Chapter 4
Integration and Loci of Integrability with Lebesgue Classes

In this chapter we define the Radon transform and show the corresponding inversion
formula. We generalize the main result about the stability under integration of the class of
constructible functions, by relaxing the conditions on integrability. Further, we give an
interpolation result for constructible functions by constructible functions with maximal
locus of integrability. For any g > 0 and constructible functions f and u on E < R™, we
show a theorem describing the structure of the set

{(x,p) € E x(0,0]: f(x,;) € LP(lul3)}
where |u|} is the positive measure on R™ whose Radon-Nikodym derivative with respect to
the Lebesgue measure is |u(x,)|?: y - |u(x,y)|%.

Sec(4.1): Positive Constructible Functions Against Euler Characteristic and Dimension

By a subanalytic set we will always mean a globally subanalytic subset X c IR™, meaning
that X is subanalytic in the classical sense inside P™(R)under the embedingR™ = A™(R)
c P*(R). By a subanalytic function we mean a function whose graph is a (globally) sub-
analytic set.

By Sub we denote the category of subanalytic subsets X < R™ for all n > 0, with sub-
analytic maps as morphisms. We work with the Euler characteristic y : Sub — Z and the
dimension dim: Sub — N of subanalytic sets as defined for o-minimal structures in [173].
Note that if X € Sub, then, by the o-minimal triangulation theorem in [173], the o-minimal
Euler characteristic y(X) coincides with the Euler characteristic yz,,(X) of X with respect
to the Borel—Moore homology. If X € Sub is locally compact, the o—minimal Euler
characteristic y(X) coincides with the Euler characteristic y.(X) of X with respect to sheaf
cohomology of X with compact supports and constant coefficient sheaf.

By [173], the Euler characteristic y: Sub — Z satisfies the following:

x(@®) = 0,

x(X) = x(Y) if X and Y are isomorphic in Sub
and

XX UY)=xX)+ x()
whenever X,Y € Sub are disjoint. The last equality for yz, and y. follows from the long
exact (co)homology sequence. If we take X to be the unit circle in the plane R? and Y a
point in X, we see that this equality does not hold for the Euler characteristic associated with
the topological singular (co)homology.

Thus we can think of y:Sub — Z as a measure with values in the Grothendieck ring
K,(Sub) of the category Sub and, for any X € Sub and any function f : X — Z with finite
range and the property that f~*(a) € Sub for all a € Z (constructible functions), one has an

obvious definition for
f fx
X
such that y(X) = [, 1xx (cf. [182]).

This measure and integration against Euler characteristic is what is considered by Viro
[182], Shapira [180,181] and Brocker [166]. However, for the measure y : Sub — Z it is
not true that y(X) = x(Y) if and only if X and Y are isomorphic in Sub. We construct the
universal measure p for the category Sub with values in the Grothendieck semi—ring
SKy(Sub) of Sub such that u(X) = u(Y) if and only if X and Y are isomorphic in Sub.

Furthermore, we develop a direct image formalism for positive constructible functions, i.e.,
functions f : X — SK,(Sub) with finite range and the property that f~1(a) € Sub for all
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a € SKy(Sub). This formalism is generalized to arbitrary first—order logic models and is
illustrated by several examples on the p-adics, on the Presburger structure and on o-minimal
expansions of groups. Moreover, within this formalism, we define the Radon transform and
show the corresponding inversion formula.

We start by pointing out that, instead of Sub, we can work with any o-minimal expansion
of a field R using the category Def whose objects are definable sets and whose morphisms
are definable maps.

By a semi-group we mean a commutative monoid with a unit element. Likewise, a semi-
ring is a set equipped with two semi-group structures: addition and multiplication such that
0 is a unit element for the addition, 1 is the unit element for multiplication, and the two
operations are connected by x(y + z) = xy + xz and Ox = 0. A morphism of semi-rings is
a mapping compatible with the unit elements and the operations.

Let A := Z x N be the semi-ring where addition is given by (a,b) + (a’,b) = (a + a,
max(b, b"), the additive unit element is (0, 0), multiplication is given by (a,b)(a’,b’) =
(aa',b + b"), and the multiplicative unit is (1,0). Note that the ring generated by A by
inverting additively any element of A is Z with the usual ring structure.

For Z € Sub, we define C,(Z) as the semi-ring of functions Z — A with finite image and
whose fibers are subanalytic sets. We call C,(Z) the semi-ring of positive constructible
functions on Z. In particular, C, ({0}) = A.

If Z € Sub, then we denote by Sub, the category of subanalytic maps X — Z for X € Sub
with morphisms subanalytic maps that make the obvious diagrams commute. We define the
Grothendieck semi-group SK,(Sub,) as the quotient of the free abelian semi-group over
symbols [Y = Z ] with Y — Z in Sub, by relations

[0->Z] =0, (1)
[Y>Z] =1[Y"-Z] (2)

If Y — ZisisomorphictoY’'— Z in Sub, and
[(YUY) = Z]+[(Y NY) > Z]=[Y - Z]+ [V > Z] (3

for Y and Y’ subsets of some X — Z. There is a natural semi-ring structure on SK,(Sub;)
where the multiplication is induced by taking fiber products over Z.

We write SK,(Sub;) for SK,(Subyp) and [X] for [X — {O}]. Note that any element of
SK,(Sub,) can be written as [X — Z] for some X € Sub,, because we can take disjoint
unions in Sub corresponding to finite sums in SK,(Sub;).

Proposition(4.1.1)[165]: For Z € Sub, there is a natural isomorphism of semi-rings

T : SKy(Suby) = C.(2)
induced by sending [X — Z] in Sub, to Z - A :» (x(X,),dim(X,)), where X, is the fiber
above z. By consequence, SK,(Sub) = A.
Proof: This follows immediately from the trivialisation property for definable maps in any
o-minimal expansion of a field. See [173].

By means of this result, we may identify SK,(Sub,) and C,.(2).

A general notion of positive measures on a Boolean algebra § of setsisamapu: § - G
with G a semi-group satisfying

uXUY) =pu(X) +uy)

u(@) =0
whenever X,Y € § are disjoint. Often, one has a notion of isomorphisms between sets in S
under which the measure should be invariant and which allows one to take disjoint unions
of given sets in § (by taking disjoint isomorphic copies of the sets).

and
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We let p: Sub — A be the positive measure which sends X to (y(X),dim(X)). This
measure is a universal measure on Sub with the property that u(X) = u(Y) whenever there
exists a subanalytic bijection between X and Y and where universal means that any other
positive measure with this property factorises through u .

Note that u measures, in some sense, the topological size since, by the cell decomposition
theorem from [173], u(A) = u(B) will hold for two subanalytic sets A, B if and only if, for
any fixed n = 0, there exists a finite partition of A, resp. B, into subanalytic C™-manifolds
{A; Y2, resp. {B;}~,, and subanalytic maps 4; — B; which are isomorphisms of C"-
manifolds.

Now we can define the integral of any positive function f € C,(Z) as

fzfu r= Z fi(Zy)

where {Z;} is any finite partition of Z into subanalytic sets such that f is constant on each
part Z; with value f; . To show that this is independent of the partition {Z;}, we just note that
there is a unique [X — Z] in SK,(Z) which corresponds to f under T and that }; f; u(Z;)
corresponds to [X] = (x(X),dim(X)) in A = SK,(Sub). This independence follows also
from the cell decomposition theorem ([173]).

For f: X — Y, there is an immediate notion of pushforward f; : C,(X) — C,(Y), resp.

fi : SKy(Suby) — SK,(Suby), which is given by

F@0) = gmn
71
for g € C.(X), resp. by
Az - XD = [Z-7Y]

for Z - X in Suby and where Z = Y is given by composition with X — Y. Note that these
pushforwards are compatible with T.

If Y = {0}, then SK,(Suby) = A and we write u([Z — X]) for f; ([Z — X]) which is the
integral of [Z — X]. Thus the functoriality condition (h o f), = h, o f; can be interpreted as

Fubini’s Theorem, since
fgli:f <f 9 r1) H)ﬂ
X Y \Vf1(y)

forge C,(X)and h:Y — {0}.
For f:X — Y a morphism in Sub, there is an immediate notion of pullback f*:C,(Y) =
C.(X), resp. f*: SKy,(Suby) — SK,(Suby), which is given by

ff@=ge°f

ffAZ ->YD) =[Z Qy X - X],
for Z - Y in Suby and where Z ®, X — X is the projection and Z @y X is the set-
theoretical fiber product. Note that these pullbacks are also compatible with T and satisfy
the functoriality property (f o h)* = h* o f*,
Proposition(4.1.2)[165]: (Projection Formula). Let f : X — Y be a morphism in Sub and let
ghbeinC,(X)and hin C.(Y). Then

fi(gf* (W) = fi (9)h.

Proof. This is immediate at the level of SK,, since both the multiplication in SK,, and the
pullback are defined by the fiber product.
Let S c X xY, X,Y be subanalytic setsand write my : X XY > X and my : X XY = Y for
the projections and gy = myjsand qy = my|s. For g € C,(X), we define the Radon
transform Rs(g) € C,.(Y) by

for g € C,(Y), resp. by
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Rs(g) = qvi° qx (g) = my o (% (g)1s)
where 1; is the characteristic function on S.
Example(4.1.3)[165]: Consider the case X = R™, Y = Gr(n) with S = {(p,II):p € I1}. Let
Z < R™ be a subanalytic subsetand g, : Gr(n) - A: I » (x(II N Z),dim( 1 n Z)). Then
oz = Rs(1z).
Let ' c Y x X be another subanalytic set and put qy = my|s, and gy = 7y, -
Proposition(4.1.4)[165]: (Inversion Formula). Let r : S @, S’ - X x X be the projection
and suppose that the following hypotheses hold:
(1) there exists 2 € A such that [r~1(x, x)] = Aforall x # x',x,x’' € X;
(1) there exists 0 = 6 € A such that [r~1(x,x)] = 6 + A forall x € X.
If g isin C,(X), then

R0 Rs(g) = g + 2 f gu 4)
X

and this is independent of the choice of 6.
Proof. Let h and h’' be the projections from S ®, S’ to S and S’, respectively. Then, by
definition of fiber product, gy « h = gy o h’, and so, by functoriality of pullback and push-
forward, we have hi o h* = q'y o gyi. Thus Rg, o Rs(g) = qx1© (qy)" © qy1 © qx(g) = qx ©
hi o h™ ° qx(9).

The last formula is also equal to py o7 o 7* o p;(g), Where p;,p,: X X X —» X are the
projections onto the first and second coordinates respectively, since gy ch = p, or and
qx © b’ = p, o r. The hypothesis shows that ;( 15®Y51) = 01,, + Alyx x, more-over this

expression is independent of the choice of 8. By the projection formula, n (r*(p; (g))) =

1 (Lsgys' 77 (pi‘(g))) = 1 (Lsg,s)pi () = (01a, + Alyxx)p; (g) holds, hence we

obtain  p,((61,, + Adxxx) P1(9)) = Op2(1ay, P1(9)) + Apa(pi(9)) = 69+ A [, gu,
as required.

We now show that the inversion formula is independent of the choice of 8. If 6 + 1 =
0'+ A and 0 # 6, then necessarily A, > 0,, 1, >0, and 6; = 0; with 1 = (1,,1,),0 =
(6,,6,) and 0" = (6;,6;). Hence, 6g + A [, gu=06'g+ 21 [, guforall x € X.
Example(4.1.5)[165]: Consider the case X = R™, Y = Gr(n) with S = {(p,Il) : p € 1} and
S'={(M,p):p € I1}. Then [r~[(x,x)] = [P* ] and [r~1(x,x)] = [P"* 2] forall x,x’ €

R™ with x # x'. Since [P"] = (ﬂ

Rs,0 Rs(g) = (1) ,n—1)g + (ﬂ n-2) fx gu

n) we have

2
In particular, we have

Rs0 Rs(1z) = (=)™ ,n—1)1, +

for every subanalytic subset Z of R".

Let M be a model of a theory in a language £ with at least two constant symbols ¢, c,
satisfying c;, # c,. For Z a definable set, we define the category Def,( M), also written
Def, for short, whose objects are definable sets X with a definable map X — Z and whose
morphisms are definable maps that make the obvious diagram commute. We write Def (M)
or Def for Def;. 1(M). In M, one can pursue the usual operations of set theory like finite
unions, intersections, Cartesian products, disjoint unions and fiber products.

We define the Grothendieck semi-group SK,(Def;) as the quotient of the free abelian
semi-group over symbols [Y — Z] with Y — Z in Def, by relations
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[0 > Z] =0, Q)

[Y - Z] =[Y' - Z] (6)
if Y = Z isisomorphicto Y’ = Z in Def, and
[(YuY)->Z]+ [(YnY) > Z]=[Y > Z]+ [Y' - Z] (7)

for Y and Y’ subsets of some X — Z. There is a natural semi-ring structure on SK,(Def,)
where the multiplication is induced by taking fiber products over Z. Note that any element
of SK,(Def;) can be written as [X — Z ] for some X — Z € Def,, because we can take
disjoint unions in M corresponding to finite sums in SK,(Def;).

The map Def — SK,(Def) sending X to its class [X] is a universal positive measure with
the property that two sets have the same measure if there exists a definable bijection bet-
ween them. For f : X = Y, there is an immediate notion of push forward f, : SK,(Defy) —
SK,(Defy) given by

flZ = X]) =[Z - Y],
for Z — X in Defy and where Z — Y is given by composition with X = Y.

If Y ={c,}, then we write u([Z — X]) for fi ([Z — X]), which we call the integral of
[Z = X]; note that u([Z — X]) is just [Z] in SK,(Def). Thus the functoriality condition
(f o h), = f, o hy can be interpreted as Fubini’s Theorem.

There is also an immediate notion of pullback f* : SK,(Def,) — SK,(Defy) given by

ffAZ =YD =[Z ®y X = X],
for Z - Y in Defy, and where Z @, X — X is the projection and Z &, X the set-theoretical
fiber product. The pullback is functorial, i.e., (foh)* = h*of ™.
Proposition(4.1.6)[165]: (Projection Formula). Let f : X — Y be a morphism in Def and let
g bein SK,(Defy) and h in SK,(Defy). Then
figf* () = fi(9h.
Proof. Exactly the same proof as for the subanalytic sets above works.

One can also define the Radon transform in this context in exactly the same way as in the
subanalytic case. Furthermore, the same argument as in the subanalytic case gives the cor-
responding inversion formula.

However, since, in general, there is no trivialisation theorem, the conditions (I) and (Il) in
Proposition(4.1.4) have to be replaced by global conditions. Using the embedding SK,(Def)
— SK,(Defy) sending [W] to [W x U — U] where W x U — U is the projection,

the statement becomes:

Let r: S ®y, S" > X x X be the projection and suppose that the following hypotheses
hold:

(i) there exists Z; in Def such that in SK,(Defy ) we have

[B, - X1] = [Z1],
(i1) there exists Z, in Def such that in SKO(DefAX) we have
[B, - Ax] =[Z1]+[Z;]

where X; = X x X\ Ay, B; =S Q®y S\771(Ay), B,= S®y S'Nnr~1(Ay) and B; - X,
and B, — Ay are the restrictions of the projectionr : S ®, S’ - X x X'
If Z - X is in Defy, then

Rsi0 Rs([Z = X]) = [2:1[Z — X] + [Z1][Z] ®)
and this is independent of the choice of Z,.
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Example(4.1.7)[165]: (Semialgebraic and subanalytic sets in Q)
For K any finite field extension of the field Q, of p-adic numbers, one can calculate
explicitly the semi-ring of semialgebraic sets SK,(K,Sem), resp. of globally subanalytic
sets SK, (K, Sub), using work of [167] for semialgebraic sets, resp. using work of [169] for
the subanalytic sets. In both cases it is a subset of N x N, and the class of a semialgebraic
set X, resp. a subanalytic set X, is (#X,0) if X is finite and (O, dim X) if X is infinite. This is
because there exists a semialgebraic bijection between two infinite semialgebraic sets if and
only if they have the same dimension, and similarly for subanalytic sets. However, no
trivialisation theorem is known, hence the relative semi-Grothendieck rings SK,(K,Semy),
resp. SK,(K,Sub;), for Z semialgebraic, resp. subanalytic, are expected to be much more
complicated than maps Z — N x N with finite image.
Example(4.1.8)[165]: (Presburger sets)
Consider the Presburger structure on Z by using the Presburger language
Lpg ={+,—0,1,<} U {=,|n € NNn > 1},

with =,, the equivalence relation modulo n. Again, one can can calculate explicitly the semi
ring SK,(Z, Lpgr), using work of [168].
It is a subset of N x N, and the class of a Presburger set X is (#X, 0) if X is finite and
(0,dim X) if X is infinite, where the dimension of [168] is used. Again, this is because there
exists a Presburger bijection between two infinite Presburger sets if and only if they have
the same dimension.
Again, no trivialisation theorem is known, hence the relative semi-Grothendieck rings are
expected to be more complicated.
Example(4.1.9)[165]: (Semilinear sets)
Let K =(K,0,1,+, -,<) be an ordered field and consider the structure M = (K,0,1, +,
(A2)ce k<), where A, is the scalar multiplication by ¢ € K. The category Def in this case is
the category of K-semilinear sets with K-semilinear maps.

By [177], the Grothendieck ring K,(Def) is isomorphic to E = Z[x]/(x(x + 1)) and
there is a universal Euler characteristic € : Def - E (see also [175]).

Let D be the set whose elements are of the form Y, y*i z!i € N[y, z] with k; < [; and,
fori # j,—(y*i 2% = y*i zU) A =(y¥izli < y%i ZU) A =(yM 25 < yki z), Here,
yki zli < yki Z4 if and only if k; <kjand I; <.

The set D can be equipped with a semi-ring structure in the following way: the zero
element Op is Y20, y*i z4, the |dent|ty element 1D is y°z°, the addition is given by

5o i
m

i ; . . r r

= Z max {y z': y*z! amonomial in Zy"l zli + Zy"i zli]
i=1 i=1

and multiplication is given by
n m
Zyki Zli - D Zyk{ Zl{
i=1 i=1

n m
i ; . . ' '
= Z max {ykzl: y*z! amonomial in Zy"l zli - Zy"i zli]
i=1 (=1

where the symbol ) max. S mean that we sum up the <-maximal elements of the finite set
S.
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By [177], there is a universal abstract dimension §: Def — D and two sets in Def are
isomorphic in Def if and only if they have the same universal Euler characteristic and the
same universal abstract dimension. Thus, if A is the semi-ring E x D, then the Grothendieck
semi-ring SK,(Def) is isomorphic to A and the map u: Def — A given by u(X) = (e(X),
&(X)) is the positive universal measure on Def.

Note that the results that we used above from [177] were proved in the field of real

numbers, but the same arguments hold in any arbitrary ordered field K.
Example(4.1.10)[165]: (Semibounded sets)
Let K = (K,0,1,+,-,<) be a real closed field and consider the structure M = (K,0, 1, +,
(A)cek: B, <), where A, is the scalar multiplication by ¢ € K and B is the graph of
multiplication on a bounded interval. The category Def in this case is the category of K-
semibounded sets with K-semibounded maps. By [176], all bounded semialgebraic subsets
are in Def and, by [179], M is, up to definability, the only o-minimal structure properly
between (K,0,1,+, (A) ek, <) and (K,0,1, +,, <).

By [177], the Grothendieck ring K,(Def) is isomorphic to E = Z [x]/(x(x + 1)) and
there is a universal Euler characteristic € : Def — E (see also [175]). Furthermore, if D is
the semi-ring of Example (4.1.9), then there is a universal abstract dimension §: Def — D
and two sets in Def are isomorphic in Def if and only if they have the same universal Euler
characteristic and the same universal abstract dimension. Thus, if A is the semi-ring E % D,
then the Grothendieck semi-ring SK,(Def) is isomorphic to A and the map u : Def - A
given by u(X) = (e(X), 6 (X)) is the positive universal measure on Def. The results that we
used above from [177] were proved in the field of real numbers and are based on Peterzil’s
[178] structure theorem for semibounded sets in the real numbers. However, the same
arguments hold in any arbitrary real closed field K using the structure theorem from [174].

Sec(4.2): Zero Loci, and Stability Under Integration for Constructible Functions
on Euclidean Space with Lebesgue Measure

We define and study loci of integrability of certain (families of) functions. A recent insight
into parameterized integrals is that, for functions f belonging to certain classes of functions
on certainproduct measure spaces E x T, a set of the form

{x e E|T - C:t — f(x,t)ismeasurable and integrable over T}, 9

is in fact equal to the zero locus of a function on E belonging to the same class of functions;
see [187]. If we call the set in (9) the locus of integrability of f in E, then we can rephrase
the recent insight as a link between loci of integrability and zero loci for certain kinds of
functions.

In this section, we give such a link for the class of constructible functions on Euclidean
spaces with the Lebesgue measure; see Theorem (4.2.3). We follow the terminology of
[188]: a constructible function is by definition a sum of products of globally subanalytic
functions and of logarithms of globally subanalytic functions. The advantage of the class of
constructible functions is that it is closed under integration. Indeed, in Cluckers and Miller
[188] the authors prove that if f is constructible on R™ x R™ such that y — f(x,y) is
integrable over R™for each x € R™, then

f(x,y)dy
Rm
is constructible on R™, which generalizes results of [190]. We extend this stability result by
relaxing the conditions on integrability; see Theorem (4.2.5). Further, we give an inter-
polation result, Theorem (4.2.4), of constructible functions by constructible functions with

maximal locus of integrability.
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Recall that a function f: X ¢ R™ — R is called globally subanalytic if its graph is a globally
subanalytic set, and a set A < R™ is called globally subanalytic if its image under the
natural embedding of R™ into n-dimensional real projective space, namely R* — P*(R) :
(x1,..., %) — (Lixg -+t xy), IS a subanalytic subset of P™(R) in the classical sense;
see Definition (4.2.6) below for a self-contained definition.
From now on in this section, we write “subanalytic” instead of “globally subanalytic” (see
again Definition (4.2.6)).
Definition(4.2.1)[183]: For each subanalytic set X, let C(X) be the R-algebra of real-valued
functions on X generated by all subanalytic functions on X and all the functions x +—
log f(x), where f: X — (0, +00) is subanalytic. Functions in C(X) are called constructible
functions on X and C (X) is called the algebra of constructible functions on X.
In the whole section, we use the Lesbegue measure on R™. We introduce the locus of integr-
ability of a function, as follows.
Definition(4.2.2)[183]: For E a set, and for f: E x R™ — C a function, define the locus of
integrability of f in E as the set
Int( f,E) :={x € E|f(x,") is measurable and integrable over R"},

where f(x,) is the function sending y € R™ to f(x,y), and where the Lebesgue measure is
used on R™.

We have the following three theorems, for which we will give relatively short and simple
proofs.
Theorem(4.2.3)[183]: Let f be in C(E % R) for some subanalytic set E. Then there exists
h in C(E) such that

Int( f,E) ={x € E| h(x) =0}. (10)

Conversely, for every h in C(E) there exists f in C(E % R) such that (10) holds.
Theorem (4.2.3) thus gives a correspondence between loci of integrability and zero loci of
constructible functions, at least when integration is in dimension 1, that is, over R. One
should not misunderstand Theorem (4.2.3): zero loci of constructible functions are much
more general than, say, Zariski closed sets, and for example, a zero locus of h € C(E) can
easily be dense in E. Indeed, the characteristic function of any subanalytic subset of E lies
in C(E). Note that when f in Theorem (4.2.3) is moreover subanalytic, then one can take h
to be a subanalytic function as well by the main result of [190]. Theorem (4.2.3) implies
Theorem 1.4 of [188]. In Cluckers and Miller [189] they treat a higher dimensional variant
of Theorem (4.2.3), also treating LP-integrability for various p.

Constructible functions allow an interpolation by constructible functions with maximal
locus of integrability, as follows.
Theorem(4.2.4)[183]: Let f be in C(E x R) for some subanalytic set E. Then there exists
g € C(E x R) with

Int(g,E) = E

and such that, for all x € Int( f,E) and all y € R, one has

g(x.y) = f(x,y).
Proofs of Theorems (4.2.3) and (4.2.4). Let f be in C(E x R), with E c R™ for some n.
Apply Corollary (4.2.10) to the collection of functions consisting only of f. Consider a 1-
cell A over R™ in the obtained partition, with center 8, and write f as in (12). By regrouping
the terms and using the notation of (12), we may suppose, for each i, that either |y|% is
integrable over A,, or that (a;, ¢;) is different from the («;, ¢;)for all j # i. Let I be those
indices i such that |§]%: is not integrable over A,. Now define Q, as the set {x € B |d;(x) =

0 for i € I} and define, for (x,y) € A, the constructible function
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9(.y) = ) di@)SiCx, )11 Cloglg] ).
i3
Note that
{x € B: f(x, -)isintegrable over A,} = Qg4

because of condition (a) in Corollary (4.2.10), and because we have taken the exponent
pairs (a;, ¢;) mutually different for nonintegrable terms. Do the above construction for each
occurring 1-cell A over R™. On any O-cell A" over R™ in the partition, define g(x,y) as
f(x,y). Then g is as desired by Theorem (4.2.4). Now note that a finite union of zero loci
of constructible functions h; equals the zero locus of a single constructible function by
taking the product of the h;. Similarly, a finite intersection of zero loci of constructible
functions h; equals the zero locus of a single constructible function by taking the sum of the
squares of the h; . Now one is done for Int( f, E). Indeed, Int( f, E) equals the finite
intersection

N4 Qz,
where A runs over all 1-cells over R™ in the partition, and where, for any such 1-cell 4, Q,
equals the set Q, U (E\B). Note that E\B is a sub-analytic set and each of the Q, equals
thus the zero locus of a constructible function on E. For the converse statement of Theorem
(4.2.3), given h, it suffices to put f(x,y) = h(x)y for all (x,y) € E x R,

We can integrate in any dimension m to find the following generalization of the principal
result, Theorem 1.3, of [188].

Theorem(4.2.5)[183]: Let f be in C(E x R™) for some subanalytic set E and some m > 0.
Then there exists g € C(E) such that, for each x € Int( f, E), one has

90 = | rawa.
YyERM

Proof. Consider f in C(E x R™) for some m > 0. If m = 1, then apply Theorem (4.2.4) to

f to find g, in C(E x R) with Int(g,, E) = E and such that g,(x,y) = f(x,y) for all

x € Int( f,E) and all y € R. Now Apply Theorem (1.3) of [188] to g,, which states that, if

one defines, for x € E,

g(x) = ngo(ny) dy ,

then g lies in C(E). Then this g is as desired. The result for general m now follows from
Fubini’s Theorem.

Alternatively to deriving Theorem (4.2.5) for m = 1 from Theorem 1.3 of [188], one can
also derive the case m = 1 from Corollary (4.2.10) by the integration procedure by Lion
and Rolin of [196], which is also used and explained in Cluckers and Miller [188]. This self-
contained approach for obtaining Theorem (4.2.5) is simpler than the approaches of [188,
190,196], which moreover only yielded special forms of Theorem (4.2.5).

The above theorem is proved in Cluckers and Miller [188] under the extra condition that
Int(f, E) equals E (which in turn generalized main results from [190, 196]). Note that
integrals of constructible functions are related to what one could call families of periods; see
[192-194]. In several special cases, explicit formulas for parameterized integrals of constru-
ctible functions are given in [184, 199]. Parameterized integrals of constructible functions
are often used for the study of singularities, as in [185, 197, 198]. For context on subanalytic
functions we refer to [186, 191].
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The present section is inspired by Cluckers et al. [187] which contains several p-adic and
motivic analogues of this section, where [188] was more closely inspired on p-adic and
motivic results of [169, 172]. The results and proofs of this section can be used to replace
some of the technical difficulties encountered in Cluckers and Miller [188].

We recall a basic form of the subanalytic preparation theorem from [195] (see also [200]),
we fix some notation, and we give a new preparation result for constructible functions.
Definition(4.2.6)[183]: Call a function f: X ¢ R — R¥ analytic if it extends to an analytic
function on an open neighborhood of X. A restricted analytic function is a function f :
R™ — R such that the restriction of f to [—1,1]™ is analytic and f(x) = 0 on R™\[-1,1]".
Call a set or a f unction subanalytic i f and only if it is definable in the expansion of the real
field by all restricted analytic functions. Thus in this section,“subanalytic” is an abbreviation
of “globally subanalytic”, and in this meaning, the natural logarithm log : (0, +o) — R is
not subanalytic.

We fix an ordered list of variables x,...,x,+1, Where n > 0, and we write x for
(x4, ..., x,) and write y for x,,.4, since the variable x,,,; will play a special role.
Definition(4.2.7)[183]: (Cells with a base). Consider subanalytic sets A ¢ R**! and B c
R™ and an analytic subanalytic function 6 : B —R. Then A is called a 0-cell over R™ with
base B if A equals the graph of an analytic subanalytic function

c:B—R:x—y=c(x).

Call A a 1-cell over R™ with base B and with center 6 if there are analytic sub-analytic
functions a: B— R and b : B — R, with a < b on B, such that A is of the following
form:

A={(x,y) EBxR: alx) 1y ,b(x)},
with ; either < or no condition for each i = 1,2, and such that the graph I'(8) of 6
satisfies either
r(@) c A\4, or, r()nA =g,

where A is the topological closure of A inside R™*1 . In any case, A is called a cell over R™,
Definition(4.2.8)[183]: (Strong functions) . Let A be a 1-cell over R™ with base B and with
center 6. A basic function with center 8 is a function ¢ : A » R¥*2 for some N > 0, with
bounded image and which is of the form

1 1

@(x,y) = (ar(x), ... ,an(x), by ()| y — 0P b, ()| y —6(x)| P),  (11)
where a4, ... ,ay, by, b, are analytic subanalytic functions from B to R and p is a positive
integer. A strong function on A with center 6 is a function A - R of the form F o ¢, where
@ is a basic function with center & and where the function F is given by a single power
series that converges on an open neighborhood of the image of ¢ . Note that strong
functions are automatically subanalytic functions.
Theorem(4.2.9)[183]: (Preparation of subanalytic functions [195, 200]) . Let F be a finite
set of subanalytic functions on a subanalytic set X ¢ R¥*2, Then there exists a finite
partition of X into cells over R™ such that the following holds for any 1-cell A over R" in
this partition:

There exists a center 6 for A such that each f € F can be written in the form

fey) = gy —0C)I"S(x,y)

on A, where g is an analytic subanalytic function on the base of A, r is a rational number,
and S is a strong function on A with center 6, and such that, moreover, S > € on A for some
e> 0.
The last part in the following corollary is new and simplifies the proofs concerning integra-
tion and integrability when compared with [188].
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Corollary(4.2.10)[183]: (Preparation of constructible functions) . Let F be a finite set of
constructible functions on a subanalytic set X ¢ RN*2 . Then there exists a finite partition
of X into cells over R™ such that for each 1-cell A over R™ with base B in this decomposi-
tion, there exists a center 6 such that, the following holds for each f € F and all (x,y) €
A, and with y := y — 0(x):

FGy) = di)Sitx)I1%og 19D (12)

for some M > O, functions d; € C(B), rational numbers «;, integers £; = 0, and strong
functions S; on A with center 6. Moreover, one can ensure for each i that at least one of the
following two conditions holds:

(@) Si(x,y) = 1lonA4;

(b) y — |¥]|% is integrable over A, forall x € B.
Proof. Let F' be a finite collection of subanalytic functions such that each f € F is a finite
sum of products of functions in F' and of logarithms of functions in F’. Apply Theorem
(4.2.9) to F'. Note that log(S) is a strong function with center 6 if S is a strong function
with center 6 satisfying S > ¢ for some € > 0. Hence, we are done with the first part of the
statement by writing logarithms of products as sums of logarithms, and since the product of
strong functions with center @ is a strong function with center 6.
Suppose now that, for some occurring term S;(x, y)d; (x)|y|*on some cell A with center 6
and base B, one has that y — |¥]% is not integrable over A, for some (and hence for all)
x € B. Then, by the supposed presence of this nonintegrable term and by partitioning the
cells slightly further, we may suppose that exactly one of the following two conditions
holds:

(i) The graph of the center 6 lies in A and A, .is bounded in R for each value of x € B.

(ii) The graph of the center 6 is disjoint from A and A, is not contained in a compact

subset of R for any value of x € B.

Since the argument is completely similar in both cases, let us suppose (i) holds. Then,
writing the strong function S; as F; o ¢ with ¢ a basic function with center 8, as in (11),
and F; a converging power series, and by recalling that the image of ¢ is bounded, one sees
that b,(x) = O for all x € B, with notation from (11). Moreover,  is bounded on A, for

each x, and thus, |Y| " s integrable over A, for all x € B as soon as q € Q is sufficiently

large. For any s > 0 we can develop finitely many terms of F; in |#|/P plus the remaining
PV

series in |7|™ 7, as follows:

s—1
s = D g e |+ Y g0 151 | (13)
Jj=0 j=zs

By pulling out the factor |§|%/P from the last term, by writing out S;(x, y)d;(x) |7|% using
distributivity and (13), and by taking s large enough, the first s such terms will be as in part
(@) of the corollary, and the last term will be integrable as in (b). This completes the proof.
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Sec(4.3): Preparation of Real Constructible Functions

The Lebesgue spaces, LP (u) for p € (0, oo], are ubiquitous in many areas of mathematical
analysis and its applications. Much of the research about the Lebesgue spaces has been con-
ducted in a very general measure-theoretic framework, with the focus being on discovering
a host of relationships between the various LPspaces. A number of the classical theorems are
inequalities that explain how various function operations behave with respect to the Lebesgue
spaces. For example, for addition there is Minkowski’s inequality; for multiplication there is
Holder’s inequality; for convolutions there is Young’s convolution inequality; for Fourier
transforms of periodic functions there is the Hausdorff-Young inequality. Other classical
theorems explain the structure of linear maps between the various LP spaces, such as the
duality of Lebesgue spaces with conjugate exponents and the Riesz Thorin interpolation
theorem.

This section explores theorems about the Lebesgue spaces of a rather different sort. We
use geometric techniques to study the structure of the Lebesgue classes of parameterized
families of functions, along with a related preparation theorem. The starting point of the
investigation is the observation that, although much of the utility of the Lebesgue spaces-
and more generally, of the theory of integration as a whole -stems from the generality of the
measure-theoretic framework in which it has been developed, it is many times applied to
study integrals of very special functions that arise naturally in real analytic geometry. And,
if we focus the attention on studying the LP properties of these very special functions, we
should be able to obtain rather strong theorems that cannot be proven, or even reasonably
formulated, in a very general measure-theoretic framework. This is because by focusing on
special functions, we can supplement the very general tools from mathematical analysis
with much more specialized tools from real analytic geometry and o-minimal structures.
Similar approaches have been followed in the context of p-adic and motivic integration; see
e.g. [172].

The o-minimal framework is still a bit too general for the purposes, and we choose to
focus on the constructible functions, by which we mean the real-valued functions that have
globally subanalytic domains and that can be expressed as sums of products of globally
subanalytic functions and logarithms of positively-valued globally sub-analytic functions.
The study of constructible functions largely originated in the work of Lion and Rolin, [196],
where these functions naturally arose in their study of integration of globally subanalytic
functions. (In the context of p-adic integration, analogues of constructible functions arose
from the work by J. Denef [203].) The integration theory of globally subanalytic and
constructible functions was then further developed by Comte, Lion and Rolin in [190] and
also in [188], [183]. Much of the utility of the constructible functions stems from the fact
that they are stable under integration-from which it follows that they are the smallest class
of functions that is stable under integration and contains the subanalytic functions-and that
they have very simple asymptotic behavior (see Theorem(1.3) and Proposition(1.5) in [188]). In
fact, these results have typically lagged behind the motivic and p-adic developments. In this
section, the real situation takes the lead over the p-adic and motivic results.

We obtain two main theorems about the constructible functions; see Theorems (4.3.1)
and (4.3.2). The first theorem considers a constant g > 0 and constructible functions f and
pon E x R™ and it describes the structure of the set

LC(f,|ul9,E) :== {(x,p) € E x (0,%]: f(x,) € LP(|lul)},  (14)
where |u|? is the positive measure on R™ whose Radon-Nikodym derivative with respect to
the Lebesgue measure is |u(x,)|9:y — |u(x,y)|9. The theorem and its corollaries show
that the set of all fibers of LC(f, |u|?, E) over E is a finite set of open subintervals of (0, o],
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and that the set of all fibers of LC(f, |u]|?, E) over (0, co] is a finite set of subsets of E, each
of which is the zero locus of a constructible function on E. This theorem therefore relates
analysis with geometry, in the sense that Lebesgue classes are an object of study in analysis,
while zero loci of functions are widely studied in analytic geometry. A similar link between
geometry and analysis (but with 4 = 1 and with focus on L!-integrability) is obtained in p-
adic and motivic contexts in [187].

The second theorem is a closely related preparation result that expresses f and u as finite
sums of terms of a very simple form that naturally reflect the structure of LC(f, |u|?, E).
This theorem can be most easily appreciated through the historical context in which it was
developed, starting with the following simple preparation result for constructible functions,
which is a rather direct consequence of Lion and Rolin’s preparation theorem for globally
subanalytic functions:

(Let f:E x R"™ — R, be constructible with E ¢ R™ and write
(x,y) = (x4,..., %, 1, ..., V) for the standard coordinates on E x R",
Then f can be piecewise written on subanalytic sets as finite

sums Z T, (x, y) where up to performing translations in y be by
keK

{ globally subanalytic functions of a triangular form, each term is of (15)
n .
the form Ty (x, ¥) = g, (x) (]_[ Iyl (logly )™ >uk(x, y)for
]:

some constructible function gy, rational numbers 7 ;, natural numbers
Sk.j and globally subanalytic unit w, which is of the special form as given

\ by the globally subanalytic perparation theorem.

Lion and Rolin [195] used (15) when proving that any parameterized integral of a construct-
ible function is piecewise given by constructible functions, but on pieces that need not be
globally subanalytic sets. Comte, Lion and Rolin [190] also used (15) when proving that any
parameterized integral of a globally subanalytic function is a constructible function. Then
subsumed both of these results in [188] by showing that F(x) = fRn f(x,y)dy is a constru-

ctible function on E if f : E x R™ - R is a constructible function such that f(x,") € L*(R")
for all x € E. The key to doing this was to improve (15) by showing that in the special case
of n =1, if f(x,) € LY(R) for every x € E, then the sums can be constructed in such a
way so that each term Ty (x,y) is also integrable in y for every x € E. This alleviated
various analytic considerations employed in [195] and [190] to get around the awkward fact
that (15) allows the possibility of expressing integrable functions as sums of nonintegrable
functions. In [183] improved upon (15) in the special case of n = 1 by dropping the
assumption that f(x,y) be integrable in y for every x € E, and then showing that the set
Int(f,E) :={x € E : f(x,”) € L}(R)} is the zero locus of a constructible function on E, and
that the sums in (15) can be constructed so that each term T, (x,y) is integrable in y for
every x € E, provided that we only require the equation f(x,y) = Yx Tx (x,y) to hold for
those values of (x, y) with x € Int(f,E).

The preparation theorem of this section strengthens this line of results even further by
considering an arbitrary positive integer n, not just n = 1, and by considering all L? classes
simultaneously, not just L. In order to convey the main idea of the theorem without getting
bogged down in technicalities, let us use the Lebesgue measure on R™ (thus u = 1, where u
is the function from (14)), and let us also only consider the LP classes for finite values of p.
Under these simplifying assumptions, the preparation theorems states that the sums
Ykex T (x,v) in (15) can be constructed in such a way so that there is a partition {K;}; of
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the finite index set K such that for each x € E and p € (0, ) with f(x,-) € LP(R"), and for
each i, either Ty (x,-) is in LP for all k € K;, or else ¥yek, T (x,y) =0 for all y. So, for

instance, if for some fixed value of p the function f(x,) happened to be in LP(R™) for
every x € E, then the sums in (15) can be constructed so that each term T, (x,-) is in LP for
every x € E, for we may simply omit the remaining terms in the sum because they collec-
tively sum to zero.
Part of the interest in developing a good integration theory for constructible functions comes
from a desire to study various integral transforms in the constructible setting. And, to
summarize, we now have three main tools at the disposal to conduct such studies: the
constructible functions are stable under integration, they have simple asymptotic behavior,
and they have a multivariate preparation theorem with good analytic properties. We apply
these three tools to the field of harmonic analysis in [202] by proving a theorem that bounds
the decay rates of parameterized families of oscillatory integrals. This is an adaptation of a
classical theorem found in Stein [204] but with different assumptions. The classical theorem
bounds a single oscillatory integral with an amplitude function that is smooth and compactly
supported and a phase function that is smooth and of finite type. In contrast, we give a
uniform bound on a parameterized family of oscillatory integrals with an amplitude function
that is constructible and integrable and a phase function that is globally subanalytic and
satisfies a certain “hyperplane condition” (which closely relates to the notion of “finite
type” in the setting). Thus by restricting the attention to the special classes of constructible
and globally subanalytic functions, we obtain a much more global, parameterized version of
the classical theorem with significantly weaker analytic assumptions. This application of the
preparation theorem was, in fact, the initial stimulus for the work in this section.

We begin by fixing some notation to be used throughout the section.
Denote the set of natural numbers by N ={0,1,2,3,... }.
Denote the subset and proper subset relations by c and <, respectively. Write x = (xq, ...,
Xn,) and y = (y4,...,y,) for the standard coordinates on R™ and R" , respectively. If
f = (1 ..., fn): D - R"is a differentiable map with D ¢ R™*™, write

0 af;
a—f (x,y) = (a—fl (x,y)>
y Vi (i.)e{1,..n}?

for its Jacobian matrix in y. Define the coordinate projection I1,,,: R™*" — R™ by
M (x,y) = x.
Forany D ¢ R™*™ and x € R™, define the fiber of D over x by
D, = {ye R":(x,y) €D}
For any d € {0,...,n} and € {<,<,>,>}, define y 4= (3;); 4. For example, y.4 =
(y1,-..,¥4), and in accordance with the above notation for coordinate projections, the maps
M, : R* > R and 11,4 : R™™" > R™*¢ are given by I;(y) = y<4 and I, 4(x, y) =
(x,¥<q). More generally, if 2:{1,...,d} - {1,...,n} is an increasing map, define II,, ; :
Rt ]Rm+d by
M aCx,y) = (x,52),
where y; = (Vi) -+ Yaca))-
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For any set D ¢ R", call a function f : D — R™ analytic if it extends to an analytic function
on a neighborhood of D in R™. A restricted analytic function is a function f: R" — R such
that the restriction of f to [—1,1]™ is analytic and f(x) =0 on R™\[-1,1]". We shall
henceforth call a set or function subanalytic if, and only if, it is definable (in the sense of
first-order logic) in the expansion of the real field by all restricted analytic functions. Thus
in this section, the word “subanalytic” is an abbreviation for the phrase “globally sub
analytic”, and in this meaning, the natural logarithm log : (0, ) — R is not subanalytic.
For any subanalytic set D, let C(D) denote the R-algebra of functions on D generated by the
functions of the form x — f(x) and x — log g(x), where f:D - R and g : D — (0, )
are subanalytic. A function that is a member of C (D) for some sub-analytic set D is called a
constructible function.

Consider a Lebesgue measurable set D ¢ R™*" and Lebesgue measurable functions
f:D—->Randv:D — [0,0), and put E = I1,,(D). Define the diagram of Lebesgue classes
of f over E with respect to v to be the set

LC(f, v, E) ={(x,p) € Ex (0,] : f(x,) € LP(vy)},
where v, is the positive measure on D, defined by setting

v, (Y) = fv(x,y)dy (16)
Y
for each Lebesgue measurable set Y c D,, where the integration in (16) is with respect to

the Lebesgue measure on R™. Thus for each x € E, when O < p < oo, the function f(x,")
isin LP(v,) if and only if
IfGeIPv(x,y)dy < oo,
Dx
and the function f(x,") is in L*(v,) if and only if there exist a constant M >0 and a
Lebesgue measurable set Y < D, such that v, (Y) = 0and |f(x,y)| < M forall y € D,\'Y.

The fibers of LC(f,v,E) over E and over (0,00 ] are both of interest, so we give
them special names. For each x € E, define the set of Lebesgue classes of f at x with
respect to v to be the set

LC(f,v.x) ={p € (0,0] : f(x,©) € LP(vx)}.
For each p € (0, o], define the LP-locus of f in E with respect to v to be the set
Int’(f,v,E) ={x €E: f(x,) € LP(v,)}.
When v = 1 (which is the case of most interest because it means we are simply using the n-
dimensional Lebesgue measure on D,), it is convenient to simply write LC(f, E), LC(f, x)
and Int?(f, E)and to drop the phrase “with respect to v” in the names of theses sets. Also
when v = 1, we shall write LP (D,,) rather than L? (v,).
We order the set [0, oo] in the natural way, and we topologize (0, o] by letting
{(ab) :0< a<b < oo}u{{ow}}
be a base for its topology. A convex subset of (0, o] is called a subinterval of (0, c]. The
endpoints of a subinterval of (0, o] are its supremum and infimum in [0, co]. Note that the
empty set is a subinterval of (0, o], and that sup @ = 0 and inf@® = co .

It is elementary to see that LC(f,v, x) is a subinterval of (0, co] for each x € E. Much
more can be said when f and v are assumed to be constructible functions or their powers.
Theorem(4.3.1)[201]: (The Structure of Diagrams of Lebesgue Classes). Let ¢ > 0 and
f,u € C(D) for some subanalytic set D ¢ R™*", and put E = I1,,,(D) and T = {LC(f, |ul?,
x) : x € E}. Then T is a finite set of open subintervals of (0, e] with endpoints in spang{1,
q} N [0, ) U {0}, and for each I € I there exists g, € C(E) such that

{xeE: I cLC(f [ul?x)}={x €E: g,(x) =0} (17)
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Moreover, if f and u are subanalytic, then each of the functions g; can be taken to be sub
analytic.

Proof: in the Subanalytic Case. Suppose that g > 0 and that f and u are real-valued sub
analytic functions on D ¢ R™*", Put E = I1,,,(D) and T = {LC(f, |ul?, x): x € E}. Apply
Proposition (4.3.23) to F = {f, u}. This constructs an open partition A of D over R™ such
that for each A € A, there exist a subanalytic analytic isomorphism F: B — A over R™ and

a rectilinear rational monomial map ¥ on B over R™ such that f o F, u o F and det g—; are
Y-prepared.

Focus on one A € A, along with its associated maps F: B — A and i on B, where ¢ is
[-rectilinear over R™. Definev : B - R by

doF
v(x,y) = |uo F(x,y)|? detg(x,y)|.

On B write
feoF(xy) = a(x)y“ulx,y),
v(x,y) = b(x)yPv(x ),

for some analytic subanalytic functions a and b, tuples a« = (a;,...,a,) € Q" and p =
(B, Bn) € (spang{l,q}) ™, and -units u and v. We may assume that a and b have
constant sign. If a =0 orb = 0, let I; = (0, oo]. Otherwise, let I, be the set consisting of
all p € (0,0) such that a;p + B; > —1forall i € {l +1,...,n}, and also consisting of oo if
a; >0 forall i e {l+1,...,n}. Note that I, is a subinterval of (0, o] with endpoints in
(spanQ{l, q} N [0, ©)) U {co}. Also note that by Corollary (4.3.25),

LC(fla . lul®a 15 (A)) = LC(foF, v, 11,y (4)) = I, (4) X I,
Now, for each x € E, the set LC(f,u,x) is a subinterval of (0, o] with endpoints in

(spanQ{l, q}n[oO, oo)) U {oo} because it equals the intersection of the sets I, for all A € A

with x € I1,,,(A). This, and the fact that A is finite, also implies that T is finite. To finish,
let I € I, and note that{x € E : I ¢ LC(f,u,x)} equals

{x€eE:IclI, forall A€ Awith x €1Il,(4)},
which is a subanalytic set, and hence is the zero locus of a subanalytic function.

Theorem (4.3.1) has been formulated in such a way so as to make it adaptable to a variety
of situations. This section contains an extensive list of corollaries that further explain how
the theorem elucidates the structure of LC(f, |u|?, E), and how it can be easily adapted to
give analogous theorems about local LP spaces, complex measures, and measures defined
from differential forms on subanalytic sets, all within the context of constructible functions.

The proof of Theorem (4.3.1) is intimately linked to the proof of a preparation theorem for
constructible functions that is stated in full strength in present section given below, where it
is showed. Here we state only a simple version of the preparation theorem that is sufficient
for the application to oscillatory integrals in [202]. But first, we need one more definition: a
cell over R™ is a subanalytic set A ¢ R™*"such that for each i € {1,...,n} the set I1,,,,;(4)
is either the graph of an analytic subanalytic function on I1,,,,;_; (4), or

Mt (A) = {(x, y<i): (0, ¥<i) € Mpyi1(A) @i (e,y<) 1y 2bi(xy<)}  (18)
for some analytic subanalytic functions a;, b; : I1,,,;_,1(4) » R for which a;(x, y.;) <
b;(x,y<;) onIl,.;,_,(A), where ;and , denote either < or no condition.
Theorem(4.3.2)[201]: (Preparation of Constructible Functions-Simple Version). Let p €
(0,) and f € C(D) for some subanalytic set D c R™*", and assume that Int?(f,
I1,,(D)) = I1,,(D). Then there exists a finite partition A of D into cells over R™ such that
for each A € A whose fibers over I1,,,(4) are open in R™, we may write f as a finite sum
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Fy) = ) Te(xy)
k

on A, with Int?(Ty, 1, (4)) = T0,,,(A) for each k, as follows: there exists a bounded
function ¢ : A - (0, )M of the form

o) = @] Iy - 6y )™ ,
j=1

and for each k,

Ty (x,y) = gi(x) (ﬂb’i — 0;(x, y<)|™ i (logly; - 9i(ny<i)|)S"’i> Ugo (x,y), (19)

where the g, : I1,,(A) - R are constructible, the ¢; : I1,,(A) - (0, ) and 6;: I1,,,,;_, (4)
— R are analytic subanalytic functions, the graph of each 6; is disjoint from II,,,,;(4), the
yij and ry; are rational numbers, the s, ; are natural numbers, and the U, are positively-
valued analytic functions on the closure of the range of ¢.

In addition, the fact that Int? (T}, I1,,(4)) = I1,,(A) only depends on the values of the
1.1, and not the values of sy ;, in the following sense: we have Int (T, I1,,(4)) = I1,,,(4)
for any function T, on A of the form

n
T y) = [ [y = 6.6yl Gogly, - 6,6y )k,
i=1

where the 7y, ;, are as in (19) and the sy, ;are arbitrary natural numbers.

The key aspect of Theorem (4.3.2) that is of interest, and what makes its proof nontrivial,
is that the piecewise sum representation of f can be constructed so that each of its terms
Ty (x,”) are in the same LP class as f(x,"); namely, Int? (T}, I1,,(4)) = I1,,,(A) for each A
and Ty, provided that Int?(f, I1,,(D)) = I1,,(D). There is an analog of Theorem (4.3.2) for

p = oo, but then one must replace (19) with the more complicated form
n

T (x,y) = gi(x) (ﬂb’i — 0;(x, y<) |

Ski

n
log ﬂlyj ~ 0y )™ | U0 9y, (20)
j=1

where the g; ; are rational numbers and everything else is as before, and where the fact that
Int*(f, I1,,,(4)) = I1,,,(4) now depends on all the values of the 7 ;,s,;and g; ;, not just
the values of the 7 ; alone.

We show a theorem on the fiberwise vanishing of constructible functions and a theorem
on parameterized rectilinearization of subanalytic functions, given below.
Theorem(4.3.3)[201]: (Fiberwise Vanishing of Constructible Functions). If f € C(D) for a
subanalytic set D ¢ R™*"™ and E = I1,,(D), then there exists g € C(E) such that

{x€eE:f(x,y)=O0forally € D,} = {x €E:g(x)= 0}.
Proof: Let f € C(D) for a subanalytic set D ¢ R™*", and put E = I1,,,(D). Write V =
{x€E:f(x,y) =0 forall y € D, }. We proceed by induction on n.

First suppose that n = 1. By Corollary (4.3.10) we may fix a finite partition A of D into
cells over R™ such that the restriction of f to A is analytic for each A € A. We claim that
for each A € A there exists g, € C(I1,,(A)) such that

{x e 1,,(A): f(x,y) =0forally € A,} = {x € I1,,(4): g4(x) = O}.
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The theorem (with n = 1) follows from the claim, for then

V= {erzz:(gA(x))Z:o],

AEA
where g, : E = R is the extension of g, by 0 on E\II,,,(A4). To show the claim, fix A € A.

We may assume that A is open over R™, else the claim is trivial. Since f(x,-) is analytic on
A, for each x € I1,,(A4), and since f|, is definable in the expansion of the real field by all
restricted analytic functions and the exponential function, which is o-minimal (see Van den
Dries, Macintyre and Marker [205], or Lion and Rolin [195]), it follows that we may fix a
positive integer N such that for each x € I1,,(A), f(x,y) = 0 for all y € A, if and only if
there exist distinct y;,...,yy € A, such that f(x,y;)=---= f(x,yy) =0. So fix
subanalytic functions &,...,&y: I1,,(A) — R whose graphs are disjoint subsets of A. Then

the claim holds for the function
N

9@ = ) (fxaw))
i=1
This establishes the theorem when n = 1.
Now suppose that n > 1, and inductively assume the theorem holds with k in place of n for
each k < n. The set IV is defined by the formula
(x e E)AVy € R*"((x,y) €D - f(x,y) = 0).
Applying the induction hypothesis twice shows that that this formula is equivalent to
(x € E) AVy; € R((x,y1) € Tlp41(D) - h(x,y1) = 0)
for some h € C(I1,,,,.1(D)), which in turn is equivalent to
(x €E)A (g(x) =0)
forsome g € C(E). ThusV ={x € E: g(x) = 0}.

The parameterized rectilinearization theorem requires some additional terminology to
state. For any sets D ¢ R™*" and B c R™*4, we callamap f = (f;, ..., fnen) : B> A an
analytic isomorphism over R™ if f is a bijection, f and £~ are both analytic, and
filx,2) = x4, ..., fin(x,2) = x,,, Where z = (24, ..., Z4).

Forl € {0,..., d}, we say that a set B ¢ R™*¢ is [-rectilinear over R™ if B is a cell over
R™ such that for each x € I1,,,(B), the fiber B, is an open subset of (0,1)¢ of the form
Bx = Hl(Bx) x (O, 1)d_l '
where the closure of IT;(B,) is a compact subset of (0,1]‘. When B ¢ R™*4 is [-rectilinear
over R™, we call a function u on B an I-rectilinear unit if it may written in the form
u = U o, where y: B - (0,00)¥+4~! s a bounded function of the form

! !
Y(x,z) =| c;(x) 1_[2;/1‘] sy Oy (%) 1_[2}/1‘],214,1, s Zg (21)
j=1 j=1

for some positively-valued analytic subanalytic functions ci and rational numbers y; ;, and
where U is a positively-valued analytic function on the closure of the range of .
Theorem(4.3.4)[201]:(Parameterized Rectilinearization of Subanalytic Functions). Let F be
a finite set of subanalytic functions on a subanalytic set D ¢ R™*", Then there exists a
finite partition A of D into subanalytic sets such that for each A € A there exist d € {0, ... ,
n}, 1 € {0,...,d} and a subanalytic map F : B — A such that F is an analytic isomorphism
over R™, the set B ¢ R™*% s |—rectilinear over R™, and each function g in the set G
defined by

2
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{fo F}ser, ifd <n,

oFy
{fo F}per U {det@} Cifd=n,

g:

may be written in the form
d
g(x,z) = h(x) ﬂz}.rj u(x, z) (22)
j=1

on B for some analytic subanalytic function h, rational numbers 7;, and [-rectilinear unit w.
Proof. Let F be a finite set of subanalytic functions on a subanalytic set D ¢ R™*", We
proceed by induction on n. The base case of n = 0 is trivial, so assume that n > 0 and that
the theorem holds with k in place of n for all k < n. Let A be the open partition of D over
R™ given by applying Proposition (4.3.23) to F, and let D’ = U A. Thus the theorem holds
for F|p, . It follows from the induction hypothesis that the theorem also holds for F|p\p, ,
since D\D' may be partitioned into cells over R™, and each of these cells projects via an
analytic isomorphism into R™*4 for some d < n.

Note that if one desires, one can take the y; ; in (21) and the 7; in (22) to all be integers.

To do this, simply pull back each map F in Theorem (4.3.4) by a map (x, z) — (x, zfl, -

zgd) for a suitable choice of positive integers k4,..., k .
We formulate a version of the subanalytic preparation theorem of Lion and Rolin [195].
We begin with some multi-index notation.
Forany tuplesy = (y41,...,y) and a@ = (a4, ..., a,) in R™, define
Iyl =yl Iy,
logy = (logy; ,...,logy, ), provided that y;,...,y, >0,
y® =y ... y™ provided that this is defined,
|a| =, + - +a,
supp(a) ={i € {1,...,n} : a; # 0}, which is called the support of a.
There is a conflict of notation between this use of |y| and ||, but the context will always
distinguish the meaning: if a is a tuple of exponents of a tuple of real numbers, then ||
means a; + - + a,; if y is a tuple of real numbers not used as exponents, then |y| means
(Iy1l, .-+, |Iy]). These notations may be combined, such as with |y|* = |y;]| %1 ... |y,|*"
and (logly| )* = (logly,|)® - - - (logly,|)*".
Definitions(4.3.5)[201]: Consider a subanalytic set A < R™*™, We say that A is open over
R™ if A, isopen in R™ forall x € II,,(A).
We call a function 8 = (64,...,6,,) : A = R"™ acenter for A over R™ if A is open over R™,
and if for each i € {1,...,n} the component 6; is an analytic subanalytic function 6; :
I,,,4+i—1(4) = R with the following two properties.
I. The range of 6; is contained in either (—oo,0), {0} or (0, ). And, when 6; is non-
zero, the closure of the set {y;/0,(x,vy.;) : (x,y) € A} is a compact subset of (0, o).
Il. Lety;, = y;— 6;(x,y-;). The set {y; : (x,y) € A} is a subset of either (—o0, —1),
(—=1,0),(0,1) or (1, ).
We call (x,y) := (x,¥,,...,¥,) the coordinates on A with center 8.
A rational monomial map on A over R™ with center 8 is a bounded function ¢ : 4 > RM
of the form
QD(x,y) = (C1(x)|}7|yl v"'vCM(x)lylyM)v (23)
where c4,...,c) are positively-valued analytic subanalytic functions on I1,,(A) and
Y1, ..., ¥y are tuples in Q™. Note that ¢(4) c (0,)M. If A c R™ x (0,1)" and 8 = 0, we

118



say that ¢ is basic.
An analytic function is called a unit if its range is contained in either (—oo,0) or (0, ). A
function f: A = R is called a o-function if f = F o ¢ for some analytic function F whose
domain is the closure of the range of ¢; if F is also a unit, then we call f a ¢-unit.
Afunction f : A - R is @-prepared if
fGy) = gy ulx,y)
on A for some analytic subanalytic function g, tuple @ € Q" and ¢-unit u.
Definition(4.3.6)[201]: To any rational monomial map ¢: A — R™ over R™ with center 6,
we associate a basic rational monomial map over R™. denoted by ¢g, as follows. For each
i €{1,...,n}, the set {y; : (x, y) € A} is contained in either (—o, —1), (-1, 0),(0,1) or
(1, 00), so there exist unique ¢;,{; € {—1,1} such that 0 < eiy/fi < 1forall (x,y) € A.
Define an analytic isomorphism Ty : A — Ag by
To(x,y) = (x &9y, ")
Define pg := @ 0Ty ' : Ag > RM,
Write @go(x,v) = (¢, (x)y" ..., cy(x)y¥™) for some y,, ...,y € Q™. Foreach i €0,...
n}, define ¢g; to be the function on I,,,;(A4) consisting of the components cj(x)yl.yj of @g
such that supp(y;) < {1,...,i}, and when i > 0, such that i € supp(y;). Thus

Po(x,¥) = (90,0(x), 9o1(X, y1) ... Pon (X, Y1, ¥n))-
For each i € {0,...,n} and € {<,<,>,>}, define ¢y ; = (gﬂglj)j ; on its appropriate
domain. For example, ¢4 ; is the function on I1,,,,;(4) given by
Po<i(x,¥<i) = (0o0(x), 0e1(x,¥1),. ., 0gi (X, y1,..., Vi)

Definition(4.3.7)[201]: If C € R™*" is a cell over R™, then there exists a unique increasing
mapA:{1,...,d} - {1,...,n} whose image consists of the set of all i € {1,...,n} for
which I1,,,,;(C) is of the form (18). We call C a A-cell.

Note that I1,, ; defines an analytic isomorphism from a A-cell C onto II,,;(C), and
I, 2(C) is a cell over R™ that is open over R™ .
Definition(4.3.8)[201]: We say that ¢ is prepared over R™ if A is a cell over R™ such that
foreachi € {1,...,n}, if we write

My i(Ag) = {(6 y<): (6, ¥<i) € Mhnyim1(Ag) ai(x, ¥<i) < yi< bi(x,y<)},

then the functions a;, b; and b; — a; are @4 ;-prepared, and a; is either identically zero or is
strictly positively-valued.
Proposition(4.3.9)[201]: (Subanalytic Preparation). Suppose that F is a finite set of sub-
analytic functions on a subanalytic set D ¢ R™*™, Then there exists a finite partition A of
D into cells over R™ such that for each A € A, if A is a A-cell over R™ and we write
g : I, ;(A) — A for the inverse of the projection IT,, 1|4 : A = IT,,, ,(A), then there exists a
prepared rational monomial map ¢ : I, ;(4) - RM over R™ such that fo g is ¢-prepared
foreach f € F.
Corollary(4.3.10)[201]: Suppose that F is a finite set of constructible functions on a sub-
analytic set D ¢ R™*™ . Then there exists a finite partition A4 of D into cells over R™ such
that for each A € A and f € F, the restriction of f to A is analytic. Moreover, if each
function in F is subanalytic, then A can be chosen so that f(A) is contained in either
(—0,0),{0} or (0, ) foreachA e A and f € F.
Proof: When F consists entirely of subanalytic functions, this follows directly from Pro-
position (4.3.9). In the general constructible case, fix a finite set F' of subanalytic functions
such that each function in F is a sum of products of functions of the form (x,y) — f(x,y)
and (x,y) — log g(x,y) with f, g € F'. Now apply the result of the subanalytic case to F'.
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Definition(4.3.11)[201]: If S is a set of subsets of a set X, we say that a partition A of X is
compatible with S if for each A € A and each S € S, either A € Sor A c X\S.

Note that in Proposition(4.3.9) and Corollary(4.3.10), the partition A can be made to be
compatible with any prior given finite set of subanalytic subsets of D.
Corollary(4.3.12)[201]: Foreach I € ¥,

{x € E:LC(f, lul?,x) = I}

=xer:@@=0a( \ g@=0 |, @
JET;
where T, = {J€eT: I ¢ J}L
Proof: This follows from (17) and from the fact that for each x € E, LC(f,u,x) =1 if and
onlyif I c LC(f,u,x)andJ ¢ LC(f,u,x) forall J € I;.
The final sentence of Theorem (4.3.1) shows that when £ is subanalytic, so is the set (24).
Note that: The set LC(f, |u|?, E) can be expressed as the disjoint union

| e Loq e = < (25)
IEX

and as the (not necessarily disjoint) union
| Jdx eBi1e e tuen = (26)
IeX

The fact that LC(f, |u|9, E) equals (25), and that (25) is contained in (26), are both clear. To
see that (26) is contained in (25), note that if (x,p) is such thatl c LC (f,|u]9, x) and
p €1, then ] = LC(f, |u|9 x) and p € J for some | € T with I c J. Observe that (24) and
(17) show how to use the functions {g,},c< to define the sets occurring in (25) and (26).
Corollary(4.3.13)[201]: For each P c (0, o] there exists G, € C(E) such that

{x €E:PcLC(f |ul%x)}={x € E: Gp(x) = O} (27)
Proof. Define Gp to be the product of the g, for all I € T with P c I. Then (27) follows
from (17) and from the fact that for each x € E, we have P c LC(f, |u|?, x) if and only if
LC(f,|ul? x) =1 forsome € T withP c I.

For each p € (0, o], taking P = {p} in (27) shows that IntP(f, |u|?, E) is the zero locus
of a constructible function. A very elementary proof of this fact is given in [183] for the
special casewheny =1,p=1andn = 1.

Corollary(4.3.14)[201]: The set {Int?(f,|u|?,E) : p € (0, ]} is finite.
Proof: Since ¥ is finite by Theorem (4.3.1), we may fix a finite partition J of (0O, o]
compatible with T. If J e Jand p € J, thenforeach I e I, p el ifandonly if JcI; so
Int?(f, lul%, E) ={x € E: ] c LC(f,|u|? x)}. Therefore
{Int?(f, [ul® E):p € (0,0]} = {{x € E: ] ¢ LC(f |ul%x) : J € T},

which is finite because 7 is finite.
Corollary (4.3.15)[201]: There exists g € C(E) such that

{x € E: f(x,)isboundedonD,} ={x € E : g(x) = 0}.
Proof: Zero loci of constructible functions are closed under intersections and unions (by
taking sums of squares and by taking products, respectively), so we may assume by
Corollary (4.3.10) that D is a cell over R™ and that f is analytic. By projecting into a lower
dimensional space, we may further assume that D is open over R™. Thus f(x,-) is bounded
on D, if and only if it is in L*(D,), so we are done by applying Corollary (4.3.13) with
P = {oo}.
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Corollary(4.3.16)[201]: There exist g, h € C(E) such that
{x€eE:f(x,y)=0forall yeD,}={x€E:g(x)=0}
and
{x€E:f(x,y) =0 for |ul, —almostall y € D,} = {x € E: h(x) = 0}.
Proof. Define F : D x R - R by F(x,y,z) = zf(x,y). Note that for each x € E, f (x,y) =
O forall y € D, if and only if (y,z) — F(x,y, z) is bounded on D,, X R, and that f(x,y) =
0 for |u],-almost all y € D, if and only if (y,z) — F(x,y,z)is in L*(v,), where v : D x
R - [0, ) is defined by v(x,y,z) = |u(x,y)|. So we are done by applying Corollaries
(4.3.15) and (4.3.13) (with P = {o0}) to F.
The following result generalizes [188].
Corollary(4.3.17)[201]: Let g > 0,P c (0,00], and F,v € C(X x Y x R¥) for some sub-
analytic sets X and Y. Suppose that for each x € X, theset{y € Y : P c LC(F, |[v|?, (x,¥))}
is dense in Y. Then there exists a subanalytic set C ¢ X x Y such that C x P c LC(F, |v|9,
XxY)andC, isdenseinY foreachx € X.
Proof: Assume that X ¢ R™ . We may assume that ¥ = R" because the case of a general
subanalytic set Y follows from this special case by arguing as in [188]. By Corollary (4.3.
13) we may fix g € C(X x R™) such that
{(x,y) EXXR':PcC LC(F, |v|q,(x,y))}

={(x,y) e X xR": g(x,y) = O}. (28)

By Corollary (4.3.10) we may fix a partition A of X < R™ into subanalytic cells over R™
such that g restricts to an analytic function on each A € A. Let C be the union of the
members of A that are open over R™. Then C is subanalytic, I1,,(C) = X, and C, is open
and dense in R™ for each x € X. If there exists (a,b) € C such that g(a,b) # 0O, then
{v € C, : g(a,y) = 0} would be a proper analytic subset of the open set C,, so {y € R" :
g(a,y) = 0} would not be dense in R", contradicting (28) and the assumption on F and
|v]9. Therefore g(x,y) = 0 for all (x,y) € C, which by (28) proves the corollary.

We now show how Theorem(4.3.1) adapts easily to the study of local integrability, complex
measures, and measures defined from constructible differential forms on subanalytic sets.

We only discuss the analogs of Theorem (4.3.1) itself, but it follows that analogs of the
previous list of corollaries of this theorem hold as well, via the same proofs.

Suppose that Y < R™ and f:Y — R are Lebesgue measurable, that v is a positive measure
on Y that is absolutely continuous with respect to the n-dimensional Lebesgue measure, and
that p € (0, »]. We say that f is locally in LP(v), written as f € L} .(v), if foreachy €Y
there exists a neighborhood U of y in Y such that f|, is in Lp(v|y). Similarly, we say that f
is locally bounded on Y if for each y € Y there exists a neighborhood U of y in Y such that
f(U) is bounded.

For measurable functions f: D - R and v: D — [0, ), where D ¢ R™*" and E =
I1,,,(E), define the sets LCyoc(f, v, E), LCioc(f, v, x) and Int} (f,v, E) analogously to how
LC(f,v,E), LC(f,v,x) and Int?(f, v, E) were defined in above, but replacing the condition
f(x,) € LP (v,) with f(x,) € L’l’oc(vx).

Proposition(4.3.18)[201]: The local analog of Theorem (4.3.1) holds, which describes the
structure of LCioc(f, |u]|?, E) rather than LC(f, |ul?, E).

Proof. By extending f and u by 0 on (E < R™)\D, we may assume that D = E x R".
Define functions F and von E x R™ x [-1,1]" by F(x,y,2) = f(x,y + z) and v(x,y, z) =
lu(x, y +2)|.

The compactness of [—1,1]™ implies that for each x € E and p € (0, ], f(x,") € L, .(|ul%)
if and only if F(x,y,") € LP (v(y,,) forall y € R™ Therefore
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LCioo(f lul®, ) = ] LC(F,v, (x.9))
yeER™
Theorem (4.3.1) shows that {LC(F,v, (x,y)) : (x,y) € E x R"} s a finite set of sub-
intervals of (0, e] with endpoints in (spang{1, g} N [0, o)) U {oo}, so the set
Tioe: = {LCioc(f, |1l% %) : x € E}
is of this form as well. Let I € T|,.. By Corollary (4.3.13) we may fix g € C(E x R") such
that
{(x,y) EEXR":] C LC(F,V, (x,y))} = {(x,y) € E xR" g(x,y) = 0}.
Thus
{x€€E:Ic LCu(f, u|?x)} ={x € E:g(x,y) =0forall y e R"},

and this set is the zero locus of a constructible function by Theorem (4.3.3) (or Corollary
(4.3.16)).

Suppose that fand v are complex-valued Lebesgue measurable functions on a measurable
set D ¢ R™*™ such that v(x,") is Lebesgue integrable on D, for all x € E, where E =
I1,,(D). For each x € E, define a complex measure v, on D, by setting

v = [ vy )ay
Y

for each Lebesgue measurable set Y c D, . The notion of an LP-class with respect to a
complex-measure is defined using the absolute variation of the measure, so we define
LC(f,v,E) := LC(|f|,|vl, E),LC(f,v,x) := LC(|f], |v], x) for each x € E, and Int?(f,v,
E):= IntP(|f],|v], E) for each p € (0, o].

Proposition(4.3.19)[201]: The complex analog of Theorem (4.3.1) holds with g = 1, which
describes the structure of LC(f,u,E) for complex-valued functions f and p on a sub-
analytic set D ¢ R™*™ whose real and imaginary parts are constructible, where p(x,) is
Lebesgue integrable on D, for all x in E = I1,,,(D).

Proof. Apply Theorem (4.3.1) to the constructible functions |f|? and |u|? with g = % Then

note that for any p € (0, o], |f| € LP(lul,,) if and only if |f|? € LP/2(|ul, ).
We consider a subanalytic set D ¢ R™*" such that for each x in E := I1,,(D), the fiber
D, is a smooth k-dimensional submanifold of R™. For each x € E, consider a smooth k-

w,(y) = Z Wi, . ik(xvy)dyi1 A A dyg, .
1<ip<-<igsn
For each x € E, write |w,| for the measure on D, associated to the smooth k-form w,. For
f € C(D), consider

LC(f, wx,x) = {p € (0,0] : f(x,) € LP(lwx]},

LC(f,w,E) = {(x,p) € E x (0,] : f(x,) € LP(|wx]},
where w stands for the family (w,) ek -
Proposition(4.3.20)[201]: With the above notation for D, w, and E, and with f € C(D), the
analog of Theorem (4.3.1) holds for LC(f, w,E). To adapt the last sentence of Theorem
(4.3.1) to LC(f, w, E), the extra assumption that u be subanalytic should be replaced by the

and

Proof. Because D is subanalytic, basic o-minimality implies that there exists a finite family
‘U of subanalytic subsets of D which covers D and is such that the following hold for each
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Uelu:
I. forevery x € I1,,(U), the fiber U, is open in D,;
Il. there exists an increasing function AY:{1,...,k} - {1,...,n} such that for each
x € I1,,(U), the projection IT,u is injective on U, and has constant rank k.
For each U € U, let GY(x,z) = (x,9Y(x,2)) be the inverse of 1T, v : U > II,, ,u(U),
where z = (z;,...,z). Then for each U € U, the functions f o GV and

Y Y
I YR S e g C it A

1<iy < <ig<n 0(zy,...,2)

\Z)

analytic, the wV and f o GY also are. Hence, Theorem (4.3.1) applies to LC(f o GY, |wY],
I1,,,(U)). The proposition now follows relatively easily from this and from the fact that
LC(fly wly , TTn(U)) = LC(f © GV, |0”|, I, (U))

foreach U € U.
Definition(4.3.21)[201]: Consider [ € {0,...,n} and a rational monomial map i on B over
R™, where B ¢ R™*™ , We say that 1 is [-rectilinear over R™ if B is [-rectilinear over R™
(as defined prior to Theorem 4.3.4) and if vy is of the form

l/}(x’y) = Cl(x)y;/ll’ T CN(x)y;/lN Yi+1r--Yn
for some positively-valued analytic subanalytic functions c;,...,cy on I1,,,(B) and tuples
Y1.....¥n in Q. We say that set B, or a rational monomial map ¥ on B over R™, is
rectilinear over R™ to mean that it is [-rectilinear over R™ for some [.
Definition(4.3.22)[201]: For a subanalytic set D ¢ R™*™", an open partition of D over R™
is a finite family A of disjoint subanalytic subsets of D that are open over R™ and are such
that dim(D\ U A) x < n for all x € I1,,,(D).
Proposition(4.3.23)[201]: Let F be a finite set of subanalytic functions on a sub-analytic
set D ¢ R™*™ | Then there exists an open partition A4 of D over R™ such that for each
A € A there exists a subanalytic analytic isomorphism F: B - A over R™ with B c
R™*" and there exist rational monomial maps ¢ on A and ¥ on B over R™ with the
following properties.

l. Pullback Property: Each function in {f o F};cr U {detg—;}is Y-prepared, and y is

rectilinear over R™.
I1. Pushforward Property: The components of F~1 are ¢g-prepared, and ¢ o F~1 is a ¢-

function.
Proof: Let F be a finite set of subanalytic functions on D ¢ R™*". Apply Proposition
(4.3.9) to F, and focus on one rational monomial map ¢: A —» RM over R™ that this gives
for which A is open over R™. Thus ¢ is prepared, and each function in F restricts to a ¢-
prepared function on A. Let 6 be the center of ¢. We will first construct finitely many
sequences of maps diagrammed as follows,
Fy e

j: (R = A Ap=Ag—— A
l'ﬁul:w l.‘;}i"'_‘] Lga“] 1¢Eu}=~'§-‘o l“”
BN — RM: B M- RM: RMo — pM RM 3

(29)
where for each i € {1,...,k} the maps F; and ¢! are a pullback construction for @li=1 of
one of the six types listed above, the map y is rectilinear over R™, and the ranges of the
maps F: B —» A givenby F =T, o F; o .- o F, for all such sequences (29) constructed form
an open partition of A over R™ . Doing this shows the pullback property. We will construct
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(29) to also have the following property.
Foreach j € {1,...,n} at most one map F; in (29)is aflip iny; . (30)

Assuming we can construct (29) as such, to prove the pushforward property it suffices to
define A" = F(B), to inductively define B, = B and B;,_; = F;(B;) foreachi € {1,...,k},
and to show that we can construct maps diagrammed as follows,

F‘1| T—1|
F}. B, 8 1B,
B = By Br_1 By By A
l#’-'“’1=¢ l,,;-[k—ll l,;,[l] Lﬁ,[a] Lpg.@.[ﬂ]or@ "
RN — RNJ: RNk_l RNI RND RM’ = RJ\I—U

(31)
where for each i € {1,..., k}, v~ is a pushforward construction for Filg, : B; » B;_; and
Yl (Thus the map ¢ : A — R in the statement of the theorem is being denoted by
@'t A" - RM" here in the proof.) These pushforward constructions will be possible because
if a map F; in (29) is a flip in y; , we can ensure that Yl is of the form (33). Indeed, from
among the six types of pullback and pushforward constructions we use, only blowups in one
of the variables y;, ..., y, can possibly destroy the form (33). So and (32) imply that, in fact,
all the maps @ ..., @Kl and ¥l ... Il are of the form (33).

So it remains to construct the sequences (29). This is done by an induction, and to
simplify notation we will write ¢ : A —» RM instead of the more cumbersome @l : 4; —
RM:, (So we are now assuming that ¢ is basic.) Let d € {1,...,n}, and inductively assume
that ¢, is [-rectilinear over R™ for some [ € {0O,...,d — 1} and that ¢ is prepared over
R™*4-1 Thus A is a cell over R™, so we use the definition (4.3.21). To complete the
construction, it suffices to show that after taking an open partition of A over R™ and pulling
back ¢, we may reduce to the case that ¢ is rectilinear and ¢ is prepared over R™+4,

By pulling back by a blowup in y,; and then by power substitutions in y;,4, ..., v, and
using Lemma (4.3.26), we may assume that b; = 1 and that all the powers of y;,1,..., V4
occurring in the components of ¢ are natural numbers, and when a; > 0, that all the powers
of y;41,...,V4—1 In the monomials occurring outside the units in the ¢_4-prepared forms of
ay andl — a, are also natural numbers. There are two cases that can be handled very easily.
Case 1:a; = 0.

In this case, I1,,,4(A) is l-rectilinear, so we are done after using Lemma (4.3.27.1) to adjust
Q.
Case 2: The closure of {y, : (x,y) € A} is contained in (0, 1].

In this case, use Lemma (4.3.27.11) to adjust ¢ to assume that ¢ is of the form (33), and
then apply a flip in y, to reduce to Case 1.

(Note that if we reduce to either of these two cases, we need not require that b; = 1 or that
the requisite powers of y;,4,...,y, are natural numbers, because the blowup and power
substitutions mentioned just prior to these cases can be applied if needed.) So assume that
ay > 0, and write

aq(x,y<q) = A(x)y<q ux,y<q)
for some analytic subanalytic function @, tuple of rational numbers ¢ = (a4, ..., a4-1), and
@ <g-unit u. We proceed by induction on [supp(as;)|, the cardinality of the set supp(as;).

Suppose that supp(as;) is empty, and write yZ; instead of yZ,. Fix a constant C that is
greater than the supremum of the range of u. Construct a partition of I1,,,,,(A) into cells
over R™ compatible with the condition a(x)y%,C = 1. By considering the restriction of ¢
to A n (B x R™!) for each cell B from this partition that is open over R™, we may assume
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that either a(x)y%,C > 1 on A or a(x)y%,C <1 on A. If a(x)y%,C > 1 on A, then a, is
bounded below by a positive constant, and we are in Case 2. So assume that a(x)y%,C <1
on A.
Consider the two sets
{(x.) € A au(x,y<q) < ¥q < a(x)y&,CYand {(x,) € A : A(x)y&,C <y, < 1},
By restricting ¢ to the first set and then pulling back by a blowup in y,, we reduce to Case
2. By restricting ¢ to the second set and then swapping the coordinates y;,, and y,;, we
reduce to the case that ¢, is (I + 1)-rectilinear and ¢ is prepared over R™*4, and we are
done. This completes the proof when supp(as;) is empty.
Now suppose that supp(as;) is nonempty. By pulling back by a swap, we may assume that
[ + 1 € supp(as;). By pulling back by the power substitution y,; +— y;l“ ,we may also
assume that a;,; = 1. Let y" and «' be the tuples indexed by {1,...,d — 1}\{l + 1} that are
respectively obtained from y_; and a by omitting their (I + 1)-th components, and write
Yea = ' yi41); thus as; = (1, asp41) and al; = as;44. Fix a constant € > 1 that is
greater than the supremum of the range of a(x)(y" )% u(x,y’,y,4+4); this may may done
because a(x)(y')¥ y,,, is bounded (since it equals aq (G, y<a)/ulx, y<4)) and y,,; may
freely approach 1 independently of the other variables. Thus
ag(,y" Yi41) = A0 yu(x, ¥ Y1) < Caa
on A. Consider the three sets,
{(x,y) €A CT < yyy <1},

{(x,y) €A:0<y 1 < Cland a(x,y", y141) < Ya < Cy141}
and

{(x,y) €A:0 <y, < CTland Cy4q yg < 1}

By restricting ¢ to the first set, we reduce to the case that ¢, is (I + 1)-rectilinear, and we
are done by the induction hypothesis since |supp(as;+1)| < | supp(as;)|. If we restrict ¢
to either the second or third set, we may pull back by a blowup in y,, ;to assume that C = 1.
On the second set, we may then pull back by a blowup in y,;, and we are done by the
induction hypothesis since |supp(a’s;)| < |supp(as;)|. The third set can also be written as
{(x,y)€A:0<y;<1,0<y,,; <yu} SO we may reduce to Case 1 by swapping the
coordinates y;,, and y,.

The purpose of the pushforward property is that it ensures that for each sub-analytic
function h: B - R that is y-prepared, h o F~1 is @-prepared. This proposition is essentially
Theorem (4.3.4), the only differences being that the theorem does not mention the
pushforward property and that the theorem deals with an actual partition of D rather than
just an open partition of D over R™. In the proposition we use open partitions over R",
rather than actual partitions, because it allows the proof of the proposition to be stated
somewhat more simply since we may ignore subsets of D whose fibers over R™ have
dimension less than n, and doing so is of no loss to the study of L”-spaces on D,, .

The following lemma of one-variable calculus, and its corollary, are apparent.
Lemma(4.3.24)[201]: Let @ € R and B8 = 0. Then the function t — t*(log t)? is

I. integrable on (0,1) if and only if @ > —1,

I. bounded on (0,1) ifandonlyifa >0ora = =0.

Corollary(4.3.25)[201]: Suppose that A ¢ R" is I-rectilinear over R°, and let a(ay,...,
an) € R"and B = (By,..., By) € [0,00)". Then the function y — y%|log y|# is

I. integrableon A ifand only ifforalli e {{ +1,...,n},a; > —1;

Il. bounded on A ifandonly ifforalli e {I+1,...,n},a; >0o0ra; =B; =0.
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Note that if A ¢ R™*" is [-rectilinear over R™, then by applying Corollary (4. 3.25) to
each of the fibers A,, we see that y — y%|logy|? is integrable on A, either for all x €
I1,,,(A) or for no x € I1,,(A), according to whether the condition given in clause | of the
corollary holds; and likewise for boundedness and clause II.

Lemma(4.3.26)[201]: Let A c R™ be I-rectilinear over R°, and let« = (a4,...,a,) € Q™.
I. If{y*:y € A}isbounded, then a;;4,...,a, = 0.
II. Letp eQand B={(y,z) € AxR:a(y) <z< 1}, where 0 < a(y) < 1 for all
y € A. If {y%zP : (y,z) € B} is bounded, then a;,,,...,a, = 0.
Proof: Statement | is clear. Statement Il follows from statement | because {y*:y € A} isin
the closure of the set {y“z#: (v,z) € B}, so {y*: y € A} is bounded if {y*z?: (y,z) € B} is
bounded.
The following lemma is apparent.
Lemma(4.3.27)[201]: Let ¢ : A = R be a basic rational monomial map over R™, where
A c R™™ and ¢(x,y) = c(x)y?.
l. If A is l-rectilinear over R™ and a € Q! x N*7!, then c(x)y% is bounded on
I1,,.,(A4), and ¢ is a (c(x)y%t, y,, ..., y,)-function.
1. Letj €{1,...,n}, and put ¥’ = (v, ¥>;) and a' = (acj, a=;). If the closure of
{y; : (x,y) € A} is contained in (0,1], then c(x)(y")* is bounded on 4, and ¢ is a

(c(x)(y’)“',yj)—function.
Definition(4.3.28)[201]: Suppose we are given a basic rational monomial map ¢ : A - RM
over R™, where A ¢ R™*" is a cell over R™. A pullback construction for ¢ consists of a
subanalytic map F : B — A and a basic rational monomial map ¥ : B - R" over R™,
diagrammed as follows,

B——4
-l

¥
RIV Rﬂ'f}

where B ¢ R™*" is a cell over R™, F: B — F(B) is an analytic isomorphism over R™,
detg—; and the components of F are y-prepared, and ¢ o F is a y-function.

Observe that these properties ensure that if h is any ¢@-prepared function, then h o F is -
prepared.
We will use the six types of pullback constructions listed below, where
My j(A) = {(%,y<;): (x.¥<;) € My j1(A), a5 (x,y<;) <y; < bi(x.y<;)} (32)
for each j € {1,...,n}. When defining F below, we only specify its action on coordinates on
which it acts nontrivially.
I. Adjustment: This means that F is the identity map (but i may be different from ¢).
Il. Restriction: This means that F is an inclusion map and ¥ = ¢|p.
[11. Power Substitution in y;: This means that F sends y; +— y}’for some positive integer
p,andy =@oF.
IV.Blowup in y;:This means that we are assuming that ¢ ;is prepared over R™*/~1 that
F sends y; — y;b;(x,y<;), and that 1 is the pullback of ¢ by the transformation
sending y; +— ij(x)yfj , where b;(x,y<;) = B(x)yfju(x,y<j) is the @j-
prepared form of b; and @ is the natural extension of ¢ to IT,,,(A) % (0, )™

V. Flip in y;: This means we are assuming that ¢ is prepared over R™*/=1, that the
closure of {y; : (x,y) € A}is contained in (0,1], that b; = 1, and that ¢ is of the
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form

0(6,9) = (9<j(6.5<1) 35 055 (. <1 ¥55)) (33)
F is the transformation sending y; — 1 —y;, and v is defined by the formula on the
right side of (33), but on B rather than on A.
VI. Swap in y; and y; :This means that F is the transformation sending (y;,y;) —
(v;,¥:) and Y = ¢ o F, provided that the resulting set B is still a cell over R™.

Note that when (F,v) is a flip in y;, we always assume that ¢ is prepared over R™H/-1
and that the closure of {y;: (x,y) € A} is contained in (0,1]. We may therefore additionally
assume that for each i € {j + 1,...,n}, the monomials in y_; occurring outside the units in
the prepared forms of a;, b; and b; — a; do not contain any nonzero powers of y;, because
any nonzero powers of y; may be included in the units.

Definition(4.3.29)[201]: Suppose that we are given a basic rational monomial map y : B -
RM over R™ and a subanalytic analytic isomorphism F:B — A over R™, where A4,B C
R™*™, A pushforward construction for i and F is a basic rational monomial map ¢: A —

RM over R™, diagrammed as follows,
F

B A

L
¥

RP\F ]RA'! )

where the components of F~1are @-prepared and i o F~1 is a ¢-function.

Observe that these properties ensure that if h is any y-prepared function, then ho F~1
IS @-prepared.

If F:B — Aisamap from any one of the six types of pullback constructions described
above, ' : B > RM s a basic rational monomial map over R™ with B’ c B, and A’ =
F(B'), then the maps F|g, : B' > A" and ¥’ have an obvious pushforward construction

@'+ A > RM provided that when F is a flip in y;, the map ¢’ is of the form ¥'(x,y) =
(1/"<j (xvy<j)vij¢,<j(xvy<jvy>j))-

We now come to show the Proposition (4.3.33), which is a preparation result for constru-
ctible functions in transformed coordinates on rectilinear sets.

For any set E ¢ R™ , let @ denote the ring of all analytic germs on E, and let @, [y] denote
the ring of all polynomials in y = (y4,...,y,) with coefficients in @;. Each member of
@:[y] is an equivalence class of functions defined on neighborhoods of E x R™ in R™*",
and hence defines a function on E x R™. For each F c @[y], define the variety of F by

V(F) = {(x,y) e ExR": f(x,y) =0forall f € F}.

For each x € R™ , the ring @y, is Noetherian, so @;,;[y] is as well. This implies that when
E is compact, the varieties of @[y] form the collection of closed subsets of a Noetherian
topological space on E x R™; in other words, for any F c @[y] there exists a finite F' c F
such that V(F') = V(F).

We partially order N* by defining a < g if and only if o; < B; for all j € {1,...,k},
where @ = (aq,...,ax) and B = (By...., By). For any a € N¥ write [a] = {8 € N*: g > a},
and for any A c N* write [A] = Ugeala] for the upward closure of A. If A ¢ N¥ is nonempty,
define min A to be the set of minimal members of A, and define min @ = @. Dickson’s
lemma states that min A is finite for every A ¢ N*.The following is a parameterized version
of Dickson’s lemma.
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Lemma(4.3.30)[201]: Let E ¢ R™ be compact and {f,},cyx © De[y]. Then the set
min{a € N*: £, (x,y) # O} (34)

(x,y)EEx R"
is finite.
Proof. The proof is by induction on k, with the base case of k = 0 being trivial. Forthe
inductive step, use topological Noetherianity to fix 8 € N* such that W({fa}asﬁ) =

V({f} ,enr)- Then (34) is finite because it is contained in

k Bi

U U U min{a € N : £,(x,y) # O,a; = j} |,  (35)

i=1 j=0 \(x,y)EEx R"
and each of the sets in parenthesis in (35) is finite by the induction hypothesis.
Lemma(4.3.31)[201]: Let M c N* be finite. Then there exists a finite partition of [M]\M
that is compatible with {[a]},c) and is such that each member of the partition has a unique
minimal member.
Proof. Define € = (e4,...,€) by €, =max{a; : « € M} for eachi € {1,...,k}. Let the
partition of [M]\M consist of all the singletons {a} with a € ( [1E,[0, ei]) N [M]\M and all

sets of the form
aENk:</\ai> Ei>/\ /\ a]=ﬁ] y
Jje{1,..k \N

ien /7 \ Jje1,.,
for each nonempty N < {1...k}and 8 = (B;... Bx) in (IT5,[0, €]) N [M]
Lemma(4.3.32)[201]: Let E ¢ R™ be compact, and suppose that f is represented by a
convergent power series

fG.2) = ) fulr )z
aeNk
on E x R™ x [0,1]*%, where f, € @g[y] for each @ € N*. Then we may write

feyn) = Y 2 h@y) + Y PRy (@36)
QeEMCT peMnc

on E x R™ x [0,1]%, where the sets M", M™® c N¥ are finite and disjoint, each f; with
B € M is represented by a subseries of Y. f,(x,¥)z%#, and for each (x,y) € E x R"
and each p € M", if fg(x,y,z) #0 for somez € [0,1]%, then f,(x,y) # O for some
a € M with a < .
Proof. Let M°" be the set defined in (34), let S be the partition of [M"]\M*" given by
Lemma(4.3.31) , and let M™¢ be the set of minimal members of the sets in S. For each
p € M"¢, write Sp for the unique member of S whose minimal member is 8, and define
fp(x,,2) = Lges, £, (x,v)z% B . Then (36) holds. Consider 8 € M™¢ and (x,y) € E x R"
such that fz(x,y,z) # 0 for some z € [0,1]%. Then f,(x,y) # O for some y € Sp. Fix
a € M such that f,(x,y) # 0 and @ < y. Thus Sz N [a] is nonempty, so S < [a] by the
compatibility property of S, and hence a < f.
Proposition(4.3.33)[201]: Let F be a finite set of constructible functions on a sub-analytic
set D ¢ R™*™, There exists an open partition Aof D over R™such that for each A € A
there exist a subanalytic analytic isomorphism F = (Fy,...,F,,,4+»): B = A over R™, rational
monomial maps ¢ on A and i on B over R™, and [ € {0, ..., n} with the following
properties.
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l. Pullback Property: The map v is I-rectilinear over R™, detg—; is Y-prepared, and
for every f € F we may write f o F in the form

foF@y)= ) (0gys)*( D Woifisley) + ) Yfisbeya) | (37

SES reRS’ rerg’

on B, where the sets S « N®“tand RS, R2¢ < Z™ are finite with RS" n R*¢ = @ for each
s, and each function £, ; may be written as a finite sum

(1rsCv=) = D g, 109y Py (x, yr) i 7 € RS
J

{ | (38)
| fislen) = > 9 (logyz YPihy(x,y) if 7 € RE¢
J

where g; € C(I,,(4)),a; € Z',B; € N\ h; is either a p-function or a y-function
according to whether r is in RS or Rg¢, and the following holds:
For each some s € S,7’" € RY™ and (x,y4;) € II,.,(B),if fr s(x, ¥, ¥=1) # 0 (39)

for some y-; € (0,1)" ! then f, ((x,y<;) # 0 for somer € RS withr < 7’

II.  Pushforward Property: The components of F~1 are g-prepared, and ¢ o F~1 is a
@-function.
The superscripts “cr” and “nc” in the notation RS" and R7¢ stand for critical and noncritical.
We will use (39) to see that the LP-classes of f(x,-) are determined by which of the terms
frs(x,7) with r € R¢" are identically zero, so in this sense these are the “critical” terms.
In the degenerate case of [ = n, (37) and (38) simply mean that

foF(ry) =) g)y<illogy)Pil(x,y)

for some constructible functions g;, tupjles a; € Z" and B; € N, and -functions h;. To see
this, note that if f o F is nonzero and [ = n, then § = N° = {0} and R§", R} c Z° = {0}
with R§" N R = @, so R§™ = {0} and R = @ by (39).

Proof. For each f € F write f(x,y) = X, f;(x,y) [1; 109 f; j(x,y) for finitely many sub-
analytic functions f;:D — R and f; ;:D — (0, o). Apply Proposition (4.3.23) to U ser{f:,
fij}ij» and focus on one set A in the open partition of D over R™ that this gives, along with
its associated maps F : B = A, ¢ on A, and i on B, where 1 is [-rectilinear over R™. Thus

det g—; is Y-prepared, and we may write

foF@y) = ) atdy@u(ey) | [logay oy ux.y)
J

2

on B for some analytic subanalytic functions a;and a; ;, tuples a; and a; ; in Q", and -
units u; and u; ;. By expanding the logarithms and distributing, we may rewrite this in the
form

foFGy)= ) gty (ogy)? hy(x,y) (40)

i
for some constructible functions g;, tuples a; € Q" and S; € N™, and y-functions h;.
Bypulling back by power substitutions in y, we may assume that a; € Z™ for each «; in
(40).
Write h;(x,v) = H;(¥<,(x,y<), y>;) for some analytic function H;(X,ys;) on the closure
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of the image of .

We are done if [ = n, so assume that [ < n and work by induction on n — [. Since the
closure of the range of Y, is compact, we may fix e > 0 such that each function H; is given
by a single convergent power series in ys; with analytic coefficients in (X, y.,;), say

H(Xys) = ) Hiy (0¥, (a1)
yENn‘l
for all X in the closure of the range of ., and all y-,in [0,€]™". Foreachj € {l +1,...n},
by restricting ¥ to {(x,y) € B:y; > €} and swapping the coordinates y;,,; and y;, we may
reduce to the case that v is (I + 1)-rectilinear, in which case we are done by the induction
on n — l. So it suffices to restrict 1 to B n (R™*! x (0,e)™). After pulling back by the
maps sending y; — €y; for each j € {l+1,...,n}, and again expanding the logarithms
logy; e = logy; + loge and distributing, we may assume that e = 1. We are now done
pulling back . The pushforward property of the proposition we are showing follows from
the fact that ¢ satisfies the pushforward property of Proposition (4.3.23), because we have
only applied some very simple pullback constructions to the map vy originally given by
Proposition (4.3.23). It remains to show that we can express f o F as a sum in the desired
form.
By grouping terms in (40) according to like powers of log y.,;, factoring out suitable
monomials in y, and absorbing any remaining monomials in y.; with nonnegative powers
inside of y-functions, we may rewrite (40) in the form

foF(y)= ) (logys)?y* Y g0y (ogy )i y(xy)  (42)
SES J€Js
for some finite S < N™~! and finite index sets J, constructible functions gj, tuples &5 € Z"
and a;, B; € N', and y-functions h;, which we still write as h; = H; o i with H; written as
a power series (41). For each s € S write

GsoWs(x,y) = ) g;()y5 (logy= )P y(x,y),
J€Js
where

Ys(x,y) = (1/’<l(x V<), |09}’<11(gj(x)), ). ,y) ,

G(X.Y.Z07) = ) ZySYH H(x, ),

JEJs
with Z; = (Z;) j¢;, and Y = (Yy,...,Y;). By computing

Z ]y<lyﬁ] Z HJV(X)y>l = Z ZZJY<]Y ]H]y(X) }’>l (43)

j€Jg yeNn-1 yeNn-L \ j€Jg
we may write

G(XY.Zuys) = ) Goy (XY, 2o vV,
yeNn-1
with each
oy (XY, Zey) = ) ZySIVPIH;, (X))
J€Js
Note that each G, is a polynomial in (Y, Z,, y<;) with analytic coefficients in X, and X
ranges over a compact set. So we may apply Lemma (4.3.32) to get

130



Gs(X.Y, Z5,y) = Z yZle,y(Xv Y. Z5,ya) + Z yLG;)C/(Xv Y. Zs,y),
YERST YERGS
where RS™ and RY< are disjoint subsets of N"~!, each GZ is an analytic function represented
by a subseries of ZanYffsz,a(X,Y,Zs,ysz), and for each choice of (X,Y,Z,,y<;) and
Y € R¥C, if G, (X, Y, Zs, y<1,y=1) # O for some ys,; € [0,1]™", then there exists y € RS"
such that G, (X,Y, Zs,y<) # 0andy < y'. Write

foFGy) =) (10930 y% | > ¥iGay o Yraalr <)

SES YERST

+ z WG oW (x,y) |, (44)
YERGS

where ¥ ., is the map obtained from ¥ by omitting its components y-,;. By distributing
each y% and expressing each function Ggy as a sum of terms indexed by j € J, via a
computation analogous to what was done in (43) for G, (but going from right to left rather
than from left to right), we see that (44) expresses f o F in the desired form.
Definition(4.3.34)[201]: Consider a finite set Fof constructible functions on a subanalytic
set D ¢ R™*" and let A be an open partition of D over R™ obtained by applying Proposi-
tion (4.3.33) to F. Focus on one A € A, along with its associated maps F = (Fy,..., Fp4n) ¢
B = A, on A, and Y on B, where v is l-rectilinear over R™, as in the statement of the
proposition. Write (x, ¥) for the coordinates on A with center 8, where 6 is the center of ¢.
Write

. oF  HOAYTU
et@(x,y) = H(x)y"U(x,y)

on B for some analytic subanalytic function H, tuple y = (y4,...,¥,) in Q", and ¢-unit U.
For each f € F write equation (34) as

foP(y) = ) fuxy)
(r.s)EA(f,A)
on B, where

AT(f,A) = {(r,s):s € Sandr € RS},
AS(f,A) = {(r,s):s € Sandr € R0},
A(f,A) = AS(f,A) U AP(f, A),
£(xy) = {y;l (logy-)*frs(x, y<1), if (r,s) € A (f, 4),
YT L (l0gys ) fs(y), if (rs) € A™(F, A),
for the sets S, R¢" and R¢ and the functions f, s defined from f and A in Proposition (4.
3.33). Foreach f € F and x € I1,,(A), define
AT(f, A, x) = {(r,s) € A (f, A): f. o(x,y<)) # O for some y, € I,(Bx)},
A"C(f, A, x) = {(r,s) € A"(f,A): f,(x,y) # O forsomey € B},
A(f, A, x) = AS(F,A,x) U A(f, 4, x),
Q(f A x) ={y< € }(By): frs(x,y<) # 0forall (r,s) € A°(f, A4, x)}.
Foreachx € I,,(A) and i € {l + 1,...,n}, define
7;(f,A,x) = inf{r;: (r,s) € A“(f, A, x)},
5;(f,A,x) = sup{s;:(r,s) € A“(f,x)and r; = 7;(f, A, x)},
under the convention that 7;(f, 4, x) = o and 5;(f, 4, x) = 0 when A°"(f, A, x) is empty.
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Remarks(4.3.35)[201]: Consider the situation described in Definition (4.3.34), and let
fEF.

l. For each x € I1,,,(A), the set Q(f, 4, x) is dense and open in I1;(B,).
Proof. This follows from the fact that for each x € I1,,,(4) and (r,s) € A (f, A, x), fs(x,")
is a nonzero analytic function on I1;(B,.), and I1;(B,) is connected and open in R'.

. For each x € I1,,(4),, the set A" (f, A, x) is empty if and only if f(x,y) =0

forally € A,.

Proof. If A"(f, A, x) is empty, then (39) implies that f(x,-) is identically zero on A, . If
A" (f, A, x) is nonempty, then the following lemma implies that f(x,-) is not identically
zeroon A,.
Lemma(4.3.36)[201]: Consider the situation described in Definition (4.3.34). Fix f € F,i €
{L+1,...,n},x €I1,,(A) with A" (f,A,x) # @, and y,; € Q(f, A, x). For any tuple y,; =

Oy Write y' = (31), vy @10 Y51 = (/1) Then the limit

o F(x,
lim —— f,A]f; Coy ) (45)
Yim0y T (log y;) il A%)
exists for all y € (0,1)" "1, and the set
{y" € (0,1)* "1 : (45) is nonzero} (46)
is dense and open in (0, 1)1,
Proof. Define
A(f A x) ={(r,s) € A(f A x) : ;= 7(f,x)and s; = §;(f, %)},
A7 (f A x) = Ai(f A x) N AT(f, A),
AT (f, A, x) = A(f.A,x) N AM(F, A).
It follows from (39) that for each (r,s) € A(f, A4, x), either r; > 7,(f, A, x), or r; = 7;(f, A, x)
and s; < 5;(f, A, x). Therefore the limit (45) exists and equals g(y'),
where g: (0,1)" =1 > R is the analytic function defined by

g = Z () (log y')*' fr.sCx, y<1)
(r.s)EAT (f.Ax)

) O (09 ¥) frslx vy 0).
(r.s)EAT(f Ax)
So to show that (46) is dense and open in (0,1)" %1, it suffices to show that g is not
identically zero. To do that we will show that g o n is not identically zero, where n : A %
(0,1) » (0,1)" "1 is defined by
n(dt) = (tlj )je{l+1 ..... n\{i}

for some suitably chosen open set A c (0, )71,
Note that

genn= > T og0)l* £ e ya)

(r.s)eAf” (f.Ax)

+ Z 725 (log )l *'l £, (e, y<1, (2, 1), 0).
(r.s)EA? (f.Ax)
We may choose A so that there exist ¥ € {r': (r,s) € A{"(f,A,x)} and ¢ > O such that for
all (r,s) € A" (f, A, x) withr’ = 7',
AT+ c < A-r foralld € A 47
By (39), for each (r,s) € A(f,A,x) there exists p such that (p,s) € A" (f,4,x) and
p < r (and necessarily p #7),s01-p’ < A-r'forall A € A. Therefore by shrinking A and

132



c, we can ensure that (47) also holds for all (r,s) € A} (f, A, x). So by defining
§"=max{[s']: (r,s) € A" (f, A, x)and r’ = 7'},
ASW(f A x) = {(r,s) € A" (f, A x):r" =7'and |s'| = §'},
we see that as t tends to O, g o (4, t) is asymptotic with

090" [ Y Ay |,
(r,s)EAfj\(f,A,x)
which is not identically zero because the sum in parentheses is a nonzero polynomial in A.
To show the next lemma, we need the following inequality:

ey + -+ )P < xP++x ifxy,...,q=0and0<p <1 (48)
The inequality (48) can be verified when k = 2 by considering f(t) = (x; +t)? and
g(t) = xP +tP, where x; >0and 0 <p <1, and then showing that £(0) = g(0) and
f'(t) < g'(¢t) forall t > 0. The general case then follows by induction on k.
Lemma(4.3.37)[201]: Let v be a positive measure on a set Y, let {f.};c, and {gj}jej be
finite families of real-valued v-measurable functions on Y, and let p,q > 0. Put M =
max {p, q}. Then

( q ;
. flfilplgjl dv ifM <1,
p ijyerxy Y
LZfi Zgj dv <A 1/MM
i€l JEJ Z <f |fl|p|g] |qdv> , ifM>1
W\ Gerxg Y

Proof. By symmetry we may assume that p = q. Then

J (227 Y o sfy(Zw)p o] w

i€l J€EJ i€l JEJ

a/p\ P

=fy (ZI}%I) >l dv

i€l jEJ

() (B ) o e

i€l jEJ
p

=[1 > g 1" av
Y

( ijerx]

( |fl-|p|gj |qdv, ifp<1

(ijyerx) Y

IA

p

¢ 1/p
<f I£:17]g; | dV> , ifp>1
\\ @ jerxy MY

with the last inequality following from (48) when p < 1 and from the triangle inequality for
LP(v) whenp > 1.
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Lemma(4.3.38)[201]: Consider the situation described in Definition(4.3.34), and suppose
that f,u € F,q > 0and x € I1,,(A). Then

LCCfas lula %) N (19, ©0)

= [ € ©.c0): 7if. A x)p + 7w A, x)q + 7, > -1}
i=l+1

And, © € LC( f|,, l]?] 4, x) if and only if either A" (u, A, x) is empty or else for eachi €
{l+1,.. n}L7(f,A,x)>0o0r7(f,Ax) = 5(f, A x) =0.
Proof. Let x € I1,,(A). The conclusion is clear from Remark (4.3.35.11) when either
A°(f,A,x) or A"(u, A, x) is empty, for then LC(f,|ul9, x) = (0,] and either 7;(f, A,
x)=oo for all i e {{+1,..,n} (when A“"(f, A, x) is empty), or 7;(u, A, x) = oo for all
ie{l+1,..,n} (when A (u, A, x) is empty). So we assume that A" (f, A, x) and A“"(u,
A, x) are both nonempty. Let p € (0, ).

Suppose that

r(f A x)p + i(wAx)g + v > -1 (49)
foralli e {{ +1,..,n}. Then
np +rjqg+y > -1

forall ie{l+1,..,n}(r>s)€A(f,Ax) and (v s") € A(u,A x). By applying Lemma
(4.3.37) to the sums f o F =}, fr,s and po F =Y s fys Using the measure defined
from the Jacobian of F in y, and then by applying Corollary (4.3.25), we see that p €
LCCf1a 1l a, ).

Conversely, suppose that p € LC(f|4 |94 x), and let i € {{+1,..,n}. Fubini’s
theorem and Remark (4.3.35.1) imply that there exist y.; € Q(f,4,x) N Q(u, A, x) and y' in
then set (46) such that

oOF
yi = |f o F(x, ¥)|? |ue F(x,y)|4 det@ (x,y)

is integrable on (0, 1). So (49) holds by Lemmas (4.3.24) and (4.3.36).

The L™ case is similar. Indeed, suppose that 7;(f,4,x) >0 or 7;(f,A,x) = 5;(f,A,x) =0
forall ie{l+1,.,n}. Thenr;,>0o0rr;=s;=0forallie{l+1,..,n}and (r,s) €
A(f, A, x). So applying Corollary (4.3.25) to each term of the sum fo F = Z(r,s)fr,s shows
that foF(x,-) is bounded on B,, and hence oo € LC( f|4, |ul?]4, x).

Conversely, suppose that oo € LC( f|4, |t]?] 4, x). Then f o F(x,") is bounded on B,. So
for each i € {l +1,..,n} we may choose y.; € Q(f,A,x)and y'in the set (46), and
thereby conclude that 7;(f,A,x) >0 or 7;(f,A4,x) = s;(f,A,x) =0 by Lemmas (4.3.24)
and (4.3.36).

Proof of Theorem (4.3.1) in the Constructible Case. Let f,u € C(D) for a subanalytic set
D c R™™" fix q >0, and write E = I1,,(D). Apply Proposition (4.3.33) to F = {f, u},
and use definition (4.3.34). We claim that for each A € A, the set
Ta= {LC(fla lul4, %) = x € 11,,,(A)}

is a finite set of open subintervals of (0, 0] with endpoints in (spang{1, g} N[0, )) U
{0}, and that for each I € ¥, there exists g,,; € C(I1,,(4)) such that

{x € 1, (A) : 1 < LC(fla |pl?]0, %)} = {x € T, (A): gas(x) = O},
The claim implies the theorem because for each x € E,

Lo lut ) =[] LCCrLalultla),

A€EAS.t.
x€ll;, (4)

so the claim shows that ¥ is a finite set of open subintervals of (0, o] with endpoints in
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(spang{l,q} N[0, »)) U {}, and that for each I € ¥,
{xeE:1cLC(f |lul9x)}={x€E:Ic LC(fls,|ul?l,,x)forall A € A with x
€ I, (A)}

_{( : : ‘L \}
—kxe E.Z Z (gAJ(x)) _o) |

AEA JEX 4 s L.
Icj

where each g’AJ: E — R is defined by extending g, ; by 0 on E \II,,, (4).

To show the claim, focus on one A € A. Lemma (4.3.38) shows that each member of T,
is an open subinterval of (0, o] with endpoints in (spang{1, g} N [0, )) U {oo}, and that
T, is finite because

L LC(fla, lplq ) = LC(f |4 Iplla , x")
for all x, x" € I1,,,(A) such that A"(f, A, x) = A (f,A,x") and A (u, A, x) = AA(u, A, x").
Fix I € ¥, .We may define g,; = 0 if I is empty, so assume that I is nonempty. Leta =
inf I and b = sup I. Lemma (4.3.38) implies that for any x € I1,,,(A), when the infimum of
LC(f 14, lul?],4 ,x) is finite, this infimum is determined by the inequalities (49) for all i €
{t+1,..., n} for which 7; (f, A, x) is positive; and similarly, when the supremum of
LC(fl4,lul?],,x) is finite, this supremum is determined by the inequalities (49) for all
i € {l+1,..,n} for which 7;(f, A, x) is negative. Therefore I c LC(f],,|ul?],,x) if and
only if each of the following two conditions hold.
l. If I N (0, ) is nonempty, then
fr,s(xvysl) = 0and :urr,sr(xvysl) = Ofor all Y« € Hl(Bx)v
for every (r,s) € A" (f,A) and (r',s") € A (u, A) such that foralli € {l +1,...,n},

rna+rq + y; <-1, if >0,
T'l-’q + Yi < —1, if = O,
rb+riqg + vy, < -1, if <0,

with the understanding that we are allowing computations in the extended real number

system since a or b could be oo,
Il.  If o € I, then at least one of the following two conditions hold.
(a) We have
Her o1 (x,y<) = 0forallyg, € I1,(By),
for every (r',s") € A" (u, A).
(b) We have
frs(x,y<) = Oforally, € Ii(By),
for every (r,s) € A°"(f,A) such that for all i € {{+ 1,...,n}, either r; <0, orelse r; =
Oands; > 0.
Therefore g, ; can be constructed using Theorem (4.3.3).
We now turn the attention to stating and showing the preparation theorem.
Definition(4.3.39)[201]: When considering the situation described in Definition (4.3.34),
we shall now also write G = (G4,...,G4n): A = B for the inverse of F, and for each
je{l+1,...,n}write
G j(x,y) = Hi(X)IF1P1 V;(x,y)

on A, where H; is an analytic subanalytic function, g; € Q", and V; is a ¢-unit.
Lemma(4.3.40)[201]: Consider the situation described in Definition (4.3.34) and (4.3.39)
Let f € Fand (r,s) € A(f,A), where r = (1741,..., 1) and s = (S;41,---,Sn)-
We may express f;.co G in the form
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fraoGy) = ) T(xy) (50)
kEKr,s(fo)
on A, where K, ;(f, A)is a finite index set and for each k € K, ;(f, 4),

Te.9) = ge@Gomx ) || [00ls19)™ Juetey) 6D
j=1

for some g, € C(11,,(4)), tuples R, = (Ri1,...,Rxn) € Q"and S, = (Sk1,--+,Skn) € NP
satisfying R, j = rjand Sy ; < s; forallj € {I +1,...,n}, and @-units u,.
Proof. By (38) we may write fr,s (x,y) as a finite sum of terms of the form

g(x)y*(logy)*h(x,y) (52)
on B, where g € C(I1,,,(4)), the tuples R = (Ry,...,R,) € Q" and S = (Sy,...,S,) € N"
satisfy R; = r; and S; = s; forall j € {{ + 1,...,n}, and h is a y-function. Pulling back (52)
by G gives

g ()G (x, )7 (109 G (x,¥))° ho G(x,)
on A. In the above equation, by writing
109 Gy j(x, ¥) = log H;(x) +log I51% + logV;(x, y)

for each j € {1,...,n}, and then distributing, we obtain the desired form given in (50) and
(51), except that each u; is only a ¢-function, not necessarily a ¢-unit. But then by writing
u, = (u, —c¢) + ¢ for some sufficiently large constant ¢ so that u;, —c and c are both
units, and then separating each term in (50) into two terms, we may further assume that each
ugin (50) is a ¢-unit.
Lemma(4.3.41)[201]: Consider a single term T;, given in (51). We may express T, o F as a
finitesum

Teo F(ry) = ) g (D)y™e(logy)* he(x.) (53)
¢

on B for some g, € C(I,,(A)), tuples S; = (S¢1,...,5;n) € N" satisfying S¢ ; < 5 ; for
each j € {1,...,n}, and bounded functions h,.
Proof. Since
|}7|ﬁ] — Gm+j(x1y)
H; ()V;(x, )
for each j € {1,...,n}, it follows from (51) that

n

Skj
— Ry y] ’ °
Ty o F(x,y) = g (x)y ]I=1| <|09 H.(x)Vo F(x,y)> wo F(x,y)

on B. In the above equation, write
Yi
=logy; —logH;(x) — logV:e F(x,y)
HGVe Fey) 77 72 ,
foreach j € {1,...,n}, and then distribute.
Theorem(4.3.42)[201]: (Preparation of Constructible Functions-Full Version). Let @ be a
finite subset of C(D) x C(D) x (0,c0) for some subanalytic set D ¢ R™*", For each

(f,u,q) € @ let

log

T(fuq) = {LC(f,|ul?,x) : x € I,,(D)},
andlet F = {f,u: (f,u,q) € @}. Then there exists an open partition A of D over R™ into
subanalytic cells over R™ such that for each A € A there exist a rational monomial map ¢
on A over R™ and rational numbers g; ;, where i,j € {1,...,n}, for which we may express
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each f € F in the form

f(xvy): Z Tk(XJ’) (54)
keK(f,A)
on A, where K(f, A) is a finite index set and for each k € K(f,A),

Tk<x,y):gk<x)<<]l[|yirkf> log]l[ly,-lﬁ”' >uk<x,y) (55)
i=1 N\=1

for some g, € C(I1,,(A)), rational numbers ry;, natural numbers s;;, and ¢@-units uy,
where we are writing (x, ¥) for the coordinates on A with center 8, with 6 being the center
for . Moreover, for each f € F and A € A there exists a partition P(f,A) of K(f,A)
described as follows. For each A € A, (f,u,q) € ®, K € P(f,A), A € P(u,A), and
1 € T(f,u, q), at least one of the following two statements holds:

I. forall (x,4) € K x A, we have I1,,,(4) x I c LC(T,, |T;]19, 11,,(4));

. for all x € II,,,(A) such that I ¢ LC(f,|u|?,x), either X, cx T (x,y) = O for all
y €A, or Y4 Th(x,y) =0 forall y € A,; and if statement Il does not hold, then

M (4) % (IN{o0}) < LC(T;, |T51% T1,1(4)) (56)

for all (x,1) € K x A and all functions T,; and T; of the form

!
Sk
n n et

TiCe,y) = | |17l { log [ [17ilPxes

i=1 j=1

n n SA

TiCey) = | |lgile | log | |15ilPe

i=1 j=1

where the B,; ; ,B7:; € Q and s ;, s3; € N are arbitrary and the r,.;, 3; are as in (55).
Proof. Apply Proposition (4.3.33) to F. Fix A € A and use the notation found in Definition
(4.3.34) and (4.3.39) and in Lemmas (4.3.40) and (4.3. 41). Lemma (4. 3.40) shows that
each f € F may be written in the form given in (54) and (55), where each T is defined as in
(51) and

ke = | Kara)
(r.s)EA(f.A)

P A = {KesT D), oenir iy
Now also fix (f,u,q) € ®,K € P(f,A),A € P(u,A)and I € T(f,u, q).Write K = K, o(f,
A) and A = K, (u,A) for some (r,s) € A(f,A) and (r',s") € A(u, A). We are done if
statement Il in the last sentence of the theorem holds, so assume otherwise. Therefore we
may fix x, € I1,,(A) such that I < LC(f, |u|? ,x,), (r,s) € A(f, A, x,) and (', s") € A(u,
A, xy). Lemma (4.3.35) gives the following.

For each f € F, define

{Forallp eINn(oandallie{l + 1,...,n} 57)
fl'(vav-XO)p + fi(:uvAv-XO)q + Yi > _1

{Ifoo € I,thenForallie{l + 1,...,n} (58)
7, (f,A,xy) > 0o0r 7;,(f,A,x,) = 5;(f, A x,) = 0.

Let k € K and A € A. Write T, and T, as in (51) with k = k and k = A, respectively, and
write
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TeoF(ey) = ) gp ()y™e(logy)che(x,y) (59)
¢

Tyo F(ry) = ) gy (@)y™(0gy)ih, (x.) (60)
n
as in (53). Note that foreachi e {l + 1,...,n},
Rei=1 = 7(f, A xp)and Ry ; = r{ = 7;(u, A, xp). (61)

So (57) holds with R,.; and R, ; in place of 7;(f, A, x,) and 7;(u, 4, x,), respectively.
Therefore by Corollary (4.3.25), Lemma (4.3.37), (59) and (60), it follows that

I, (4) * (I\{eo}) © LC(Ty, IT; |7, 1, (4)).
Note that the proof of this fact depends only the values of r and ', being independent the
values of B,..., By, s and s’, so (56) follows.

Now suppose that o € I. Note that for each andi € {l +1,...,n}, we have S;; < §,.; <
s;. Combining this with (61) shows that for each i € {{ +1,...,n}, either R,.; > 0 or else
Ryi = S¢; =0 for all ¢. Therefore Corollary (4.3.25) and (59) show that T, o F(x,) is
bounded on B,
for each x € T1,,,(4). S0 I,,,(A) % {0} © LC(Ty, IT3|%, 10,5, (4)).

This completes the proof of the theorem, except for the fact that A need not be a cell over
R™. To remedy this, simply construct an open partition of A over R™ consisting of cells
over R™ (for instance, using Proposition (4.3.9)), and then restrict to each of these cells.

Theorem (4.3.42) was formulated in such a way so as to be as strong and general as
possible, but at the cost of having a technical formulation that may obscure the fact that it
implies the simpler Theorem (4.3.2). The corollary of Theorem(4.3.42) given below directly
implies Theorem (4.3 .2) and its analog for p = oo described in (20), and it generalizes the
interpolation theorem [183].

The proof of the corollary makes use of the following observation: for the set F from
Theorem (4.3.42), if f € F is subanalytic, then the restriction of f to A is ¢-prepared(as
opposed to being in the more general form allowed by (54)and(55)). This observation
follows from the way the proof of Theorem (4.3.42) uses Proposition (4. 3.33), and from the
way the proof of Proposition (4.3.33) uses Proposition (4.3.23).

Corollary(4.3.43)[201]: Suppose that P c (0, ], that D ¢ R™*™ is subanalytic, and that
@ is a finite set of triples (f,u,q) for which f: D — R is constructible, u: D — R is sub-
analytic, and g > 0. Define E =I1,,(D) and F ={f : (f,u,q) € ®}. Then to each f € F
we may associate a function f* € C(D) in such a way so that the following statements hold.
l. There exists an open partition A of D over R™ such that for each A € A
there exists a rational monomial map ¢ on A over R™ such that for every
(f,u, q) € @, the function u is @-prepared and we may express f* as a finite

sum

f106y) = ) Tlx,y) (62)
k

on A, where each function T}, is of the form (55).
. The following hold for all (f,u,q) € .
(@ Wehave f = f*on{(x,y) € D: P c LC(f, |u]? ,x)}.
(b) For all A€ A and all terms T, in the sum (62), we have I1,,(A) X P C
LC(Ty, |ul?, 11,,(A)). (Hence E x P ¢ LC(f*, |u|%,E)..
1. If o ¢ P, then we may take each function T} to be of the simpler form
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T, ) = gi(x) (]_[mrm (logl7;1)* ) i x,), (63)

and the fact that I,,,(A) % P < LC(Ty, |ul9, 1,,(4)) only depends on the values of the 7, ,
and not the values of the s, ;, in the following sense: we have I1,,(A) x P < LC(Ty, |ul?,
M,,,(4)) for any function Ty on A of the form

n
Ti(xy) = | [Imilrs: Goglyidyhe
i=1

where the 7y, ; are as in (63) and the sy, ; are arbitrary natural numbers.
Proof. Let A be the open partition of D obtained by applying Theorem (4 .3.42) to @; we
use the notation of the theorem. Because u is subanalytic for every (f, 1, q) € @, it follows
that we may partition the members of A further in the x-variables to assume that for each
A € A and each (f,u,q) € @, either u(x,y) =0 for all (x,y) € A, or else for each
x € I1,,(A) there exists y € A, such that u(x,y) # 0. Therefore for all (f,u,q) € ®,1 €
I(f,u,q),Ae Aand K € P(f,A), at least one of the following two statements holds.

. Forevery k € K we have IT,,(A) x I  LC(Ty, |ul?,1,,(4)).

II. We have Y e T(x,v) =00on{(x,y) € A: 1 c LC(f,||ul? x)}.
For each (f,u,q) € @ and A € A, define K*(f, A) to be the union of all K € P(f,A) for
which there exists I € T(f, u, q) such that P c I and the above statement | holds. For each

(F.1.q) € ®, define f* by
* Z To(x.y)  if(x,y) €A with A€ A,
fixy) = keK* (f.4)

flx,v) if (x,y) € D\U A.
Observe that statements | and Il of the corollary hold.
To prove statement 11, suppose that co & P. By writing
n n

log 1_[|37j|ﬁi'j = Z Bi jlog|3;|
=1 =1

in (55) and then distributing, we may write each term T}, as a finite sum of terms of the form
(63) with the same values of the 7 ; but possibly different values of the the s, ;. But only
the values of the 7 ; are relevant by (56) since oo & P.

The analog of Theorem (4.3.2) for p = oo mentioned can be stated as follows: if D c
R™*™ js subanalytic and £ € C(D) is such that Int®(f, I1,,(D)) = I,,,(D), then there exists
an open partition A of D over R™ into cells over R™ such that for every A € A we may
express f as a finite sum f(x,y) = ¥, Tr (x,y) on A for terms Twith LC® (T}, I1,,(4)) =
I1,,(A) that are of the form

n n Sk
~ 17 ~ |Bij
T y) = @ | | [imre {1og] [Imil™ | |y, (64)
i=1 j=1

as denoted in the above. This statement was proven in Corollary (4.3. 43). A more literal
analog of Theorem (4.3.2) for p = oo would require the terms T}, to be of the simpler form

T (x,y) = gi(x) <1_[|37i|ri (|09|}7i|)5k‘i>uk(ny); (65)

however, this more literal analog is false, and the purpose of this part is to prove this by
giving a counterexample. It follows that in Statement 111 of Corollary (4.3.43), one may not
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drop the assumption that oo & P; and in Theorem (4.3.42), one may not replace (56) with
the statement I1,,,(4) x I < LC(Ty , |T4|9, 1,,(4)).
We write (x,y) = (x, y;,v,) for coordinates on R3, and define f:D — R by

f(x,y) = log (%) (66)

where

D={(x,y) ER:0<x<10<y, <lxy, <y, < y} (67)
Note that the function f(x,-) is bounded on D, for every x € (0, 1), and that the function f
is already a single term of the form given in (64) on D. The obvious way to express f as a
sum of terms of the form (65) is to write

f(x,y) =logy, —logy,
on D; however, the terms log y, and log y, now become unbounded on each fiber D,. It
should therefore seem feasible that f is a counterexample for the more literal analog of
Theorem (4.3.2) for p = oo. To show that this is in fact the case, we show an assertion
below.
Lemma(4.3.44)[201]: Let A = {(x,z) ER?: 0 < x < 1, x < z < 1}, and define an
analytic isomorphismn : (0,1)? — A by
n(x,t) = (x,x°).

Suppose that g: A — R is a function of the form

g(x,z) = Z(Iogx Yix%izPig,(x, z) (68)
i€l

where I c N is finite and nonempty, the a; and B; are integers, and each g; is a function on
A that is not identically zero and is of the form

X
gl(x1 Z) = Gl (xyZy;)
for an analytic function G; on [0,1]3 represented by a single convergent power series, say

G;(X) = Z G, XY, for Xe[01]3
yEN3
Then there exist € € (0, 1], a nonzero real number a, a natural number r, and integers p and
q such that for all t € (0, ¢),
goenlx,t)

im =

x—0 xP*at (log x)”
Proof. By factoring out the lowest powers of x and z in (68), we may assume that the «;
and B; are all natural numbers. But then each monomial x%z #i can be incorporated into the
function g;, so we may in fact assume that the numbers «; and g; are all zero. For each

gion(x, t) = Gi(x,x", x'™")

= Z Giy xY1tty2+(1-t)ys Z Z Gi[k,l] xk+t

YEN3 k=01=—k

(69)

where
k,l _
Gi[ I = E Giy-

yEN3s.t
Y1+Y3=Kky2—Vy3=l
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So
gon(x,t) = Z(Iog x)tg; o n(x,t)

i€l

= Z i i Gi[k’l] x*+ (log x)*. (70)

i€l k=01=—-k
Note that for each i € I, the function g; is not identically zero and 7 is a bijection, so g; o n
is not identically zero, which implies that Gl.[k’l] #+ 0 for some k and L.
Let (p, q) be the lexicographically minimum member of the set

U{(k,l) EN x Z:k+1 = 0and G = 0}, (71)
i€l
and define r = max{i el:GPY O}, a= GPY and e = ﬁ. We claim that for all
(k,D) # (p,q) inthe set (71) and all t € (0, €),
k+ 1t >p+qt. (72)
The claim and (70) together imply (69). To prove the claim, consider (k,l) # (p,q) in (71).
If Kk =p, then [ > q, in which case (72) holds for all t > 0. So suppose that k > p + 1.
Simplifying the inequality (p + 1)(1 — t) > p + qt shows that it is equivalent to the
inequality t < €. So for all t € (0, €),
k+lt=k(l-t)+(k+Dt=>(p+1)(1-t)+0t>p+qt,
which proves the claim.
Assertion(4.3.45)[201]: For the function f: D — R defined in (66) and (67), there does not
exist an open cover A of D over R such that for each A € A, f may be written as a finite
sum of terms T;, of the form (65) with each T, (x,-) bounded on A4, forall x € II,,(A).
In the following proof, we shall say that two functions g, h : A - R\{0} are equivalent
on A if the range of g/h is contained in a compact subset of (0, =).
Proof: Suppose for a contradiction that there exists an open cover A’ of D over R such that
for each A" € A’, f may be written as a finite sum f(x,y) = X T, (x,y) on A’ for terms
T,of the form (65) with each Tj(x,-) bounded on A’ for all x € I1,,(A"); note that we
associate to A’ a certain rational monomial map ¢’ on A’ over R that is used to defined the
terms T,. By Proposition (4.3.9) there exists an open cover A of D over R° such that for
each A € A there exist a unique A’ € A’ containing A and a prepared rational monomial
map ¢ on A over R such that for each function g, occurring in (65), say of the form

gx(x) = Z Ir,i(x) 1_[ log gi.i ; (x) (73)

J
for subanalytic functions g, ; and gy ; ;, the functions g, ; and g, ; ; are all ¢;-prepared on
I1,(A). The functions xy, and y; are not equivalent for x near O, so we may fix A € A of
the form
A={(x,y):0<x<by,0<y; <bi(x),a,(x,y;) <y, <by(x,y1)}

with a,and b, not equivalent on I1,(A4). Let ¢ be the rational monomial map on A over R°
associated with A. Note that x is not equivalent on I1,(A) to a constant, that y; is not
equivalent on I1,(A) to a function of x, and that y, is not equivalent on A to a function of
(x,y1), so @ must have center 0. For the same reason, if A’ is the unique member of A’
containing A, and if ¢’ is the rational monomial map over R associated with A’, then ¢’
must also have center 0. We are only interested in the restriction of f to A, so we may
therefore simply assume that A’ = A and ¢ = ¢’. So we may write
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|09( ) Z gy 3,52 (log y; )%k (log v, )*2u, (x, y1,v2) (74)

on A for the constructlble functions g, given in (73), rational numbers 7y, ; and ry ,, natural
numbers s ; and sy ,, and @-units u;; and we may write

ay(x,y1) = x%yu(x, y1) and b,(x, y1) = xPy,v(x, ;)
on I1,(A) for some rational numbers a and g satisfying 0 < f < a < 1 and some ¢@,-units
u and v.
Fix positive constants ¢ and d satisfying ¢ > u(x,y,) and d < v(x,y,) on II,(A). Since
a > [, by shrinking b, we may assume that

A={(x,y):0<x< by,0< y; < by(x),cx%; <y, <dxPy,}.

Pulling back the equation (74) by the map (x, y;,y,) — (x,y1, y1,) gives

T Tk lo Ski2
09 (1) = 2 e gy s (14 ) e ) 79

log v,
on the set

{(XJ’LYZ): 0<x< by,0< y; <by(x),cx* <y, < dxﬁ}-
By assumption, each term of (75) is bounded for each fixed value of x, so letting y,tend to O
for each fixed value of (x,y,) shows that for each k, either 1y ; +1,, >0 0r 1,1 + 1%, =
Sg1t+ Sk2 =0 (and s, 1 + sx, = 0 means that s, ; = s, = 0). So letting y; tend to O in
(75) gives

og (=) ngoc)yz Vi (x.7,) (76)

on
{(6,95):0 <x < by, cx® <y, < dxP},
where each vy, is a y-unit with ¢ defined by ¥ (x,y,) = lim,, o 00, V1, V172).

By pulling back (76) by the map (x,y,) — (x,cxfys ") and expanding logarithms using
(73), we may write

109y, = ) (logx)' x% ¥ fi(x,y,) "

on

{(x,y2) : O0<x< by, x <y, <(} (78)
for some C > 0, rational numbers a; and f;, and y-functions f; (for an appropriately
modified ), where i ranges over some finite set of natural numbers. By pulling back by
(x,y,) — (x",y}) for a suitable positive integer r, we may further assume that all the «;
and g; are integers, and that the components of i (x,y,) are also all monomial in (x,y,)
with integer powers. Thus each component of v is either of the form xp for some positive

integer p, is of the form y,! for some positive integer g, or is of the form = y— = xP7(x/y,)?

for some positive integers p and g with p > q. So we may assume that ¥ (x,y,) = (x, y,,
x/y,), and therefore write f;(x,y,) = F;(x,y,,x/y,) for some analytic function F; defined
on the closure of {(x,y,,x/y,) : (x,y,) € A}. Fix § > O sufficiently small so that

{(x,y2): 0<x < 6%,0<y, <68 x/y, <6} (79)
is contained in (78) and that F; is represented by a single convergent power series on
[—62,8%] x [—8, 8] x [-8,8]. Thus restricting to (79) and then pulling back by (x,y,) —
(6%x, 85y,) gives an equation of the form
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i apa,Bi X
logy, = ) (ogx)! ¥ y['Fy (x.32.-) (80)
- 2
l
on
{(x,y,):0<x<1lx<y,<1}
with each F; represented by a single convergent power series on [—1,1]® centered at the
origin.
Applying Lemma (4.3.44) to the right side of (80) shows that there existe € (0,1], a
nonzero real number a, a natural number r, and integers p and q such that for all t € (0, €),
tlogx
%00 xPFaE(log x)T
Considering this limit for any fixed value of t € (0, €) shows that r = 1 and that p + gt =
0,soinfactp = q = 0since t € (0, ¢€) is arbitrary.
But then t = a for all t € (0, €), which is a contradiction that completes the proof.
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