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Chapter 5 
Quantitative and Spectral Stability Estimates    

       In this chapter we show that if ߗ and ߗ′ are close enough for the complementary Hausdorff 
distance and their boundaries satisfy some geometrical and topological conditions then  

– ଵߣ| |ଵ′ߣ   ≤ |′ߗ∆ߗ|ܥ 
 ఈ
ே   

where ߣଵ (ߣ  .݌ݏ݁ݎ′ଵ)  is the first Dirichlet eigenvalue of the Laplacian in (′ߗ  .݌ݏ݁ݎ) ߗ  and 
ߙ is the Lebesgue measure of the symmetric difference. Here the constant  |′ߗ∆ߗ| < 1 could be 
taken arbitrary close to1(but strictly less) and ܥ is a constant depending on a lot of parameters 
including ߙ, dimension ܰ and some geometric properties of the domains. the argument also 
relies on suitable extension techniques and on an estimate on the decay of the eigenfunctions at 
the boundary which could be interpreted as a boundary regularity result. 
Sec(5.1): The First Dirichlet Eigenvalue in Reifenberg Flat Domains in ℝࡺ 
    We show a stability result for the first Dirichlet eigenvalue of the Laplacian in some bounded 
open sets in ℝே. We estimate the difference  

ଵᇱߣ–ଵߣ| | ≤ |ᇱߗ∆ߗ|ܥ 
ఈ
ே                                                             (1) 

where ߣଵ(resp. ߣଵᇱ ) is the first Dirichlet eigenvalue of the Laplacian in ߗ (resp.ߗᇱ), and |ߗ∆ߗᇱ| 

∶= ᇱߗ\ߗ| ∪  .ᇱߗ and ߗ ᇱ| is Lebesgue measure of the symmetric difference betweenߗ\ߗ
Stability results for the eigenvalues were studied a lot (see [155,152,95]) and have many 
applications, for instance in shape optimization problems (see [153,99]). On the other hand, as 
far as we know, estimates with a precise quantitative bound as (1) were only recently 
investigated [158, 156, 61], and always for regular domains, ܥଵ,ଵ or at least Lipschitz domains. 
We would like to mention also [1] where a weaker inequality than (1) is proved for a very large 
class of domains including for instance bounded connected John sets with a “twisting external 
cone condition”. The proof of Pang [1] uses a Brownian motion and is based on estimates on 
the Poisson kernel. In this section we present a simpler proof in the case of Reifenberg-flat 
domains. 
      We seek some geometrical conditions to impose on the domains in order to guarantee that 
(1) is true. What we obtain is that a “strong” −Reifenberg flat boundary is sufficient. In 
particular, domains with cracks are not permitted. Roughly, in terms of regularity, such domains 
have boundaries which are well approximated by hyperplanes at every scales (see Definition 
(5.1.1)). This is weak enough to permit Hölderian spirals or snowflake-like boundaries (in 
particular it is weaker than Lipschitz domains) but at the same time the geometry of a 
Reifenberg flat set is sufficiently under control in order to make some sharp estimates. See 
[76,81,16] for some earlier works on the analysis of operators in Reifenberg flat domains. 
      Notice that one could expect (1) to be true with ߙ = 1 for the case of Lipschitz domains. In 
this section, since we work with Reifenberg flat domains we only get (1) with ߙ < 1 which is 
optimal in the class of domains. 
     It is worth mentioning that (1) cannot be true without assuming any kind of regularity on the 
boundary of the domains. For example in ℝ૛, the domains ߗ ଵݔ}\(0,1)ܤ =∶ = ଶݔ,0 ≤ 0} and 
ᇱߗ ∶= |ᇱߗ∆ߗ| are such that (0,1)ܤ = 0 but clearly ߣଵ ≠ ଵᇱߣ . Inequality (1) can either not be true 
without adding some topological assumptions. Indeed, the Lipschitz domains ߗ ∶= \(0,1)ܤ
ଵݔ} = 0} and ߗᇱ ∶= ,0)ܤ 1) are again such that |ߗ ∆ ߗᇱ| = 0 but ߣଵ ≠ ଵᇱߣ .  
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    We denote ݀ு the Hausdorff distance, namely for two compact sets ܣ and  ܤ  
݀ு( ܤ,ܣ) ∶=  sup

௫∈஺
dist(ܤ,ݔ) + sup

௬∈஻
 dist( ܣ,ݕ). 

    We consider the case of Reifenberg flat Domains which are defined as follows.  
Definition(5.1.1)[80]: An (ߝ, ߗ ଴)-Reifenberg-flat domainݎ ⊂ ℝࡺ is an open and bounded set 
such that for each ݔ ∈ ݎ and for any ߗ߲ ≤ ,଴ݎ ߗ ∩ ,ݔ)ܤ  is connected and there exists a hyper(ݎ
plane ܲ(ݔ,  which satisfies ݔ containing (ݎ

1
ݎ

 ݀ு (߲ߗ ∩ ,ݔ)ܤ ,ݔ)ܲ,(ݎ (ݎ ∩ ,ݔ)ܤ ((ݎ  ≤  (2)                                .ߝ 
    Let us mention the remarkable theorem of Reifenberg ([64], see also [60],[68]) known as the 
“topological disk theorem”, which in the setting says the following. 
Theorem(5.1.2)[80]: There exists a constant ߝ଴ depending only on the dimension, such that for 
any (ߝ, ߗ ଴)-Reifenberg-flat domainݎ ⊂ ℝࡺ with ߝ < ݔ ଴ and for any pointߝ ∈  one has that ,ߗ߲
ߗ߲ ∩ ,ݔ)ܤ       .଴/32) is a topological diskݎ
      We devote to some preliminary results, especially a covering lemma and a geometrical fact 
saying that ݀ு(ߗᇱ௖ |ᇱߗ∆ߗ| ௖) andߗ,

భ
ಿ are equivalent for two Reifenberg flat domains. Next we 

show some boundary estimates for both eigenfunctions and their gradients near the boundary of 
a Reifenberg flat domain. The more difficult part is to control the gradient. We first show a 
decay result on balls centered at the boundary and then use the covering lemma to estimate the 
gradient in a region close to the boundary. We show an extension result for functions in ܪ଴ଵ(ߗ). 
This extension lemma is a powerful tool which is used to compare two Dirichlet eigenvalues. 
We remark that the extension lemma implies a ߛ-convergence result from which we auto-
matically obtain the stability for Dirichlet eigenvalues. 
Finally we provide the Theorem (5.1.17) and it is proof using the Min-Max principle.  

 
Fig . 1. 

      We start by giving some useful and classical facts about the Dirichlet eigenvalue problem 
for the Laplacian, that can be found for instance in [27]. 
Proposition(5.1.3)[80]: Let ߗ be a domain in ℝࡺ. Then −∆ has a countably infinite discrete set 
of eigenvalues, whose eigenfunctions span ܪ଴ଵ(ߗ). Moreover each eigenfunction ݒ belongs to 
  and we have (ߗ)ஶܮ

ஶ‖ݒ‖  ≤ ,݊) ܥ ଶ‖ݒ‖ (| ߗ|
 . 

      For a Reifenberg-flat domain ߗ and for any ball ݔ)ܤ, ݎ and radius ߗ߲ centered at (ݎ ≤  ,଴ݎ 
let us define the sets ݔ)±ܦ, ,ݔ)ܲ in the following way. Let (ݎ  be the hyperplane given by the (ݎ
definition of Reifenberg flatness of ߗ. Denote by ݔ)±ݖ,  the two points that lie at distance (ݎ
,ݔ)ܲ from 4/ݎ3 ,ݔ)ܲ and whose orthogonal projection on (ݎ  Then we set .ݔ is equal to (ݎ
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,ݔ)±ܦ  (ݎ ∶= ,ݔ)±ݖ)ܤ ,(ݎ ݎ 4⁄ )                                             (3) 
as in Fig. 1.  
      We have the following useful fact regarding the sets ܦ±.  
Lemma(5.1.4)[80]:Let ߗ be an (ߝ, ݔ ଴)-Reifenberg flat domain. Then for allݎ ∈ ݎ and ߗ߲ <  ௥బ

ଶ
, 

the balls ܦା(ݔ, ,ݔ)ିܦ and (ݎ ,ݔ)ܤ  lie in different connected components of (ݎ  .ߗ߲\(ݎ
Proof . This can be seen as a consequence of the topological disk Theorem of Reifenberg [64]. 
Actually one could also prove it directly without using the whole result of Reifenberg but just 
the very beginning of Reifenberg’s construction. 
     In the situation we find it convenient to simply apply the Theorem. More precisely, we use 
the statement of Theorem 1.1. in [68] (which holds for ܰ ≠ 3 for the case of hyperplanes) that 
gives for every ݎ < ݔ ଴andݎ ∈  and a continuous homeomorphism ݔ a hyperplane ܲ through ߗ߲
݂ ∶ ,ݔ)ܤ ଷ

ଶ
(ݎ  → ,ݔ)ܤ)݂ ଷ

ଶ 
((ݎ ⊂ ,ݔ)ܤ  such that (ݎ2

,ݔ)ܤ (ݎ ⊂ ݂ ቆܤ ൬ݔ,
3
2 
൰ቇݎ ⊂ ,ݔ)ܤ  (4)                                            ,(ݎ2

ߗ߲ ∩ ,ݔ)ܤ (ݎ ⊂ ݂ ቆܲ ∩ ܤ ൬ݔ,
3
2 
൰ቇݎ ⊂ ߗ߲ ∩ ,ݔ)ܤ  (5)              .(ݎ2

Now if we denote by ߥ any normal vector to ܲ and consider 
ܲା ∶= ݔ} ∈ ℝݔ  :ࡺ . ߥ > 0} ,   ܲି ∶= ݔ} ∈ ℝݔ  :ࡺ . ߥ < 0} , 

it is clear from(4) and (5) that ߲ߗ separates the domains ݂ ൬ܲ± ∩ ܤ ቀݔ, ଷ
ଶ 
 ቁ൰ and in particularݎ

the sets ݔ)±ܦ,   .(ݎ

 
Fig . 2. 

     We have the following lemma. 
Lemma(5.1.5)[80]: Let ߗଵ and ߗଶ be two (ߝ,  ଴)-Reifenberg flat domains such thatݎ
݀ு(ߗଵ௖,ߗଶ௖) ≤  ଴/3 . Thenݎ

݀ு(ߗଵ௖,ߗଶ௖) ≤ |ଶߗ ∆ଵߗ|ܥ
ଵ
ே

  
where ܥ depends only on ܰ. 
Proof . Let ݔ ∈ =∶ ݎ ଵ , be such thatߗ߲ dist(ߗ߲,ݔଶ) is maximum, and let ݕ ∈  ଶ be such thatߗ߲
dist(ݔ, (ଶߗ߲ = ,ݔ)݀ (ݕ = ଵܦ Let us set .ݎ

± = ,ݔ)±ܦ ଶܦ and (ݎ
± = ,ݕ)±ܦ  as being the balls (ݎ

defined in (3). Under the assumptions we know that only one of ܦଵ
±  lies in ߗଵ and only one of 

ଶܦ
± lies in ߗଶ. Let us simply denote by ܦ௜ those two balls. 
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      Now by the definition of ݕ, we know that ݕ)ܤ, (ݎ ∩  ଵ is empty. In particular, the twoߗ߲
“approximating” hyperplanes ܲ(ݔ, ,ݕ)ܲ and (ݎ  are almost parallel (with error less than (ݎ
2. ≥ ߝ  2.10ିଶ ) as in Fig. 2. 
      Then it is not difficult to show, considering also a similar situation in ݔ)ܤ, ,ݕ)ܤ and (ݎ3  (ݎ3
with the corresponding selection of domains ܦ௜(3ݎ) ∈ ,ݔ)±ܦ} ,ݕ)±ܦ,(ݎ3  that whatever ,{(ݎ3
the positions of the ܦ௜ and ܦ௜(3ݎ) with respect to the lines ܲ(ݔ, ,ݕ)ܲ and (ݎ3  are, one can (ݎ3
always find a ball of radius equivalent to ݎ that lies in the symmetric difference of ߗଵ and ߗଶ. 
We conclude the proof by exchanging the role of ߗଵ and ߗଶ and using the same argument.   
      We provide the following elementary covering lemma. 
Lemma(5.1.6)[80]: Let ߗ ⊂ ℝࡺ be an (ߝ, ଴)-Reifenberg flat domain such that  0ݎ < ℋேିଵ  (ߗ߲) 
= ܮ < +∞. Then for every ݎ < ,ݔ)ܤ} ଴/2 we can extract amongݎ  ௫∈డఆ a subfamily of at{(ݎ
most ܮ/(ܥேݎேି1) balls that forms a covering of ⋃ ,ݔ)ܤ ଼

ଵ଴
௫∈డఆ(ݎ   where  ܥே is a dimensional 

constant. Moreover, for all ݔ we have that  
#{݅ ∶ ݔ ∈ { ௜ܤ ≤   (6)                                                               ܥ

where ܥ is again a dimensional constant.  
Proof . Since ݎ <  ଴, we have thatݎ 

݀ு (߲ߗ ∩ ,ݔ)ܤ ,ݔ)ܲ,(ݎ (ݎ ∩ ,ݔ)ܤ ((ݎ  ≤ 10ିଶ(7)                           . ݎ 
We also know that ߲ߗ separates ܦା(ݔ, ,ݔ)ିܦ from (ݎ  and since the set of minimal ℋேିଵ (ݎ
area having this property and satisfying (7) is the corresponding part of a hyperplane, we 
deduce that there exists a dimensional constant ܥே such that for all ݔ ∈ ≥ ݎ and all ߗ߲  ଴ݎ 

ℋேିଵ(߲ߗ ∩ ,ݔ)ܤ ((ݎ  ≥  .ேିଵݎேܥ 
Now let ݔ)ܤ௜, ,ݔ)ܤ} ௜), be a subfamily ofݎ ∋ ݅ ௫∈డఆ indexed by{(ݎ  maximal for the property ,ܫ
that ଵ

ଵ଴
௜ܤ ∩

ଵ
ଵ଴
௝ܤ  =  ∅. Using this fact (6) comes from a classical geometric argument in ℝࡺ. 

Now we claim that #ܫ is finite. Indeed, since ଵ
ଵ଴

 ௜ are disjoint balls we haveܤ 

ܮ ≥ ℋேିଵ൭ራ߲ߗ
௜∈ூ

∩
1

10
௜൱ܤ  ≥   ேି1 10ଵିேݎேܥܫ#

thus 

≥ ܫ#   
10ேିଵ ܮ
ேି1ݎேܥ   .                                                                           (8) 

      Finally, it remains to prove that the family {ܤ௜}௜∈ூ forms a covering of  ⋃ ,ݔ)ܤ ଼
ଵ଴

௫∈డఆ(ݎ  . 

Let ݕ ∈ ⋃ ,ݔ)ܤ ଼
ଵ଴

௫∈డఆ(ݎ   and let ݔ ∈ ݕ be such that ߗ߲ ∈ ,ݔ)ܤ ଼
ଵ଴
 Then by the maximality .(ݎ

of the {ܤ௜}, there exist an index ݅ and a point ݖ ∈ ଵ
ଵ଴
௜ܤ ∩ ,ݔ)ܤ  ௜ denotes theݔ Then if .(10/ݎ

center of ܤ௜ , we have 

≥ (௜ݔ,ݕ)݀ ,ݕ)݀ (ݔ + ,ݔ)݀ (ݖ + ,ݖ)݀ (௜ݔ ≤  
8

10
ݎ  +

2
10

ݎ  =  ݎ
which proves that ݕ ∈ ,௜ݔ)ܤ   .(ݎ
    We will need the following boundary version of the classical Sobolev inequality when ߗ is a 
Reifenberg flat domain. 
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Proposition(5.1.7)[80]: Let ߗ be an (ߝ, ݑ  and ࡺ଴)-Reifenberg flat domain in ℝݎ ∈ ଴ܹ
ଵ,௣(ߗ) 

for some ݌ ≥ 1 . Then for all ݔ ∈ ≥ ݎ and ߗ߲  ଴ we haveݎ 
௅೛ (஻(௫,௥)∩ఆ)‖ݑ‖  ≤  ௅೛ (஻(௫,௕௥)∩ఆ)‖ݑߘ‖ݎܥ 

where ܥ ∶= ܾ and (ܰ,݌)ܥ ∶=  ܾ(ܰ). 
Proof . The proof is a small modification of the classical proof of the Sobolev inequality that 
we will write here with full details for the convenience of the reader. 
      Without loss of generality, we may assume that ݑ ∈ ,(ߗ)଴ଵܥ ,ݔ)ܲ is the origin and that ݔ  (ݎ
is the hyperplane {ݔଵ = 0}. We shall show that 

௅೛ ൫ఆ∩ொ(௫,௥)൯‖ݑ‖ ≤  ௅೛ ൫ఆ∩ொ(௫,௥)൯.                              (9)‖ݑߘ‖ݎܥ 
where ܳ ,ݔ)  Observe that .ࡺand with faces orthogonal to the axis of ℝ ,ݔ is a cube centered at (ݎ
(9) implies the desired inequality with constant ܾ coming from the comparison between cubes 
and euclidian balls in ℝࡺ.  
      By changing the orientation of ݔଵ we can assume that ܳ(ݔ, (ݎ ∩  which is connected by) ߗ
the assumptions) contains the upper part ܳ(ݔ, (ݎ ∩ ଵݔ} >   It is clear that for any  . {2/ݎ
ݑ ∈   ,(ߗ) ଴ଵܥ

ݔ,ଵݔ)ݑ| ᇱ )|  ≤  න ,ݐ)ݑଵܦ| |( ᇱݔ

௫భ

ିஶ

 

≥ ݐ݀ න (ᇱݔ,ݐ)|ݑଵܦ|
௥

ିஶ

 

 . ݐ݀

Integrating over ݔଵ we obtain  

න|ݑ(ݔଵ,ݔᇱ)|
௥

ିஶ

 

ଵݔ݀ ≤ ݎ2 න ,ݐ)ݑଵܦ| | (ᇱݔ
௥

ିஶ

 

 . ݐ݀

Now integrating the last inequality between −ݎ and ݎ successively over each variable  
,ଶݔ . . .   ே we getݔ,

න |(ݔ)ݑ|
 

ொ(௫,௥)∩ఆ

ݔ݀ ≤ ݎ2 න |(ݔ)ݑଵܦ|
 

ொ(௫,௥)∩ఆ

ݔ݀  ≤ ݎܥ  න (ݔ)‖ݑܦ‖
 

ொ(௫,௥)∩ఆ

 .ݔ݀ 

Then (9) follows if we apply this last inequality to ݑ௣ and use the Hölder’s  inequality.  
Corollary(5.1.8)[80]: Let ߗ be an (ߝ, ߜ and for ࡺ଴)-Reifenberg flat domain in ℝݎ ≤  ଴/2  setݎ

ఋܣ ∶= ߗ  ∩ (ߗ߲,ݔ)݀} ≤  .{ߜ
Then for any function ݑ ∈ ଴ܹ

ଵ,௣ (ߗ) we have 

ቌන|ݑ|௣
 

஺ഃ

ቍݔ݀ 

ଵ
௣

≤ ቌߜܥ  න ௣|ݑ∇|
 

஺మ್ഃ

ቍݔ݀ 

ଵ
௣

 

where ܾ is the dimensional constant of Proposition (5.1.7). 
 
Proof . Let {ܤ௜ }௜∈ூ be the subfamily of balls {ݔ)ܤ,  ௫∈డఆభ given by Lemma (5.1. 6). Then{(ߜ2

ఋܣ ∶= ߗ ∩ (ߗ߲,ݔ)݀:ݔ } ≤ {ߜ  ⊂ ራ ,ݔ൬ܤ
16
10

൰ߜ
௫∈డఆ

⊂ራܤ௜
௜∈ூ

 . 

Moreover the covering is bounded by a dimensional constant ܥ. Then, 

න|ݑ|௣
 

஺ഃ

ݔ݀  ≤෍ න ௣|ݑ|
 

஻೔∩ఆ

  
௜∈ூ

 .     ݔ݀



149 
 

and using Proposition (5.1.7), together with the fact that the ܤ௜  are centered at ߲ߗ, we obtain 

න|ݑ|௣
 

஺ഃ

ݔ݀  ≤ ௣ߜ෍ ܥ න ௣|ݑ∇|
 

 ௕஻೔∩ఆ௜∈ூ

≥ ݔ݀ ௣ߜܥ න  ௣|ݑ∇|
 

஺మ್ഃ  

 ݔ݀

which proves the corollary.  
Proposition(5.1.9)[80]:Let  ߗ be an (ߝ,  be an ݑ and let ,ࡺ଴)-Reifenberg flat domain in ℝݎ
eigenfunction for the Dirichlet Laplacian in ߗ, associated to the eigenvalue ߣ. Then for every 
< ߚ  0 there is a constant ܥ଴ depending on ܰ, |ߗ| and ߚ such that for every ݔ ∈  and for all ߗ߲
≥ ݎ  ଴, we have thatݎ 

න ଶ|ݑ∇|
 

஻(௫,௥)∩ఆ

≥ ݔ݀   ௅మ (ఆ)‖ݑ‖ߣ ଴ܥ 
ଶ ൬

ݎ
଴ݎ
൰
ேିఉ

 .                           (10) 

Proof . For a given ߚ >  0, define 

ܽ  ∶=   2 
ଶ
ఉ .                                                                                    (11) 

Without loss of generality we assume that ݎ଴ = 1 and ‖ݑ‖ଶ = 1. Now let ݔ ∈  We will .ߗ߲
obtain the appropriate decay by showing that for ݇ ∈ ℕ and a specific selection of the constant 
 ଵ we haveܥ

න ଶ|ݑ∇|
 

 ஻൫௫,௔షೖ൯∩ఆ

≥ ݔ݀    ௞(ேିఉ).                                       (12)ିܽߣ ଵܥ

We will prove (12) inductively. It is clear that(12) is true for ݇ = 0 if ܥଵ ≥ 1.       
     Suppose now that (12) is true for ݇ and denote by ݒ the “harmonic” replacement of ݑ in 
ܵ௞ ∶= ,ݔ)ܤ ܽି௞) ∩ ݒ that is a harmonic function ;ߗ ∈ ݑ ଵ(ܵ௞) which satisfiesܪ − ݒ ∈  .଴ଵ(ܵ௞)ܪ
Such a function ݒ can be obtained by minimizing the Dirichlet integral, and since ݑ is a 
competitor we have that 

න|∇ݒ|ଶ
 

ௌೖ

≥ ݔ݀   න|∇ݑ|ଶ
 

ௌೖ

ݔ݀  ≤  .௞(ேିఉ)ିܽ ߣ ଵܥ 

by the inductive hypothesis. On the other hand ݓ ∶=  ଶ is subharmonic. Therefore by the|ݒ∇|
classical mean value inequality applied to ݓ we have 

න ଶ|ݒ∇|
 

ௌೖశభ

≥ ݔ݀   ܽିே  න|∇ݒ|ଶ 
 

ௌೖ

 ,ݔ݀  

that is 

න ଶ|ݒ∇|
 

ௌೖశభ

≥ ݔ݀   ே ܽି௞(ேିఉ).                                           (13)ିܽߣ ଵܥ 

Now we want to estimate ∫ ݑ)∇| −  ଶ|(ݒ
ௌೖ

,݇ Notice that for all .ݔ݀  is the unique solution of ݑ
the problem 

൜
ݓ∇− = in ܵ௞            ݓߣ ,
ݓ − ݑ ∈             ଴ଵ (ܵ௞)ܪ

therefore ݑ is minimizing the energy  

1/2 න|∇ݓ|ଶ
 

ௌೖ

ݔ݀  −  නݓݑߣ 
 

ௌೖ

 . ݔ݀
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among all functions ݓ such that ݑ − ∋ ݓ  ଴ଵ(ܵ௞). Therefore we deduce thatܪ

1/2 න|∇ݑ|ଶ
 

ௌೖ

− ߣ න|ݑ|ଶ
 

ௌೖ

 ≤  1/2 න|∇ݒ|ଶ
 

ௌೖ

− ߣ නݒݑ
 

ௌೖ

  . 

Hence 

                            න|∇ݑ|ଶ
 

ௌೖ

− න|∇ݒ|ଶ
 

ௌೖ

 ≤ ߣ2  ቌන|ݑ|ଶ
 

ௌೖ

 – නݒݑ
 

ௌೖ

ቍ ≤ ஶଶ‖ݑ‖|௞ܵ|ߣܥ    

     ≤ ,ܰ)ܥߣ  ௞ேିܽ(|ߗ| ≤    ଶ ܽି௞ே.                       (14)ܥߣ 
where |ݒ| was estimated in terms of ‖ݑ‖ஶby the maximum principle and ‖ݑ‖ஶ ≤ ,ܰ)ܥ  (|ߗ|
by Proposition (5.1.3). 
      Now since ݒ is harmonic in ܵ௞ and ݑ − ݒ ∈ ݑ)∇ and ݒ∇ ଴ଵ(ܵ௞), we deduce thatܪ −  are (ݒ
orthogonal in ܮଶ(ܵ௞) thus (14) implies  

න|∇ݑ − ଶ|ݒ∇
 

ௌೖ

 =  න|∇ݑ|ଶ
 

ௌೖ

− න|∇ݒ|ଶ
 

ௌೖ

 ≤  ଶܽି௞ே.                    (15)ܥߣ 

Gathering (13) and (15) together we complete the induction as follows:  

න ଶ|ݑ∇|
 

ௌೖశభ

≥ ݔ݀   2 න ଶ|ݒ∇|
 

ௌೖశభ

+ 2 න ݑ)∇| − ଶ|(ݒ
 

ௌೖశభ

   ,ݔ݀ 

                                                          ≤ ே ܽି௞(ேିఉ)ିܽߣଵܥ2  + ଶܽି௞ேܥߣ2  ≤  .(ேିఉ)(௞ାଵ)ିܽߣଵܥ 
where the last inequality holds by the definition of ܽ and provided for instance that  

ଵܥ   ≥ ଶ 2ܥ 
ଶ(ேାଵ)

ఉ    .                                                                  (16) 
Now to finish the proof, since (12) is true, for every  ݎ < 1 one can find an integer ݇ such that 
≥ ݎ  ܽି௞  <   thus ,ݎܽ 

    න ଶ|ݑ∇|
 

஻(௫,௥) 

≥ ݔ݀  න ଶ|ݑ∇|
 

஻൫௫,௔షೖ  ൯ 

≥ ݔ݀  ௞(ேିఉ)ିܽߣଵܥ  ≤    ேିఉ(ݎܽ)ߣ ଵܥ 

so the proposition is true with ܥ଴ ∶= ܽேିఉ  ܥଵ .  
      A consequence of the above proposition is the following. 
Corollary(5.1.10)[80]: Let ߗ be an (ߝ, such that 0 ࡺ଴)-Reifenberg flat domain in ℝݎ <
ℋேିଵ(߲ߗ) = ܮ < +∞. Then for any ߙ < 1 there is a constant ܥଵ ∶= ,|ߗ|)ଵܥ  such that (ߙ,ܰ,଴ݎ
for any eigenfunction ݑ for the Dirichlet Laplacian associated to the eigenvalue ߣ in ߗ and for 
any ߜ ≤  ଴/2  we haveݎ

 න ଶ|ݑ∇|
 

ఆ∩{ௗ(௫,డఆభ) ஸఋ}

≥ ݔ݀   ௅మ(ఆ)‖ݑ‖ܮߣଵܥ 
ଶ ఈߜ . 

Proof . We argue as in Corollary (5.1.8). Let {ܤ௜}௜∈ூ be the subfamily of balls {ݔ)ܤ,  ௫∈డఆ{(ߜ2
given by Lemma (5.1.6). By (8) we know that 

≥ ܫ#  (ேିଵߜேܥ  2ேିଵ) /ܮ 
and that 

ߗ ∩ ݔ} ∶ (ߗ߲,ݔ)݀  ≤ {ߜ  ⊂ ራ ,ݔ)ܤ (ߜ 16/10
௫∈డఆ

⊂ራ ௜ܤ 
௜∈ூ

   . 

Moreover the covering is bounded by a dimensional constant ܥ. Then, 
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 න ଶ|ݑ∇|
 

ఆ∩{ௗ(௫,డఆ )ஸఋ} 

≥ ݔ݀   ෍ න ଶ|ݑ∇|
 

஻೔∩ఆ௜∈ூ

 .   ݔ݀  

and using Proposition (5.1.9) (applied with ݎ = ߚ and ߜ = 1 −  together with the fact that (ߙ
the ܤ௜ are centered at ߲ߗ we obtain 

                 න ଶ|ݑ∇|
 

 ఆ∩{ௗ(௫,డఆ)ஸఋ}

≥ ݔ݀  ௅మ(ఆ)‖ݑ‖ߣܥ 
ଶ   ෍ߜேିଵାఈ

௜∈ூ

  

                              ≤ ௅మ(ఆ)‖ݑ‖ߣܥ
ଶ ேିଵାఈߜܫ#  ≤ ௅మ(ఆ)‖ݑ‖ߣܮ ܥ 

ଶ ఈߜ  . 
where ܥ = ,ߙ,ܰ,଴ݎ)ܥ  .and the proof is complete (|ߗ|
      We need the following extension lemma for Sobolev functions in Reifenberg flat domains. 
The proof relies on a Whitney extension which is now well established. A first result of this 
kind (but however slightly different) is probably due to P. Jones in [88] which has been used by 
several authors, particularly by scientists working on quasi-conformal maps (see for instance 
[157]). However, in the case the extension will be much more simpler than the original one of 
P. Jones since we allow ourselves to modify the function inside the domain in a small neigh-
borhood of the boundary. We would like to mention that [81] contains a lemma similar to the 
following one but for Neumann extensions and for domains with cracks. One can also find 
again the same sort of extension lemma used together with a stopping time argument to show 
some thin convergence results in [74]. 
Lemma(5.1.11)[80]:Let ߗଵ and ߗଶ be two (ߝ,  ଴)-Reifenberg flat domains such thatݎ

݀ு (ߗଵ௖ (ଶ௖ߗ, ≤ ≥ ߜ  (100ܾ)ିଵ  ݎ଴, 
where ܾ is the dimensional constant of Proposition (5.1.7) and set 

ఋܣ  ∶= ݔ} ∶ (ଵߗ߲,ݔ)݀ ≤  . {ߜ
Then for any ݒ ∈ ଴ܹ

ଵ,௣(ߗଵ) there exists a function ݒ෤  ∈ ଴ܹ
ଵ,௣(ߗଶ) such that ݒ =  ଶఋܣ\ଵߗ ෤ inݒ

and 
෤‖௅೛(ఆమ)ݒ‖   ≤  ௅೛(ఆభ),                                                             (17)‖ݒ‖ 

෤‖௅೛(ఆమ)ݒ∇‖ 
௣   ≤ ௅೛(ఆభ)‖ݒ∇‖ 

௣ + ௅೛(ఆభ∩஺ర್ഃ)‖ݒ∇‖ܥ
௣ .                    (18) 

Proof . Let {ܤ௜}௜ ∈ ூ be the subfamily of balls {ݔ)ܤ, ௫ ∈డఆభ{(ߜ2  given by Lemma (5.1.6). We 
will denote by ݔ௜ the center of ܤ௜ and ݎ௜ its radius. Since ߗଵ∆ߗଶ ⊂ ⋃ ௜௜∈ூܤ , to define a function 
෤ݒ ∈ ܹ  ଵ,ଶ(ߗଶ), it is sufficient to define an extension of ݒ in ߗଶ ∩ ⋃ ௜௜ ∈ ூܤ .  
      For all ݅, define a function ߮௜ ∈ such that ߮௜ ,(௜ܤ5) ௖ଵܥ = 1 in ௜ܤ2 , |∇߮| ≤  ଵ and let ߮଴ିߜ
be a function that is equal to 1 in ߗଵ\⋃ ௜௜∈ூܤ4 ,߮଴ = 0 in ⋃ ௜௜∈ூܤ2  and ߮଴ +∑ ߮௝௝∈௃ ≥ 1 in 
⋃\ଵߗ ௜௝∈௃ܤ5  .Moreover, we can assume that for all ݔ ∈ ,௜ܤ௜\2ܤ4 |∇߮଴ (ݔ)| ≤  ,ଵ. Indeedିߜ
such a function ߮଴ can be obtained by setting 

߮଴ (ݔ) ∶= ෑ݈ቆ
,ݔ)݀ (௜ݔ

ߜ
ቇ .

௜∈ூ 

 

where ݈ is a Lipschitz function equal to 0 in [0, 2], equal to 1 in [4, +∞) and ݈ ᇱ(ݔ) ≤ 1. Finally, 
define 

௜ߠ  ∶=   
߮௜ 

(߮଴ + ∑  ߮௜ ௜∈ூ )
     for  ݅ ∈ ܫ ∪ {0} . 

This allows us to obtain a partition of the unity in ߗଵ ∪ ⋃ ௜௜∈ூܤ5 .   
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       Next we simply define ݒ෤ by 
(ݔ)෤ݒ  ∶=   (19)                                                                   .(ݔ)ݒ(ݔ)଴ߠ

in such a way that ݒ෤(ݔ) vanishes on ⋃ ௜௜ ∈ ூܤ2 ⊃ ෤ݒ ଶ. We claim thatߗ߲ ∈ ଴ܹ
ଵ,௣(ߗଶ) and that 

(17), (18) are satisfied. The first estimate (17) comes directly from the fact that ߠ଴(ݔ) ≤ ߯ఆభ. 
So we only have to prove (18), which will also imply that ݒ෤ ∈ ܹଵ,௣(ߗଶ). 
      We have that 

(ݔ)෤ݒ∇ = (ݔ)଴ߠ∇(ݔ)ݒ =  .(ݔ)ݒ∇(ݔ)଴ߠ
thus  

௅೛(ఆమ)‖(ݔ)෤ݒ∇‖     ≤  ฮ∇(ݔ)ݒ߯௦௨௣௣(ఏబ)ฮ௅೛(ఆమ)
+   ௅೛(ఆమ)‖(ݔ)଴ߠ∇(ݔ)ݒ‖

               ≤ ௅೛(ఆభ)‖(ݔ)ݒ∇‖  +  .௅೛(ఆమ)‖(ݔ)଴ߠ∇(ݔ)ݒ‖
therefore it is enough to prove that  

௅೛(ఆమ)‖(ݔ)଴ߠ∇(ݔ)ݒ‖   ≤   ௅೛(஺)  .                                       (20)‖(ݔ)ݒ∇‖ܥ 
with  

ଵߗ =∶ ܣ ∩ራ ௜ܤ4ܾ
௜∈ூ

  ⊂  .ସ௕ఋܣ

      On the other hand, from the construction of ߠ଴ we have 
|(ݔ) ଴ߠ∇| ≤෍߯ସ஻೔(ݔ)ିߜଵ

௜∈ூ

.                                                (21) 

Therefore, since the sum in (21) is locally finite we conclude that 

௅೛(ఆమ)‖(ݔ)଴ߠ∇(ݔ)ݒ‖
௣

 
≤  න ቮ(ݔ)ݒ෍߯ସ஻೔(ݔ)ିߜଵ

௝∈௃

ቮ

 ௣ 

ఆమ 

    

≤ ௣ିߜ෍ܥ  න|(ݔ)ݒ|௣
 

ସ஻೔  ௜∈ூ 

.                                          (22) 

      Now since ܤ௜ is centered on ߲ߗଵ , from Proposition (5.1.7) we get 

න|ݒ|௣
 

ସ஻೔ 

≥  ݔ݀   ߜܥ   ௣   න  ௣|ݑ∇|
 

ସ௕஻೔

 ݔ݀  

(the definition of ݒ outside ߗଵ is considered being 0). Then, 

௅೛(ఆమ)‖(ݔ)଴ߠ∇(ݔ)ݒ‖
௣   ≤ ෍ ܥ   න ௣|(ݔ)ݒ∇|

 

ସ௕஻೔  ௜∈ூ 

≤ න ܥ  ௣|(ݔ)ݒ∇|
 

஺ర್ഃ∩ ఆభ

    . 

which concludes the proof.  
      As in [81], the extension Lemma will imply the Mosco-convergence of ܪ଴ଵ (ߗ௡) to ܪ଴ଵ (ߗ) 
while ߗ௡ tends to ߗ for the complementary Hausdorff distance. It is well known that this 
notion is equivalent to the ߛ-convergence of ߗ௡ to ߗ which will in particular imply a stability 
result for eigenvalues. 
      For ݑ ∈  ଵ(ℝே) by extending them being zeroܪ as a function in ݑ we will identify (ߗ)଴ଵܪ
outside ߗ. 
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Definition(5.1.12)[80]: (Mosco-convergence). Let ߗ௡ and ߗ be open subsets of ℝே. We say 
that ܪ଴ଵ (ߗ௡) converges to ܪ଴ଵ (ߗ) in the sense of Mosco if the following two properties hold: 
(M1) for every ݑ ∈ ௡ݑ there exists a sequence ,(ߗ)଴ଵܪ ∈  ݑ ௡ converges toݑ such that (௡ߗ)଴ଵܪ
strongly in ܪଵ(ℝே);  
(M2) if ℎ௞ is a sequence of indices converging to +∞, ௞ݑ ௞ is a sequence such thatݑ ∈
∅ ଵ(ℝே) to a function ∅, thenܪ ௞ converges weakly inݑ for every ݇, and ( ௛ೖߗ)଴ଵܪ ∈   .( ߗ)଴ଵܪ
     The Mosco convergence is a great tool to study stability for elliptic problems. Indeed, for 
any bounded open set ߗ ⊂ ℝே and any ݂ ∈ ఆݑ let us denote by (ߗ)ଵିܪ

௙ ∈  the unique (ߗ)଴ଵܪ
solution of the equation −∆ݑ = ݂ inߗ . 
Definition(5.1.13)[80]: Let ܦ ⊂ ℝே be bounded. We say that the sequence of open sets 
௡ߗ ⊂ ߗ converges to- ߛ ܦ ⊂ ݂ if for any ܦ ∈ ఆ೙ݑ we have that (ܦ)ଵିܪ

௙  strongly converges to 
ఆݑ
௙  in   . (ܦ)଴ଵܪ 

   The following classical result shows the link between Mosco convergence and ߛ-convergence 
(see [99]).  
Proposition(5.1.14)[80]: ߗ௡ ߛ-converges to ߗ if andonly if ܪ଴ଵ(ߗ௡) converges to ܪ଴ଵ(ߗ) in the 
sense of Mosco.  
Theorem(5.1.15)[80]:Let ݎ଴, ߝ > 0  and let {ߗ௡}௡∈ℕ  and ߗ be some (ߝ,  ଴)-Reifenberg flatݎ
domains. Assume that ߗ௡ converges to ߗ for the complementary Hausdorff distance. Then 
  .in the sense of  Mosco  (ߗ)଴ଵܪ converges to  (௡ߗ)଴ଵܪ
Proof . The proof is the same as for Theorem 11 in [81], using this time the extension lemma 
for ܪ଴ଵ (Lemma (5.1.11)).   
      A useful consequence of ߛ-convergence is the stability of eigenvalues, which is again very 
standard (see [153,99]). 
Proposition(5.1.16)[80]: Let ݎ଴, ߝ >  0 and let {ߗ௡}௡∈ℕ  and ߗ be (ߝ, (଴ݎ −Reifenberg flat. 
Assume that ߗ௡ converges to ߗ for the complementary Hausdorff distance. Then the ݇-th 
eigenvalue in ߗ௡ converges to the ݇-th eigenvalue in ߗ. 
      We are now ready to show Theorem (5.1.17). Notice that the theorem contains in particular 
a second proof of Proposition (5.1.16) for the case  of the first eigenvalue.  
      Next we present the main result concerning the Dirichlet eigenvalues. 
Theorem(5.1.17)[80]: Let ߗ be an (ߝ,   such that ࡺ଴)-Reifenberg flat domain in ℝݎ

0 <  ℋேିଵ(߲ߗ) = > ܮ +∞. 
Let ܤ be a ball such that 10ܤ is contained in ߗ and let ߛଵ be the first eigenvalue of ܤ. Then for 
every ߙ < 1 and for every ܯ > ,ܰ,ߙ depending on ܥ there is a constant ܮ ,|ߗ| , ଵߛ  ܯ ଴ andݎ
such that the following holds. Let ߗᇱ be an (ߝ, ଴)-Reifenberg flat domain such that 0ݎ <
ℋேିଵ(߲ߗᇱ ) ≤ ଵᇱߣ.ଵ(respߣ and let ܯ ) be the first eigenvalue for the Dirichlet Laplacian in ߗ 
(resp. ߗᇱ). If  

݀ு(ߗᇱ௖ (௖ߗ, ≤  ଵିܥ 
then  

หߣଵ– ଵᇱߣ  ห ≤ |ᇱߗ ∆ߗ|ܥ 
ഀ
ಿ . 

        The proof relies on a different approach than the technics in [158] and [1]. The principal 
idea is to obtain some estimates on the behavior of eigenfunctions near the boundary and 
combine them with the Min-Max principle using a good extension lemma to compare two 
functions defined on different domains.  
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Proof. Let ܯ,ߙ and ߛଵ be given as in the statement of the theorem. Let ݑଵ (ݑ.݌ݏ݁ݎଵᇱ ) be an 
eigenfunction of unit ܮଶ-norm associated to the first eigenvalue ߣଵ (݌ݏ݁ݎ. ଵᇱߣ ) in (′ߗ.݌ݏ݁ݎ)ߗ. 
We denote by ߜ ∶= ݀ு (ߗ௖  ଵ be the first eigenvalue of the Laplacian in a ballߤ ᇱ௖). Letߗ,
contained in both ߗ and ߗ′, in such a way that the inequality max(ߣଵ, ଵᇱߣ ଵߤ ≥ ( ≤  ଵ holds byߛ
the monotonicity property for Dirichlet eigenvalues. We finally denote by ܥଶ ∶= min(ܥ଴,ܥଵ) 
where ܥ଴ and ܥଵ are the constants of Corollary (5.1.8) and Corollary(5.1.10), depending on 
,|ߗ|)and max ߙ,ܰ (|ᇱߗ| ≤  in the statement of the theorem ܥ provided that the constant) |ߗ|10
is big enough). 
      We know that 

ଵߣ ∶=   inf
௨∈ுబభ (ఆ)

  
∫  ଶ|ݑ∇|
ఆ

∫  ଶ|ݑ|
ఆ

    = න|∇ݑଵ|ଶ
 

ఆ

 . 

Let ݑ෤ଵᇱ ∈ ଵᇱݑ be the extension of (ߗ)଴ଵܪ  given by Lemma (5.1.11). In particular we have 

න|∇ݑ෤ଵᇱ |ଶ
 

ఆ

ݔ݀  ≤ න|∇ݑଵᇱ |ଶ
 

ఆᇲ

ݔ݀  + ܥ න ଵᇱݑ∇| |ଶ  
 

ఆᇲ∩஺ర್ഃ

  ݔ݀

  ≤ ଵᇱߣ   + ଵᇱߣܥ ఈߜܮ  ≤ ଵᇱߣ   + ఈߜܮଵߛܥ  ≤ ଵᇱߣ   +  ఈ .         (23)ߜܥ
where (23) comes from Corollary (5.1.10) and here ܣఛ ,ݔ)݀} =∶  (ߗ߲  ≤  ߬}. Further , since 
ଵᇱݑ = ෤ଵᇱݑ  in the complement of ߗᇱ ∩  ସఋ we also have thatܣ

න|ݑ෤ଵᇱ |ଶ
 

ఆ

   ≥ න|ݑଵᇱ |ଶ
 

ఆᇲ

 − ܥ න ଵᇱݑ| |ଶ
 

ఆᇲ∩஺రഃ

 .                                                (24) 

which implies, using this time Corollary (5.1.8) and then Corollary (5.1.10) again, 

   න|ݑ෤ଵᇱ |ଶ
 

ఆ

 ≥ ଶߜܥ– 1 න ଵᇱݑ∇| |ଶ
 

ఆᇲ∩஺ర್ഃ

 =   1 − ଵᇱߣଵܥଶߜܥ ఈߜܮ     ≥  1 −  ଶାఈ.        (25)ߜܥ

      Now using (24) and (25) we can compute  

ଵߣ = න|∇ݑଵ|ଶ
 

ఆ

 ≤   
∫ ෤ଵᇱݑ∇| |ଶ 
ఆ ݔ݀ 
∫ ෤ଵᇱݑ| |ଶ 
ఆ ݔ݀

  ≤   
ଵᇱߣ +  ఈߜܥ

ଶାఈߜܥ– 1
  

              ≤ ଵᇱߣ  +
ଵᇱߣܥ– ఈߜܥ ଶାఈߜ

ଶାఈߜܥ– 1
≤ ଵᇱߣ +  ఈ .                         (26)ߜܥ

provided that ߜ is small enough depending on ߙ,ܥ and ߛଵ. The constant ܥ in (26) depends on 
,ߙ,ܰ, ଶܥ, ଵߛ ଵᇱߣ ଵ andߣ Then by the same argument and exchanging the role of .ܯ and ,|ߗ|  we 
get the desired inequality, namely 

ଵߣ| − ଵᇱߣ  | ≤ ఈߜܥ . 
We conclude the proof by observing that the estimate involving |ߗଵ∆ߗଶᇱ

 |
భ
ಿ  is a direct  

consequence of Lemma (5.1.5).  
Corollary(5.1.18)[206]: Let ߗ௠ିଵ be an (ߝ,   such that ࡺ଴)-Reifenberg flat domain in ℝݎ

0 <  ℋேିଵ(߲ߗ௠ିଵ) = > ܮ +∞. 
Let ܤ be a ball such that 10ܤ is contained in ߗ௠ିଵ and let ߛ௠ be the first eigenvalue of ܤ. 
Then for every ߝ > 0 and for every ܯ > ,ܰ,ߝ ௠ିଶ depending onܥ there is a constant ܮ ,|௠ିଵߗ|
, ௠ߛ ௠ିଵߗ such that the following holds. Let ܯ ଴ andݎ

ᇱ  be an (ߝ,  ଴)-Reifenberg flat domainݎ
such that 0 < ℋேିଵ(߲ߗ௠ିଵ

ᇱ ) ≤ ௠ᇱߣ.௠(respߣ and let ܯ )  be the first eigenvalue for the Dirichlet 
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Laplacian in ߗ௠ିଵ (resp. ߗ௠ିଵ
ᇱ ). If  

݀ு൫ߗ௠ିଵ
ᇱ೎  

௠ିଵߗ,
௖ ൯ ≤ ௠ିଶିଵܥ   

then  

หߣ௠–ߣ௠ᇱ  ห ≤ ௠ିଵߗ ∆௠ିଵߗ|௠ିଶܥ 
ᇱ |

భషഄ
ಿ  . 

Proof. 
 Let ߝ, .݌ݏ݁ݎ) ௠ݑ ௠ be given as in the statement of the theorem. Letߛ and ܯ ௠ᇱݑ ) be an eigen 
function of unit ܮଶ-norm associated to the first eigenvalue ߣ௠(݌ݏ݁ݎ. ௠ᇱߣ ) in ߗ௠ିଵ(ߗ.݌ݏ݁ݎ௠ିଵ

ᇱ ). 
We denote by ߜ ∶= ݀ு (ߗ௠ିଵ

௖ ௠ିଵᇱ೎ߗ,  
). Let ߤ௠ be the first eigenvalue of the Laplacian in a ball 

contained in both ߗ௠ିଵ and ߗ௠ିଵ
ᇱ , in such a way that the inequality max(ߣ௠, ௠ᇱߣ ௠ߤ ≥ ( ≤  ௠ߛ

holds by the monotonicity property for Dirichlet eigenvalues. We finally denote by ܥ௠ାଵ
∶= min(ܥ௠ିଵ,ܥ௠) where ܥ௠ିଵ and ܥ௠ are the constants of Corollary (5.1.23) and Corollary 
(5.1.25), depending on ܰ, ௠ିଵߗ|  ,|௠ିଵߗ|)and max ߝ

ᇱ |) ≤  ௠ିଵ|  (provided that theߗ| 10
constant ܥ௠ିଶ in the statement of the theorem is big enough). 
      We know that 

௠ߣ  ∶=  inf
௨೘షభ∈ுబ

భ (ఆ೘షభ)
  
∫  ௠ିଵ|ଶݑ∇|
ఆ೘షభ

∫  ௠ିଵ|ଶݑ|
ఆ೘షభ

    = න ௠|ଶݑ∇|
 

ఆ೘షభ

 . 

Let ݑ෤௠ᇱ ∈ ௠ᇱݑ be the extension of (௠ିଵߗ)଴ଵܪ  given by Corollary (5.1.26). 
In particular we have 

             න ෤௠ᇱݑ∇| |ଶ
 

ఆ೘షభ

௠ିଵݔ݀   ≤ න ௠ᇱݑ∇| |ଶ
 

ఆ೘షభ
ᇲ

௠ିଵݔ݀  + ௠ିଶܥ න ௠ᇱݑ∇| |ଶ  
 

ఆ೘షభ
ᇲ ∩஺ర್ഃ

  ௠ିଵݔ݀

 ≤ ௠ᇱߣ + ௠ᇱߣ ௠ିଶܥ ଵିఌߜ ܮ   ≤ ௠ᇱߣ  + ଵିఌߜ ܮ ௠ߛ ௠ିଶܥ   ≤ ௠ᇱߣ  +  ∗ଵିఌ .    (23)ߜ ௠ିଶܥ
where (23)* comes from Corollary (5.1.25) and here ܣఛ (௠ିଵߗ߲,௠ିଵݔ)݀} =∶   ≤  ߬}. Further, 
since ݑ௠ᇱ = ෤௠ᇱݑ  in the complement of ߗ௠ିଵ

ᇱ ∩  ସఋ we also have thatܣ

න ෤௠ᇱݑ| |ଶ
 

ఆ೘షభ

   ≥ න ௠ᇱݑ| |ଶ
 

ఆ೘షభ
ᇲ

 − ௠ିଶܥ න ௠ᇱݑ| |ଶ
 

ఆ೘షభ
ᇲ ∩஺రഃ

 .                                              (24)∗ 

which implies, using this time Corollary (13) and then Corollary (15) again, 

                    න ෤௠ᇱݑ| |ଶ
 

ఆ೘షభ

 ≥ ଶߜ ௠ିଶܥ– 1 න ௠ᇱݑ∇| |ଶ
 

ఆ೘షభ
ᇲ ∩஺ర್ഃ

 =   1 − ௠ᇱߣ௠ܥଶߜ ௠ିଶܥ    ଵିఌߜܮ 

≥  1 −  ∗ଷିఌ.                  (25)ߜ ௠ିଶܥ
      Now using (24)* and (25)* we can compute  

௠ߣ                  = න ௠|ଶݑ∇|
 

ఆ೘షభ

 ≤   
∫ ෤௠ᇱݑ∇| |ଶ 
ఆ೘షభ

௠ିଵݔ݀ 

∫ ෤௠ᇱݑ| |ଶ 
ఆ೘షభ

௠ିଵݔ݀
  ≤   

௠ᇱߣ +  ଵିఌߜ ௠ିଶܥ

ଷିఌߜ ௠ିଶܥ– 1
  

≤ ௠ᇱߣ  +
௠ᇱߣ ௠ିଶܥ– ଵିఌߜ ௠ିଶܥ ଷିఌߜ

1 – ଷିఌߜ ௠ିଶܥ
≤ ௠ᇱߣ  +  ∗ଵିఌ.        (26)ߜ ௠ିଶܥ
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provided that ߜ is small enough depending on ܥ௠ିଶ,  *௠ିଶ in (26)ܥ ௠ . The constantߛ and ߝ
depends on ߛ௠ , ,ܰ, ௠ାଵܥ ,ߝ  Then by the same argument and exchanging the .ܯ ௠ିଵ|, andߗ|
role of ߣ௠ and ߣ௠ᇱ  we get the desired inequality, namely 

௠ߣ| − ௠ᇱߣ  | ≤  .ଵିఌߜ ௠ିଶܥ

We conclude the proof by observing that the estimate involving |ߗ௠ ∆ ߗ௠ାଵ|
భ
ಿ is a direct 

consequence of Lemma (10). 
Corollary(5.1.19)[206]: Let ߗ௠ିଵ be an (ߝ, ௠ିଵݔ ଴)-Reifenberg flat domain. Then for allݎ ∈
଴ݎ ௠ିଵ andߗ߲ < ,௠ିଵݔ)ାܦ the balls ,ߝ2 ଴ݎ − ,௠ିଵݔ)ିܦ and (ߝ ଴ݎ −  lie in different connected(ߝ
components of  ݔ)ܤ௠ିଵ, ଴ݎ −  .௠ିଵߗ߲\ (ߝ
Proof . This can be seen as a consequence of the topological disk Theorem of Reifenberg [64]. 
Actually one could also prove it directly without using the whole result of Reifenberg but just 
the very beginning of Reifenberg’s construction. In our situation we find it convenient to 
simply apply the Theorem. More precisely, we use the statement of Theorem1.1. in [68] (which 
holds for ܰ ≠ 3 for the case of hyperplanes) that gives for every ߝ > 0 and ݔ௠ିଵ ∈  ௠ିଵ aߗ߲

hyperplane ܲ through ݔ௠ିଵ and a continuous homeomorphism ௠݂ ∶ ,௠ିଵݔ)ܤ ଷ
ଶ

଴ݎ)  − ((ߝ →

௠݂(ݔ)ܤ௠ିଵ, ଷ
ଶ 

଴ݎ) − (((ߝ ⊂ ,௠ିଵݔ)ܤ ଴ݎ)2 −  such that ((ߝ

,௠ିଵݔ)ܤ ଴ݎ − (ߝ ⊂ ௠݂ ൭ܤ ቆݔ௠ିଵ,
3
2 

଴ݎ) − ቇ൱(ߝ ⊂ ,௠ିଵݔ൫ܤ ଴ݎ)2 −  ∗൯,                (4)(ߝ

௠ିଵߗ߲ ∩ ,௠ିଵݔ)ܤ ଴ݎ − (ߝ ⊂ ௠݂  ൭ܲ ∩ ܤ ቆݔ௠ିଵ,
3
2 

଴ݎ) −                          ቇ൱(ߝ

⊂ ௠ିଵߗ߲ ∩ ,௠ିଵݔ)ܤ ଴ݎ)2 −  ∗(5)                                      .((ߝ
Now if we denote by ߥ௠ିଵ any normal vector to ܲ and consider 

ܲା ∶= ௠ିଵݔ} ∈ ℝݔ  :ࡺ௠ିଵ . ௠ିଵߥ > 0} ,   ܲି ∶= ௠ିଵݔ} ∈ ℝݔ  :ࡺ௠ିଵ . ௠ିଵߥ < 0} , 

it is clear from (4)* and(5)* that ߲ ௠ିଵ separates the domains ௠݂ߗ ቆܲ± ∩ ܤ ൬ݔ௠ିଵ, ଷ
ଶ 

଴ݎ) −    ൰ቇ(ߝ

and in particular the sets ݔ)±ܦ௠ିଵ, ଴ݎ −   . (ߝ
Corollary(5.1.20)[206]: Let ߗ௠ and ߗ௠ାଵ be two (ߝ,  ଴)-Reifenberg flat domains such thatݎ
݀ு(ߗ௠௖ , ௠ାଵߗ

௖ ) ≤  ଴/3 . Thenݎ

݀ு(ߗ௠௖ ௠ାଵߗ,
௖ ) ≤ |௠ାଵߗ ∆௠ߗ|௠ିଶܥ

ଵ
ே

  
where ܥ௠ିଶ depends only on ܰ. 
Proof . Let ݔ௠ିଵ ∈ ଴ݎ ௠ , be such thatߗ߲ − =∶ ߝ dist(ݔ௠ିଵ,߲ߗ௠ାଵ) is maximum, and let 
௠ିଵݕ ∈ (௠ାଵߗ߲,௠ିଵݔ)௠ାଵ be such that distߗ߲ = (௠ିଵݕ,௠ିଵݔ)݀ = ଴ݎ  − ଵܦ Let us set  .ߝ

±  = 
଴ݎ,௠ିଵݔ)±ܦ − ଶܦ and (ߝ

± = ,௠ିଵݕ)±ܦ ଴ݎ −  as being the balls defined in (3)*. Under the (ߝ
assumptions we know that only one of ܦଵ

±  lies in ߗ௠ and only one of ܦଶ
± lies in ߗ௠ାଵ. Let us 

simply denote by ܦ௜ those two balls.  
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    Now by the definition of ݕ௠ିଵ, we know that ݕ)ܤ௠ିଵ, ଴ݎ − (ߝ ∩  ,௠ is empty. In particularߗ߲
the two “approximating” hyperplanes ܲ(ݔ௠ିଵ,ݎ଴ − ,௠ିଵݕ)ܲ and (ߝ ଴ݎ −  are almost parallel (ߝ
(with error less than 2. ߝ ≤ 2.10ିଶ ) as in Fig. 2. 
Then it is not difficult to show, considering also a similar situation in ܤ൫ݔ௠ିଵ, ଴ݎ)3 −  ൯ and(ߝ
,௠ିଵݕ൫ܤ ଴ݎ)3 − ଴ݎ)௜൫3ܦ ൯ with the corresponding selection of domains(ߝ − ൯(ߝ ∈  ,௠ିଵݔ)±ܦ}
଴ݎ)3 − ,௠ିଵݕ)±ܦ,((ߝ ଴ݎ)3 − ଴ݎ)௜(3ܦ ௜ andܦ that whatever the positions of the ,{((ߝ −  with ((ߝ
respect to the lines ܲ(ݔ௠ିଵ, ଴ݎ)3 − ,௠ିଵݕ)ܲ and ((ߝ ଴ݎ)3 −  are, one can always find a ball ((ߝ
of radius equivalent to ݎ଴ −  ௠ାଵ. Weߗ ௠ andߗ that lies in the symmetric difference of ߝ
conclude the proof by exchanging the role of ߗ௠ and ߗ௠ାଵ and using the same argument.   
Corollary(5.1.21)[206]: Let ߗ௠ିଵ ⊂  ℝࡺ be an (ߝ, (଴ݎ −Reifenberg flat domain such that 
0 < ℋேିଵ (߲ߗ௠ିଵ) = ܮ < +∞. Then for every ݎ଴ < ଴ݎ,௠ିଵݔ)ܤ} we can extract among ߝ2 −
௫೘షభ∈డఆ೘షభ{(ߝ  a subfamily of at most ܥ)/ܮ௠ାேିଵ(ݎ଴ −  ேି1) balls that forms a covering of(ߝ

⋃ ܤ ൬ݔ௠ିଵ, ଼
ଵ଴

଴ݎ) − ൰௫೘షభ∈డఆ೘షభ(ߝ  where ܥ௠ାேିଵ is a dimensional constant. Moreover, for 

all ݔ௠ିଵ we have that  
#{݅ ∶ ௠ିଵݔ  ∈ { ௜ܤ ≤   ∗௠ିଶ                                                        (6)ܥ

where ܥ௠ିଶ is again a dimensional constant.  
Proof . Since ߝ > 0, we have that 
݀ு ௠ିଵߗ߲)  ∩ ଴ݎ,௠ିଵݔ )ܤ − ଴ݎ,௠ିଵݔ )ܲ,(ߝ − (ߝ ∩ ,௠ିଵݔ )ܤ ଴ݎ − ((ߝ  ≤ 10ିଶ(ݎ଴ −  ∗(7)    . (ߝ

We also know that ߲ߗ௠ିଵ separates ܦା( ݔ௠ିଵ, ଴ݎ − ଴ݎ,௠ିଵݔ )ିܦ from (ߝ −  and since the (ߝ
set of minimal ℋேିଵ area having this property and satisfying (7)* is the corresponding part of 
a hyperplane, we deduce that there exists a dimensional constant ܥ௠ାேିଵ such that for all 
௠ିଵݔ ∈ ߝ ௠ିଵ and allߗ߲ ≥ 0 

ℋேିଵ(߲ߗ௠ିଵ ∩ ,௠ିଵݔ)ܤ ଴ݎ − ((ߝ  ≥ ଴ݎ) ௠ାேିଵܥ  −  .ேିଵ(ߝ
Now let ݔ)ܤ௠ା௜ିଵ, ଴ݎ) − ଴ݎ,௠ିଵݔ)ܤ} ௜), be a subfamily of(ߝ − ݅ ௫೘షభ∈డఆ೘షభ indexed by{(ߝ ∈

maximal for the property that ଵ ,ܫ
ଵ଴
௜ܤ ∩

ଵ
ଵ଴
௝ܤ =  ∅. Using this fact (6)* comes from  a classical 

geometric argument in ℝࡺ. Now we claim that #ܫ is finite. Indeed, since ଵ
ଵ଴

 ௜ are disjoint ballsܤ 

we have 

ܮ ≥ ℋேିଵ ൭ራ߲ߗ௠ିଵ
௜∈ூ

∩
1

10
௜൱ܤ  ≥ ଴ݎ)௠ାேିଵܥ ܫ# −   ேି1 10ଵିே(ߝ

thus 

≥ ܫ#   
10ேିଵ ܮ

଴ݎ)௠ାேିଵܥ − ேି1(ߝ   .                                                                   (8)∗ 

Finally, it remains to prove that the family {ܤ௜}௜∈ூ forms a covering of ⋃ ܤ ൬ݔ௠ିଵ,௫೘షభ∈డఆ೘షభ

଼
ଵ଴

଴ݎ) − ௠ିଵݕ ൰. Let(ߝ ∈ ⋃ ܤ ൬ݔ௠ିଵ, ଼
ଵ଴

଴ݎ) − ൰௫೘షభ∈డఆ೘షభ(ߝ  and let ݔ௠ିଵ ∈  ௠ିଵ be suchߗ߲
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that ݕ௠ିଵ ∈ ܤ ൬ݔ௠ିଵ, ଼
ଵ଴

଴ݎ)  −  ݅ there exist an index ,{௜ܤ} ൰. Then by the maximality of the(ߝ

and a point ݖ௠ିଵ ∈
ଵ
ଵ଴
௜ܤ ∩ ,௠ିଵݔ)ܤ ௥బିఌ

ଵ଴
). Then if ݔ௠ା௜ିଵ denotes the center of ܤ௜ , we have 

,௠ିଵݕ)݀ ≥ (௠ା௜ିଵݔ ,௠ିଵݕ)݀ (௠ିଵݔ + (௠ିଵݖ,௠ିଵݔ)݀ +  (௠ା௜ିଵݔ,௠ିଵݖ)݀

    ≤  
8

10
଴ݎ)  − (ߝ +

2
10

଴ݎ)  − (ߝ = ଴ݎ −  ߝ

which proves that ݕ௠ିଵ ∈ ,௠ା௜ିଵݔ)ܤ ଴ݎ −   .(ߝ
Corollary(5.1.22)[206]: Let ߗ௠ିଵ be an (ߝ, ௠ିଵݑ and ࡺ଴)-Reifenberg flat domain in ℝݎ ∈

଴ܹ
ଵ,ଵାఌ(ߗ௠ିଵ) for some . Then for all ݔ௠ିଵ ∈ ߝ  ௠ିଵ andߗ߲ ≥ 0 we have 

௠ିଵ‖௅భశഄ (஻(௫೘షభ,௥బିఌ)∩ఆ೘షభ)ݑ‖  ≤ ଴ݎ)௠ିଶܥ  − ௠ିଵ‖௅భశഄݑߘ‖(ߝ  ൫஻൫௫೘షభ,௕(௥బିఌ)൯∩ఆ೘షభ൯ 
where ܥ௠ିଶ ∶= ܾ and (ܰ,ߝ)௠ିଶܥ ∶=  ܾ(ܰ). 
Proof . The proof is a small modification of the classical proof of the Sobolev inequality that 
we will write here with full details for the convenience of the reader. 
       Without loss of generality, we may assume that ݑ௠ିଵ ∈ ௠ିଵܥ

ଵ ,(௠ିଵߗ)  ௠ିଵ is the originݔ
and that  ܲ(ݔ௠ିଵ, ଴ݎ − ௠ݔ} is the hyper plane (ߝ = 0}. We shall prove that 

௠ିଵ‖௅భశഄݑ‖  ൫ఆ೘షభ∩ொ(௫೘షభ,௥బିఌ)൯ ≤ ଴ݎ)௠ିଶܥ  −  ∗௠ିଵ‖௅భశഄ ൫ఆ೘షభ∩ொ(௫೘షభ,௥బିఌ)൯.         (9)ݑߘ‖(ߝ
where ܳ(ݔ௠ିଵ, ଴ݎ −  .ࡺ௠ିଵ, and with faces orthogonal to the axis of ℝݔ is a cube centered at (ߝ
Observe that (9)* implies the desired inequality with constant ܾ coming from the comparison 
between cubes and euclidian balls in ℝࡺ.  
      By changing the orientation of ݔ௠ we can assume that ܳ(ݔ௠ିଵ, ଴ݎ − (ߝ ∩  ௠ିଵ (which isߗ
connected by our assumptions) contains the upper part ܳ(ݔ௠ିଵ,ݎ଴ − (ߝ ∩ ௠ݔ} > ଴ݎ) −   . {2/(ߝ
      It is clear that for any ݑ௠ିଵ  ∈ ௠ିଵܥ

ଵ   ,(௠ିଵߗ) 

௠ݔ)௠ିଵݑ| ௠ିଵݔ,
ᇱ  )|  ≤  න ,ݐ)௠ିଵݑଵܦ| ௠ିଵݔ

ᇱ  )|

௫೘

ିஶ

 

≥ ݐ݀ න ௠ିଵݔ,ݐ)|௠ିଵݑଵܦ|
ᇱ )

௥బିఌ

ିஶ

 

 . ݐ݀

Integrating over ݔ௠ we obtain  

න ௠ିଵݔ,௠ݔ)௠ିଵݑ|
ᇱ )|

௥బିఌ

ିஶ

 

௠ݔ݀ ≤ ଴ݎ)2 − (ߝ න ,ݐ)௠ିଵݑଵܦ| ௠ିଵݔ
ᇱ ) |

௥బିఌ

ିஶ

 

 . ݐ݀

Now integrating the last inequality between −(ݎ଴ − ଴ݎ) and (ߝ −  successively over each (ߝ
variable ݔ௠ାଵ, . . .   ௠ାேିଵ we getݔ,

                     න |(௠ିଵݔ)௠ିଵݑ|
 

ொ(௫೘షభ,௥బିఌ)∩ఆ೘షభ

  ௠ିଵݔ݀

                                                          ≤ ଴ݎ)2   − (ߝ න |(௠ିଵݔ)௠ିଵݑଵܦ|
 

ொ(௫೘షభ,௥బିఌ)∩ఆ೘షభ

 ௠ିଵݔ݀ 
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                                                    ≤ ଴ݎ)௠ିଶܥ  − (ߝ න (௠ିଵݔ)‖௠ିଵݑܦ‖
 

ொ(௫೘షభ,௥బିఌ)∩ఆ೘షభ

 .௠ିଵݔ݀ 

Then (9)* follows if we apply this last inequality to  ݑ௠ିଵ
ଵାఌ  and use the Hölder’s inequality.  

Corollary(5.1.23)[206]: Let ߗ௠ିଵ be an (ߝ, ߜ and for ࡺ଴)-Reifenberg flat domain in ℝݎ ≤  ଴/2ݎ
set 

ఋܣ ∶= ௠ିଵߗ  ∩ (௠ିଵߗ߲,௠ିଵݔ)݀} ≤  .{ߜ
Then for any function ݑ௠ିଵ ∈ ଴ܹ

ଵ,ଵାఌ (ߗ௠ିଵ) we have 

ቌන|ݑ௠ିଵ|ଵାఌ
 

஺ഃ

௠ିଵቍݔ݀ 

ଵ
ଵାఌ

≤ ߜ ௠ିଶܥ  ቌ න ௠ିଵ|ଵାఌݑ∇|
 

஺మ್ഃ

௠ିଵቍݔ݀ 

ଵ
ଵାఌ

 

where ܾ is the dimensional constant of Corollary (5.1.22). 
Proof .Let {(ܤ௠)௜ }௜∈ூ be the subfamily of balls {ݔ)ܤ௠ିଵ,  ௫೘షభ∈డఆ೘ given by Corollary{(ߜ2
(5.1.21). Then 

ఋܣ ∶= ௠ିଵߗ ∩ (௠ିଵߗ߲,௠ିଵݔ)݀ :௠ିଵݔ } ≤ {ߜ  ⊂ ራ ,௠ିଵݔ൬ܤ
16
10

൰ߜ
௫೘షభ∈డఆ೘షభ

⊂ራ(ܤ௠)௜
௜∈ூ

 . 

Moreover the covering is bounded by a dimensional constant ܥ௠ିଶ. Then, 

න|ݑ௠ିଵ|ଵାఌ
 

஺ഃ

௠ିଵݔ݀   ≤  ෍ න ௠ିଵ|ଵାఌݑ|
 

(஻೘)೔∩ఆ೘షభ

  
௜∈ூ

 .     ௠ିଵݔ݀

and using Corollary (5.1.22), together with the fact that the (ܤ௠)௜  are centered at ߲ߗ௠ିଵ, we 
obtain 

   න|ݑ௠ିଵ|ଵାఌ
 

 ஺ഃ

௠ିଵݔ݀  ≤ ଵାఌߜ௠ିଶ෍ܥ  න ௠ିଵ|ଵାఌݑ∇|
 

 ௕(஻೘)೔∩ఆ೘షభ௜∈ூ

  ௠ିଵݔ݀

                    ≤ ଵାఌߜ ௠ିଶܥ  න  ௠ିଵ|ଵାఌݑ∇|
 

஺మ್ഃ  

 ௠ିଵݔ݀

which proves the corollary.  
Corollary(5.1.24)[206]: Let  ߗ௠ିଵ be an (ߝ,  ௠ିଵ beݑ and let ,ࡺ଴)-Reifenberg flat domain in ℝݎ
an eigenfunction for the Dirichlet Laplacian in ߗ௠ିଵ, associated to the eigenvalue ߣ௠ିଵ. Then 
for every ߚ > 0 there is a constant ܥ௠ିଵ depending on ܰ, |ߗ௠ିଵ| and ߚ such that for every 
௠ିଵݔ ∈ ߝ ௠ିଵ and for allߗ߲ ≥ 0, we have that 

න ௠ିଵ|ଶݑ∇|
 

஻(௫೘షభ,௥బିఌ)∩ఆ೘షభ

௠ିଵݔ݀    ≤ ௠ିଵ‖௅మ (ఆ೘షభ)ݑ‖௠ିଵߣ ௠ିଵܥ 
ଶ ൬

଴ݎ − ߝ
଴ݎ

൰
ேିఉ

 .          (10)∗ 

Proof . For a given ߚ >  0, define 

ܽ  ∶=   2 
ଶ
ఉ.                                                                          (11)∗ 
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Without loss of generality we assume that ݎ଴ = 1 and ‖ݑ௠ିଵ‖ଶ = 1. Now let ݔ௠ିଵ ∈  .௠ିଵߗ߲
We will obtain the appropriate decay by showing that for ݇ ∈ ℕ and a specific selection of the 
constant ܥ௠ we have 

න ௠ିଵ|ଶݑ∇|
 

 ஻൫௫೘షభ,௔షೖ൯∩ఆ೘షభ

௠ିଵݔ݀    ≤  ∗௠ିଵܽି௞(ேିఉ).                               (12)ߣ ௠ܥ

We will prove (12)* inductively. It is clear that (12)* is true for ݇ = 0 if ܥ௠ ≥ 1. 
      Suppose now that (12)* is true for ݇ and denote by ݒ௠ିଵ the “harmonic” replacement of 
௠ିଵ in ܵ௞ݑ ∶= (௠ିଵ,ܽି௞ݔ)ܤ ∩ ௠ିଵݒ ௠ିଵ; that is a harmonic functionߗ ∈  ଵ(ܵ௞) whichܪ
satisfies ݑ௠ିଵ − ∋ ௠ିଵݒ  ௠ିଵ can be obtained by minimizing theݒ ଴ଵ(ܵ௞). Such a functionܪ
Dirichlet integral, and since ݑ௠ିଵ is a competitor we have that 

න|∇ݒ௠ିଵ|ଶ
 

ௌೖ

௠ିଵݔ݀   ≤  න|∇ݑ௠ିଵ|ଶ
 

ௌೖ

௠ିଵݔ݀  ≤  .௠ିଵ ܽି௞(ேିఉ)ߣ௠ܥ 

by the inductive hypothesis. On the other hand ݓ௠ିଵ ∶=  ௠ିଵ|ଶ is subharmonic. Thereforeݒ∇|
by the classical mean value inequality applied to ݓ௠ିଵ we have 

න ௠ିଵ|ଶݒ∇|
 

ௌೖశభ

௠ିଵݔ݀    ≤ ܽିே  න|∇ݒ௠ିଵ|ଶ 
 

ௌೖ

 ,௠ିଵݔ݀  

that is 

න ௠ିଵ|ଶݒ∇|
 

ௌೖశభ

௠ିଵݔ݀   ≤  ∗௠ିଵ ܽି൫ேା௞(ேିఉ)൯.                                      (13)ߣ ௠ܥ 

Now we want to estimate ∫ ௠ିଵݑ)∇| −  ௠ିଵ)|ଶݒ
ௌೖ

,݇ ௠ିଵ. Notice that for allݔ݀    ௠ିଵ is theݑ

unique solution of the problem 

൜
௠ିଵݓ∇− = ,௠ିଵ            in ܵ௞ݓ௠ିଵߣ
௠ିଵݓ − ௠ିଵݑ ∈             ଴ଵ (ܵ௞)ܪ

therefore ݑ௠ିଵ is minimizing the energy  

1/2 න|∇ݓ௠ିଵ|ଶ
 

ௌೖ

௠ିଵݔ݀  −  නߣ௠ିଵݑ௠ିଵݓ௠ିଵ 
 

ௌೖ

 . ௠ିଵݔ݀

among all functions ݓ௠ିଵ such that ݑ௠ିଵ − ௠ିଵݓ ∈  ଴ଵ(ܵ௞). Therefore we deduce thatܪ

1/2 න|∇ݑ௠ିଵ|ଶ
 

ௌೖ

− ௠ିଵߣ න|ݑ௠ିଵ|ଶ
 

ௌೖ

 ≤  1/2 න|∇ݒ௠ିଵ|ଶ
 

ௌೖ

− ௠ିଵߣ නݑ௠ିଵݒ௠ିଵ

 

ௌೖ

  . 

Hence 

             න|∇ݑ௠ିଵ|ଶ
 

ௌೖ

− න|∇ݒ௠ିଵ|ଶ
 

ௌೖ

 ≤ ௠ିଵ|ଶݑ|௠ିଵቌනߣ2 
 

ௌೖ

 – නݑ௠ିଵݒ௠ିଵ

 

ௌೖ

ቍ 

 ≤ ௠ିଵ‖ஶଶݑ‖|௠ିଵ|ܵ௞ߣ௠ିଶܥ   ≤ ,ܰ)௠ିଶܥ௠ିଵߣ   ௠ିଵ|)ܽି௞ேߗ|
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≤  ∗௠ାଵ ܽି௞ே.                                                               (14)ܥ௠ିଵߣ
where |ݒ௠ିଵ| was estimated in terms of ‖ݑ௠ିଵ‖ஶ by the maximum principle and 
௠ିଵ‖ஶݑ‖ ≤ ,ܰ)௠ିଶܥ  .௠ିଵ|) by Proposition (5.1.3)ߗ|
      Now since ݒ௠ିଵ is harmonic in ܵ௞ and ݑ௠ିଵ − ௠ିଵݒ ∈  ௠ିଵ andݒ∇ ଴ଵ(ܵ௞), we deduce thatܪ
௠ିଵݑ)∇ −   ଶ(ܵ௞) thus (14)* impliesܮ ௠ିଵ) are orthogonal inݒ

න|∇ݑ௠ିଵ − ௠ିଵ|ଶݒ∇
 

ௌೖ

 =  න|∇ݑ௠ିଵ|ଶ
 

ௌೖ

− න|∇ݒ௠ିଵ|ଶ
 

ௌೖ

 ≤  ∗௠ାଵ ܽି௞ே.               (15)ܥ௠ିଵߣ 

Gathering (13)* and (15)* together we complete the induction as follows:  

 න ௠ିଵ|ଶݑ∇|
 

ௌೖశభ

௠ିଵݔ݀  ≤  2 න ௠ିଵ|ଶݒ∇|
 

ௌೖశభ

+ 2 න ௠ିଵݑ)∇| − ௠ିଵ)|ଶݒ
 

ௌೖశభ

   ,௠ିଵݔ݀ 

≤ ௠ିଵ ܽି൫ேା௞(ேିఉ)൯ߣ௠ܥ2  + ௠ାଵܽି௞ேܥ௠ିଵߣ2  ≤  .௠ିଵܽି(௞ାଵ)(ேିఉ)ߣ௠ܥ
where the last inequality holds by the definition of ܽ and provided for instance that  

௠ܥ   ≥ ௠ାଵ 2ܥ 
ଶ(ேାଵ)

ఉ    .                                                                  (16)∗ 
      Now to finish the proof, since (12)* is true, for every  ߝ > 0 one can find an integer ݇ such 
that  1 − ≥ ߝ  ܽି௞  <  ܽ(1−   thus (ߝ

    න ௠ିଵ|ଶݑ∇|
 

஻(௫೘షభ,ଵିఌ) 

௠ିଵݔ݀   ≤ න ௠ିଵ|ଶݑ∇|
 

஻൫௫೘షభ,௔షೖ ൯ 

௠ିଵݔ݀   ≤  ௠ିଵܽି௞(ேିఉ)ߣ௠ܥ 

            ≤ ௠ିଵ൫ܽ(1ߣ ௠ܥ  −    ൯ேିఉ(ߝ
so the proposition is true with ܥ௠ିଵ ∶= ܽேିఉ   . ௠ܥ  
Corollary(5.1.25)[206]: Let ߗ௠ିଵ be an (ߝ,  such that ࡺ଴)-Reifenberg flat domain in ℝݎ
0 < ℋேିଵ(߲ߗ௠ିଵ) = ܮ < +∞. Then for any ߝ > 0 there is a constant ܥ௠ ∶= ,଴ݎ,|௠ିଵߗ|)௠ܥ
ܰ,  ௠ିଵ for the Dirichlet Laplacian associated to the eigenݑ such that for any eigen-function (ߝ
value ߣ௠ିଵ in ߗ௠ିଵ and for any ߜ ≤  ଴/2  we haveݎ

 න ௠ିଵ|ଶݑ∇|
 

ఆ೘షభ∩{ௗ(௫೘షభ,డఆ೘) ஸఋ}

௠ିଵݔ݀    ≤ ௠ିଵ‖௅మ(ఆ೘షభ)ݑ‖ܮ ௠ିଵߣ ௠ܥ 
ଶ  .ଵିఌߜ

Proof . We argue as in Corollary (5.1.23). Let {(ܤ௠)௜}௜∈ூ be the subfamily of balls  
,௠ିଵݔ)ܤ}  ௫೘షభ∈డఆ೘షభ given by Corollary (5.1.21). By (8)* we know that{(ߜ2

≥ ܫ#  (ேିଵߜ௠ାேିଵܥ  2ேିଵ) /ܮ
and that 

௠ିଵߗ ∩ ௠ିଵݔ} ∶ (௠ିଵߗ߲,௠ିଵݔ)݀  ≤ {ߜ  ⊂ ራ ,௠ିଵݔ)ܤ (ߜ 16/10
௫೘షభ∈డఆ೘షభ

⊂ራ(ܤ௠)௜
௜∈ூ

   . 

Moreover the covering is bounded by a dimensional constant ܥ௠ିଶ. Then, 
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 න ௠ିଵ|ଶݑ∇|
 

ఆ೘షభ∩൛ௗ൫௫೘షభ,డఆ೘షభ ൯ஸఋൟ 

௠ିଵݔ݀   ≤  ෍ න ௠ିଵ|ଶݑ∇|
 

(஻೘)೔∩ఆ೘షభ௜∈ூ

 . ௠ିଵݔ݀  

and using Corollary (5.1.24) (applied with ݎ଴ − ߝ = ߚ and ߜ =  together with the fact that the (ߝ
 ௠ିଵ we obtainߗ߲ ௜ are centered at(௠ܤ)

       න ௠ିଵ|ଶݑ∇|
 

 ఆ೘షభ∩{ௗ(௫೘షభ,డఆ೘షభ)ஸఋ}

௠ିଵݔ݀   ≤ ௠ିଵ‖௅మ(ఆ೘షభ)ݑ‖௠ିଵߣ௠ିଶܥ 
ଶ   ෍ߜேିఌ

௜∈ூ

  

                                                            ≤ ௠ିଵ‖௅మ(ఆ೘షభ)ݑ‖௠ିଵߣ௠ିଶܥ
ଶ   ேିఌߜܫ#

                                                           ≤ ௠ିଵ‖௅మ(ఆ೘షభ)ݑ‖௠ିଵߣܮ ௠ିଶܥ 
ଶ  .ଵିఌߜ 

where ܥ௠ିଶ = ,ܰ,଴ݎ)௠ିଶܥ ,ߝ   .௠ିଵ|) and the proof is completeߗ|
Corollary(5.1.26)[206]: Let ߗ௠ and ߗ௠ାଵ be two (ߝ,  ଴)-Reifenberg flat domains such thatݎ

݀ு (ߗ௠௖ ௠ାଵߗ,
௖ ) ≤ ≥ ߜ  (100ܾ)ିଵ  ݎ଴, 

where ܾ is the dimensional constant of Corollary (5.1.22) and set 
ఋܣ  ∶= ௠ିଵݔ} ∶ (௠ߗ߲,௠ିଵݔ)݀  ≤  . {ߜ

Then for any ݒ௠ିଵ ∈ ଴ܹ
ଵ,ଵାఌ(ߗ௠) there exists a function ݒ෤௠ିଵ  ∈ ଴ܹ

ଵ,ଵାఌ(ߗ௠ାଵ) such that 
௠ିଵݒ =  ଶఋ andܣ\௠ߗ ෤௠ିଵ inݒ

෤௠ିଵ‖௅భశഄ(ఆ೘శభ)ݒ‖   ≤  ∗௠ିଵ‖௅భశഄ( ఆ೘),                                                                        (17)ݒ‖ 
෤௠ିଵ‖௅భశഄ(ఆ೘శభ)ݒ∇‖ 

ଵାఌ   ≤ ௠ିଵ‖௅భశഄ( ఆ೘)ݒ∇‖ 
ଵାఌ + ௠ିଵ‖௅భశഄ( ఆ೘∩஺ర್ഃ)ݒ∇‖௠ିଶܥ

ଵାఌ .          (18)∗ 
Proof .Let {(ܤ௠)௜}௜ ∈ ூ be the subfamily of balls {ݔ)ܤ௠ିଵ,  ௫೘షభ∈ డఆ೘ given by Corollary{(ߜ2
(5.1.21). We will denote by ݔ௠ା௜ିଵ the center of (ܤ௠)௜ and (ݎ଴ −  ௜ its radius. Since(ߝ
⊃ ௠ାଵߗ ∆௠ߗ  ⋃ ௜ ௜∈ூ(௠ܤ) ,to define a function ݒ෤௠ିଵ ∈ ܹ  ଵ,ଶ(ߗ௠ାଵ), it is sufficient to define an 
extension of ݒ௠ିଵ in ߗ௠ାଵ ∩ ⋃ ௜ ௜ ∈ ூ(௠ܤ)  .  
For all ݅, define a function (߮௠ିଶ)௜ ∈ ௠ା௖ିଵଵܥ such that(߮௠ିଶ)௜ ,(௜(௠ܤ)5)  = 1 in  2(ܤ௠)௜  ,
|∇߮௠ିଶ| ≤ ⋃\௠ߗ  ଵ and let ߮௠ିଵ be a function that is equal to 1 inିߜ ௜௜∈ூ(௠ܤ)4 , ߮௠ିଵ = 0 
in ⋃ ௜௜∈ூ(௠ܤ)2  and ߮௠ିଵ + ∑ (߮௠ିଶ)௝௝∈௃  ≥ 1 in  ߗ௠\⋃ ௜௝∈௃(௠ܤ)5  .Moreover, we can assume 
that for all ݔ௠ିଵ ∈ ,௜(௠ܤ)௜ \2(௠ܤ)4 |∇߮௠ିଵ (ݔ௠ିଵ)| ≤ ߮ ଵ.Indeed, such a functionିߜ ௠ିଵ can 
be obtained by setting 

߮௠ିଵ (ݔ௠ିଵ) ∶= ෑ݈ቆ
(௠ା௜ିଵݔ,௠ିଵݔ)݀

ߜ
ቇ .

௜∈ூ 

 

where ݈ is a Lipschitz function equal to 0 in [0,2], equal to 1 in [4, +∞) and ݈ᇱ(ݔ௠ିଵ) ≤ 1. 
Finally, define 

௜(௠ିଶߠ)  ∶=   
(߮௠ିଶ)௜ 

(߮௠ିଵ + ∑ (߮௠ିଶ)௜ ௜∈ூ )
     for  ݅ ∈ ܫ ∪ {0} . 

This allows us to obtain a partition of the unity in ߗ௠ ∪⋃ ௜௜∈ூ(௠ܤ)5 .  
      Next we simply define ݒ෤௠ିଵ by 

(௠ିଵݔ)෤௠ିଵݒ  ∶=   ∗(19)                                          .(௠ିଵݔ)ݒ(௠ିଵݔ)௠ିଵߠ
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in such a way that ݒ෤௠ିଵ(ݔ௠ିଵ) vanishes on ⋃ ௜௜ ∈ ூ(௠ܤ)2 ⊃ ෤௠ିଵݒ ௠ାଵ. We claim thatߗ߲ ∈

଴ܹ
ଵ,ଵାఌ(ߗ௠ାଵ) and that (17)*, (18)* are satisfied. The first estimate (17)* comes directly from 

the fact that ߠ௠ିଵ(ݔ௠ିଵ) ≤ ߯ఆ೘. So we only have to prove (18)*, which will also imply that 
෤௠ିଵݒ ∈ ܹଵ,ଵାఌ(ߗ௠ାଵ). 
      We have that 

(௠ିଵݔ)෤௠ିଵݒ∇ = (௠ିଵݔ)௠ିଵߠ∇(௠ିଵݔ)௠ିଵݒ =  .(௠ିଵݔ)௠ିଵݒ∇(௠ିଵݔ)௠ିଵߠ
thus  
   ௅భశഄ(ఆ೘శభ)‖(௠ିଵݔ)෤௠ିଵݒ∇‖         

≤  ฮ∇ݒ௠ିଵ(ݔ௠ିଵ)߯௦௨௣௣(ఏ೘షభ)ฮ௅భశഄ(ఆ೘శభ)
+   ௅భశഄ(ఆ೘శభ)‖(௠ିଵݔ)௠ିଵߠ∇(௠ିଵݔ)௠ିଵݒ‖

                     ≤ ௅భశഄ(ఆ೘)‖(௠ିଵݔ)௠ିଵݒ∇‖  +  .௅భశഄ(ఆ೘శభ)‖(௠ିଵݔ)௠ିଵߠ∇(௠ିଵݔ)௠ିଵݒ‖
therefore it is enough to prove that  

௅భశഄ(ఆ೘శభ)‖(௠ିଵݔ)௠ିଵߠ∇(௠ିଵݔ)௠ିଵݒ‖   ≤   ∗௅భశഄ(஺)  .            (20)‖(௠ିଵݔ)௠ିଵݒ∇‖௠ିଶܥ 
with  

௠ߗ =∶ ܣ ∩ራ ௜(௠ܤ)4ܾ
௜∈ூ

  ⊂ ସ௕ఋܣ . 

      On the other hand, from the construction of ߠ௠ିଵ we have 

|(௠ିଵݔ)௠ିଵߠ∇| ≤෍߯ସ(஻೘)೔(ݔ௠ିଵ)ିߜଵ
௜∈ூ

.                                              (21)∗ 

Therefore, since the sum in (21)* is locally finite we conclude that 

௅భశഄ(ఆ೘శభ)‖(௠ିଵݔ)௠ିଵߠ∇(௠ିଵݔ)௠ିଵݒ‖
ଵାఌ

 
≤  න ቮݒ௠ିଵ(ݔ௠ିଵ)෍߯ସ(஻೘)೔(ݔ௠ିଵ)ିߜଵ

௝∈௃

ቮ

 ଵାఌ 

ఆ೘శభ 

    

≤ (ଵାఌ)ିߜ௠ିଶ෍ܥ  න ଵାఌ|(௠ିଵݔ)௠ିଵݒ|
 

ସ(஻೘)೔ ௜∈ூ 

.     (22)∗ 

      Now since (ܤ௠)௜ is centered on ߲ߗ௠ , from Corollary (5.1.22) we get 

න ௠ିଵ|ଵାఌݒ|
 

ସ(஻೘)೔

௠ିଵݔ݀     ≤ ߜ ௠ିଶܥ   ଵାఌ   න  ௠ିଵ|ଵାఌݑ∇|
 

ସ௕(஻೘)೔

 ௠ିଵݔ݀  

(the definition of ݒ௠ିଵ outside ߗ௠ is considered being 0). Then, 

௅భశഄ(ఆ೘శభ)‖(௠ିଵݔ)௠ିଵߠ∇(௠ିଵݔ)௠ିଵݒ‖
ଵାఌ   ≤ ௠ିଶܥ   ෍  න ଵାఌ|(௠ିଵݔ)௠ିଵݒ∇|

 

ସ௕(஻೘)೔ ௜∈ூ 

 

                                                                             ≤ ௠ିଶܥ   න ଵାఌ|(௠ିଵݔ)௠ିଵݒ∇|
 

஺ర್ഃ∩ ఆ೘

    . 

which concludes the proof.    
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Corollary(5.1.27)[206]: by considering the assumptions appear in Corollary (5.1.18) show the 
sharp estimate 

௠ߣ| − ௠ᇱߣ | ≤ ேିఉ(1ܥ +  .ଵିఌߜ(ߝ
Where ܰ ≤  .ߚ
Proof: From Corollary (5.1.24) we have  

௠ିଵܥ = ൬2
ଶ
ఉ൰

ேିఉ

 ,௠ܥ

Where ܽ = 2
మ
ഁ and ܥ௠ିଶ = (஼೘షభ

 )మ

஼೘
௠ܥ , = (1 + ߝ ,(ߝ ≥ 0. 

From the proof of Corollary (5.1.18) we have 
௠ߣ| − ௠ᇱߣ | ≤ ேିఉ(1ܥ +  .ଵିఌߜ(ߝ

Where  ܥேିఉ = ൬2
మ
ഁ൰

ଶ(ேିఉ)
 

Hence the result follows when ܰ ≤   .ߚ

Sec(5.2): The Dirichlet and Neumann Laplacien in Rough Domains. 
      We deal with the eigenvalues of the Laplace operator for the Dirichlet and the Neumann 
problems in rough domains. Let Ω ⊆ ℝே be an open and bounded set. If ߲Ω satisfies suitable 
mild regularity assumptions, then we can apply the classical results concerning the spectrum of 
compact operators and infer that both the Dirichlet and the Neumann problems admit a 
sequence of nonnegative eigenvalues, which we denote by 

0 < ଵ(Ω)ߣ  ≤ ଶ(Ω)ߣ ≤ ··· ≤ ௞(Ω)ߣ  ≤ . . .⟶ +∞ 
and 

0 = μଵ(Ω) ≤ μଶ(Ω) ≤ ··· ≤  μ௞(Ω) ≤ . . .⟶ +∞, 
respectively. Each eigenvalue is counted according to its multiplicity. 
      The problem of investigating the way that the eigenvalues ߣ௞ and μ௞ depend on the domain 
Ω has been widely studied. We refer to Bucur and Buttazzo [59] and by Henrot [52]. See also 
the expository work by Hale [152]. In the present section we establish new stability estimates 
concerning the dependence of the eigenvalues on domain perturbations. The most relevant 
features of the section are the following. 
      We apply to both the Dirichlet and the Neumann problem, while many of the previous 
results were concerned with the Dirichlet problem only. The key argument in the present 
section is based on an abstract lemma (Lemma (5.2.12)) which is sufficiently general to apply 
to both Dirichlet and Neumann problems. Lemma (5.2. 12)  has an elementary proof which 
uses ideas due to Birkhoff, de Boor, Swartz and Wendroff [58]. Although in this section we 
choose to mainly focus on domains satisfying a specific regularity condition, first introduced 
by E. R. Reifenberg [64], Lemma (5.2.12) can be applied to other classes of domains. As an 
example, we consider the case of Lipschitz domains, see Theorem (5.2.4). 
       We impose very weak regularity conditions on the domains Ω௔  and Ω௕ . The exact 
definition of the regularity assumptions we impose is given later, here we just mention that 
Reifenberg flatness is a property weaker than Lipschitz continuity and that Reifenberg flat 
domains are relevant for the study of minimal surfaces [64] and of other problems, see Toro 
[72]. 
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       In the present section we establish quantitative estimates, while much of the analysis 
discussed in [59, 52] aimed at proving existence and convergence results. More precisely, we 
will obtain estimates of the following type: 

௞(Ω௔)ߣ| − |௞(Ω௕)ߣ   ≤ ு(Ω௔௖݀ܥ   ,Ω௕௖)ఈ ,                                                                     
 (27) 

 |μ௞(Ω௔) − μ௞(Ω௕)|  ≤ max(݀ு(Ω௔௖ ܥ   ,Ω௕௖) , ݀ு(Ω௔ ,Ω௕ ) ) ఈ. 
In the previous expressions, Ω஼  ∶= ℝே\Ω stands for the complement of the set Ω and ݀ு for 
the Hausdorff distance, namely 

݀ு(ܺ,ܻ) ∶= max ൛sup ௫∈௑ ݀(ݔ,ܻ), sup௬∈௒  ݀(ݕ,ܺ)ൟ.                        (28) 
In the following we will discuss both the admissible values for the exponent α and the reasons 
why the quantity ݀ு( Ω௔ ,Ω௕  ) only appears in the stability estimate for the Neumann eigen 
values. 
    Note that quantitative stability results were established in a series of references by Burenkov, 
Lamberti, Lanza De Cristoforis and collaborators (see [155] for an overview). However, the 
regularity assumptions we impose on the domains are different than those in [155] and, 
moreover, the approach relies on different techniques. Indeed, the analysis in [155] is based on 
the notion of transition operators, while as mentioned before the argument combines real 
analysis techniques with an abstract lemma whose proof is based on elementary tools.  
We also refer to a very recent work by Colbois, Girouard and Iversen [57] for other quantitative 
stability results concerning the Dirichlet problem.  
As a final remark, we point out that Lemma 19 in [63] ensures that, given two sufficiently close 
Reifenberg flat domains Ω௔ ,Ω௕ ⊆ ℝே, the Hausdorff distance is controlled by the Lebesgue 
measure of the symmetric difference, more precisely 

݀ு(Ω௔௖ ,Ω௕௖ )  ≤ Ω௔|ܥ  △ Ω௕|
ଵ
ே  ,   ݀ு(Ω௔ ,Ω௕ ) ≤ Ω௔|ܥ △ Ω௕|

ଵ
ே , 

where the constant ܥ only depends on the dimension ܰ and on a regularity parameter of the 
domains. Hence, an immediate consequence of (27) is that the corresponding estimates in terms 
of |Ω௔ △ Ω௕|

భ
ಿ. Before introducing the results, we specify the exact regularity assumptions we 

impose on the sets Ω௔ and Ω௕. 
Definition(5.2.1)[65]: Let ߝ, ଴ݎ  be two real numbers satisfying 0 < ߝ < 1/2 and ݎ଴ > 0. An 
,ߝ) ଴)-Reifenberg-flat domain Ωݎ ⊆ ℝே  is a nonempty open set satisfying the following two 
conditions: 
i) for every ݔ ∈ ߲Ω and for every ݎ ≤ ଴ݎ , there is a hyperplane ܲ(ݔ, ݔ containing (ݎ  which 
satisfies  

1
ݎ
݀ு൫߲Ω ∩ ,ݔ)ܤ ,ݔ)ܲ,(ݎ (ݎ ∩ ,ݔ)ܤ ൯(ݎ ≤  (29)                                       .ߝ

ii) For every ݔ ∈ ߲Ω, one of the connected component of 
,ݔ)ܤ (଴ݎ ∩ ݔ} ∶ dist(ݔ)ܲ,ݔ, ((଴ݎ ≥  {଴ݎߝ2

is contained in Ω and the other one is contained in ℝே \ Ω. 
        A direct consequence of the definition is that if ߝଵ < ,ଵߝ) ଶ, then anyߝ  ଴)-Reifenberg flatݎ
domain is also an (ߝଶ,ݎ଴) −Reifenberg flat domain. Note also that, heuristically speaking, 
condition i) ensures that the boundary is well approximated by hyperplanes at every small 
scale, while condition ii) is a separating requirement equivalent to those in [20, 70, 71, 16]. The 
notion of Reifenberg flatness is strictly weaker than Lipschtiz continuity and appears in many 
areas like free boundary regularity problems and geometric measure theory (see [66, 67, 68, 20, 
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70, 71, 74, 75, 80, 81, 16, 64, 72, 73]). 
       We now state the main result concerning the Dirichlet problem. We denote by ℋேିଵ the 
Hausdorff (ܰ − 1)-dimensional measure. 
Theorem(5.2.2)[65]:(Dirichlet Problem). Let ܤ଴,ܦ ⊆ ℝே  be two given balls satisfying ܤ଴ ⊆  ܦ
and denote by (ߛ௡) ௡∈ℕ the spectrum of the Dirichlet Laplacian in ܤ଴ and by ܴ the radius of ܦ. 
For any ߙ ∈]0, 1[ there is ߝ = ݊ such that the following holds. For any (ߙ)ߝ ∈ ℕ, ଴ݎ > 0 and 
଴ܮ > 0 there are constants ߜ଴ = ,ߙ,݊,௡ߛ)଴ߜ ,ܰ,଴ݎ ܥ ଴,ܴ) andܮ = ,ߙ)ܥ -଴,ܰ) such that whenݎ
ever Ω௔ and Ω௕ are two (ߝ,  ଴)-Reifenberg flat domains in ℝே such thatݎ
଴ܤ  (ܽ)        ⊆  Ω௔ ∩ Ω௕   and  Ω௔ ∪  Ω௕ ⊆  ;ܦ
=∶ ܮ  (ܾ)       max(ℋேିଵ(߲Ω௔),ℋேିଵ(߲Ω௕)) ≤  ;଴ܮ
      (ܿ)  ݀ு(Ω௔௖ ,Ω௕௖ ) ≤  ,଴ߜ
then 

௡௔ߣ|  − ௡௕ߣ | ≤ ௡ߛ ݊ܥ ቆ1 + ௡ߛ
ே
ଶ    ቇ݀ܮு(Ω௔௖ ,Ω௕௖) ఈ,                              (30) 

where {ߣ௡௔} and {ߣ௡௕} denote the sequences of eigenvalues of the Dirichlet Laplacian in Ω௔  and 
Ω௕ , respectively. 
Proof. First, we recall that max{ߣ௡௔ , ௡௕ߣ } ≤ ݊ ௡. Next, we fixߛ ∈ ℕ and we denote by ݑଵ௕, . . . ௡௕ݑ,  
the first ݊  eigenfunctions of the Dirichlet Laplacian in ܪ଴ଵ(Ω௕) . Given ݑ = ∑ ܿ௞ݑ௕௞௡

௞ୀଵ , by 
applying Proposition (5.2.15) we get 

ฮ∇ݑ − ∇ Ωܲೌ
ࣞ ฮ ௅మ(஽)ݑ

ଶ = ะ෍ܿ௞൫∇ݑ௕௞ − ∇ Ωܲೌ
ࣞ ௕௞൯ݑ 

௡

௞ୀଵ

 ะ
௅మ(஽)

ଶ

≤  ݊෍ ܿ௞ଶ ฮ∇ݑ௕௞ − ∇ Ωܲೌ
ࣞ ௕௞ฮ ௅మ(஽)ݑ 

ଶ
௡

௞ୀଵ
  

≤ ݊ ෍ ܿ௞ଶߛܥ௡ ቆ1 + ௡ߛ
ே
ଶ    ቇ

௡

௞ ୀଵ
௕௞ฮ௅మ(஽)ݑఈฮߜܮ

ଶ = ௡(1ߛܥ݊  + ௡ߛ
ே
ଶ ௅మ(஽)‖ݑ‖ఈߜܮ(  

ଶ .      (31) 

To get the last equality we have used the fact that the eigenfunctions associated with different 
eigenvalues are orthogonal with respect to the standard scalar product in ܮଶ. 
      We use (31) and the Sobolev-Poincar´e inequality in the ball ܦ, which has radius ܴ, and we 
conclude that the assumptions of Lemma (5.2.12) are verified provided that: 

(i)  ܣ = ௡ߛ + ௡(1ߛܥ݊ 
ಿ
మ ܤ   ,ఈߜܮ(  =  and ܣ(ܴ,ܰ)ܥ 

(ii)  ܤ < 1.  

Hence, we fix a threshold ߜ଴(ܰ, ௡(1ߛܥ݊ satisfying (ܮ,ܴ,ߙ,଴ݎ,௡ߛ,݊ + ௡ߛ
ಿ
మ ଴ఈߜܮ(  < ଵ

ସ
 , and we get 

that for any ߜ ≤ (ܤ√−1)/଴ one has 1ߜ  ≤  2. By applying Lemma (5.2.12) we then get 

 ௡ߣ
௔  −  ௡ߣ 

௕ ≤  
ܣ

1 − ܤ√
 ≤ ≥ ܣ2  + ௡(1ߛܥ2݊  ௡ߛ

ே
ଶ  .ఈߜܮ( 

The theorem follows by exchanging the roles of Ω௔ and Ω௕ .  
      Before stating the precise result, we have to introduce the following definition. 
Definition(5.2.3)[65]: Let Ω ⊆ ℝே  be an open set, then Ω  satisfies a uniform (ߠ,ߩ) -cone 
condition if for any ݔ ∈ ߲Ω there is a unit vector ߥ ∈ ℝேିଵ, possibly depending on ݔ, such that 

,ݔ)ܤ (ߩ3 ∩ Ω − (ߥ)ఘ,ఏܥ ⊆  Ω and ݔ)ܤ, ℝே\(ߩ3 + (ߥ)ఘ,ఏܥ ⊆ Ω\ℝே, 
where ݔ)ܤ, (ߩ3  denotes the ball centered at ݔ  with radius 3ߩ  and ܥఘ,ఏ(ߥ)  is the cone with 
height ߩ > 0 and opening ߠ   ,[ߨ,0[∋
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(ߥ) ఘ,ఏܥ ∶= {ℎ ∈ ℝே  ∶  ℎ · ߥ >  |ℎ| cosߠ} ∩ 0ሬ⃗)ܤ  .(ߩ,
       We now state the stability result for Lipschitz domains. 
Theorem(5.2.4)[65]:(Dirichlet Problem in Lipschitz domains). Let ܤ଴,ܦ ⊆ ℝே be two given 
balls satisfying ܤ଴ ⊆  ଴ܤ ௡∈ℕ the spectrum of the Dirichlet Laplacian in (௡ߛ) and denote by ܦ
and by ܴ the radius of ܦ. 
     For an ߩ > 0, ߠ ܥ there are constants [ߨ,0[∋ = (ܴ,௡ߛ,ܰ,݊,ߠ,ߩ)ܥ  and ߜ଴ = ,ߩ)଴ߜ ,ߠ ݊,ܰ,
 cone-(ߠ,ߩ) ௡,ܴ) such that the following holds. Let Ω௔ and Ω௕ be two open sets satisfying aߛ
condition and the following properties: 
        (d)  ܤ଴ ⊆ Ω௔ ∩  Ω௕ and Ω௔ ∪  Ω௕ ⊆  ;ܦ
        (e)  ߜ ∶= ݀ு(Ω௔௖ ,Ω௕௖) ≤  .଴ߜ
Then 

௡௔ߣ| − ௡௕ߣ | ≤  .ߜܥ
Proof. Let Ω௔  and Ω௕ be as in the statement of Theorem. We fix ݊ ∈ ℕ and ݇ ≤  ݊ and we 
denote by ݑ௔௞ ∈ ଴ଵ(Ω௔)ܪ  and ݑ௕௞ ∈ ଴ଵ(Ω௕)ܪ the eigenfunctions associated with ߣ௞௔   and ߣ௕௞  , 
respectively. In particular, ݑ௕௞ solves −∆ݑ = ௕ݑ ௕௞ in Ω௕. Letݑ௕௞ߣ ∈  ଴ଵ(Ω௔) be the distributionalܪ
solution of 

൜−∆ݑ =        ௕        in   Ω௔ݑ௕௞ߣ
ݑ = 0             on  ߲Ω௔

. 

We can now apply Theorem 1 in the reference by Savar´e and Schimperna [61]. Then formula 
(3.4) in [61] yields 
                               ฮ∇ݑ௕௞ − ∇ Ωܲೌ

ࣞ ௕௞ฮ ௅మ(஽)ݑ 
ଶ ≤  ฮ∇ݑ௕௞ − ௕ݑ∇

 ฮ ௅మ(஽)
  

≤ ௕௞ฮ ௅మ(஽)ݑ௕௞ߣฮ(ܴ,ܰ,ߩ)ܥ
  ฮߣ௕௞ݑ௕௞ฮ ுషభ(஽)

  
݀ு(Ω௔௖ ,Ω௕௖)
ߠ sin ߩ

, 

where the projection Ωܲೌ
ࣞ  is the same as in (68). Then, by using the definition of eigenfunction, 

we get 

ฮߣ௕௞ݑ௕௞ฮ ுషభ(஽)
  ≤ ௕௞ฮ ௅మ(஽)ݑ௕௞ฮߣට(ܴ,ܰ)ܥ 

 . 

      We recall that ߣ௕௞ ≤ ௡ and that ܵ௕௡ߛ  is the eigenspace of ܪ଴ଵ(Ω௕) generated by the first ݊ 
eigenfunctions and by arguing as (31), we get that, for any ݑ ∈ ܵ௕௡, 

ฮ∇ݑ − ∇ Ωܲೌ
ࣞ  ݑ 

 ฮ ௅మ(஽)
ଶ  ≤ ,ߠ)ܥ  ௡,ܰ,ܴ,݊)݀ு(Ω௔௖ߛ,ߩ ,Ω௕௖)‖ݑ‖ ௅మ(஽)

ଶ  . 
Hence, by proceeding as in the proof of Theorem (5.2.2) we can conclude.  
       We now state the stability result concerning the Neumann problem. 
Theorem(5.2.5)[65]:(Neumann Problem). For any ߙ ∈]0, 1[ there is ߝ =  such that the (ߙ)ߝ
following holds. Let Ω௔ and Ω௕ be two bounded, connected, (ߝ,  ଴)-Reifenberg flat domains inݎ
ℝே such that 
        (a)  ܮ ∶=  max(ℋேିଵ(߲Ω௔),ℋேିଵ(߲Ω௕)) ≤  ;଴ܮ
        (b)  both Ω௔ and Ω௕ are contained in the ball ܦ, which has radius ܴ. 
Let μ௡௔ and μ௡௕ be the corresponding sequences of Neumann Laplacian eigenvalues and denote 
by μ௡∗ ∶= max{μ௡௔,μ௡௕}. For any ݊ ∈ ℕ, there are constants ߜ଴ = ∗଴(μ௡ߜ ,ߙ,  ,଴ݎ
݊,ܰ,ܴ, ܥ ଴) andܮ = ,ܰ)ܥ  such that if (ܴ,ߙ,଴ݎ

max {݀ு(Ω௔௖ ,Ω௕௖) , ݀ு(Ω௔ ,Ω௕ ) }  ≤  ,଴ߜ 
then 

|μ௡௔ − μ௡௕| ≤ ൫1݊ܥ +ඥμ௡∗ ൯
ଶఊ(ே)ାଶ

) max)ܮ ݀ு(Ω௔௖ ,Ω௕௖) , ݀ு(Ω௔ ,Ω௕ ) )ఈ), (32) 



168 
 

where ߛ(ܰ) = max ቄே
ଶ

, ଶ
ேି ଵ

 ቅ. 
Proof. By comparing (100) with Proposition (5.2.17) and by arguing as in (31) we get that the 
hypotheses of Lemma (5.2.12) are satisfied provided that ܣ = ܤ = 1)ܥ݊ + μ)ଶఊ(ே)ାଶ ߜܮఈ, and 
hence by repeating the same argument as in the Dirichlet case, we conclude.  
      We start by quoting a covering lemma that we need in the following. 
Lemma(5.2.6)[65]:Let Ω ⊆ ℝே  be an (ߝ, ଴)-Reifenberg flat domain such that 0ݎ < ℋேିଵ(߲Ω) 
< + ∞. Given ݎ < ,ݔ)ܤ} ଴/2, consider the family of ballsݎ  ௫∈డΩ. We can extract a subfamily{(ݎ
,௜ݔ)ܤ}  :௜∈ூ satisfying the following properties{(ݎ

(i)  {ݔ)ܤ௜, ⋃ ௜∈ூ is a covering of{(ݎ ,ݔ)ܤ ସ
ହ

௫∈డΩ(ݎ    ; 
      (ii)       we have the following bound: ♯ܫ ≤  ;ேିଵݎ/ℋேିଵ(߲Ω)(ܰ)ܥ
      (iii)      the covering is bounded, namely 

ܤ  ቀݔ௜,
ݎ

10
ቁ ∩ ܤ ቀݔ௝,

ݎ
10
ቁ =  ∅     if   ݅ ≠ ݆.                            (33) 

      Note also that, by applying a similar argument, we get the estimate 
for any   ݔ ∈ራݔ)ܤ௜ , (ݎ

௜∈ூ

,     ♯{݅ ∶ ݔ  ∈ ௜ݔ)ܤ , { (ݎ2 ≤  (34)                .(ܰ)ܥ

      In the following we need cut-off functions ߠ଴, . . . ,  ூ satisfying suitable conditions. The♯ߠ
construction of these functions is standard, but for completeness we provide it. 
Lemma(5.2.7)[65]: Under the same hypothesis as in Lemma (5.2.6), there are Lipschitz contin-
uous cut-off function ߠ௜ ∶ ℝே → ܴ, ݅ = 0, . . .  :that satisfy the following conditions ,ܫ♯,

0 ≤ (ݔ)௜ߠ ≤ ݔ ∀,1 ∈  ℝே   , |(ݔ)௜ߠ∇| ≤
(ܰ)ܥ
ݎ

  ܽ. ݁. ݔ ∈ ℝே, ݅ = 0, . . .  ܫ♯,

(ݔ)଴ߠ = 0 if ݔ ∈ራݔ)ܤ௜ , (ݎ
௜∈ூ

     , (ݔ)଴ߠ = 1 if ݔ ∈ ℝே  \ ራݔ) ܤ௜, (ݎ2
௜∈ூ 

       (35) 

(ݔ)௜ߠ = 0 if ݔ ∈ ℝே\ݔ)ܤ௜ , ,   (ݎ2 ݅ = 1, . . . (ݔ)௜ߠ෍, ܫ♯,
♯ூ

௜ ୀ଴

= ݔ ∀,1 ∈ ℝே. 

Proof. Let ℓ,ℎ ∶ [0, +∞) → [0, 1] be the Lipschitz continuous functions defined as  
follows: 

ℓ(ݐ) ∶=

⎩
⎪
⎨

⎪
⎧

0                if  0 ≤ ݐ ≤ 1

–ݐ)2 1)    if  1 ≤ ݐ ≤
3
2

 

1                     if  ݐ ≥
3
2

 

    ℎ(ݐ) ∶=

⎩
⎪
⎨

⎪
⎧ 1                    if  0 ≤ ݐ ≤

3
2

–ݐ)2− 2)       if  
3
2
≤ ݐ ≤ 2 

0                           if  ݐ ≥ 2

   

First, we point out that |ℓ ′|, |ℎ ′| ≤ 2. Next, we set 

߰଴(ݔ) ∶=  ෑ  ℓ ቆ
,ݔ)݀ (௜ݔ

ݎ
ቇ

♯ூ

௜ ୀଵ

        ߰௜(ݔ) ∶= ℎ(݀(ݔ,ݔ௜)/ݎ) , ݅ = 1, . . .  .ܫ♯,

The goal is now showing that 

 1 ≤  ෍  ߰௜(ݔ)
♯ூ 

௜ ୀ଴

≤ ∋ ݔ ∀,(ܰ)ܥ   ℝே .                                           (36) 
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To establish the bound from below, we make the following observations: first, all the functions 
߰௜ , ݅ = 0, . . .  ,take by construction only nonnegative values. Second ܫ♯,

߰଴(ݔ) ≡ ݔ ∀ 1 ∈ ℝே\ራܤ൬݅ݔ,
ݎ3
2
൰

♯ூ

௜ ୀଵ

 , 

and hence the lower bound holds on that set. If ݔ ∈ ⋃ ܤ ቀݔ௜ ,
ଷ௥
ଶ
ቁ♯ூ

௜ ୀଵ , then at least one of the 
߰௜ , ݅ = 1, . . . ܫ♯, , takes the value 1. This establishes bound from below in (36). 
      To establish the bound from above, we point out that, for any ݅ = 1, . . . (ݔ)௜߰ , ܫ♯, = 0 if 
ݔ ∈ ℝே\ݔ)ܤ௜, (ݔ)By recalling (34) and that ߰௜ .(ݎ2 ≤ 1 for every ݔ ∈ ℝே  and ݅ = 0, . . .  ,ܫ♯,
we deduce that 

 ෍߰௜(ݔ)
♯ூ

௜ ୀ଴

 ≤ (ܰ)ܥ  + 1 ≤ ݔ ∀,(ܰ)ܥ ∈ ℝே 

and this concludes the proof of (36). 
      Due to the lower bound in (36), we can introduce the following definitions: 

(ݔ)௜ߠ ∶=
߰௜(ݔ)

∑ ߰௜(ݔ)♯ூ
௜ ୀ଴

  , ݅ = 0, . . . ,ܫ♯, ݔ ∈ ℝே. 

We now show these functions satisfy (35): the only nontrivial point is establishing the bound on 
the gradient. To this end, we first point out that 

|∇߰௜(ݔ)| ≤
2
ݎ

ݔ ∀,   ∈ ℝே, ݅ = 0, . . .  .ܫ♯,
Next, we recall that ߰௜(ݔ) = 0  for every ݔ ∈ ℝே\ݔ)ܤ௜ , (ݎ2  and every  ݅ = 1, . . . ܫ♯, . By 
combining these observations with inequalities (34) and (36) we get 

|(ݔ)௜ߠ∇| = อ
∇߰௜(ݔ)

∑ ߰௜(ݔ)♯ூ
௜ ୀ଴

−
߰௜(ݔ)∑ ∇߰௜(ݔ)♯ூ

௜ ୀ଴

൫∑ ߰௜(ݔ)♯ூ
௜ ୀ଴ ൯

ଶ อ ≤  
2
ݎ

+
(ܰ)ܥ
ݎ

 ≤
(ܰ)ܥ
ݎ

 ,

∋ ݔ ∀ ℝே,   ݅ = 0, . . .  .ܫ♯,
This concludes the proof of the lemma. 
      We now state a result ensuring that the classical Rellich-Kondrachov Theorem applies to 
Reifenberg flat domains. The proof is provided in [63]. For simplicity, here we only give the 
statement in the case when the summability index is ݌ = 2, but the result hold in the general 
case, see [63]. 
Proposition(5.2.8)[65]: Let Ω ⊆  ℝே be a bounded, connected, (ߝ,  ଴)-Reifenberg flat domainݎ
and assume that ߝ ≤ 1/600. Then the following properties hold: 

(i) if ܰ > ,ଶ∗(Ω)ܮ ଵ(Ω) is continuously embedded inܪ,2 2∗ ∶= ଶே
(ேିଶ)

, and it is compact-
ly embedded in ܮ௤(Ω) for any ݍ ∈ [1, 2∗[. Also, the norm of the embedding operator 
only depends on ܰ, ,଴ݎ  .and on the diameter Diam(Ω) ݍ

(ii) if ܰ = ݍ ௤(Ω) for everyܮ ଵ(Ω) is compactly embedded inܪ,2 ∈ [1, +∞[. Also, the 
norm of the embedding operator only depends on ݎ଴,ݍ and Diam(Ω). 

     A consequence of Proposition(5.2.8) is that Neumann eigenfunctions defined in Reifenberg 
flat domains are bounded (see again [63] for the proof). 
Proposition(5.2.9)[65]: Let Ω ⊆  ℝே  be a bounded, connected, (ߝ,  ଴)-Reifenberg flat domainݎ
and let ݑ be a Neumann eigenfunction associated with the eigenvalue μ. If ߝ ≤ 1/600, then ݑ 
is bounded and 
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௅ಮ(Ω)‖ݑ‖   ≤ ൫1ܥ  + ඥμ൯
ఊ(ே)

 ௅మ(Ω)  ,                                (37)‖ݑ‖ 
where ߛ(ܰ) =  max ቄே

ଶ
 , ଶ
ேି ଵ

ቅ   and ܥ = ,ܰ)ܥ ,଴ݎ Diam(Ω)). 
    The following result ensures that Dirichlet eigenfunctions satisfy an inequality similar to 
(37). Note that in this case no regularity requirement is imposed on the domain. 
Proposition(5.2.10)[65]:Let Ω ⊆ ℝே be a bounded domain and let ݒ be an eigenfunction for 
the Dirichlet Laplacian in Ω and let ߣ be the associated eigenvalue. Then ݒ is bounded and 

௅ಮ(Ω)‖ݒ‖   ≤  ൬
݁ߣ

ܰߨ2
൰
ே
ସ

 ௅మ(Ω) .                                                        (38)‖ݒ‖ 
      To conclude this part we quote a result from [74] concerning harmonic functions satisfying 
mixed Neumann-Dirichlet conditions.  
More precisely, let Ω be an (ߝ, ݑ ଴)-Reifenberg-flat domain and letݎ ∈ ݔ ଵ(Ω). Givenܪ ∈ ߲Ω 
and ݎ <  ଴, consider the problemݎ

൞

ݒ∆ = 0                 in   Ω ∩ ,ݔ)ܤ (ݎ
ݒ = ,ݔ)ܤ߲ on            ݑ (ݎ ∩ Ω 
ݒ߲
ߥ߲

= 0                on ߲Ω ,ݔ)ܤ∩ (ݎ
 .                                                    (39) 

The existence of a weak solution of (39) can be obtained by considering the variational 
formulation 

 min ቐ න ଶ|ݓ∇|
 

஻(௫,௥)∩Ω

ݓ:ݔ݀ ∈ ,ݔ)ܤ)ଵܪ (ݎ ∩ Ω), ݓ = ,ݔ)ܤ߲ on ݑ (ݎ ∩ Ωቑ        (40) 

and by then applying the argument in [55]. We  state the result that we need in the following. 
Theorem(5.2.11)[65]: For every ߚ > 0 and ܽ ∈]0,1/2[  there is a positive ߝ = (ܽ,ߚ)ߝ  such 
that the following holds. Let Ω be an (ߝ, ݑ ,଴)-Reifenberg flat domainݎ ∈ ,ଵ(Ω)ܪ ݔ ∈ ߲Ω and 
ݎ ≤  ଴. Then the solution of the minimum problem (40) satisfiesݎ

 න ଶ|ݒ∇|
 

஻(௫,௔௥)∩Ω

ݔ݀  ≤ ܽேିఉ  න ଶ|ݒ∇|
 

஻(௫,௥)∩Ω

 (41)                               .ݔ݀

      We study the abstract eigenvalue problem and we establish Lemma (5.2.12), which roughly 
speaking says that controlling the behavior of suitable projections is sufficient to control the 
difference between eigenvalues. The abstract framework is sufficiently general to apply to both 
the Dirichlet and the Neumann problem: these applications are discussed in this section. 
      The abstract framework is composed of the following objects: 

(i)  ܪ is a real, separable Hilbert space with respect to the scalar product  ℋ(·,·), 
 which induces the norm  ‖·‖ℋ  . 

(ii)  ℎ ∶ ܪ × ܪ → ℝ is a function satisfying: 

ℎ(ݑߙ + ,ݒߚ (ݖ = ,ݑ)ℎߙ (ݖ + ,ݒ)ℎߚ ,ݑ)ℎ,(ݖ (ݒ = ℎ(ݒ, ,(ݑ ℎ(ݑ, (ݑ ≥ 0, (42) 
for all ݑ, ,ݒ ∋ ݖ ,ߙ and ܪ  ∋ ߚ  ℝ. Note that we are not assuming that ℎ is a scalar product, 
namely ℎ(ݑ, (ݑ = 0 does not necessarily imply ݑ = 0. We also assume that there is a constant 
ுܥ > 0 satisfying 

 ℎ(ݑ,ݑ) ≤ ,ݑ)ுℋܥ ,(ݑ ݑ ∀ ∈  (43)                                          .ܪ
         



171 
 

       (iii) ܸ is a closed subspace of the Hilbert space ܪ such that the restriction of the bilinear  
              form ℎ(·,·) to ܸ × ܸ is actually a scalar product on ܸ, namely 

 for every  ݒ ∈  ܸ, ℎ(ݒ, (ݒ = 0  implies  ݒ = 0.                       (44) 
      We denote by ܸ the closure of ܸ with respect to the norm  ‖·‖௛   induced by ℎ on ܸ  and we 
also assume that the inclusion 

݅ ∶ (ܸ,‖·‖ℋ) → ൫ܸ ,‖·‖௛  ൯.                                             (45) 
ݑ →  ݑ

              is compact. 
Now, we introduce an abstract eigenvalue problem associated with the function ℎ defined  
above: we are interested in eigencouples (ݑ, (ߣ ∈ ܸ\{0} × ℝ satisfying 

 ℋ(ݒ,ݑ) =  (46)                                                        ,(ݒ,ݑ)ℎ ߣ
for every ݒ ∈ ܸ. 
      We first check that (46) admits a solution. In view of (42) and (43) we obtain that, for any 
fixed ݂ ∈ ܸ , the map 

ݒ → ℎ(݂,  (ݒ
is a linear, continuous operator defined on the Hilbert space (ܸ, ‖·‖ℋ). As a consequence, 
Riesz’s Theorem ensures that there is a unique element ݑ௙ ∈ ܸ such that 

 ℋ൫ݑ௙,ݒ൯ = ℎ(݂, ,(ݒ ݒ∀ ∈ ܸ.                                       (47) 
Consider the map 

ܶ ∶  ൫ܸ ,‖·‖௛൯  →  (ܸ, ‖·‖ℋ)  
                                                                             ݂ → ௙ݑ   
which is linear and since by setting ݒ = ௙ฮℋݑ௙ in (47) and by using (43) one gets ฮݑ  ≤ ඥܥு 
 ‖݂‖௛. Let ݅ be the same map as in (45), then the composition ܶ ∘ ݅ is compact. 
Also, in view of (47) we infer that it is self-adjoint. By relying on classical results on compact, 
selfadjoint operators we infer that there is a sequence of eigencouples (ߥ௡,ݑ௡) such that 

௡ݑ ≠ ௡ݑ ܶ   ,0 = ௡ߥ  ௡,   lim௡→ାஶݑ௡ߥ = 0,   ℋ(ݑ௡,ݑ௠) = 0   if   ݉ ≠ ݊. 
As usual, each eigenvalue is counted according to its multiplicity. Note that ߥ௡ > 0 for every ݊ 
by (44) and (47), and that (ݑ௡,ߣ௡ =  ௡) is a sequence of eigencouples for the eigenvalueߥ/1
problem (46). 
     As a final remark, we recall that the value of ߣ௡ is provided by the so-called Reyleigh min-
max principle, namely 

௡ߣ            = min ௌ∈࣭೙  max௨∈ௌ{଴}  
ℋ(ݑ, (ݑ
ℎ(ݑ, (ݑ  = max ௨∈ௌ೙{଴}  

ℋ(ݑ, (ݑ
ℎ(ݑ,ݑ)  

=
ℋ(ݑ௡,ݑ௡)
ℎ(ݑ௡ (௡ݑ,

 ,∀݊ ∈ ℕ.                                                                            (48) 

In the previous expression, ࣭௡ denotes the set of subspaces of ܸ having dimension equal to ݊ 
and ܵ௡ denotes the subspace generated by the first ݊ eigenfunctions. 
We now consider two closed subspaces ௔ܸ, ௕ܸ ⊆  satisfying assumptions (44) and (45) above ܪ
and we denote by (ݑ௡௔ , ,௡௕ݑ) ௡௔) andߣ  ௡௕) the sequences solving the corresponding eigenvalueߣ
problem (46) in ܸ = ௔ܸ and ܸ = ௕ܸ respectively. We fix ݊ ∈ ℕ and as before we denote by ܵ௡௕ 
the subspace 

ܵ௡௕ = span〈ݑଵ௕, . . .  ௡௕〉.                                                       (49)ݑ,
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We denote by ܲ:ܪ → ௔ܸ the projection of ܪ onto ܸ ௔, namely 
ݑ ∀ ∈ ݑ)ℋ   ,ܪ − ,ݑܲ (ݒ = ∋ ݒ ∀      , 0  ௔ܸ .                     (50) 

By relying on an argument due to Birkhoff, De Boor, Swartz and Wendroff [58] we get the 
main result of the present part. 
Lemma(5.2.12)[65]:Fix ݊ ∈ ℕ and assume there are constants ܣ and ܤ, possibly depending on 
݊, such that ܣ > 0, 0 < ܤ < 1 and, for every ݑ ∈ ܵ௡௕, 

ݑܲ‖  − ℋଶ‖ݑ ≤ ௛ଶ ‖ݑ‖ܣ .                                                             (51) 
 
and 

ݑܲ‖ − ௛ଶ‖ݑ ≤ ௛ଶ ‖ݑ‖ܤ .                                                              (52) 
Then 

௡௔ߣ  ≤ ௡௕ߣ ܣ  + (1 − ⁄ଶ(ܤ√  .                                                      (53) 
Proof. We proceed in several steps. 
⋄ Step 1. From (52) we get that for every ݑ ∈  ܵ௡௕ one has 

௛‖ݑܲ‖   = ݑ– ݑܲ‖ + ௛‖ݑ ≥ ௛‖ݑ‖ − ௛‖ݑ– ݑܲ‖ ≥ −௛൫1‖ݑ‖  ൯ .               (54)ܤ√
In particular the restriction of the projection ܲ to ܵ௡௕ is injective because ܵ௡௕ ⊆ ௕ܸ and hence 
௛‖ݑ‖ = 0 implies ݑ = 0. Hence, from the min-max principle (48) we get 

௡௔ߣ  ≤  max௨∈ௌ೙್\{଴}    ℋ(ܲݑܲ,ݑ) ℎ(ܲݑܲ,ݑ)⁄ .                            (55) 
⋄ Step 2. To provide an estimate on the right hand side of (55),we introduce the auxiliary 
function ݌௡:ܪ → ܵ௡௕ defined as follows: for every ݖ ∈ ,ܪ ݖ௡݌ ∈ ܵ௡௕ is the unique solution of the 
minimum problem 

 ℎ(ݖ − ,ݖ௡݌ ݖ − (ݖ௡݌ =  inf ௩∈ௌ೙್  {ℎ(ݖ − ,ݒ ݖ −  (56)                     .{(ݒ
Loosely speaking, ݌௡ is the orthogonal projection of ܪ onto ܵ௡௕ with respect to the bilinear form 
ℎ. The argument to show that the minimum problem (56) admits a solution which is also 
unique is standard, but for completeness we provide it. 
      We introduce a minimizing sequence {ݒ௞} ⊆ ܵ௡௕ , then we have that the sequence ℎ(ݖ − ,௞ݒ
ݖ −  ௞) is bounded. From (42) we infer that the bilinear form ℎ satisfies the Cauchy-Schwarzݒ
inequality and hence that 

ඥℎ(ݖ − ௞ݒ , ݖ − ≤ (௞ݒ ඥℎ(ݒ௞,ݒ௞) −ඥℎ(ݖ,  ,(ݖ
which implies that the sequence ℎ(ݒ௞ ௞) is also bounded. Since ܵ௡௕ݒ,  ⊆  ௕ܸ, then by (44) we 
have that the bilinear form ℎ is actually a scalar product on ܵ௡௕. Since ܵ௡௕ has finite dimension, 
from the bounded sequence {ݒ௞}  we can extract a converging subsequence {ݒ௞௝} , namely 
ℎ(ݒ௞௝ − ௞௝ݒ,଴ݒ − (଴ݒ → 0 as ݆ → +∞, for some ݒ଴ ∈ ܵ௡௕. Hence, 

ℎ(ݖ − ௞௝ݒ , ݖ − ௞௝ݒ  ) →  ℎ(ݖ − ,ݒ ݖ −  (଴ݒ
as ݆ →  +∞. This implies that ݒ଴ is a solution of (56) and we set ݒ଴ = -To establish uni .ݖ௡݌ 
queness, we first observe that, given ݖ ∈  solution of the minimization problem (56) ݖ௡݌ any ,ܪ
satisfies the Euler-Lagrange equation 

 ℎ(ݖ − (ݒ,ݖ௡݌ = 0, ݒ ∀ ∈ ܵ௡௕ .                                           (57) 
Assume by contradiction that (56) admits two distinct solutions ݌௡ଵݖ and ݌௡ଶݖ,  then from (57) 
we deduce that ℎ(݌௡ଵݖ − ,ݖ௡ଶ݌ (ݒ = 0 for every ݒ ∈ ܵ௡௕. By taking ݒ = ݖ௡ଵ݌ −  and in view  ݖ௡ଶ݌
of (44) we obtain ݌௡ଵݖ =  .ݖ௡ଶ݌
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⋄ Step 3. Next we show that 

௡௔ߣ  ≤ ௡௕ߣ + max௨∈ௌ೙್\{଴}
ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘ (ݑܲ

ℎ(ܲݑܲ,ݑ)
  ,                 (58) 

where ݌௡ ∘ ܲ denotes the composition of ݌௡ and ܲ. To obtain(58) we observe that for every 
ݑ ∈ ܵ௡௕ we have 
                    ℋ(ܲݑܲ,ݑ) 

= ℋ(ܲݑ − ௡݌ ∘ ݑܲ + ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘ ݑܲ + ௡݌ ∘  (ݑܲ
                                   = ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘  (ݑܲ

+ ℋ(݌௡ ∘ ௡݌,ݑܲ ∘  (59)                                                                                      ,(ݑܲ
where we have used that 

ℋ(ܲݑ − ௡݌ ∘ ,ݑܲ  ௡݌ ∘ (ݑܲ  = 0.                                                    (60) 
Note also that 

 ℎ(ܲݑܲ,ݑ) ≥ ℎ(݌௡ ∘ ,ݑܲ ௡݌ ∘  (61)                                                  ,(ݑܲ
for every ݑ ∈ ܵ௡௕. We assume for the moment that (60) and (61) are true as their proof will be 
provided in Step 5 and Step 6. 
   Combining (59) and (61) we obtain that for every ݑ ∈ ܵ௡௕\{0} such that ݌௡ ∘ ݑܲ ≠ 0 we have 

            
ℋ(ܲݑܲ,ݑ)
ℎ(ܲݑܲ,ݑ)

=   
ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘ (ݑܲ

ℎ(ܲݑܲ,ݑ)
 +   

ℋ(݌௡ ∘ ௡݌,ݑܲ ∘ (ݑܲ
ℎ(ܲݑܲ,ݑ)

 

≤  
ℋ(ܲݑ − ௡݌ ∘ ݑ ܲ,ݑܲ − ௡݌ ∘ (ݑܲ

 ℎ(ܲݑ, (ݑܲ
 +  

ℋ(݌௡ ∘ ௡݌,ݑܲ ∘ (ݑܲ
ℎ(݌௡ ∘ ௡݌,ݑܲ ∘ (ݑܲ

≤   
ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘ (ݑܲ

ℎ(ܲݑܲ,ݑ)
 + ௡௕ߣ  .                                                            (62) 

In the previous chain of inequalities we have used that ݌௡ ∘ ܲ attains values in ܵ௡௕ and that 

௡௕ߣ =  max௪∈ௌ೙್\{଴}  
ℋ(ݓ,ݓ)
 ℎ(ݓ,ݓ)

 . 

If  ݌௡ ∘ ݑܲ = 0, we have 

 
ℋ(ܲݑܲ,ݑ)
ℎ(ܲݑܲ,ݑ)

≤  
ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘ (ݑܲ

ℎ(ܲݑܲ,ݑ)
௡௕ߣ +  ,                  (63) 

since ߣ௡௕ > 0. By combining (62) and (63) with (55) we eventually get (58). 
⋄ Step 4. We now conclude the argument by establishing (53). First, observe that, for every 
∋ ݑ  ܵ௡௕ , one has 
       ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘  (ݑܲ

            ≤   ℋ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘ (ݑܲ + ℋ(݌௡ ∘ ݑܲ − ௡݌,ݑ ∘ ݑ ܲ −  ,(ݑ
                           =  ℋ൫ܲ݌– ݑ௡ ∘ ݑܲ + ௡݌ ∘ ݑܲ − ݑܲ,ݑ − ௡݌ ∘ ݑܲ + ௡݌ ∘ ݑܲ −  ,൯ݑ
                           =  ℋ(ܲݑ − ݑܲ,ݑ −                                           .(ݑ
In the previous formula we have used the equality 

ݑܲ)ܪ  − ௡݌ ∘ ௡݌,ݑܲ ∘ ݑܲ − (ݑ = 0,                                     (64) 
which is proved in Step 5. Combining (63), (64) along with (51) and (54) we finally obtain 

௡௔ߣ           ≤ ௡௕ߣ  +  max௨∈ௌ೙್\{଴}   
ℋ(ܲݑ − ݑܲ,ݑ − (ݑ

ℎ(ܲݑܲ,ݑ)  

 ≤ ௡௕ߣ  +  
(ݑ,ݑ)ℎܣ

൫1−√ܤ൯ℎ(ݑ,ݑ)
 ,                                                         (65) 

which concludes the proof of Lemma (5.2.12) provided that (60), (61) and (64) are true. 
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⋄ Step 5. We establish the proof of (60) and (64). Observe that, if ݖ ∈ ௕ܸ, then the following 
implication holds true: 

ℎ(ݖ, (ݒ = 0, ݒ ∀ ∈  ܵ௡௕ ⟹  ℋ(ݒ,ݖ) = 0, ݒ ∀ ∈ ܵ௡௕ .                     (66) 
Indeed, ݒ is a linear combination of the eigenfunctions ݑଵ௕ , . . .  ௡௕ and henceݑ,

ℋ(ݒ,ݖ) =  ෍ݒ௜ℋ(ݖ, ( ௜௕ݑ
௡

௜ ୀଵ

 = ෍ߣ௜௕ (௜௕ݑ,ݖ)௜ℎݒ 
 ௡ 

௜ ୀଵ

 =  0. 

To establish (60), we observe that ݌௡ ∘ ݑܲ ∈ ܵ௡௕. Also, by the property (57) of the projection ݌௡ 
we have ℎ(ܲݑ − ௡݌ ∘ (ݒ,ݑܲ = 0 for every ݒ ∈ ܵ௡௕. Hence by applying (66) we obtain (60). To 
prove (64) we can repeat the same argument. Indeed, if ݑ ∈ ܵ௡௕, then [ݑ − ௡݌ ∘ [ݑܲ  ∈  ܵ௡௕ and 
(64) follows from (66). 
⋄ Step 6. Finally we establish (61). Note that (57) implies 

ℎ(݌௡ ∘ ,ݑܲ ݑܲ − ௡݌ ∘ (ݑܲ = 0 
for every ݑ ∈ ܵ௡௕. Hence 

ℎ(݌௡ ∘ ௡݌,ݑܲ ∘ (ݑܲ  ≤  ℎ(݌௡ ∘ ,ݑܲ ௡݌ ∘ (ݑܲ + ℎ(ܲݑ − ௡݌ ∘ ݑܲ,ݑܲ − ௡݌ ∘  (ݑܲ
                                                      = ℎ(ܲݑܲ,ݑ) 
for every ݑ ∈ ܵ௡௕.  
      Given an open and bounded set Ω, (ݑ, (ߣ ∈ (଴ଵ(Ω)\{0}ܪ)  ×  ℝ is an eigencouple for the 
Dirichlet Laplacian in Ω if 

 න∇(ݔ)ݑ · (ݔ)ݒ∇
 

Ω

ݔ݀ = (ݔ)ݒ (ݔ)ݑන ߣ
 

Ω

,ݔ݀  ݒ ∀ ∈  ଴ଵ(Ω).     (67)ܪ

      We apply the abstract framework to study how the eigenvalues ߣ satisfying (67) depend on 
Ω. Let Ω௔ and Ω௕ two Reifenberg flat domains and denote by ܦ a ball containing both Ω௔ and 
Ω௕. We set 

ܪ ∶= (ݒ,ݑ)ℋ,(ܦ)଴ଵܪ ∶=  න∇(ݔ)ݑ · (ݔ)ݒ∇
 

஽

,ݔ݀ ℎ(ݒ,ݑ) ∶=  න(ݔ)ݒ(ݔ)ݑ
 

஽

 .ݔ݀

Note that (43) is satisfied because of Poincar´e- Sobolev inequality. We also set 
௔ܸ ∶= , ଴ଵ (Ω௔)ܪ ௕ܸ ∶=  ଴ଵ(Ω௕)ܪ 

and observe that they can be viewed as two subspaces of ܪ଴ଵ(ܦ) by extending the functions of 
଴ଵ(Ω௕) by 0 outside Ω௔ܪ ଴ଵ(Ω௔) andܪ  and Ω௕  respectively. The compactness of the inclusion 
(45) is guaranteed by Rellich-Kondrachov Theorem. Also, the projection ܲ = Ωܲೌ

ࣞ  defined by 
(50) satisfies in this case 

 ฮ∇൫ݑ − Ωܲೌ
ࣞ ൯ฮݑ 

௅మ(஽)
=  min௩∈ுబభ(Ωೌ) ൛‖∇(ݑ −  ௅మ(஽)ൟ .       (68)‖(ݒ

By using the above notation, the Dirichlet problem (67) reduces to (46) and hence it is solved 
by a sequence of eigencouples (ߣ௡,ݑ௡) with ߣ௡ > 0 for every ݊ and lim ௡→ାஶ ௡ߣ = +∞.  
    We employ the same notation as in above and we denote by {ߣ௡௔} and {ߣ௡௕} the eigenvalues of 
the Dirichlet problem in Ω௔ and Ω௕, respectively. By applying Lemma (5.2. 12), we infer that 
to control the difference |ߣ௡௔ − ௡௕ߣ | it is sufficient to provide an estimate on suitable projections. 
This is the content of the following part. 
Boundary estimate on the gradient of Dirichlet eigenfunctions. We now establish a decay result 
for the gradient of Dirichlet eigenfunctions. The statement is already in [ 80], but the proof 
contains a gap. This is why we hereafter give a different and complete proof, which is based on 
techniques from Alt, Caffarelli and Friedman [106]. We begin with a monotonicity Lemma. 
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Lemma(5.2.13)[65]: Let Ω ⊆  ℝே  be a bounded domain and let ݔ଴ ∈ ߲Ω . Given a radius 
ݎ > 0 , we denote by Ω௥

ା ∶= ,଴ݔ)ܤ (ݎ ∩ Ω, by ܵ௥ା ∶= ,଴ݔ)ܤ߲ (ݎ ∩ Ω  and by (ݎ)ߪ  the first 
Dirichlet eigenvalue of the Laplace operator on the spherical domain ܵ௥ା. If there are constants 
଴ݎ > 0 and ߪ∗ ∈]0,ܰ − 1[ such that 

inf଴ழ௥ழ௥బ ((ݎ)ߪଶݎ)  ≥  ,∗ߪ 
then the following holds. If (ݑ,  is an eigencouple for the Dirichlet Laplacian in Ω, then the (ߣ
function 

ݎ → ቌ
1
ఉݎ

 න
ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ

 

Ωೝ
శ

ቍݔ݀    +  ଶିఉ .                                      (69)ݎ଴ܥ 

is non decreasing on ]0, ߚ ଴[. In the previous expression, the exponentݎ ∈]0, 2[ is defined by 
the formula 

ߚ ∶= ඥ(ܰ − 2)ଶ  + ∗ߪ4  − (ܰ − 2) 
and ܥ଴ is a suitable constant satisfying 

଴ܥ = (ܰ)ܥߚ)  (2− ⁄(ߚ ஶଶ‖ݑ‖ ߣ(  .                                            (70) 
We also have the bound 

න
ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ

 

Ωೝబ మ⁄
శ

≥ ݔ݀ ,ܰ)ܥ ߣ(ߚ,଴ݎ ൬1 + ߣ
ே
ଶ   ൰‖ݑ‖ଶଶ ,              (71) 

where 

,ܰ)ܥ (ߚ,଴ݎ = ଴ିఉݎ2ఉ(ܰ)ܥ  ൤ݎ଴ଶିே  
1
ߚ

 + ଴ݎ 
ଷఉ +

ߚ
2 − ߚ

  2ିఉݎ଴ଶ൨  . 

Proof. We assume without loss of generality that ݔ଴  =  0 and to simplify notation we denote 
by ܤ௥  the ball (ݎ,0)ܤ.  Also, in the following we identify ݑ ∈ ݑ ଴ଵ(Ω) with the functionܪ ∈
(ݔ)ݑ ଵ(ℝே) obtained by settingܪ = 0 if ݔ ∈ Ω௖.  
      The proof is based on the by now standard monotonicity Lemma of Alt, Caffarelli and 
Friedman [106] and is divided in the following steps. 
⋄ Step 1. We prove the following inequality: for a.e. ݎ > 0, 

                2 න|∇ݑ|ଶ|ݔ|ଶିே
 

Ωೝ
శ

  ݔ݀ 

≤ ଶିேݎ න ݑ2
ݑ߲
ߥ߲

 ݀ܵ + (ܰ − ଵିேݎ(2
 

ௌೝ
శ

 නݑଶ
 

ௌೝ
శ

 ݀ܵ + ߣ2 න ଶିே|ݔ|ଶݑ
 

Ωೝ
శ

 (72)        ݔ݀ 

We recall that the eigenfunction ݑ ∈  .ஶ(Ω) (see the book by Gilbarg and Trudinger [27 ])ܥ
Although (72) can be formally obtained through an integration by parts, the rigorous proof is 
slightly technical. Given ߝ > 0, we set 

ఌ|ݔ| ∶= ට ݔଵଶ + ଶଶݔ + · · · ேଶݔ +  +  ,ߝ

so that |ݔ|ఌ is a ܥஶ function. A direct computation shows that 
(ఌଶିே|ݔ|)∆ = (2 −ܰ)ܰ 

ߝ
ఌேାଶ|ݔ|

 ≤ 0, 

in other words |ݔ|ఌଶିே  is superharmonic. 
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      Let ݑ௡ ∈ ଵ(ℝே)ܪ ௖ஶ(Ω) be a sequence of functions converging inܥ  to ݑ . By using the 
equality 

(௡ଶݑ)∆  = ௡|ଶݑ∇|2  +  ௡                                                     (73)ݑ∆௡ݑ2
we deduce that 

2 න|∇ݑ௡|ଶ|ݔ|ఌଶିே
 

Ωೝ
శ

= න∆(ݑ௡ଶ)|ݔ|ఌଶିே
 

Ωೝ
శ

− 2 න(ݑ௡∆ݑ௡)|ݔ|ఌଶିே
 

Ωೝ
శ

.                  (74) 

Since ∆(|ݔ|ఌଶିே) ≤  0, the Gauss-Green Formula yields 

න∆(ݑ௡ଶ)|ݔ|ఌଶିே
 

Ωೝశ

ݔ݀ = නݑ௡ଶ∆(|ݔ|ఌଶିே)
 

Ωೝశ

ݔ݀ + (ݎ)௡,ఌܫ ≤  (75)              ,(ݎ)௡,ఌܫ

where 

(ݎ) ௡,ఌܫ = ଶݎ) + (ߝ
 ଶିே
ଶ න ௡ݑ2

௡ݑ߲ 
ߥ߲

 

డΩೝ
శ

 ݀ܵ + (ܰ − 2)
ݎ

ଶݎ)  + (ߝ
ே
ଶ

 න ௡ଶݑ
 

డΩೝ
శ

݀ܵ. 

In other words, (74) reads 

2 න|∇ݑ௡|ଶ|ݔ|ఌଶିே
 

Ωೝశ

ݔ݀ ≤ (ݎ)௡,ఌܫ − 2 න(ݑ௡∆ݑ௡)|ݔ|ఌଶିே
 

Ωೝశ

 (76)                .ݔ݀ 

We now want to pass to the limit, first as ݊ → +∞, and then as ߝ → 0ା. To tackle some techni-
cal problems, we first integrate over ݎ ∈ ,ݎ] ݎ +  thus obtaining ,ߜ and divide by [ߜ

2
 ߜ
න ቌ න|∇ݑ௡|ଶ|ݔ|ఌଶିே݀ݔ

 

Ωഐశ

ቍ
௥ାఋ

௥

ߩ݀  ≤ ௡ܣ  −  ܴ௡,                           (77) 

where 

௡ܣ =  
1
ߜ  
න ߩ݀ (ߩ)௡,ఌܫ
௥ାఋ

௥

  

and 

ܴ௡ = 2
1
ߜ  
න ቌ න(ݑ௡∆ݑ௡)|ݔ|ఌଶିே

 

Ωഐ
శ

ቍݔ݀
௥ାఋ

௥

 .ߩ݀ 

First, we investigate the limit of ܣ௡ as ݊ ⟶ +∞: by applying the coarea formula, we rewrite 
 ௡ asܣ

௡ܣ   =    
1
 ߜ

 

⎝

⎜
⎜
⎛

2 න ଶ|ݔ|) + (ߝ
ଶିே
ଶ ௡ݑ∇ ௡ݑ  

 

Ωೝశഃ
శ  \Ωೝ 

శ

·
ݔ

|ݔ| ݔ݀  +

(ܰ − 2) න
|ݔ|

ଶ|ݔ| ) + (ߝ
ே
ଶ  

 

Ωೝశഃ
శ  \Ωೝ 

శ

ݔ௡ଶ݀ݑ 
⎠

⎟
⎟
⎞

 . 

Since ݑ௡ converges to ݑ in ܪଵ(ℝே) when ݊ → +∞, then by using again the coarea formula we 
get that 
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௡ܣ ⟶  
1
 ߜ
න ߩ݀(ߩ)ఌܫ
௥ାఋ

௥

            ݊ → +∞, 

where 

(ߩ) ఌܫ = ଶߩ) + (ߝ
ଶିே
ଶ න  ݑ2

 ݑ߲ 

ߥ߲

 

డΩഐశ

 ݀ܵ + (ܰ − 2)
ݎ

ଶߩ)  + (ߝ
ே
ଶ

 න ௡ଶݑ
 

డΩഐశ

݀ܵ. 

Next, we investigate the limit of ܴ௡ as ݊ → +∞.By using Fubini’s Theorem, we can rewrite ܴ ௡ 
as 

ܴ௡ =  න(ݑ௡∆ݑ௡)݂(ݔ)
 

Ω

 ,ݔ݀

where 

(ݔ)݂ = ఌଶିே|ݔ|   
2
 ߜ
න ૚Ωഐశ(ݔ)݀ߩ
௥ାఋ

௥

. 

Since 

1
 ߜ
න ૚Ωഐశ(ݔ)݀ߩ
௥ାఋ

௥

 =

⎩
⎨

⎧
1                                      if ݔ ∈ Ω௥ା
ݎ + ߜ − |ݔ|

ߜ
         if ݔ ∈ Ω௥ାఋା  \Ω௥ 

ା

0                                  if ݔ ∉ Ω௥ାఋା

  , 

then ݂ is Lipschitz continuous and hence by recalling ݑ௡ ∈  ௖ஶ(Ω) we getܥ

อන(ݑ௡∆ݑ௡ − ݔ݂݀ (ݑ∆ݑ
 

Ω

อ   ≤  อන( ∆ݑ௡ − ݔ௡݂݀ݑ( ݑ∆
 

Ω

อ  +  อන(ݑ௡ − ݔ݂݀ݑ∆(ݑ
 

Ω

อ   

=  อන(∇ݑ௡ − ݂∇௡ݑ)(ݑ∇ +  ݔ݀( ௡݂ݑ∇
 

Ω

อ  

+  อන ௡ݑ∇))ݑ∇ − ݂(ݑ∇ + ௡ݑ) − ݔ݀ (݂∇(ݑ
 

Ω

อ  

≤ ௡ݑ∇‖  −  ௅మ(Ω)‖ݑ∇
 ൫‖ݑ௡‖௅మ(Ω)  ‖∇݂‖௅ಮ(Ω)   + ௡‖௅మ(Ω) ‖݂‖௅ಮ(Ω)൯ݑ∇‖    

+ ௡ݑ∇‖௅మ(Ω)   ൫‖ ݑ∇‖  − ௅మ(Ω) ‖݂‖௅ಮ(Ω)‖  ݑ∇  + ௡ݑ‖  −  ௅మ(Ω)‖∇݂‖௅ಮ(Ω)൯‖  ݑ
and hence the expression at the first line converges to 0 as ݊ → +∞. 
      By combining the previous observations and by recalling that ݑ is an eigenfunction we 
infer that by passing to the limit ݊ → ∞ in (77) we get 

2
 ߜ
න ቌ න|∇ݑ |ଶ|ݔ|ఌଶିே݀ݔ

 

Ωഐ
శ

ቍ
௥ାఋ

௥

≥ ݎ݀   
1
 ߜ
න ߩ݀(ߩ)ఌܫ
௥ାఋ

௥

−
2
 ߜ
න ቌ නݑߣଶ|ݔ|ఌଶିே݀ݔ

 

Ωഐ
శ

ቍ
௥ାఋ

௥

 .ߩ݀  

Finally, by passing to the limit ߜ →  0ା and then ߝ →  0ା we obtain (72). 
⋄ Step 2. We provide an estimate on the right hand side of (72). First, we observe that 

නݑଶ|ݔ| 
ଶିே݀ݔ

 

Ωೝశ

≤ ஶଶ‖ݑ‖ න  |ݔ|
ଶିே݀ݔ

 

Ωೝశ

≤ ஶଶ‖ݑ‖(ܰ)ܥ  ଶ.                  (78)ݎ
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and we recall that ܥ(ܰ)  denotes a constant only depending on ܰ , whose exact value can 
change from line to line. 
      Next, we point out that the definition of ߪ∗ implies that 

නݑଶ
 

ௌೝశ

 ݀ܵ ≤  
1
∗ߪ

ଶݎ  න|∇ఛݑ|ଶ݀ܵ
 

ௌೝశ

ݎ    ଴ [,                                    (79)ݎ,0[ ∋

where ∇ఛ denotes the tangential gradient on the sphere. Also, let ߙ > 0 be a parameter that will 
be fixed later, then by combining Cauchy-Schwarz inequality, (79) and the inequality ܾܽ ≤
ఈ 
ଶ 
ܽଶ + ଵ

ଶఈ
 ܾଶ, we get 

                    ቮ න  ݑ
ݑ߲
ߥ߲

 ݀ܵ
 

ௌೝశ

ቮ  ≤  ቌනݑଶ
 

ௌೝశ

݀ܵቍ

ଵ
ଶ

   ቌන ฬ
ݑ߲
ߥ߲
ฬ
ଶ 

ௌೝశ

݀ܵቍ

ଵ
ଶ

  

               ≤  
ݎ
∗ߪ√

 ቌන|∇ఛݑ|ଶ
 

ௌೝశ

݀ܵቍ

ଵ
ଶ

 ቌන ฬ
ݑ߲
ߥ߲
ฬ
ଶ 

ௌೝశ

݀ܵቍ

ଵ
ଶ

                    

≤
ݎ
∗ߪ√

 ቌ
ߙ
2
න|∇ఛݑ|ଶ

 

ௌೝ
శ

 ݀ܵ +
1

ߙ2
න ฬ

ݑ߲
ߥ߲
ฬ
ଶ 

ௌೝ
శ

݀ܵቍ .                                   (80) 

Hence, 

ଶିேݎ        න ݑ2
ݑ߲
ߥ߲

 ݀ܵ
 

ௌೝశ

+ (ܰ − ଵିேݎ(2  නݑଶ
 

ௌೝశ

 ݀ܵ 

                              ≤ ଶିேݎ 
ݎ2
∗ߪ√

 ቎
ߙ
2
න|∇ఛݑ|ଶ

 

ௌೝ
శ

 ݀ܵ  +
1

ߙ2
න ฬ

ݑ߲
ߥ߲
ฬ
ଶ 

ௌೝ
శ

݀ܵ቏     

                              +(ܰ − ଵିேݎ(2  
1
∗ߪ
ଶݎ  න|∇ఛݑ|ଶ

 

ௌೝ
శ

݀ܵ   

≤ ଷିேݎ  ቎൬ 
ߙ
∗ߪ√

+  
ܰ − 2
 ∗ߪ

൰ න|∇ఛݑ|ଶ
 

ௌೝశ

 ݀ܵ  + 
1

∗ߪ√ߙ
 න ฬ

ݑ߲
ߥ߲
ฬ
ଶ 

ௌೝశ

 ݀ܵ቏ .                (81) 

      Next, we choose ߙ >  0 in such a way that 
ߙ
∗ߪ√

+  
ܰ − 2
 ∗ߪ

 =  
1

∗ߪ√ߙ
  , 

namely 

ߙ =
1

∗ߪ√2
 ቂඥ(ܰ − 2)ଶ + ∗ߪ4 − (ܰ − 2)ቃ . 

Hence, by combining (72), (79) and (81) we finally get 

න|∇ݑ|ଶ|ݔ| 
ଶିே݀ݔ

 

Ωೝశ

≤ (∗ߪ,ܰ)ߛଷିேݎ න|∇ ݑ|ଶ
 

ௌೝశ

݀ܵ + ஶଶ‖ݑ‖ߣ(ܰ)ܥ  ଶ,            (82)ݎ
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where 

( ∗ߪ,ܰ)ߛ = ቂඥ(ܰ − 2)ଶ + ∗ߪ4 − (ܰ − 2) ቃ
ିଵ

. 
⋄ Step 3. We establish the monotonicity property. We set 

(ݎ)݂ = න|∇ݑ|ଶ|ݔ| 
ଶିே݀ݔ

 

Ωೝశ

 

and we observe that 

(ݎ)′݂  = ଶିேݎ   න|∇ݑ|ଶ
 

ௌೝ
శ

    ܽ. ݁. ,0[ ∋ ݎ  , ]଴ݎ

hence (82) implies that 
(ݎ)݂  ≤ ݂ݎߛ  ᇱ(ݎ) +  ଶ,                                                           (83)ݎܭ 

with ߛ = ,ܰ)ߛ ܭ and (∗ߪ = ஶଶ‖ݑ‖ߣ(ܰ)ܥ . This implies that 

൬
(ݎ)݂
ఉݎ

 +
ߚܭ

(2− (ߚ 
ଶିఉ൰ݎ 

 ᇱ

≥  0, 

with ߚ = ߛ/1 = ඥ(ܰ − 2)ଶ + ∗ߪ4 − (ܰ − 2)  ∈ ]0, 2[. This establishes the monotonicity  
result. 
⋄ Step 4. We establish (71). 
     First, we observe that by combining the coarea formula with Chebychev inequality we get 
that for any ܽ > 0 

ℋଵቌ{ݐ ∈ ,଴/2ݎ] [଴ݎ ∶  න|∇ ݑ|ଶ
 

ௌ೟
శ

 ݀ܵ ≥  ܽ}ቍ ≤  
1
ܽ

 න ଶ|ݑ ∇|
 

Ωೝబ
శ  \Ωೝబ  /మ

శ

 . ݔ݀ 

By applying this inequality with ܽ =  ସ
௥బ

 ∫  ଶ|ݑ ∇|
Ωೝబ
శ  \Ωೝబ  /మ

శ   we get that there is at least ݔ݀ 

a radius ݎଵ ∈ ,଴ݎ]  ଴/2] such thatݎ

න|∇ ݑ|ଶ
 

ௌೝభ
శ  

 ݀ܵ ≤   
4
଴ݎ

 න|∇ ݑ|ଶ
 

Ωೝబ
శ  

ݔ݀  ≤  
4
଴ݎ

 ௅మ(Ω)‖ݑ∇‖ 
ଶ  . 

By combining (82) with the fact that ݎ଴/2 ≤ ଵݎ ≤  ଴ we inferݎ

න|∇ݑ|ଶ|ݔ| 
ଶିே݀ݔ

 

Ωೝభ
శ

≤ ௅మ(Ω)‖ݑ∇‖ߛ଴ଶିேݎ(ܰ)ܥ
ଶ + ஶଶ‖ݑ‖ߣ(ܰ)ܥ ଴ଶݎ  

and by monotonicity we have that 

      ቀ
଴ݎ
2
ቁ
ିఉ

න
ଶ|ݑ∇|

– ݔ| ଴|ேିଶݔ

 

Ωೝబ మ⁄
శ

≥ ݔ݀  ଵݎ   
ିఉ න

ଶ|ݑ∇|

– ݔ| ଴|ேିଶݔ

 

Ωೝభ
శ

ݔ݀   + ଵݎ଴ܥ
ଶିఉ 

                                           ≤  2ఉݎ(ܰ)ܥ଴
ଶିேିఉݑ∇‖ߛ‖௅మ(Ω)

ଶ + 2ఉݑ‖ߣ(ܰ)ܥ‖ஶଶ ଴ݎ
ଶఉ + ଴ݎ଴ܥ

ଶିఉ. 

Finally, by using that ܥ଴ =  ఉ஼(ே)
(ଶିఉ)

ஶଶ‖ݑ‖ ߣ  , that ‖ݑ‖ஶ  ≤ ߣ(ܰ)ܥ 
ಿ
ర  ‖ݑ‖௅మ(Ω)

  (see Proposition 

(5.2.10)), that ‖∇ݑ‖௅మ(Ω)
ଶ

 

 ≤ ௅మ(Ω)‖ݑ‖ ߣ
ଶ

 

 
, and that max{ߣ, {ଵାே/ଶߣ ≤ 1)ߣ + ߣ

ಿ
మ  ) we get (71).  
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      We now provide an estimate on the energy of a Dirichlet eigenfunction near the boundary. 
Proposition(5.2.14)[65]: For every ߟ ∈ ]0, 1[ there is a positive constant ߝ ∶=  such that (ߟ)ߝ
the following holds. Given ݎ଴ ∈  ]0, 1[, let Ω ⊆  ℝே  be an (ߝ, (଴ݎ −Reifenberg flat domain, 
଴ݔ ∈ ߲Ω and let ݑ be a Dirichlet eigenfunction in Ω associated with the eigenvalue ߣ. Then 

න ݔ݀ ଶ|ݑ∇|
 

஻(௫బ,௥)∩Ω

 ≤ 1)ߣܥ  + ߣ
ே
ଶ ݎ ∀ ଶଶ‖ݑ‖ேିఎݎ(    ଴/2[ ,               (84)ݎ,0[∋

for a suitable positive constant ܥ = ,ܰ)ܥ ,଴ݎ  .(ߟ
Proof. We fix 0[  ∋ ߟ, 1[  and we recall that the first eigenvalue of the spherical Dirichlet 
Laplacian on a half sphere is equal to ܰ − 1. For ݐ ∈ ] − 1,1[ , let ܵ௧  be the spherical cap 
ܵ௧ ∶= ,0)ܤ߲  1) ∩ ேݔ}  > = ݐ so that ,{ݐ  0 corresponds to a half sphere. Let ߣଵ(ܵ௧) be the first 
Dirichlet eigenvalue in ܵ௧. In particular, ݐ → ߟ Therefore, since .ݐ ଵ(ܵ௧) is monotone inߣ < 1 
and ߣଵ( ௧ܵ) → 0 as ݐ → −1, there is (ߟ) ∗ݐ < 0 such that 

(∗ݐ)ଵߣ ≤ ܰ − 1 −
 ߟ
4

 (2ܰ−  .(ߟ
By relying on Lemma 5 in [63](see also [20]), we infer that, if ߝ < ,଴ݔ)ܤ߲ then ,2/(ߟ)∗ݐ  (ݎ
∩ Ω is contained in a spherical cap homothetic to ܵ௧∗ for every ݎ ≤  ଴. Since the eigenvaluesݎ
scale of by factor ݎଶ when the domain expands of a factor 1/ݎ, by the monotonicity property of 
the eigenvalues with respect to domains inclusion, we have 

 inf ௥ழ௥బ ݎଶߣଵ(߲ݔ)ܤ଴, (ݎ ∩ Ω) ≥ )ଵߣ  ௧ܵ∗ ) ≥ ܰ − 1 –
ߟ
4

  (2ܰ −  (85)          .(ߟ
As a consequence, we can apply Lemma (5.2.13) which ensures that, if ݑ is a Dirichlet eigen 
function in Ω and ݔ଴ ∈ ߲Ω, then (69) is a non decreasing function of ݎ, provided that 

ߚ  = ඥ(ܰ − 2)ଶ  +  4(ܰ − 1) − 2ܰ)ߟ  − (ߟ − (ܰ − 2) = 2 −  (86)                     ,ߟ
and ܥ଴ is the same as in (70). In particular, by monotonicity we know that for every ݎ ≤ ଴ݎ  < 1, 

                   
1

ேିଶାఉݎ
 න|∇ݑ|ଶ

 

Ω ೝ 
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≥ ݔ݀    ቌ
1
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 න
ଶ|ݑ∇|

– ݔ| ଴|ேିଶݔ 

 

Ωೝశ

ቍݔ݀   +    ଶିఉ ݎ଴ܥ

≤   ቌ
1

଴ݎ
ఉ   න

ଶ|ݑ∇|

– ݔ| ଴|ேିଶݔ 

 

Ωೝబ
శ

ቍݔ݀   + ଴ݎ଴ܥ
ଶିఉ

 

 
 ,                            (87) 

and we conclude that for every ݎ ≤  ,଴/2ݎ 

න|∇ݑ|ଶ
 

Ω ೝ 
శ

≥ ݔ݀  ,ேିଶାఉݎܭ 

with 

= ܭ  ൮
1

଴ݎ) 2⁄ )ఉ  න
ଶ|ݑ∇|

– ݔ| ଴|ேିଶݔ 

 

Ωೝబ మ⁄
శ

 .ଶିఉ(଴/2ݎ)଴ܥ +൲ݔ݀  

Let us now provide an estimate on ܭ. By using equations (86) and (70) and Proposition (5.2. 
10) we get 

଴ܥ  ≤  
(ܰ)ܥ2

 ߟ 
ஶଶ‖ݑ‖ ߣ   ≤ ௅మ(Ω)‖ݑ‖ ଵା ேଶߣଵିߟ(ܰ)ܥ 

ଶ  .                        (88) 
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To estimate the first term in ܭ we use (71) and the fact that ߚ = 2 −  to obtain ߟ
1

଴ݎ) 2⁄ )ఉ න
ଶ|ݑ∇|

଴|ேିଶݔ – ݔ|

 

Ωೝబ మ⁄
శ

ݔ݀  ≤ ,ܰ)ܥ ߣ(ߟ,଴ݎ ൬1 +  ߣ
ே
ଶ  ൰‖ݑ‖ଶଶ.          (89) 

Finally, by combining (88) and (89) we obtain (84) and this concludes the proof.  
        Note that: By relying on an argument similar, but easier, to the one used in the proofs of 
Lemma (5.2.13) and Proposition (5.2.14), we get the following estimate. Let ߟ,  ଴ beݔ ଴,Ω andݎ
as in the statement of Proposition (5.2.14), and assume that ݑ is an harmonic function in Ω 
satisfying homogeneous Dirichlet conditions on the boundary ߲Ω ∩ ,଴ݔ)ܤ  ∋ ߟ For every .(ݎ
]0, 1[ we have 

න ݔ݀ ଶ|ݑ∇|
 

஻(௫బ,௥)∩Ω

 ≤ ݎ ∀      ,ଶଶ‖ݑ‖ேିఎݎܥ  ∈  ]0,
଴ݎ
2

[ ,                     (90) 

for a suitable positive constant ܥ = ,ܰ)ܥ  ,଴ݎ  .(ߟ
Note that the decay estimate (90) is sharp, in the sense that we cannot take ߟ =  0, as the 
following example shows. Let ܰ = 2 and let Ω be an angular sector with opening angle ߱, 

Ω ∶= ,ݎ)}  (ߠ ∶ −߱/2 < ߠ < ߱/2}. 
By recalling that the Laplacian in polar coordinates is 

∆ =  
߲ଶ

ݎ߲
  +  

1
ݎ

 
߲
ݎ߲

  +  
1
ଶݎ

 
 ߲ଶ

ߠ߲
 , 

we get that the function (ߠ,ݎ)ݑ ∶= ௗݎ  గ ߠ)ݏ݋ܿ 
ఠ

) satisfies the homogeneous Dirichlet condition 
on ߲Ω and is harmonic provided that ݀ =  Also, by computing the gradient in the circular .߱/ߨ
Frenet basis (߬,  and by using formulas (ߥ

 
ݑ߲
߲߬ 

=
1
ݎ

 
ݑ߲
 ߠ߲

= ݎ−
గ
ఠିଵ   

ߨ
߱

 sin ቀߠ 
ߨ
߱

 ቁ and  
ݑ߲
ߥ߲

=
ݑ߲
 ݎ߲

  =
ߨ
߱

ݎ 
గ
ఠିଵ cos(ߠ 

ߨ
߱

 ), 
we get 

න ଶ|ݑ∇|
 

஻(଴,௥)∩Ω

= න ฬ
ݑ߲
߲߬ 

ฬ
ଶ
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஻(଴,௥)∩Ω

ฬ
ݑ߲
ߥ߲
ฬ
ଶ
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ߨ
߱
ቁ
ଶ
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గ
ఠିଵቁ ߠ݀ݏ݀ ݏ 

ఠ
ଶ

–ఠଶ

௥ 

଴

 =  
ߨ
2

ଶݎ 
గ
ఠ , 

which leads to the following remarks: 
(i) if Ω is the half-space (i.e., if ߱ = ଶݎ then the Dirichlet integral decays  like ,(ߨ =

 .ேݎ
(ii) If the opening angle ߱ <  ఈ for someݎ  then we have a good decay of the order ,ߨ 

ߙ > 2. 
(iii) The most interesting behavior occurs when the opening angle ߱ > ߨ , then the 

Dirichlet integral decays like ݎఈ with ߙ < 2. Note, moreover, that if we want that ߙ 
gets closer and closer to 2, we have to choose ߱ closer and closer to ߨ and this 
amounts to require that Ω is an (ߝ,  ଴)−Reifenberg flat domain for a smaller andݎ
smaller value of ߝ. 

Difference between the projection of eigenfunctions. By relying on the analyis in [80] we get 
the following result. Note that we use the convention of identifying any given ݑ  ଴ଵ(Ω) withܪ ∋
the function defined on the whole ℝே by setting ݑ = 0 outside Ω. 
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Proposition(5.2.15)[65]: For any ߙ ∈ ]0, 1[  there is threshold (ߙ)ߝ ∈ ]0, 1/2[  such that the 
following holds. Let Ω௔ and Ω௕ be two (ߝ,  ଴)-Reifenberg flat domains in ℝே, both containedݎ
in the disk ܦ, which has radius ܴ. If 

݀ு(Ω௔௖ ,Ω௕௖) ≤ ≥ ߜ    
଴ݎ

8√ܰ
  ,                                             (91) 

then there is a constant ܥ = ,ܰ)ܥ ݑ such that, if (ߙ,଴ݎ ∈  ଴ଵ(Ω௕) is a Dirichlet eigenfunctionܪ
associated with the eigenvalue ߣ, then 

ฮ∇ݑ − ∇ Ωܲೌ
ࣞ ฮ ௅మ(஽)(ݑ)

ଶ  ≤ ߣܥ  ൬1 + ߣ
ே
ଶ   ൰ߜఈݑ‖ ܮ‖௅మ(Ω್)

ଶ   ,         (92) 

where ܮ ∶=  ℋேିଵ(߲Ω௕) and the projection Ωܲೌ
ࣞ  is defined by (68) . 

 
Proof. We proceed in two steps. 
⋄ Step 1. We first fix ݑ ∈ ෤ݑ ଴ଵ(Ω௕) and constructܪ ∈  in the sense ,ݑ ଴ଵ(Ω௔) which is “close” toܪ
specified in the following. 
      To begin with, we point out that (91) implies that {ݔ)ܤ,  .௫∈డΩ್ is a covering of Ω௕\Ω௔ {(ߜ2
Indeed, by contradiction assume there is ݕ ∈ Ω௕\Ω௔ such that 

ߜ2 < ,ݕ)݀ ߲Ω௕) = (Ω௕௖,ݕ)݀ ≤  sup ௬∈Ωೌ೎ Ω௕௖,ݕ)݀  ). 
This would contradict (91) and hence the implication holds true. 
      By applying Lemma (5.2.6) with ݎ = ≥ ܫ♯ such that ,ܫ  we can find a finite set 2/ߜ5 
,௜ݔ)ܤ} ேିଵ andߜ/ܮ(ܰ)ܥ  .௜∈ூ is a covering of Ω௕\Ω௔{(2/ߜ5
      Next, we use the function ߠ଴ given by Lemma (5.2.7) (with ݎ = (ݔ)෤ݑ and we set (2/ߜ5  ∶=  
 We observe that, since .(ݔ)ݑ(ݔ)଴ߠ

Ω௔௖  ⊆  Ω௕௖  ∪  (Ω௕\ Ω௔)  ⊆  Ω௕௖  ∪  ራݔ) ܤ௜, (2/ߜ5
௜ ∈ூ

   , 

then ݑ෤ ∈ ෤ݑ∇ ,଴ଵ(Ω௔). Alsoܪ  = ଴ߠ∇ݑ   +  and hence ݑ∇଴ߠ 
෤ݑ∇‖  − ௅మ(஽)‖ݑ∇  ≤  ‖(1 − ௅మ(஽)‖ݑ∇(଴ߠ  +  ଴‖௅మ(஽)                (93)ߠ∇ݑ‖

Next, by recalling that ߠ଴ ≡ 1 outside the union of the balls {ݔ)ܤ௜ ,  ௜ ∈ூ, we get{(ߜ5

‖(1− ௅మ(஽)‖ݑ∇(଴ߠ
ଶ

 
 =  න (1− ଶ|ݑ∇|଴)ଶߠ

 

⋃ ஻(௫೔,ହఋ)೔∈಺

≥ ݔ݀   ෍ න ଶ|ݑ∇|
 

஻(௫೔,ହఋ)௜ ∈ூ 

 (94)        .ݔ݀ 

Also, by recalling that |∇ߠ଴|(ݔ)  ≤  we obtain ,ߜ/(ܰ)ܥ 

଴‖௅మ(஽)ߠ∇ݑ‖ 
ଶ   =  න ଶݑ଴|ଶߠ∇|

 

⋃ ஻(௫೔,ହఋ)೔

≥ ݔ݀  
(ܰ)ܥ
ଶߜ

 ෍ න ଶݑ
 

஻(௫೔,ହఋ)௜  

 ݔ݀ 

≤  
(ܰ)ܥ
ଶߜ

෍(5ߜ)ଶ
௜

   න ଶ|ݑ∇|
 

஻(௫೔,ହ √ேఋ)

 (95)                                       .ݔ݀ 

To get the last inequality we have used [80, Proposition 12] and the fact that one can take  ܾ(ܰ)  
= √ܰ in there. 
⋄ Step 2. We now restrict to the case when ݑ is an eigenfunction for the Dirichlet Laplacian, 
and ߣ is the associated eigenvalue. By using Proposition (5.2.14) and Lemma (5.2.6) we get 

෍ න ଶ|ݑ∇|
 

஻൫௫೔,ସ √ேఋ൯௜

≥ ݔ݀   ෍ߣܥ൬1 + ߣ
ே
ଶ   ൰ߜேିఎ ଶଶ‖ݑ‖ 

௜ 

≤ ߣܥ  ൬1 + ߣ 
ே
ଶ  ൰ߜܮଵିఎ‖ݑ‖ଶଶ,   (96) 
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with ܥ = ,ܰ)ܥ  ,଴ݎ ≥ ߜ and provided that (ߟ  .ܰ√଴/8ݎ 
     By choosing ߟ ∶= (1−  inserting (96) into (94) and (95) and recalling (93) we finally get ,(ߙ

ฮ∇ݑ − ∇ Ωܲೌ
ࣞ ฮ ௅మ(஽)(ݑ)

ଶ  ≤  ෤‖ ௅మ(஽)ݑ∇ – ݑ∇‖ 

                                                                         ≤ ,ܰ)ܥ  1)ߣ(ߙ,଴ݎ ߣ +
ே
ଶ   .ଶଶ‖ݑ‖ఈߜܮ( 

Given an open and bounded set Ω, (μ,ݑ) ∈ ଵ(Ω) \{0}ܪ × ℝ is an eigencouple for the Neumann 
Laplacian in Ω if 

 න (ݔ)ݑ∇  · (ݔ)ݒ∇
 

Ω

= ݔ݀  μ න  ݔ݀(ݔ)ݒ (ݔ)ݑ 
 

Ω

ݒ∀ ∈  ଵ(Ω).            (97)ܪ 

We apply the abstract framework to study how the eigenvalues μ satisfying (97) depend on the 
domain Ω. We set 

= ܪ ଶ(ℝே,ℝ)ܮ   ଶ(ℝே,ℝே)ܮ × 
and we equip it with the scalar product 

 ℋ((ݑଵ,ݒଵ), ((ଶݒ,ଶݑ) = නݑଵ(ݔ)ݑଶ(ݔ)݀ݔ
 

ℝಿ

 + නݒଵ(ݔ) · (ݔ)ଶݒ 
 

ℝಿ

 (98)        .ݔ݀  

Also, we set 

 ℎ((ݑଵ,ݒଵ), ((ଶݒ,ଶݑ) = නݑଵ(ݔ)ݑଶ(ݔ)݀ݔ
 

ℝಿ

.                                    (99) 

Note that ℎ is a symmetric, positive bilinear form (i.e., it satisfies properties of abstract frame-
work), although it is not a scalar product on ܪ. Inequality (43) is trivially satisfied. 
       As before, Ω௔ and Ω௕ are two Reifenberg-flat domains contained in ℝே and we denote the 
Sobolev spaces by ܪଵ(Ω௔) and ܪଵ(Ω௕). The spaces ௔ܸ and ௕ܸ are defined by considering the 
map 

݆Ω ∶ ଵ(Ω)ܪ   → ଶ(ℝே)ܮ   ଶ(ℝே,ℝே)ܮ × 
ݑ →  ,(૚Ωݑ∇,૚Ωݑ) 

where ૚Ω denotes the characteristic function of Ω. Note that the ranges ௔ܸ = ݆Ωೌ(ܪଵ ( Ω௔)) and 
௕ܸ = ݆Ω್(ܪଵ(Ω௕)) are closed and that (44) is satisfied. Note also that the inclusion (45) is 

compact because, in virtue of Proposition (5.2.8), we can apply Rellich’s Theorem. 
     The Neumann problem (97) reduces to (46) provided that ߣ =  μ + 1 and hence it is solved 
by a sequence of eigencouples (μ௡,ݑ௡) with lim௡→ାஶ μ௡ = +∞ . By relying on Lemma (5.2. 
12), we deduce that to control the difference |μ௡௔ − μ௡௕  | it is sufficient to provide an estimate on 
the projection operator defined by (50), which can be identified by a map Ωܲೌ

ࣨ ∶ ܪ →  ଵ(Ω௔)ܪ
satisfying the following property: ∀ ݑ ∈  ,ଵ(Ω௕)ܪ
      ฮ ݆Ω್(ݑ)– Ωܲೌ

ࣨ   ݆Ω್(ݑ)ฮ
ℋ

ଶ   

                       =  ฮ૚Ω್ݑ – ૚Ωೌ  Ωܲೌ
ࣨ ฮݑ 

௅మ൫ℝಿ൯

ଶ  +  ฮ૚Ω್∇ݑ – ૚Ωೌ∇ൣ Ωܲೌ
ே ൧ฮݑ 

௅మ൫ℝಿ൯

ଶ
 

= min௩∈ுభ(Ωೌ) ൜ฮ૚Ω್ݑ − ૚Ωೌݒฮ௅మ൫ℝಿ൯
ଶ + ฮ૚Ω್∇ݑ − ૚Ωೌ∇ݒฮ௅మ൫ℝಿ൯

ଶ  ൠ .               (100) 
      To provide an estimate on (100) we first establish a preliminary result concerning the decay 
of the gradient of a Neumann eigenfunction. 
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Proposition(5.2.16)[65]: For every ߟ > 0 there is a positive constant ߝ  such that, for (ߟ)ߝ =∶
every connected, (ߝ, (଴ݎ -Reifenberg flat domain Ω ⊆ ℝே , the following holds. Let ݑ  be a 
Neumann eigenfunction in Ω  associated with the eigenvalue  μ , let ݔ ∈  ߲Ω  and let ݎ ≤
min{ݎ଴, 1}. Then there is a constant ܥ = ,ܰ)ܥ ,଴ݎ ,ߟ Diam(Ω)) such that 

න ଶ|ݑ∇|
 

஻(௫,௥)∩Ω

ݔ݀   ≤ + μ(1ܥ ඥ μ)ଶఊ(ே) ‖ݑ‖௅మ(ஐ)
ଶ ൬

ݎ
min{ݎ଴, 1}

൰
ேିఎ

              (101) 

where ߛ(ܰ) = max ቄ ே
ଶ

 , ଶ
ேିଵ

ቅ o as in the statement of Proposition (5.2.9). 
Proof. For a given ߟ > 0 we choose ߚ in such a way that 0 < ߚ <  and that ߟ

ܽ ∶=  8 ଵ
ఉିఎ   <  

1
2

 .                                                                     (102) 
Also, we choose ߝ smaller or equal to the constant given by Theorem (5.2.11) with this choice 
of ܽ and ߚ. Note that ߝ only depends on ߟ. 
      We now consider a Neumann eigencouple (ݑ, μ), while the point ݔ ∈ ߲Ω is fixed. We may 
assume without losing generality that ݎ଴ ≤ 1, up to redefine ݎ଴ by min{1,  .{଴ݎ
      We first use the induction principle in order to show that, for a suitable constant ܥସ =
,ܰ)ସܥ ,଴ݎ Diam(Ω)) that will be chosen later, and for any ݇ ∈ ℕ, 

න ଶ|ݑ∇|
 

஻(௫,௔ೖ௥బ)∩Ω

≥ ݔ݀  + ସμ(1ܥ  ඥ μ)ଶఊ(ே) ܽ௞(ேିఎ)  ‖ݑ‖௅మ(ஐ)
ଶ  .            (103) 

If ݇ = 0 the inequality (103) is satisfied provided that ܥସ ≥ 1 because ∫  ଶ|ݑ∇|
Ω ݔ݀ = μ ‖ݑ‖ଶଶ. 

Next, we consider the inductive step and we assume that (103) holds for a given ݇ ≥ 0. We 
term ݒ the solution of Problem (80) in Ω௞ ∶= ,ݔ)ܤ ܽ௞ݎ଴) ∩ Ω. Then Theorem (5.2.11) gives 

න ଶ|ݒ∇|
 

Ωೖశభ

≥ ݔ݀   ܽேିఉ  න|∇ݒ|ଶ
 

Ωೖ

 (104)                                             .ݔ݀ 

Note that since ܽ < 1, then Ω௞ାଵ  ⊆  Ω௞. We now compare ∇ݑ and ∇ݒ in ݔ)ܤ, ܽ௞ାଵݎ଴) by using 
the inequality ‖ܽ +  ܾ‖ଶ  ≤  2‖ܽ‖ଶ  +  2‖ ܾ‖ଶ : 

                     න ଶ|ݑ∇|
 

Ωೖశభ

≥ ݔ݀   2 න ଶ|ݑ∇|
 

Ωೖశభ

+ ݔ݀  2 න ݑ)∇| − ଶ|(ݒ
 

Ωೖశభ

  ݔ݀

         ≤  2ܽேିఉ  න|∇ݒ|ଶ
 

Ωೖ

+ ݔ݀   2 න|∇(ݑ − ଶ|(ݒ
 

Ωೖ

  ݔ݀ 

≤  2ܽேିఉ  න|∇ݑ|ଶ
 

Ωೖ

+ ݔ݀   2 න|∇(ݑ − ଶ|(ݒ
 

Ωೖ

 (105)                           .ݔ݀ 

Since ݒ is harmonic and ݑ is a competitor, then ∇(ݑ −  ଶ(Ω௞) andܮ in ݒ∇ is orthogonal to (ݒ
hence 

න|∇(ݑ − ଶ|(ݒ
 

Ωೖ

= ݔ݀  න|∇ݑ|ଶ
 

Ωೖ

− ݔ݀  න|∇ݒ|ଶ
 

Ωೖ

 (106)                              .ݔ݀

Moreover, ݑ minimizes the functional ݓ → ∫  ଶ|ݓ∇|
Ωೖ

ݔ݀ − 2μ ∫  ݑݓ
Ωೖ

 with its own Dirichlet ݔ݀
conditions on ߲ܤ(ݔ,ܽ௞ݎ଴) ∩ Ω, and hence by taking ݒ as a competitor we obtain 
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න|∇ݑ|ଶ
 

Ωೖ

− ݔ݀  න|∇ݒ|ଶ
 

Ωೖ

≥ ݔ݀  2μ න[ݑଶ – [ݑݒ 
 

Ωೖ

≥  ݔ݀    4μ߱ேܽே௞ ‖ݑ ‖ஶଶ .        (107) 

To get the above inequality we have used that ݎ଴ ≤ 1 and the estimate 
௅ಮ(Ω)‖ ݒ‖

   ≤ ௅ಮ(Ω)‖ ݑ‖ 
  ,                                                        (108) 

which can be established arguing by contradiction. Indeed, set ܯ ∶= ௅ಮ(Ω)‖ݑ‖
 . If (108) is viol-

ated, the truncated function ݓ ∶= min{ܯ, max{ܯ−,ݒ}} would be a competitor of ݒ satisfying 
௅మ(Ω)‖ݓ∇‖

ଶ < ௅మ(Ω)‖ݒ∇‖
ଶ , which contradicts the definition of ݒ. 

     By plugging (106) and (107) in (105) and using the inductive hypothesis (103), we get the 
estimate 

න ଶ|ݑ∇|
 

Ωೖశభ

 ≤  2ܽேିఉܥସμ൫1 +  ඥμ൯
ଶఊ(ே)

 ܽ௞(ேିఎ)‖ݑ ‖ଶଶ  +  8μ߱ேܽே௞‖ݑ ‖௅ಮ(Ω)
ଶ

 

  , 

where ߱ே is the measure of the unit ball in ℝே. By using (37), the above expression reduces to 

න ଶ|ݑ∇|
 

Ωೖశభ

≤ μ(1 + ඥμ)ଶఊ(ே)ܽ(௞ାଵ)(ேିఎ)‖ݑ‖ଶଶൣ2ܥସܽఎିఉ +  ହܽఎ(௞ାଵ)ିே൧ ,      (109)ܥ

for some constant ܥହ = ,ܰ)ହܥ ,଴ݎ Diam(Ω)). We claim that by choosing in (103) 
ସܥ  =  ହܽఎିே                                                                (110)ܥ8 

then the right hand side of (109) is less than ܥସμ(1 + √μ)ଶఊ(ே)ܽ(௞ାଵ)(ேିఎ), which proves (103). 
Indeed, the choice of ܽ implies ܽఎିఉ = 1 8⁄  and hence (110) implies 

ସܽఎିఉܥ2 + ହܽఎ(௞ାଵ)ିேܥ = ସܥ   
2
8 

+ (ହܽఎିேܥ8)
ܽ௞ఎ

8
≤ ସܥ   

2
8 

+ (ହܽఎିேܥ8)
1

 8 
=  

3
8

 ସ,   (111)ܥ 
which concludes the proof of (103). 
      To conclude the proof of the Proposition we observe that, given ݎ ≤  ଴, we can select anݎ 
integer ݇ ≥ 0 such that ݎ < ܽ௞ݎ଴ ≤  ଵ, which yieldsିܽݎ

                                 න ଶ|ݑ∇|
 

஻(௫,௥)∩Ω

≥ ݔ݀    න ଶ|ݑ∇|
 

஻൫௫,௔ೖ௥బ൯∩Ω

 ݔ݀ 

                                ≤ ସμ൫1ܥ  + ඥμ൯
ଶఊ(ே)

 ܽ௞(ேିఎ)‖ݑ ‖௅మ(Ω)
ଶ

 

 
 

                                     ≤ ସμ(1ܥ  + ඥμ)ଶఊ(ே)‖ݑ ‖௅మ(Ω)
ଶ   ൬

ݎ
଴ݎܽ

൰
 ேିఎ

 

and this implies (101) provided that ܥ ∶=   .ସ/ܽேିఎܥ 
    By combining a covering argument from [81] with the previous proposition we establish the 
projection estimate provided by the following result. 
Proposition(5.2.17)[65]: For any ߙ ∈ ]0,1[ there is a constant ߝ = (ߙ)ߝ ≤ 1/600 such that the 
following holds. Let Ω௔  and Ω௕  be two connected (ߜ, (଴ݎ -Reifenberg flat domains of ℝே 
satisfying 

max{݀ு(Ω௔,Ω௕); ݀ு(Ω௔௖ ,Ω௕௖)} ≤  (112)                                         ,ߜ 
where 0 < ߜ ≤ min{ݎ଴/5, 1}. Then there is a constant ܥ = ,ܰ)ܥ ,଴ݎ Diam(Ω௕),ߙ) such that, if 
ݑ ∈ ଵ(Ω௕) is a Neumann eigenvector associated with the eigenvalue μܪ , then there is ݑ෤ ∈
 ଵ(Ω௔) satisfyingܪ
ฮ૚Ωೌݑ෤ − ૚Ω್ݑฮ௅మ൫ℝಿ൯

ଶ + ฮ૚Ωೌ∇ݑ෤ − ૚Ω್∇ݑฮ௅మ൫ℝಿ൯
ଶ  ≤ ௅మ(Ω್)‖ݑ‖ ఈߜܮ ଶఊ(ே)ାଵ(ඥμ + 1)ܥ 

ଶ  , 
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where ܮ ∶=  ℋேିଵ(߲Ω௕) and ߛ(ܰ) = max ቄே
ଶ 

, ଶ
ேିଵ

 ቅ as in the statement of Proposition (5.2.9). 
Proof. The goal of the first part of the proof is to construct a function ݑ෤  which only differs from 
 in a narrow strip close to the boundary: this is done by relying on a covering argument ݑ
similar to those in [81]. The proof is then concluded by relying on Theorem (5.2.9) and 
Proposition (5.2.16). The details are organized in the following steps. 
⋄ Step 1. We construct a partition of unity. First, we observe that (112) implies that {ݔ)ܤ,
௫∈డΩ್ is a covering of Ω௔{(ߜ2 △ Ω௕ and by relying on Lemma (5.2. 6) we can find a finite set ܫ, 
such that (i) ♯ܫ ≤ ,௜ݔ)ܤ} ேିଵ; (ii)ߜ/ܮ(ܰ)ܥ ௜∈ூ is a covering of Ω௔{(2/ߜ5 △Ω௕ . To simplify 
the exposition, in the following we use the notations 

௜ܤ ∶= ܤ ൬ݔ௜,
ߜ5
2
൰ ௜ܤ2     ∶= ௜ݔ)ܤ , ௜ܤ6    (ߜ5 ∶= ௜ݔ)ܤ , ܹ   (ߜ15 =  ራ ௜ܤ2 

♯ூ

௜ୀଵ

 . 

Note that property (33) in the statement of Lemma (5.2.6) implies that, for every ݔ ∈ ℝே,♯{݅ ∶
ݔ ∈ {௜ܤ2 ≤  ,ݒ and hence, in particular, that, for every integrable function (ܰ)ܥ

  ෍ න |(ݔ)ݒ|
 

ଶ஻೔

ݔ݀ 
♯ூ

௜ ୀଵ
  ≤ (ܰ)ܥ  න |(ݔ)ݒ|

 

⋃ ଶ஻೔೔ 

 (113)                       .ݔ݀ 

Next, we apply Lemma (5.2.7) with ݎ  ∶=  and we obtain Lipschtz continuous functions 2/ߜ5 
,ଵߠ,଴ߠ . . . ூ♯ߠ, ∶  ℝே → [0,1] satisfying  

⎩
⎪⎪
⎨

⎪⎪
⎧ |(ݔ)௜ߠ∇| ≤  

(ܰ)ܥ 
ߜ

 ܽ. ݁. ݔ ∈ ℝே, ݅ = 0, . . .  ܫ♯,

(ݔ)଴ߠ = 0 if ݔ ∈  ራ ௜ܤ  
௜∈ூ

(ݔ)଴ߠ   , = 1 if ݔ ∈ ℝே \ ራ ௜ܤ2  
௜∈ூ

(ݔ)௜ߠ = 0  if ݔ ∈ ℝே\2ܤ௜ ,   ݅ = 1, . . . , ෍   ,ܫ♯ (ݔ)௜ߠ = 1
♯ூ

௜ ୀ଴
 for every ݔ ∈ ℝே .

      (114) 

⋄ Step 2. We define the function ݑ෤ . For ݅ ∈ ܫ   we term ௜ܻ  the point in Ω௕  ∩ ௜ܤ2   such that 
݀( ௜ܻ,ݔ௜) = ௜ݔ –and the vector ௜ܻ ߜ3  is orthogonal to ܲ(ݔ௜ ,  Note that such a point exists .(ߜ5
provided 5ߜ ≤ ߝ and ݎ ≤ 3/10 due to Lemma (5) in [63] (see also [20]). Then we define the 
domain ܦ௜ ∶= )ܤ ௜ܻ, (ߜ ⊆  Ω௕ ∩  ௜ and we setܤ2

݉௜ ∶=
1

|௜ܦ|
  න(ݔ)ݑ

 

஽೔ 

݅                 ݔ݀ = 1, . . .  .ܫ♯,

Note that ቀ૚Ω್(ݔ)ݑቁ ߠ଴(ݔ)  is well defined for ݔ ∈  ℝே  and belongs to ܪଵ(ℝே)  because 
(ݔ)଴ߠ = 0 in a neighborhood of ߲Ω௕. This allows us to define 

(ݔ)෤ݑ ∶=  ቀ૚Ω್(ݔ)ݑቁߠ଴(ݔ)  + ෍݉௜ߠ௜(ݔ)
♯ூ  

௜ ୀଵ

∋ ݔ∀    ℝே, 

so that ݑ෤  ∈  .ଵ(Ω௔)ܪ 
⋄ Step 3. We provide an estimate on ฮݑ෤૚Ωೌ − ૚Ω್ฮ௅మ൫ℝಿ൯ݑ

ଶ
. First, we point out that Ω௔ △ Ω஻ 

⊆ ܹ and that ݑ෤૚Ω್ = ෤ݑ ૚Ωೌin ℝே\ܹ, so by recalling the definition ofݑ  we have 
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ฮݑ෤૚Ωೌ − ૚Ω್ฮ௅మ൫ℝಿ൯ݑ
ଶ  = න ෤ݑ| − (ݔ)ଶ|ݑ

 

Ωೌ∩Ω್∩ௐ

ݔ݀  + න (ݔ)ଶݑ
 

Ω್\Ωೌ

ݔ݀ + න (ݔ)෤ଶݑ
 

Ωೌ\Ω್

  ݔ݀

                     ≤  2 න (ݔ)ଶݑ
 

ௐ∩Ω್

+ ݔ݀   2 නቌ෍݉௜ߠ௜(ݔ)
♯ூ

௜ୀଵ

ቍ

ଶ 

ௐ

 ݔ݀   

By using the convexity of the square function, Jensen inequality and estimate (113) we have 

       නቌ෍݉௜ߠ௜(ݔ)
♯ூ

௜ୀଵ

ቍ

ଶ 

ௐ

≥ ݔ݀  න෍݉௜
ଶߠ௜(ݔ)

♯ூ

௜ୀଵ

 

ௐ

≥ ݔ݀  න෍
1

|௜ܦ|
  ቌනݑଶ(ݕ)

 

஽೔ 

ቍݕ݀
♯ூ

௜ୀଵ

(ݔ)௜ߠ
 

ௐ

  ݔ݀

 ≤  ෍
1

߱ேߜே
  ቌනݑଶ(ݕ)

 

஽೔ 

ቍݕ݀ නߠ௜(ݔ)݀ݔ
 

ଶ஻೔

♯ூ

௜ୀଵ

     ≤  ෍
1

߱ேߜே
  ቌ න (ݕ)ଶݑ

 

ଶ஻೔ ∩Ω್  

ቍݕ݀
♯ூ

௜ୀଵ

߱ே5ேߜே 

                                                                ≤ (ܰ)ܥ  න (ݕ)ଶݑ
 

⋃ ଶ஻೔ ∩Ω್೔   

 .ݕ݀

In the previous expression, ߱ே denotes as usual the Lebesgue measure of the unit ball in ℝே. 
By combining the previous two estimates we conclude that 

ฮݑ෤૚Ωೌ − ૚Ω್ฮ௅మ൫ℝಿ൯ݑ
ଶ  ≤ (ܰ)ܥ  නݑଶ(ݕ)

 

ௐ  

 (115)                                ݕ݀

⋄ Step 4. We introduce some notations we need in Step 5. Given ݅଴ ∈ ௜బܬ we denote by ܫ  be the 
finite set of indices ݆ ∈ ௝ܤsuch that 2 ܫ ∩ ௜బܤ2 ≠ ∅. Note that ♯ܬ௜బ ≤  by property (33) in (ܰ)ܥ 
the statement of Lemma (5.2.6) and, also, that any ball 2ܤ௝ is contained in 6ܤ௜బ if ݆ ∈ ௜బܬ  . 
      Let ଴ܲ be the hyperplane in 6ܤ௜బ provided by the definition of Reifenberg flatness and let ߥ଴ 
denote its unit normal vector, oriented in such a way that ݔ௜బ + ଴ߥߜ15 ∈  Ω௕. Also, let ௝ܻ and ܦ௝ 
be as in Step 2, and let ௝ܲ denote the hyperplane ܲ(ݔ௝, ∋ ݆ For any .(ߜ5 ௜బܬ   we have 

݀ு൫ ௝ܲ ∩ ௝ܤ2 , ଴ܲ ∩ ௝൯ܤ2  ≤  ݀ு൫ ௝ܲ ∩ ௝,߲Ω௕ܤ2 ∩ ௝൯ܤ2 + ݀ு൫߲Ω௕ ∩ ,௝ܤ2 ଴ܲ ∩  ௝൯ܤ2
                                                         ≤ ߝߜ5  +  .ߝߜ15
Hence, 

݀( ௝ܻ, ଴ܲ) ≥ ݀( ௝ܻ, ௝ܲ) – ݀ு( ௝ܲ ∩ ௝ܤ2 , ଴ܲ ∩ (௝ܤ2 ≥ ߜ3 − ≤ ߜߝ20  ,ߜ2 
provided that ߝ ≤  1/20. This shows that 

ራ ௝ܦ  ⊆ ෡௜బܦ 
 ௝ ∈௃೔బ

∶= ,௜బݔ)ܤ  (ߜ15  ∩ ; ݔ}  ݔ)  − (௜బݔ · ଴ߥ ≥ {ߜ   ⊆  Ω௕, 

where the last inclusion holds by Lemma 5 in [63] (see also [20]) since 30ߜߝ ≤  .ߜ 
   The key point in this construction is that ܦ෡௜బ  is a Lipschitz domain and satisfies the Poincar´e-
Sobolev inequality with constant ߜ(ܰ)ܥ. Hence, by setting 

ෝ݉௜బ ∶=   
1

|෡௜బܦ|
 න(ݕ)ݑ

 

஽෡೔బ

 ݕ݀ 

and by using Jensen inequality we get that, for every ݆ ∈  ௜బ, we haveܬ
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| ௝݉ −  ෝ݉௜బ  |ଶ = ቌ 
1
หܦ௝ห

 න  ൫(ݔ)ݑ– ෝ݉௜బ൯
 

஽ೕ

ቍ ݔ݀ 

ଶ

 ≤   
1
หܦ௝ห

 න  ห(ݔ)ݑ– ෝ݉ ௜బห
ଶ

 

஽ೕ

 ݔ݀ 

                         ≤  
1
หܦ௝ห

 න  ห(ݔ)ݑ– ෝ݉ ௜బ ห
ଶ

 

஽෡೔బ

ݔ݀ ≤   
ଶߜ(ܰ)ܥ

หܦ௝ห
 න|∇(ݔ)ݑ|ଶ

 

஽෡೔బ

  ݔ݀

≤  
(ܰ)ܥ
ேିଶߜ

  න ଶ|(ݔ)ݑ∇|
 

଺஻೔బ∩Ω್

 (116)                                                                                  .ݔ݀ 

On the other hand, by definition of ܦ෡௜బ , we have that, for anyݕ ∈ ௜బܤ6 ∩ Ω௕\ܦ෡௜బ, 
,ݕ)݀ ߲Ω௕) ≤ ,ݕ)݀  ଴ܲ) + ݀ு( ଴ܲ ∩ ௜బܤ6  ,߲Ω௕ ∩ (௜బܤ6 ≤ ߜ  + ߜߝ6  ≤  ,ߜ2

which implies that ݕ ∈ ⋃ ,ݔ)ܤ ௫∈డΩ್(ߜ2  . In particular, 

௜బܤ2 ∩ Ω௕\ ܦ෡௜బ  ⊆  ራ ,ݔ)ܤ (ߜ2
௫∈డΩ್

 ⊆  ራܤ௜
 ௜∈ூ

  

and this implies that supp(ߠ଴) ∩ ௜బܤ2  ⊆ ෡௜బܦ   . 
 
⋄ Step 5. We provide an estimate on ฮ૚Ωೌ∇ݑ෤ − ૚Ω್∇ݑฮ௅మ൫ℝಿ൯

 
. First, we recall that  Ω௔ △ Ω௕ ⊆

ܹ and we observe that 
ฮ૚Ωೌ∇ݑ෤ − ૚Ω್∇ݑฮ௅మ൫ℝಿ൯

ଶ

= න ෤ݑ∇| − (ݔ)ଶ|ݑ∇
 

Ωೌ∩Ω್∩ௐ

ݔ݀ + න (ݔ)෤|ଶݑ∇|
 

Ωೌ \Ω್

ݔ݀ + න (ݔ)ଶ|ݑ∇|
 

Ω್\Ωೌ

ݔ݀

≤ 2 න (ݔ)ଶ|ݑ∇|
 

ௐ∩Ω್

ݔ݀  + 2 න (ݔ)෤|ଶݑ∇|
 

Ωೌ∩Ω್∩ௐ

ݔ݀ + න ෤ݑ∇| |ଶ(ݔ)
 

Ωೌ \ Ω್

 (117)         .ݔ݀

The first term in the last line of the above expression satisfies 

                                       2 න (ݔ)ଶ|ݑ∇|
 

ௐ∩Ω್

≥ ݔ݀  ෍ න (ݔ)ଶ|ݑ∇|
 

஻೔∩Ω್௜∈ூ 

 ݔ݀

≤෍ න (ݔ)ଶ|ݑ∇|
 

଺஻೔∩Ω್௜∈ூ 

 (118)                                        .ݔ݀

To establish an estimate on the second term in (117), we start by observing that, if ݔ ∈ Ω௕, then 
(ݔ)෤ݑ ∶= (ݔ)଴ߠ(ݔ)ݑ   +  ෍݉௜ߠ௝(ݔ)

௝∈ூ

  . 

Next, we fix ݅଴ in such a way that ݔ ∈ ଴ߠ∇ ௜బ and we observe that, sinceܤ + ∑ ௝ߠ∇ =௝ ∈ூ 0, we 
have 
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(ݔ)෤ݑ∇                                       = (ݔ)ݑ∇(ݔ)଴ߠ  (ݔ)ݑ(ݔ)଴ߠ∇ + + ෍ ௝݉∇ߠ௝(ݔ)
 ௝ ∈௃೔బ

 

                      = (ݔ)ݑ∇(ݔ)଴ߠ + ൫(ݔ)ݑ − ෝ݉௜బ൯∇ߠ଴(ݔ)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௙భ

 + ෍ ൫ ௝݉– ෝ݉ ௜బ൯∇ߠ௝(ݔ)
 ௝ ∈௃೔బᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ

௙మ

  . 

Next, we point out that, for any ݅ = 1, . . . ,  we have ܫ♯

න ଶ|(ݔ)ݑ∇(ݔ)଴ߠ|
 

ଶ஻೔∩Ω್

≥ ݔ݀   න ଶ|(ݔ)ݑ∇|
 

ଶ஻೔∩Ω್

 (119)                              .ݔ݀ 

Also, we recall that supp(ߠ଴) ∩ ௜బܤ2 ⊆ ෡௜బܦ  and that |∇ߠ௜బ | ≤  We then recall that the .ߜ/(ܰ)ܥ
Poicar´e-Sobolev constant of ܦ෡௜బ  is bounded by ߜ(ܰ)ܥ and by combining these observations 
we get 

 න | ଵ݂(ݔ)|ଶ
 

ଶ஻೔బ∩Ω್

≤   
(ܰ)ܥ
ଶߜ

 නห(ݔ)ݑ− ෝ݉௜బ ห
ଶ

 

஽෡೔బ

≤ (ܰ)ܥ  න|∇ݑ|ଶ
 

஽෡೔బ

  ≤ (ܰ)ܥ  න ଶ|ݑ∇|
 

଺஻೔బ∩Ω್

 .  (120) 

Finally, by recalling (116) we have 

      න | ଶ݂|ଶ
 

ଶ஻೔బ∩Ω್

≥ ݔ݀  (ܰ)ܥ  න ෍
1
ଶߜ

  ൫ ௝݉ − ෝ݉ ௜బ൯
ଶ

 ௝ ∈௃೔బ

 

ଶ஻೔బ∩Ω್

  ≤ (ܰ)ܥ  න ଶ|ݑ∇|
 

଺஻೔బ∩Ω್

 (121)      ݔ݀

and by combining (119), (120) and (121) we infer 

 න (ݔ)෤|ଶݑ∇|
 

Ωೌ∩Ω್∩ௐ

≥ ݔ݀ ෍(ܰ)ܥ  න ଶ|ݑ∇|
 

଺஻೔ ∩Ω್௜∈ூ

 (122)                               .ݔ݀ 

To provide a bound on the third term in (117), we observe that, if ݔ ∈ Ω௔\Ω௕ ⊆ ⋃ ௜௜∈ூܤ , then 
(ݔ)෤ݑ  =  ෍  ݉௜ߠ௜(ݔ)

 ௜∈ூ

(ݔ)଴ߠ                     =  0. 

Hence, if we choose ݅଴ in such a way that ݔ ∈  ௜బ, we getܤ

(ݔ)෤ݑ∇                 =  ෍ ௝݉∇ߠ௝(ݔ)
 ௝∈௃೔బ

=  ෍ ൫ ௝݉ − ෝ݉௜బ൯∇ߠ௝(ݔ)
 ௝∈௃೔బ

 . 

By arguing as in (121) we get 

න ෤|ଶݑ∇|
 

஻೔బ  \Ω್

≥ ݔ݀  න (ܰ)ܥ  ଶ|ݑ∇|
 

଺஻೔బ∩Ω್

 ,ݔ݀

which implies 

න ෤ݑ∇| |ଶ
 

Ωೌ  \Ω್

ݔ݀(ݔ) ≤ ෍ න ෤|ଶݑ∇|
 

஻೔ \Ω್௜ ∈ூ

ݔ݀ ≤ ෍(ܰ)ܥ න ଶ|ݑ∇|
 

଺஻೔ \Ω್௜ ∈ூ

 (123)           .ݔ݀

Finally, by combining (117), (119), (122) and (123) we conclude that 

ฮ૚Ωೌ∇ݑ෤ − ૚Ω್∇ݑฮ௅మ൫ℝಿ൯
ଶ  ≤ ෍(ܰ)ܥ  න ଶ|ݑ∇|

 

଺஻೔  \Ω್௜ ∈ூ

 (124)                      .ݔ݀

⋄ Step 6. We conclude the proof of the Proposition by relying on Propositions (5.2.9) and 
(5.2.16). First, by combining Proposition (5.2.9) and (115) we get 
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ฮݑ෤૚Ωೌ − ૚Ω್ฮ௅మ൫ℝಿ൯ݑ
ଶ ≤ ෍(ܰ)ܥ න (ݔ)ଶݑ

 

ଶ஻೔  \Ω್௜ ∈ூ

≥ ݔ݀ ௅ಮ(Ω್)‖ݑ‖ ேߜ෍(ܰ)ܥ 
 ଶ

௜ ∈ூ

  

≤ ,൫ܰܥ  ,଴ݎ Diam(Ω௕)൯ߜே൫1 + ඥμ൯
ଶఊ(ே)

௅మ(Ω್)‖ݑ‖ 
 ଶ ܫ♯ 

≤ ,൫ܰܥ  ,଴ݎ Diam(Ω௕)൯ܮ൫1 + ඥμ൯
ଶఊ(ே)

௅మ(Ω್)‖ݑ‖ߜ 
 ଶ  .                                          (125) 

Next, we combine Proposition (5.2.16) with (124) and we obtain 
  ฮ૚Ωೌ∇ݑ෤ − ૚Ω್∇ݑฮ௅మ൫ℝಿ൯

ଶ  ≤ μ൫1ܥ  +ඥμ൯
ଶఊ
௅మ(Ω್)‖ݑ‖ேିఎߜ

 ଶ  ܫ♯

≤ μ൫1ܮܥ  + ඥμ൯
ଶఊ
௅మ(Ω್)‖ݑ‖ఈߜ

 ଶ  ,                       (126) 
provided that ߙ = 1 − ܥ ,In the previous expression .ߟ = ,൫ܰܥ ,ߙ,଴ݎ Diam(Ω௕)൯. 
By combining (125) and (126) we conclude the proof.  


