV,

sothatii € H1(Q,).

o Step 3. We provide an estimate on ||&i1q, — ulgb”i First, we point out that Q, A Qg

2(RN)
C W and that iilo, = ulg_in RV\W, so by recalling the definition of & we have
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2

f |t — u|?(x) dx + fuz(x)dx+ fﬁz(x)dx

[E1q, — ulg,||

2(RN)
Qanﬂan Qb\ﬂa Qa\ﬂb
#I 2
< 2 f u?(x) dx + 2 f Zmiei(x) dx
wnQy w i=1

By using the convexity of the square function, Jensen inequality and estimate (113) we have

#I 2 #I #I 1
f Zmiei(x) dx < meiZQi(x)dx < fz D]
w \i=1 w i=1 ¢
#I #I

fuz(y) dy |0;(x) dx

w i=1 D;
1 1
< Z fuz(y) dy f&i(x)dx < Z f u?(y) dy |wy5N8N
L wyoN L wy6N
i=1 D; 2B; i=1 2B; NQy
< C(N) f u?(y) dy.
Ui2B; NQp

In the previous expression, w, denotes as usual the Lebesgue measure of the unit ball in RV,
By combining the previous two estimates we conclude that

210, =ty [ gy < OO [ w2y (115)
w

o Step 4. We introduce some notations we need in Step 5. Given i, € I we denote by J; be the
finite set of indices j € I such that 2B; N 2B; # @. Note that #/;, < C(N) by property (33) in
the statement of Lemma (5.2.6) and, also, that any ball 2B; is contained in 6B; ifj € J; .

Let P, be the hyperplane in 6B;, provided by the definition of Reifenberg flatness and let v,
denote its unit normal vector, oriented in such a way that x;, + 156v, € Q,,. Also, letY; and D;
be as in Step 2, and let P; denote the hyperplane P(x;, 55). Forany j € J; we have

dy(P; N 2B;,Py N 2B;) < dy(P; N 2B;,0Q, N 2B;) + dy(0Q, N 2B}, P, N 2B;)
< 56e + 156¢.
Hence,
d(Y;, Pp) = d(Y;,P;}) - dy(P; N 2B;, Py N 2B;) = 36 —20e6 = 26,
provided that e < 1/20. This shows that

U D] - ﬁio = B(Xlo,156) N {X, (X—Xio) Vo = 6} - 'le
jE]io
where the last inclusion holds by Lemma 5 in [63] (see also [20]) since 30ed < §.
The key point in this construction is that ﬁio is a Lipschitz domain and satisfies the Poincar’e-
Sobolev inequality with constant C(N)4. Hence, by setting
1
mio = ID‘ fu(y) dy

lol b

ip

and by using Jensen inequality we get that, for every j € J; , we have
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1
— f |u(x)— r’rii0|2 dx

il ) ~ byl
1 C(N)és?
< T f |ux)- My, | dx < ( ) fIVu(x)I2 dx
ﬁ
C(N)
< SN2 f [Vu(x)|? dx. (116)
6Bi,N{p

On the other hand, by definition of Dl , we have that, for anyy € 6B; N Qb\Dlo,
d(y,09,) < d(y,Py) +dy(P, N6B;, ,090, N 6B; ) < 6 + 6e6 < 26,
which implies that y € Uyeaq, B(x,28) . In particular,

2B; NQ\D;, < U B(x,28) < UBi

xX€00p i€l

and this implies that supp(6,) N 2B; S D;,

o Step 5. We provide an estimate on ||1q, Vit — 1q, Vu| First, we recall that Q, A Q, S

L2(RN)’
W and we observe that
|10, Vit — 1Qqu|| (M)
= f Vit — Vul?(x) dx + f |Vi|? (x) dx + f [Vul?(x) dx
QaNQpNW Qq \.Qb Qb\ﬂa
<2 f [Vul?(x) dx + 2 f |VE|?(x) dx + f |Vii)? (x) dx. (117)
wnQy QaNQpNW Qq \Qb

The first term in the last line of the above expression satisfies

2 fIVuIZ(x)dx < Z fIVuIZ(x)dx

wnQyp i€l B;nQy

< Z f |Vul?(x) dx. (118)
i€l 6B;NQy
To establish an estimate on the second term in (117), we start by observing that, if x € Q,, then
f(x) := u(x)y(x) + Zmiej(x) .
J
Next, we fix i, in such a way that x € B;, and we observe that, since V8, + X.;¢; VO; =0, we
have
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Vii(x) = 6,(x)Vulx) + V8, (x)ulx) + Z m,;v6,(x)

J€Jiy
= 0o (x)Vu(x) + (u(x) — r’riio)VHO(x) + Z (m;- r’riio)VHj(x) :
f1 jE]iO
f2
Next, we point out that, forany i = 1,..., #I we have
f 16,(x)Vu(x)|? dx < f [Vu(x)|? dx. (119)

2B;NQyp 2BiNQp
Also, we recall that supp(6,) N 2B; < Eio and that [V6; | < C(N)/5. We then recall that the
Poicar’e-Sobolev constant of ﬁio is bounded by C(N)é and by combining these observations
we get

f |fi(0)]? < flu(x) iy |” < C(V) f|Vu|2 < C(N) f |Vul? . (120)

2Bj;NQp 6B, NQp

Finally, by recalling (116) we have
1
f 121> dx < C(N) f Z 5 (mj—m;)" < C(N) f |Vul?dx  (121)

C()

2Bi0nﬂb 2Bionﬂb jE]iO 6Bi0nﬂb
and by combining (119), (120) and (121) we infer
f [Vii|? (x) dx < C(N)Z f [Vul? dx. (122)
QaNQpNW i€l 6B; NQp
To provide a bound on the third term in (117), we observe that, if x € Q,\Q; S U, B;, then
() = ) mbi) 6o() = O

i€l
Hence, if we choose i, in such a way that x € B; , we get

Vii(x) = Z m;Vo;(x) = Z (m; — r’ﬁio)VHj(x) :
J€]i J€lig
By arguing as in (121) we get

f Vii|? dx < C(N) f Vu|? dx,

Biy \Qp 6B, N0y,
which implies
f vl ()dx < Y f vl dx < CN) Y f Vul2dx.  (123)
Qq \.Qb i€l Bi\ﬂb L€l 6Bi\Qb
Finally, by combining (117), (119), (122) and (123) we conclude that
|10, Vi — 1Qqu||i2(RN) < C(N)Z f |Vul|? dx. (124)
i€l 6B; \Qp

o Step 6. We conclude the proof of the Proposition by relying on Propositions (5.2.9) and
(5.2.16). First, by combining Proposition (5.2.9) and (115) we get
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||Ei1,, —u1ﬂb||j2(RN) < C(N)Z f u?(x)dx < C(N)Z SN Nlull fo o)

i€l 28,\0, iel
< (N7, Diam(@,))8" (1 + i) 7" llull 2q,y #1
< (N, 70, Diam(@,))L(1 + )7 llullZ g, (125)
Next, we combine Proposition (5.2.16) with (124) and we obtain
|10, Vit - 1Qqu||i2(RN) < cu(L+ Vi) 8 Mull 3,y #1
< CLp(1+ )7 8% ull 2, (126)

provided that @ = 1 — 7. In the previous expression, C = C(N, o, &, Diam(Q,)).
By combining (125) and (126) we conclude the proof.
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