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Chapter 4 
Integration and Loci of Integrability with Lebesgue Classes  

       In this chapter we define the Radon transform and show the corresponding inversion 
formula. We generalize the main result about the stability under integration of the class of 
constructible functions, by relaxing the conditions on integrability. Further, we give an 
interpolation result for constructible functions by constructible functions with maximal 
locus of integrability. For any ݍ > 0 and constructible functions ݂  and ߤ on ܧ × ℝ௡ , we 
show a theorem describing the structure of the set 

(݌,ݔ)}  ∈ × ܧ  (0,∞] ∶ (·,ݔ)݂   ∈ ௫|ߤ|)௣ܮ 
௤ )}, 

where |ߤ|௫
௤ is the positive measure on ℝ௡ whose Radon-Nikodym derivative with respect to 

the Lebesgue measure is |(·,ݔ)ߤ|௤ ∶ → ݕ   .௤|(ݕ,ݔ)ߤ| 
Sec(4.1): Positive Constructible Functions Against Euler Characteristic and Dimension 
    By a subanalytic set we will always mean a globally subanalytic subset ܺ ⊂ ℝ௡, meaning 
that ܺ is subanalytic in the classical sense inside ℙ௡(ℝ)under the embedingℝ௡ = ८௡(ℝ) 
⊆ ℙ୬(ℝ). By a subanalytic function we mean a function whose graph is a (globally) sub-
analytic set. 
     By Sub we denote the category of subanalytic subsets ܺ ⊂ ℝ௡ for all ݊ > 0, with sub-
analytic maps as morphisms. We work with the Euler characteristic ߯ ∶ ܵub → ℤ and the 
dimension dim: Sub → ℕ of subanalytic sets as defined for o-minimal structures in [173]. 
Note that if ܺ ∈ Sub, then, by the o-minimal triangulation theorem in [173], the o-minimal 
Euler characteristic ߯(ܺ) coincides with the Euler characteristic ߯஻ெ(ܺ) of ܺ with respect 
to the Borel−Moore homology. If ܺ ∈  Sub is locally compact, the o−minimal Euler 
characteristic ߯(ܺ) coincides with the Euler characteristic ߯௖(ܺ) of ܺ with respect to sheaf 
cohomology of X with compact supports and constant coefficient sheaf. 
     By [173], the Euler characteristic ߯: Sub → ℤ satisfies the following: 
                                         ߯(∅) =  0, 

߯(ܺ) =  ߯(ܻ) if ܺ and ܻ are isomorphic in Sub 
and 
                                         ߯(ܺ ∪ ܻ) = ߯(ܺ) + ߯(ܻ) 
whenever ܺ,ܻ ∈ Sub are disjoint. The last equality for ߯஻ெ and ߯௖ follows from the long 
exact (co)homology sequence. If we take ܺ to be the unit circle in the plane ℝଶ and Y a 
point in ܺ, we see that this equality does not hold for the Euler characteristic associated with 
the topological singular (co)homology. 
     Thus we can think of ߯: Sub → ℤ as a measure with values in the Grothendieck ring 
ܺ ଴(Sub) of the category Sub and, for anyܭ ∈ Sub and any function ݂ ∶ ܺ → ℤ with finite 
range and the property that ݂ିଵ(ܽ) ∈ Sub for all ܽ ∈ ℤ (constructible functions), one has an 
obvious definition for  

න݂߯
 

௑
   

such that ߯(ܺ) = ∫ 1௑߯
 
௑   (cf. [182]). 

     This measure and integration against Euler characteristic is what is considered by Viro 
[182], Shapira [180,181] and Bröcker [166]. However, for the measure ߯ ∶ Sub → ℤ it is 
not true that ߯(ܺ) = ߯(ܻ) if and only if ܺ and ܻ are isomorphic in Sub. We construct the 
universal measure ߤ for the category Sub with values in the Grothendieck semi−ring 
(ܺ)ߤ ଴(Sub) of Sub such thatܭܵ =  .if and only if ܺ and ܻ are isomorphic in Sub (ܻ)ߤ
Furthermore, we develop a direct image formalism for positive constructible functions, i.e., 
functions ݂ ∶  ܺ ⟶ (ܽ)଴(Sub) with finite range and the property that ݂ିଵܭܵ  ∈  Sub for all 
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ܽ ∈  ଴(Sub). This formalism is generalized to arbitrary first−order logic models and isܭܵ 
illustrated by several examples on the p-adics, on the Presburger structure and on o-minimal 
expansions of groups. Moreover, within this formalism, we define the Radon transform and 
show the corresponding inversion formula. 
     We start by pointing out that, instead of Sub, we can work with any o-minimal expansion 
of a field ܴ using the category Def whose objects are definable sets and whose morphisms 
are definable maps. 
     By a semi-group we mean a commutative monoid with a unit element. Likewise, a semi-
ring is a set equipped with two semi-group structures: addition and multiplication such that 
0 is a unit element for the addition, 1 is the unit element for multiplication, and the two 
operations are connected by ݕ)ݔ + (ݖ = ݕݔ + ݔand 0 ݖݔ = 0. A morphism of semi-rings is 
a mapping compatible with the unit elements and the operations. 
     Let ܣ ∶=  ℤ × ℕ be the semi-ring where addition is given by (ܽ, ܾ) + (ܽ′, ܾ′)  = (ܽ + ܽ′,
max(ܾ, ܾ′)), the additive unit element is (0, 0), multiplication is given by (ܽ, ܾ)(ܽ′, ܾ′) =
(ܽܽ′, ܾ + ܾ′), and the multiplicative unit is (1, 0). Note that the ring generated by ܣ by 
inverting additively any element of ܣ is ℤ with the usual ring structure.  
     For ܼ ∈ Sub, we define ܥା(ܼ) as the semi-ring of functions ܼ →  with finite image and ܣ
whose fibers are subanalytic sets. We call ܥା(ܼ) the semi-ring of positive constructible 
functions on ܼ. In particular, ܥା({0}) =  .ܣ
    If ܼ ∈ Sub, then we denote by Sub௓ the category of subanalytic maps ܺ → ܼ for ܺ ∈ Sub 
with morphisms subanalytic maps that make the obvious diagrams commute. We define the 
Grothendieck semi-group ܵܭ଴(Sub௓) as the quotient of the free abelian semi-group over 
symbols [ܻ → ܼ ] with ܻ → ܼ in Sub௓ by relations 

[∅ → ܼ ]  = 0,                                                                   (1) 
[ܻ → ܼ ]  =  [ܻ′ → ܼ]                                                     (2) 

If  ܻ → ܼ is isomorphic to ܻ′ →  ܼ in Sub௓ and 
 [(ܻ ∪ ܻ′) → ܼ] + [(ܻ ∩ ܻ′) → ܼ] = [ܻ → ܼ] + [ܻ′ → ܼ]              (3) 

for Y and ܻ′ subsets of some ܺ →  ܼ. There is a natural semi-ring structure on  ܵܭ଴(Sub௓) 
where the multiplication is induced by taking fiber products over ܼ. 
     We write ܵܭ଴(Sub௓) for ܵܭ଴(Sub{଴}) and [ܺ] for [ܺ → {0}]. Note that any element of 
→ ܺ] ଴(Sub௓) can be written asܭܵ  ܼ] for some ܺ ∈  Sub௓, because we can take disjoint 
unions in Sub corresponding to finite sums in ܵܭ଴(Sub௓). 
Proposition(4.1.1)[165]: For ܼ ∈ Sub, there is a natural isomorphism of semi-rings 

ܶ ∶ ଴(Sub௓)ܭܵ →  (ܼ)ାܥ
induced by sending [ܺ → ܼ] in Sub௓ to ܼ → ܣ ∶↦ (߯(ܺ௭), dim(ܺ௭)), where ܺ௭ is the fiber 
above ݖ. By consequence, ܵܭ଴(Sub) =  .ܣ
Proof: This follows immediately from the trivialisation property for definable maps in any 
o-minimal expansion of a field. See [173]. 
      By means of this result, we may identify ܵܭ଴(Sub௓) and ܥା(ܼ). 
     A general notion of positive measures on a Boolean algebra ࣭ of sets is a map ߤ ∶  ࣭ →  ܩ
with ܩ a semi-group satisfying 

ܺ)ߤ ∪ ܻ) = (ܺ)ߤ +  (ܻ)ߤ
and 

(∅)ߤ = 0              
whenever ܺ,ܻ ∈  ࣭ are disjoint. Often, one has a notion of isomorphisms between sets in ࣭ 
under which the measure should be invariant and which allows one to take disjoint unions 
of given sets in ࣭ (by taking disjoint isomorphic copies of the sets). 
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     We let µ ∶ Sub → ,(ܺ)߯) be the positive measure which sends ܺ to ܣ dim(ܺ)). This 
measure is a universal measure on Sub with the property that ߤ(ܺ) =  whenever there (ܻ)ߤ
exists a subanalytic bijection between ܺ and ܻ and where universal means that any other 
positive measure with this property factorises through  ߤ . 
    Note that ߤ measures, in some sense, the topological size since, by the cell decomposition 
theorem from [173], (ܣ)ߤ =  if and only if, for ܤ,ܣ will hold for two subanalytic sets (ܤ)ߤ
any fixed ݊ ≥ 0, there exists a finite partition of ܣ, resp. ܤ, into subanalytic ܥ௡-manifolds 
௜ୀଵ௠{௜ܣ} , resp. {ܤ௜}௜ୀଵ௠ , and subanalytic maps ܣ௜ →  -௡ܥ ௜ which are isomorphisms ofܤ
manifolds. 
     Now we can define the integral of any positive function ݂ ∈   ା(ܼ) asܥ

න݂ߤ
 

௓
∶= ෍ ௜݂ ߤ(ܼ௜)

௜

  

where {ܼ௜} is any finite partition of ܼ into subanalytic sets such that ݂ is constant on each 
part ܼ௜ with value ௜݂ . To show that this is independent of the partition {ܼ௜}, we just note that 
there is a unique [ܺ → ܼ] in ܵܭ଴(ܼ) which corresponds to ݂ under ܶ and that ∑ ௜݂ ௜(௜ܼ)ߤ    
corresponds to [ܺ] = (߯(ܺ), dim(ܺ)) in ܣ =  ଴(Sub). This independence follows alsoܭܵ
from the cell decomposition theorem ([173]). 
For ݂:ܺ → ܻ, there is an immediate notion of pushforward !݂ ∶ (ܺ)ାܥ →   .ା(ܻ), respܥ

!݂ ∶ ଴(Sub௑)ܭܵ →  ଴(Sub௒), which is given byܭܵ

(ݕ)(݃) ݂!   = න ݃| ௙షభ(௬)

 

௙షభ(௬)
   ߤ

for ݃ ∈  ା(ܺ), resp. byܥ 
!݂ ([ܼ →  ܺ])  =  [ܼ → ܻ], 

for ܼ → ܺ in Sub௑ and where ܼ → ܻ is given by composition with ܺ → ܻ. Note that these 
pushforwards are compatible with ܶ. 
     If ܻ = {0}, then ܵܭ଴(Sub௒) = ܼ])ߤ and we write ܣ → ܺ]) for !݂ ([ܼ → ܺ]) which is the 
integral of [ܼ → ܺ]. Thus the functoriality condition (ℎ ∘ ݂)! =  ℎ! ∘ !݂ can be interpreted as 
Fubini’s Theorem, since 

න݃ߤ
 

௑
= න ቆන ݃| ௙షభ(௬) 

 

௙షభ(௬)
ቇߤ   ߤ

 

௒
 

for ݃ ∈ ା(ܺ) and ℎܥ ∶ ܻ → {0}. 
For ݂:ܺ → ܻ a morphism in Sub, there is an immediate notion of pullback ݂∗:ܥା(ܻ) →
∗݂ .ା(ܺ), respܥ ∶ ଴(Sub௒)ܭܵ →  ଴(Sub௑), which is given byܭܵ

݂∗ (݃) =  ݃ ∘ ݂ 
for ݃ ∈  ା(ܻ), resp. byܥ

 ݂∗ ([ܼ → ܻ]) = [ܼ ⊗௒  ܺ → ܺ], 
for ܼ →  ܻ in Sub௒ and where ܼ ⊗௒ ܺ →  ܺ is the projection and ܼ ⊗௒  ܺ is the set-
theoretical fiber product. Note that these pullbacks are also compatible with T and satisfy 
the functoriality property (݂ ∘ ℎ)∗ = ℎ∗ ∘ ݂∗. 
Proposition(4.1.2)[165]: (Projection Formula). Let ݂ ∶ ܺ → ܻ be a morphism in Sub and let 
݃ be in ܥା(ܺ) and ℎ in ܥା(ܻ). Then 

!݂ ൫݂݃∗ (ℎ)൯ =  !݂ (݃)ℎ. 
Proof. This is immediate at the level of ܵܭ଴, since both the multiplication in ܵܭ଴ and the 
pullback are defined by the fiber product. 
Let ܵ ⊂ ܺ × ܻ,  ܺ, ܻ be subanalytic sets and write ߨ௑ ∶ ܺ × ܻ → ܺ and ߨ௒ ∶ ܺ × ܻ → ܻ for 
the projections and ݍ௑  = ௒ݍ ௑| ௌ andߨ   = ∋ ݃ ௒| ௌ . Forߨ    ା(ܺ), we define the Radonܥ 
transform ℛௌ(݃) ∈  ା(ܻ) byܥ
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ℛௌ(݃) = !௒ݍ  ∘ ∗௑ݍ   (݃) = !௒ߨ   ∘ ∗௑ߨ)  (݃)1ௌ) 
where 1ௌ is the characteristic function on S. 
Example(4.1.3)[165]: Consider the case ܺ = ℝ௡ ,ܻ = Gr(݊) with ܵ = ݌:(ߎ,݌ )} ∈  Let .{ߎ
ܼ ⊆ ℝ௡ be a subanalytic subset and ߪ௓ ∶ Gr(݊) → ܣ ∶ ߎ ↦ ߎ )߯) ∩ ܼ), dim( ߎ ∩ ܼ)). Then 
௓ߪ = ℛௌ(1௓). 
Let ܵ′ ⊂ ܻ × ܺ be another subanalytic set and put ݍ௑ᇱ = ௒ᇱݍ ௑| ௌᇱ andߨ =  . ௒| ௌᇱߨ 
Proposition(4.1.4)[165]: (Inversion Formula). Let ݎ ∶ ܵ ⊗௒ ܵ′ → ܺ × ܺ be the projection 
and suppose that the following hypotheses hold: 
(I) there exists ߣ ∈ ,ݔ)ଵିݎ] such that ܣ [(′ݔ = ݔ for all ߣ ≠ ,′ݔ  ,ݔ ′ݔ ∈  ܺ; 
(II) there exists 0 ≠ ߠ ∈ ,ݔ)ଵିݎ] such that ܣ [(ݔ = ߠ + ݔ for all ߣ ∈ ܺ. 
If ݃ is in ܥା(ܺ), then  

 ℛௌᇱ ∘  ℛௌ(݃) = ݃ߠ  + ߤන݃ ߣ
 

௑
                                                 (4)  

and this is independent of the choice of  ߠ. 
Proof. Let ℎ and ℎ′ be the projections from ܵ ⊗௒ ܵ′ to ܵ and ܵ′, respectively. Then, by 
definition of fiber product, ݍ௒ ∘ ℎ = ௒ᇱݍ ∘ ℎ′, and  so, by functoriality of pullback and push-
forward, we have ℎ!

ᇱ ∘ ℎ∗ = ∗௒′ݍ ∘ ௒!. Thus ℛௌᇱݍ ∘ ℛௌ(݃) = !௑ݍ
ᇱ ∘ ௒ᇱݍ) )∗ ∘ !௒ݍ ∘ ∗௑ݍ (݃) = !௑ݍ

ᇱ ∘
ℎ!
ᇱ ∘ ℎ∗ ∘ ∗௑ݍ (݃). 

     The last formula is also equal to ݌ଶ! ∘ !ݎ  ∘ ∗ݎ ∘ ܺ :ଶ݌,ଵ݌ ଵ∗(݃), where݌ × ܺ → ܺ are the 
projections onto the first and second coordinates respectively, since ݍ௑ ∘ ℎ = ଵ݌ ∘  and ݎ
௑ᇱݍ ∘ ℎᇱ = ଶ݌ ∘ ൫ 1ௌ⊗ೊௌᇲ൯!ݎ The hypothesis shows that .ݎ = ೉∆1ߠ  +  1௑× ௑ , more-over thisߣ 

expression is independent of the choice of ߠ. By the projection formula, ݎ! ቀݎ∗൫݌ଵ∗ (݃)൯ቁ =

൫1ௌ⊗ೊௌᇲ !ݎ ݎ
∗ ൫݌ଵ∗(݃)൯ቁ  = ଵ݌൫1ௌ⊗ೊௌᇲ൯ !ݎ 

∗ (݃)  =  ൫1ߠ∆೉ +  ଵ∗ (݃) holds, hence we݌1௑× ௑൯ߣ 
obtain ݌ଶ!((1ߠ∆೉ + ((݃)∗ଵ݌ (1௑× ௑ߣ  = ଶ!(1 ∆೉݌ߠ ((݃)∗ଵ݌   + ((݃)∗ଵ݌)!ଶ݌ߣ = ݃ߠ  + ∫ ߣ  ߤ݃

௑  , 
as required. 
     We now show that the inversion formula is independent of the choice of ߠ. If ߠ + ߣ =
′ߠ + ߠ and ߣ ≠ ଶߣ then necessarily ,′ߠ > ଶߣ ,ଶߠ > ଶᇱߠ  and ߠଵ = ଵᇱߠ  with ߣ = ,ଵߣ) ߠ,(ଶߣ =
′ߠ and (ଶߠ,ଵߠ) = ଵᇱߠ) ݃ߠ ,ଶᇱ). Henceߠ, + ∫ ߣ  ߤ݃

௑ = ݃′ߠ + ∫ ߣ  ߤ݃
௑  for all ݔ ∈ ܺ. 

Example(4.1.5)[165]: Consider the case ܺ = ℝ௡ , ܻ = Gr(݊) with ܵ = (ߎ,݌)} ∶ ݌ ∈  and {ߎ
ܵ′ = :(݌,ߎ )} ݌ ∈ ,ݔ)]ଵିݎ] Then .{ߎ [(ݔ = [ℙ௡ିଵ] and [ିݎଵ(ݔ, [(′ݔ = [ℙ௡ିଶ] for all  ݔ, ᇱݔ ∈ 
ℝ௡ with ݔ ≠ Since [ℙ௡] .′ݔ  = ቀଵା(ିଵ)೙

ଶ
,݊ቁ, we have 

ℛௌᇱο ℛௌ(݃) = ((−1)௡ାଵ ,݊ − 1)݃ + ൬
1 + (−1)௡

2
 ,݊ − 2൰න݃ߤ

 

௑
. 

In particular, we have 

ℛௌᇱο ℛௌ(1௓) = ((−1)௡ାଵ ,݊ − 1)1௓ + ൬
1 + (−1)௡

2
 , ݊ − 2൰ [ܼ] 

for every subanalytic subset ܼ of ℝ௡. 
     Let ℳ be a model of a theory in a language ℒ with at least two constant symbols ܿଵ, ܿଶ 
satisfying ܿଵ,≠ ܿଶ. For ܼ a definable set, we define the category Def௓( ℳ), also written 
Def௓ for short, whose objects are definable sets ܺ with a definable map ܺ → ܼ and whose 
morphisms are definable maps that make the obvious diagram commute. We write Def (ℳ) 
or Def for Def{௖భ }(ℳ). In ℳ, one can pursue the usual operations of set theory like finite 
unions, intersections, Cartesian products, disjoint unions and fiber products. 
     We define the Grothendieck semi-group ܵܭ଴(Def௓) as the quotient of the free abelian 
semi-group over symbols [ܻ → ܼ] with ܻ → ܼ in Def௓ by relations 
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[∅ → ܼ]  = 0,                                                                    (5) 
[ܻ → ܼ]  = [ܻᇱ → ܼ]                                                       (6) 

if ܻ → ܼ is isomorphic to ܻᇱ → ܼ in Def௓ and 
 [(ܻ ∪ ܻᇱ) → ܼ] +  [(ܻ ∩ ܻᇱ) → ܼ] = [ܻ → ܼ] +  [ܻᇱ → ܼ]               (7) 

for ܻ and ܻ′ subsets of some ܺ → ܼ. There is a natural semi-ring structure on ܵܭ଴(Def௓) 
where the multiplication is induced by taking fiber products over ܼ. Note that any element 
of ܵܭ଴(Def௓) can be written as [ܺ → ܼ ] for some ܺ → ܼ ∈ Def௓, because we can take 
disjoint unions in ℳ corresponding to finite sums in ܵܭ଴(Def௓). 
     The map Def →  ଴(Def) sending ܺ to its class [ܺ] is a universal positive measure withܭܵ
the property that two sets have the same measure if there exists a definable bijection bet-
ween them. For ݂ ∶ ܺ → ܻ, there is an immediate notion of push forward !݂ ∶ ଴(Def௑)ܭܵ →
 ଴(Def௒) given byܭܵ

!݂([ܼ → ܺ]) = [ܼ → ܻ], 
for ܼ → ܺ in Def௑ and where ܼ → ܻ is given by composition with ܺ → ܻ. 
     If ܻ = {ܿଵ}, then we write ߤ([ܼ → ܺ]) for !݂ ([ܼ → ܺ]), which we call the integral of 
[ܼ → ܺ]; note that ߤ([ܼ → ܺ]) is just [ܼ] in ܵܭ଴(Def). Thus the functoriality condition 
( ݂ ∘ ℎ)! = !݂ ∘ ℎ! can be interpreted as  Fubini’s Theorem. 
     There is also an immediate notion of pullback ݂∗ ∶ ଴(Def௒)ܭܵ  →  ଴(Def௑) given byܭܵ

݂∗([ܼ → ܻ]) = [ܼ ⊗௒ ܺ → ܺ], 
for ܼ → ܻ in Def௒ and where ܼ ⊗௒ ܺ → ܺ is the projection and ܼ ⊗௒ ܺ the set-theoretical 
fiber product. The pullback is functorial, i.e., (݂݋ℎ)∗ = ℎ∗݂݋∗. 
Proposition(4.1.6)[165]: (Projection Formula). Let ݂ ∶ ܺ → ܻ be a morphism in Def and let 
݃ be in ܵܭ଴(Def௑)  and ℎ in ܵܭ଴(Def௒). Then 

 !݂ ൫݂݃∗ (ℎ)൯ =  !݂ (݃)ℎ. 
Proof. Exactly the same proof as for the subanalytic sets above works.  
     One can also define the Radon transform in this context in exactly the same way as in the 
subanalytic case. Furthermore, the same argument as in the subanalytic case gives the cor-
responding inversion formula.  
However, since, in general, there is no trivialisation theorem, the conditions (I) and (II) in 
Proposition(4.1.4) have to be replaced by global conditions. Using the embedding ܵܭ଴(Def) 
→ ܹ] ଴(Def௎) sending [ܹ] toܭܵ × ܷ → ܷ] where ܹ × ܷ → ܷ is the projection, 
the statement becomes: 
      Let ݎ ∶ ܵ ⊗௒ ܵ′ → ܺ × ܺ be the projection and suppose that the following hypotheses 
hold: 
    (i) there exists ܼଵ in Def such that in ܵܭ଴(Def௑భ) we have 

ଵܤ] → ܺଵ] = [ܼଵ], 
   (ii) there exists ܼଶ in Def such that in ܵܭ଴(Def∆೉) we have 

ଶܤ] → ∆௑]  = [ܼଵ] + [ܼଶ] 
where ܺଵ =  ܺ × ܺ\ ∆௑, ଵܤ = ܵ ⊗௒ ܵᇱ\ ିݎଵ( ∆௑), ଶܤ =  ܵ ⊗௒ ܵᇱ ∩ ଵܤ ଵ( ∆௑) andିݎ → ܺଵ 
and ܤଶ → ∆௑ are the restrictions of the projection ݎ ∶ ܵ ⊗௒ ܵ′ → ܺ × ܺ′. 
If ܼ → ܺ is in Def௑, then 

ℛௌᇱο ℛௌ([ܼ → ܺ]) = [ܼଶ][ܼ → ܺ] + [ܼଵ][ܼ]                           (8) 
and this is independent of the choice of ܼଶ. 
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Example(4.1.7)[165]: (Semialgebraic and subanalytic sets in ℚ୮) 
For K any finite field extension of the field ℚ௣ of ݌-adic numbers, one can calculate 
explicitly the semi-ring of semialgebraic sets ܵܭ଴(ܭ, Sem), resp. of globally subanalytic 
sets ܵܭ଴(ܭ, Sub), using work of [167] for semialgebraic sets, resp. using work of [169] for 
the subanalytic sets. In both cases it is a subset of ℕ × ℕ, and the class of a semialgebraic 
set ܺ, resp. a subanalytic set ܺ, is (#ܺ, 0) if X is finite and (0, dim ܺ) if ܺ is infinite. This is 
because there exists a semialgebraic bijection between two infinite semialgebraic sets if and 
only if they have the same dimension, and similarly for subanalytic sets. However, no 
trivialisation theorem is known, hence the relative semi-Grothendieck rings ܵܭ଴(ܭ, Sem௓), 
resp. ,ܭ)଴ܭܵ Sub௓), for ܼ semialgebraic, resp. subanalytic, are expected to be much more 
complicated than maps ܼ → ℕ × ℕ with finite image. 
Example(4.1.8)[165]: (Presburger sets) 
Consider the Presburger structure on ℤ by using the Presburger language 

ℒ୔ୖ  = {+,−, 0, 1,≤}  ∪  {≡௡ | ݊ ∈  ℕ,݊ >  1}, 
with ≡௡ the equivalence relation modulo ݊. Again, one can can calculate explicitly the semi 
ring ܵܭ଴(ℤ,ℒ୔ୖ), using work of [168].  
It is a subset of ℕ ×  ℕ, and the class of a Presburger set ܺ is (#ܺ, 0) if ܺ is finite and 
(0, dim ܺ) if ܺ is infinite, where the dimension of [168] is used. Again, this is because there 
exists a Presburger bijection between two infinite Presburger sets if and only if they have 
the same dimension. 
Again, no trivialisation theorem is known, hence the relative semi-Grothendieck rings are 
expected to be more complicated. 
Example(4.1.9)[165]: (Semilinear sets) 
Let ܭ = ,ܭ) 0, 1, +, · , <) be an ordered field and consider the structure ℳ = ,ܭ) 0, 1, +,
௖∈ ௄(௖ߣ) , <), where ߣ௖ is the scalar multiplication by ܿ ∈  The category Def in this case is .ܭ
the category of ܭ-semilinear sets with ܭ-semilinear maps. 
     By [177], the Grothendieck ring ܭ଴(Def) is isomorphic to ܧ = ℤ[ݔ]/(ݔ)ݔ + 1)) and 
there is a universal Euler characteristic ߳ ∶ Def →  .(see also [175]) ܧ 
     Let ܦ be the set whose elements are of the form ∑ ௞೔ݕ ௟೔௡ݖ 

௜ୀଵ ∈ ℕ[ݕ, with ݇௜ [ݖ ≤ ݈௜ and, 
for ݅ ≠ ݆, ௞೔ݕ)¬ ௟೔ݖ  = ௞ೕݕ (௟ೕݖ   ∧ ௞೔ݕ)¬ ௟೔ݖ  ≺ ௞ೕݕ  (௟ೕݖ  ∧ ௞ೕݕ)¬ ௟ೕݖ  ≺ ௞೔ݕ  ௟೔ݖ   ). Here, 
௞೔ݕ ௟೔ݖ  ≺ ௞ೕݕ  ௟ೕ if and only if ݇௜ݖ  < ௝݇  and  ݈௜ < ௝݈ . 
     The set ܦ can be equipped with a semi-ring structure in the following way: the zero  
element 0஽ is ∑ ௞೔ݕ ௟೔଴ݖ 

௜ୀଵ , the identity element 1஽ is ݕ଴ݖ଴, the addition is given by 

 ෍ݕ௞೔ ௟೔ݖ 
௡

௜ୀଵ

+ ௞೔ݕ෍ ܦ
ᇲ
௟೔ݖ 

ᇲ
௠

௜ୀଵ

  

=   ෍max≺    ൝ݕ௞ݖ௟: ݕ௞ݖ௟   a monomial in ෍ݕ௞೔ ௟೔ݖ 
௡

௜ୀଵ

+ ෍ݕ௞೔
ᇲ
௟೔ݖ 

ᇲ
௠

௜ୀଵ

ൡ 

and multiplication is given by 

෍ݕ௞೔ ௟೔ݖ 
௡

௜ୀଵ

∙ ௞೔ݕ෍ ܦ
ᇲ
௟೔ݖ 

ᇲ
௠

௜ୀଵ

  

=   ෍max≺    ൝ݕ௞ݖ௟: ݕ௞ݖ௟  a monomial in ෍ݕ௞೔ ௟೔ݖ 
௡

௜ୀଵ

∙෍ݕ௞೔
ᇲ
௟೔ݖ 

ᇲ
௠

௜ୀଵ

ൡ 

where the symbol  ∑max≺ S mean that we sum up the ≺-maximal elements of the finite set 
ܵ. 
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       By [177], there is a universal abstract dimension ߜ: Def →  and two sets in Def are ܦ
isomorphic in Def if and only if they have the same universal Euler characteristic and the 
same universal abstract dimension. Thus, if ܣ is the semi-ring ܧ ×  then the Grothendieck ,ܦ
semi-ring ܵܭ଴(Def) is isomorphic to ܣ and the map ߤ: Def → (ܺ)ߤ given by ܣ = (߳(ܺ),
 .is the positive universal measure on Def ((ܺ)ߜ
      Note that the results that we used above from [177] were proved in the field of real 
numbers, but the same arguments hold in any arbitrary ordered field ܭ. 
Example(4.1.10)[165]: (Semibounded sets) 
Let ܭ = ,ܭ) 0, 1, +,·, <) be a real closed field and consider the structure ℳ = ,ܭ) 0, 1, +,
௖∈ ௄(௖ߣ) , ,ܤ <), where ߣ௖ is the scalar multiplication by ܿ ∈  and B is the graph of ܭ 
multiplication on a bounded interval. The category Def in this case is the category of ܭ-
semibounded sets with ܭ-semibounded maps. By [176], all bounded semialgebraic subsets 
are in Def and, by [179], ℳ is, up to definability, the only o-minimal structure properly 
between (ܭ, 0, 1, +, ,௖∈ ௄(௖ߣ) <) and (ܭ, 0, 1, +,·, <). 
     By [177], the Grothendieck ring ܭ଴(Def) is isomorphic to ܧ = ℤ [ݔ]/(ݔ)ݔ + 1)) and 
there is a universal Euler characteristic ߳ ∶ ݂݁ܦ →  is ܦ Furthermore, if .(see also [175]) ܧ
the semi-ring of Example (4.1.9), then there is a universal abstract dimension ߜ: Def → D 
and two sets in Def are isomorphic in Def if and only if they have the same universal Euler 
characteristic and the same universal abstract dimension. Thus, if ܣ is the semi-ring ܧ ×  ,ܦ
then the Grothendieck semi-ring ܵܭ଴(Def) is isomorphic to ܣ and the map ߤ ∶ Def →  ܣ
given by ߤ(ܺ) = (߳(ܺ),  is the positive universal measure on Def. The results that we ((ܺ)ߜ
used above from [177] were proved in the field of real numbers and are based on Peterzil’s 
[178] structure theorem for semibounded sets in the real numbers. However, the same 
arguments hold in any arbitrary real closed field K using the structure theorem from [174]. 
Sec(4.2): Zero Loci, and Stability Under Integration for Constructible Functions 
on Euclidean Space with Lebesgue Measure 
   We define and study loci of integrability of certain (families of) functions. A recent insight 
into parameterized integrals is that, for functions ݂ belonging to certain classes of functions 
on certainproduct measure spaces ܧ × ܶ, a set of the form 

ݔ} ∈ ܶ| ܧ →  ℂ ∶ ⟼ ݐ ,ݔ)݂  is measurable and integrable over ܶ},            (9) (ݐ
is in fact equal to the zero locus of a function on ܧ belonging to the same class of functions; 
see [187]. If we call the set in (9) the locus of integrability of ݂ in ܧ, then we can rephrase 
the recent insight as a link between loci of integrability and zero loci for certain kinds of 
functions. 
      In this section, we give such a link for the class of constructible functions on Euclidean 
spaces with the Lebesgue measure; see Theorem (4.2.3). We follow the terminology of 
[188]: a constructible function is by definition a sum of products of globally subanalytic 
functions and of logarithms of globally subanalytic functions. The advantage of the class of 
constructible functions is that it is closed under integration. Indeed, in Cluckers and Miller 
[188] the authors prove that if ݂ is constructible on ℝ௡ ×  ℝ௠ such that ݕ ⟼  is (ݕ,ݔ)݂
integrable over ℝ௠for each ݔ ∈ ℝ௡ , then  

න ݕ݀ (ݕ,ݔ)݂
 

ℝ೘
  

is constructible on ℝ௡, which generalizes results of [190]. We extend this stability result by 
relaxing the conditions on integrability; see Theorem (4.2.5). Further, we give an inter-
polation result, Theorem (4.2.4), of constructible functions by constructible functions with 
maximal locus of integrability. 
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Recall that a function ݂: ܺ ⊂ ℝ௡ → ℝ is called globally subanalytic if its graph is a globally 
subanalytic set, and a set ܣ ⊂ ℝ௡  is called globally subanalytic if its image under the 
natural embedding of ℝ௡ into ݊-dimensional real projective space, namely ℝ௡ ⟶ ℙ௡(ℝ) ∶
,ଵݔ) . . . , (௡ݔ ⟼ ଵݔ :1)  ∶ · · ·∶  ;௡), is a subanalytic subset of ℙ௡(ℝ) in the classical senseݔ 
see Definition (4.2.6) below for a self-contained definition. 
From now on in this section, we write “subanalytic” instead of “globally subanalytic” (see 
again Definition (4.2.6)). 
Definition(4.2.1)[183]: For each subanalytic set ܺ, let ܥ(ܺ) be the ℝ-algebra of real-valued 
functions on ܺ generated by all subanalytic functions on ܺ and all the functions ݔ ⟼
log݂(ݔ) , where ݂:ܺ ⟶ (0, +∞) is subanalytic. Functions in ܥ(ܺ) are called constructible 
functions on ܺ and ܥ(ܺ) is called the algebra of constructible functions on ܺ.  
In the whole section, we use the Lesbegue measure on ℝ௡. We introduce the locus of integr-
ability of a function, as follows. 
Definition(4.2.2)[183]: For ܧ a set, and for ݂: ܧ × ℝ௡ ⟶ℂ a function, define the locus of 
integrability of ݂ in ܧ as the set 

Int( ݂,ܧ) ∶= ݔ} ∈  ,{is measurable and integrable over ℝ௡ (·,ݔ)݂|ܧ
where ݂(ݔ,·) is the function sending ݕ ∈ ℝ௡ to ݂(ݕ,ݔ), and where the Lebesgue measure is 
used on ℝ௡.  
    We have the following three theorems, for which we will give relatively short and simple 
proofs. 
Theorem(4.2.3)[183]:  Let ݂ be in ܧ)ܥ × ܴ) for some subanalytic set ܧ. Then there exists 
ℎ in (ܧ)ܥ such that 

Int( ݂,ܧ) = ݔ} ∈ (ݔ)ℎ | ܧ  = 0}.                                       (10) 
Conversely, for every ℎ in (ܧ)ܥ there exists ݂ in ܧ)ܥ × ℝ) such that (10) holds.  
Theorem (4.2.3) thus gives a correspondence between loci of integrability and zero loci of 
constructible functions, at least when integration is in dimension 1, that is, over ℝ. One 
should not misunderstand Theorem (4.2.3): zero loci of constructible functions are much 
more general than, say, Zariski closed sets, and for example, a zero locus of ℎ ∈  can (ܧ)ܥ
easily be dense in ܧ. Indeed, the characteristic function of any subanalytic subset of ܧ lies 
in (ܧ)ܥ. Note that when ݂ in Theorem (4.2.3) is moreover subanalytic, then one can take ℎ 
to be a subanalytic function as well by the main result of [190]. Theorem (4.2.3) implies 
Theorem 1.4 of [188]. In Cluckers and Miller [189] they treat a higher dimensional variant 
of Theorem (4.2.3), also treating ܮ௣-integrability for various ݌. 
     Constructible functions allow an interpolation by constructible functions with maximal 
locus of integrability, as follows. 
Theorem(4.2.4)[183]: Let ݂  be in ܧ)ܥ ×  ℝ) for some subanalytic set ܧ. Then there exists 
݃ ∈ ܧ)ܥ ×  ℝ) with 

Int(݃,ܧ)  =  ܧ 

and such that, for all ݔ ∈ Int( ݂,ܧ) and all ݕ ∈  ℝ, one has 

(ݕ,ݔ)݃  =   .(ݕ,ݔ)݂ 
Proofs of Theorems (4.2.3) and (4.2.4).  Let ݂ be in ܧ)ܥ × ℝ), with ܧ ⊂ ℝ௡  for some ݊. 
Apply Corollary (4.2.10) to the collection of functions consisting only of ݂. Consider a 1-
cell ܣ over ℝ௡ in the obtained partition, with center ߠ, and write ݂ as in (12). By regrouping 
the terms and using the notation of (12), we may suppose, for each ݅, that either |ݕ෤|ఈ೔ is 
integrable over ܣ௫, or that (ߙ௜ , ℓ௜) is different from the (ߙ௝ , ℓ௝)for all ݆ ≠ ݅. Let ܫ be those 
indices ݅ such that |ݕ෤|ఈ೔ is not integrable over ܣ௫. Now define ܳ஺ as the set {ݔ ∈ (ݔ)௜݀| ܤ =
0 for ݅ ∈ (ݕ,ݔ) and define, for {ܫ ∈  the constructible function ,ܣ
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(ݕ,ݔ)݃ = ෍݀௜(ݔ)ܵ௜(ݕ,ݔ)|ݕ෤|ఈ೔(log|ݕ෤| )ℓ೔
 

௜∉ூ

. 

Note that 
ݔ} ∈ ܤ  ∶ ,ݔ)݂  ·) is integrable over ܣ௫}  =  ܳ஺, 

because of condition (a) in Corollary (4.2.10), and because we have taken the exponent 
pairs (ߙ௜ , ℓ௜) mutually different for nonintegrable terms. Do the above construction for each 
occurring 1-cell ܣ over ℝ௡. On any 0-cell ܣ′ over ℝ௡ in the partition, define ݃(ݕ,ݔ) as 
 Then ݃ is as desired by Theorem (4.2.4). Now note that a finite union of zero loci .(ݕ,ݔ)݂
of constructible functions ℎ௜ equals the zero locus of a single constructible function by 
taking the product of the ℎ௜. Similarly, a finite intersection of zero loci of constructible 
functions ℎ௜ equals the zero locus of a single constructible function by taking the sum of the 
squares of the ℎ௜ . Now one is done for Int( ݂, ,݂ )Indeed, Int .(ܧ  equals the finite (ܧ
intersection 

∩஺ ܳ஺ᇱ , 
where ܣ runs over all 1-cells over ℝ௡ in the partition, and where, for any such 1-cell ܣ,ܳ஺ᇱ  
equals the set ܳ஺ ∪ is a sub-analytic set and each of the ܳ஺ᇱ ܤ\ܧ Note that .(ܤ\ܧ)  equals 
thus the zero locus of a constructible function on ܧ. For the converse statement of Theorem 
(4.2.3), given ℎ, it suffices to put ݂(ݕ,ݔ) = ℎ(ݔ)ݕ for all (ݕ,ݔ) ∈ ܧ × ℝ.  
     We can integrate in any dimension ݉ to find the following generalization of the principal 
result, Theorem 1.3, of [188]. 
Theorem(4.2.5)[183]: Let ݂ be in C(ܧ ×  ℝ௠) for some subanalytic set ܧ and some ݉ > 0. 
Then there exists ݃ ∈ ݔ such that, for each (ܧ)ܥ ∈ Int( ݂,ܧ), one has 

(ݔ)݃  = න  
 

௬∈ℝ೘
  .ݕ݀ (ݕ,ݔ)݂

Proof. Consider f in ܧ)ܥ × ℝ௠) for some ݉ > 0. If ݉ = 1, then apply Theorem (4.2.4) to 
݂ to find ݃଴ in ܧ)ܥ × ℝ) with Int(݃଴,ܧ) = ,ݔ)and such that ݃଴ ܧ (ݕ =  for all (ݕ,ݔ)݂
ݔ ∈ Int( ݂,ܧ) and all ݕ ∈ ℝ. Now Apply Theorem (1.3) of [188] to ݃଴, which states that, if 
one defines, for ݔ ∈  ,ܧ

(ݔ)݃ ∶= න݃଴(ݕ,ݔ) ݀ݕ
 

ℝ
 , 

then ݃ lies in (ܧ)ܥ. Then this ݃ is as desired. The result for general ݉ now follows from 
Fubini’s Theorem.  
Alternatively to deriving Theorem (4.2.5) for ݉ = 1 from Theorem 1.3 of [188], one can 
also derive the case ݉ = 1 from Corollary (4.2.10) by the integration procedure by Lion 
and Rolin of [196], which is also used and explained in Cluckers and Miller [188]. This self-
contained approach for obtaining Theorem (4.2.5) is simpler than the approaches of [188, 
190,196], which moreover only yielded special forms of Theorem (4.2.5). 
The above theorem is proved in Cluckers and Miller [188] under the extra condition that 
Int(݂,  Note that .(which in turn generalized main results from [190, 196]) ܧ equals (ܧ
integrals of constructible functions are related to what one could call families of periods; see 
[192–194]. In several special cases, explicit formulas for parameterized integrals of constru-
ctible functions are given in [184, 199]. Parameterized integrals of constructible functions 
are often used for the study of singularities, as in [185, 197, 198]. For context on subanalytic 
functions we refer to [186, 191]. 
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     The present section is inspired by Cluckers et al. [187] which contains several ݌-adic and 
motivic analogues of this section, where [188] was more closely inspired on ݌-adic and 
motivic results of [169, 172]. The results and proofs of this section can be used to replace 
some of the technical difficulties encountered in Cluckers and Miller [188]. 
    We recall a basic form of the subanalytic preparation theorem from [195] (see also [200]), 
we fix some notation, and we give a new preparation result for constructible functions. 
Definition(4.2.6)[183]: Call a function ݂:ܺ ⊂ ℝℓ ⟶ℝ௞ analytic if it extends to an analytic 
function on an open neighborhood of ܺ. A restricted analytic function is a function ݂ ∶
ℝ௡ ⟶ℝ such that the restriction of ݂ to [−1,1]௡ is analytic and ݂(ݔ) = 0 on ℝ௡\[−1,1]௡. 
Call a set or a f unction subanalytic i f and only if it is definable in the expansion of the real 
field by all restricted analytic functions. Thus in this section,“subanalytic” is an abbreviation 
of “globally subanalytic”, and in this meaning, the natural logarithm log ∶ (0, +∞) ⟶ℝ  is 
not subanalytic.  
      We fix an ordered list of variables ݔଵ, … , ≤ ݊ ௡ାଵ, whereݔ  0, and we write ݔ for 
,ଵݔ) … ,  .௡ାଵ will play a special roleݔ ௡ାଵ, since the variableݔ ௡) and write y forݔ
Definition(4.2.7)[183]: (Cells with a base). Consider subanalytic sets ܣ ⊂ ℝ௡ାଵ and ܤ ⊂ 
ℝ௡  and an analytic subanalytic function ߠ ∶ ܤ ⟶ℝ. Then ܣ is called a 0-cell over ℝ௡ with 
base ܤ if ܣ equals the graph of an  analytic subanalytic function 

ܿ ∶ ܤ ⟶ ℝ ∶ ݔ ⟼ ݕ =  .(ݔ)ܿ
     Call ܣ a 1-cell over ℝ௡ with base B and with center ߠ if there are analytic sub-analytic 
functions ܽ ∶ ܤ ⟶ ℝ  and ܾ ∶ ܤ ⟶ ℝ, with ܽ < ܾ on ܤ, such that ܣ is of the following 
form: 

ܣ = (ݕ,ݔ)} ∈ ܤ × ℝ ∶ (ݔ)ܽ  ଵݕ ଶܾ(ݔ)}, 
with ௜ either < or no condition for each ݅ = 1, 2, and such that the graph (ߠ)߁ of ߠ 
satisfies either 

(ߠ)߁ ⊂ (ߠ)߁   ,or   ,ܣ\ ܣ̅  ∩ ܣ̅ = ∅, 
where ̅ܣ is the topological closure of A inside ℝ௡ାଵ . In any case, ܣ is called a cell over ℝ௡.  
Definition(4.2.8)[183]: (Strong functions) . Let A be a 1-cell over ℝ௡ with base ܤ and with 
center ߠ. A basic function with center ߠ is a function ߮ ∶ ܣ → ℝேାଶ, for some ܰ ≥ 0, with 
bounded image and which is of the form 

(ݕ,ݔ)߮ = (ܽଵ(ݔ), … ,ܽே(ݔ), ܾଵ(ݔ)| ݕ − |(ݔ)ߠ
ଵ
௣ , ܾଶ(ݔ)| ݕ − ି|(ݔ)ߠ

ଵ
௣ ),       (11) 

where ܽଵ, … ,ܽே, ܾଵ, ܾଶ are analytic subanalytic functions from ܤ to ℝ and ݌ is a positive 
integer. A strong function on ܣ with center ߠ is a function ܣ → ℝ  of the form ߧ ܨ ߮, where 
߮ is a basic function with center ߠ and where the function ܨ is given by a single power 
series that converges on an open neighborhood of the image of ߮ . Note that strong 
functions are automatically subanalytic functions.  
Theorem(4.2.9)[183]: (Preparation of subanalytic functions [195, 200]) . Let ℱ be a finite 
set of subanalytic functions on a subanalytic set ܺ ⊂ ℝேାଶ. Then there exists a finite 
partition of ܺ into cells over ℝ௡ such that the following holds for any 1-cell ܣ over ℝ௡ in 
this partition: 
     There exists a center ߠ for ܣ such that each ݂ ∈  ℱ can be written in the form 

,ݔ)݂ (ݕ  = ݕ|(ݔ)݃  −  (ݕ,ݔ)௥ܵ|(ݔ)ߠ
on ܣ, where ݃ is an analytic subanalytic function on the base of ܣ,  ,is a rational number ݎ
and ܵ is a strong function on ܣ with center ߠ, and such that, moreover, ܵ > ߳ on ܣ for some 
ߝ >  0.  
The last part in the following corollary is new and simplifies the proofs concerning integra-
tion and integrability when compared with [188]. 
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Corollary(4.2.10)[183]: (Preparation of constructible functions) . Let ℱ be a finite set of 
constructible functions on a subanalytic set ܺ ⊂  ℝேାଶ . Then there exists a finite partition 
of ܺ into cells over ℝ௡ such that for each 1-cell ܣ over ℝ௡ with base B in this decomposi-
tion, there exists a center ߠ such that, the following holds for each ݂ ∈  ℱ and all (ݔ, (ݕ ∈
෤ݕ and with ,ܣ ∶= ݕ −  :(ݔ)ߠ

(ݕ,ݔ)݂  = ෍݀௜(ݔ)ܵ௜(ݕ,ݔ)|ݕ෤|ఈ೔(݈ݕ| ݃݋෤|)ℓ೔
ெ

௜ୀଵ

  ,                         (12) 

for some ܯ ≥  0, functions ݀௜  ∈ ௜, integers ℓ௜ߙ rational numbers ,(ܤ)ܥ  ≥ 0, and strong 
functions ܵ௜ on ܣ with center ߠ. Moreover, one can ensure for each ݅ that at least one of the 
following two conditions holds: 

(a) ܵ௜(ݕ,ݔ)  =  1 on ܣ; 
(b) ݕ ⟼ ݔ ௫ for allܣ ෤|ఈ೔ is integrable overݕ|  ∈   .ܤ 

Proof. Let ℱ′ be a finite collection of subanalytic functions such that each ݂ ∈ ℱ is a finite 
sum of products of functions in ℱ′ and of logarithms of functions in  ℱ′. Apply Theorem 
(4.2.9) to ℱ′. Note that log(ܵ) is a strong function with center ߠ if ܵ is a strong function 
with center ߠ satisfying ܵ > ߳ for some ߳ > 0. Hence, we are done with the first part of the 
statement by writing logarithms of products as sums of logarithms, and since the product of 
strong functions with center ߠ is a strong function with center ߠ. 
Suppose now that, for some occurring term ܵ௜(ݕ,ݔ)݀௜(ݔ)|ݕ෤|ఈ೔on some cell ܣ with center ߠ 
and base ܤ, one has that ݕ ⟼  ௫ for some (and hence for all)ܣ ෤|ఈ೔ is not integrable overݕ| 
ݔ ∈  Then, by the supposed presence of this nonintegrable term and by partitioning the .ܤ
cells slightly further, we may suppose that exactly one of the following two conditions  
holds: 

(i) The graph of the center ߠ lies in ̅ܣ and ܣ௫is bounded in ℝ for each value of ݔ ∈  .ܤ
(ii) The graph of the center ߠ is disjoint from ̅ܣ and ܣ௫ is not contained in a compact 

subset of ℝ for any value of ݔ ∈  .ܤ 
Since the argument is completely similar in both cases, let us suppose (i) holds. Then, 
writing the strong function ܵ௜ as ܨ௜  ,as in (11) ,ߠ with ߮ a basic function with center ߮  ߧ  
and ܨ௜ a converging power series, and by recalling that the image of ߮ is bounded, one sees 
that ܾଶ(ݔ) = 0 for all ݔ ∈  ௫ forܣ ෤ is bounded onݕ ,with notation from (11). Moreover ,ܤ 
each ݔ, and thus, ห ෨ܻห ௤ାఈ೔ is integrable over ܣ௫ for all ݔ ∈ ݍ as soon as ܤ  ∈ ℚ is sufficiently 
large. For any ݏ > 0 we can develop finitely many terms of ܨ௜ in |ݕ෤|ଵ/ ௣  plus the remaining 
series in ห ෨ܻหଵ/ ௣

, as follows: 

ܵ௜(ݕ,ݔ) = ቌ෍ ௝ܿ(ݔ) |ݕ෤|௝/ ௣
௦ିଵ

௝ୀ଴

ቍ  + ቌ෍ ௝ܿ(ݔ) |ݕ෤|௝/ ௣
 

௝ஹ௦

ቍ .                        (13) 

By pulling out the factor |ݕ෤|௦/ ௣ from the last term, by writing out ܵ௜(ݕ,ݔ)݀௜(ݔ) |ݕ෤|ఈ೔ using 
distributivity and (13), and by taking ݏ large enough, the first ݏ such terms will be as in part 
(a) of the corollary, and the last term will be integrable as in (b). This completes the proof. 
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Sec(4.3): Preparation of Real Constructible Functions  
    The Lebesgue spaces, ܮ௣(ߤ) for ݌ ∈ (0,∞], are ubiquitous in many areas of mathematical 
analysis and its applications. Much of the research about the Lebesgue spaces has been con-
ducted in a very general measure-theoretic framework, with the focus being on discovering 
a host of relationships between the various ܮ௣spaces. A number of the classical theorems are 
inequalities that explain how various function operations behave with respect to the Lebesgue 
spaces. For example, for addition there is Minkowski’s inequality; for multiplication there is 
Hölder’s inequality; for convolutions there is Young’s convolution inequality; for Fourier 
transforms of periodic functions there is the Hausdorff-Young inequality. Other classical 
theorems explain the structure of linear maps between the various ܮ௣  spaces, such as the 
duality of Lebesgue spaces with conjugate exponents and the Riesz Thorin interpolation 
theorem. 
     This section explores theorems about the Lebesgue spaces of a rather different sort. We 
use geometric techniques to study the structure of the Lebesgue classes of parameterized 
families of functions, along with a related preparation theorem. The starting point of the 
investigation is the observation that, although much of the utility of the Lebesgue spaces-
and more generally, of the theory of integration as a whole -stems from the generality of the 
measure-theoretic framework in which it has been developed, it is many times applied to 
study integrals of very special functions that arise naturally in real analytic geometry. And, 
if we focus the attention on studying the ܮ௣  properties of these very special functions, we 
should be able to obtain rather strong theorems that cannot be proven, or even reasonably 
formulated, in a very general measure-theoretic framework. This is because by focusing on 
special functions, we can supplement the very general tools from mathematical analysis 
with much more specialized tools from real analytic geometry and o-minimal structures. 
Similar approaches have been followed in the context of ݌-adic and motivic integration; see 
e.g. [172]. 
     The o-minimal framework is still a bit too general for the purposes, and we choose to 
focus on the constructible functions, by which we mean the real-valued functions that have 
globally subanalytic domains and that can be expressed as sums of products of globally 
subanalytic functions and logarithms of positively-valued globally sub-analytic functions. 
The study of constructible functions largely originated in the work of Lion and Rolin, [196], 
where these functions naturally arose in their study of integration of globally subanalytic 
functions. (In the context of ݌-adic integration, analogues of constructible functions arose 
from the work by J. Denef [203].) The integration theory of globally subanalytic and 
constructible functions was then further developed by Comte, Lion and Rolin in [190] and 
also in [188], [183]. Much of the utility of the constructible functions stems from the fact 
that they are stable under integration-from which it follows that they are the smallest class 
of functions that is stable under integration and contains the subanalytic functions-and that 
they have very simple asymptotic behavior (see Theorem(1.3) and Proposition(1.5) in [188]). In 
fact, these results have typically lagged behind the motivic and ݌-adic developments. In this 
section, the real situation takes the lead over the ݌-adic and motivic results. 
     We obtain two main theorems about the constructible functions; see Theorems (4.3.1) 
and (4.3.2). The first theorem considers a constant ݍ > 0 and constructible functions ݂ and 
μ on ܧ ×  ℝ௡, and it describes the structure of the set  

,݂)ܥܮ (ܧ,௤|ߤ| ∶= (݌,ݔ)}  ∈ × ܧ (0,∞]: (·,ݔ)݂ ∈ ௫|ߤ|)௣ܮ 
௤)}, (14) 

where |ߤ|௫
௤ is the positive measure on ℝ௡ whose Radon-Nikodym derivative with respect to 

the Lebesgue measure is |(·,ݔ)ߤ|௤: ݕ ⟼  ௤. The theorem and its corollaries show|(ݕ,ݔ)ߤ|
that the set of all fibers of ܥܮ(݂,  ,[∞,is a finite set of open subintervals of (0 ܧ over (ܧ,௤|ߤ|
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and that the set of all fibers of ܥܮ(݂,  each ,ܧ over (0,∞] is a finite set of subsets of (ܧ,௤|ߤ|
of which is the zero locus of a constructible function on ܧ. This theorem therefore relates 
analysis with geometry, in the sense that Lebesgue classes are an object of study in analysis, 
while zero loci of functions are widely studied in analytic geometry. A similar link between 
geometry and analysis (but with ߤ = 1 and with focus on ܮଵ-integrability) is obtained in ݌-
adic and motivic contexts in [187]. 
     The second theorem is a closely related preparation result that expresses ݂ and ߤ as finite 
sums of terms of a very simple form that naturally reflect the structure of LC(݂,  .(ܧ,௤|ߤ|
This theorem can be most easily appreciated through the historical context in which it was 
developed, starting with the following simple preparation result for constructible functions, 
which is a rather direct consequence of Lion and Rolin’s preparation theorem for globally 
subanalytic functions: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

Let ݂:ܧ × ℝ௡ ⟶ℝ , be constructible with ܧ ⊂ ℝ௠ and write                      
(ݕ,ݔ) = ,ଵݔ) … , ௠ݔ ,ଵݕ, … ܧ ௡) for the standard coordinates onݕ, × ℝ௡ .       
Then ݂ can be piecewise written on subanalytic sets as  ϐinite                       

sums෍ ௞ܶ(ݕ,ݔ)
௞∈௄

where up to performing translations in ݕ be by           

globally subanalytic functions of a triangular form, each term  is of             

the form ௞ܶ(ݕ,ݔ) = ݃௞(ݔ)ቆෑ ௝ห൯ݕ௜|௥ೖ,ೕ൫logหݕ|
௦ೖ,ೕ

௡

௝ୀଵ
  ቇݑ௞(ݔ,              for(ݕ

 some  constructible function ݃௞ , rational numbers   ݎ௞,௝, natural numbers 
ܵ௞,௝ and globally subanalytic unit ݑ௞ which is of the special form as given
by the  globally subanalytic perparation theorem.                                             

(15) 

Lion and Rolin [195] used (15) when proving that any parameterized integral of a construct-
ible function is piecewise given by constructible functions, but on pieces that need not be 
globally subanalytic sets. Comte, Lion and Rolin [190] also used (15) when proving that any 
parameterized integral of a globally subanalytic function is a constructible function. Then   
subsumed both of these results in [188] by showing that (ݔ)ܨ = ∫  ݕ݀(ݕ,ݔ)݂

ℝ೙  is a constru-
ctible function on ܧ if ݂ ∶ ܧ × ℝ௡ → ℝ is a constructible function such that ݂(ݔ,·) ∈  ଵ(ℝ௡)ܮ
for all ݔ ∈  The key to doing this was to improve (15) by showing that in the special case .ܧ 
of ݊ = 1, if ݂(ݔ,·) ∈ ݔ ଵ(ℝ) for everyܮ ∈  then the sums can be constructed in such a ,ܧ 
way so that each term ௞ܶ(ݕ,ݔ) is also integrable in ݕ for every ݔ ∈  This alleviated .ܧ
various analytic considerations employed in [195] and [190] to get around the awkward fact 
that (15) allows the possibility of expressing integrable functions as sums of nonintegrable 
functions. In [183] improved upon (15) in the special case of ݊ =  1 by dropping the 
assumption that ݂(ݔ, ݔ for every ݕ be integrable in (ݕ ∈  and then showing that the set ,ܧ 
Int(݂,ܧ) ∶= ݔ} ∈ ܧ ∶ (·,ݔ)݂ ∈  and ,ܧ ଵ(ℝ)} is the zero locus of a constructible function onܮ
that the sums in (15) can be constructed so that each term ௞ܶ(ݕ,ݔ) is integrable in ݕ for 
every ݔ ∈ (ݕ,ݔ)݂ provided that we only require the equation ,ܧ = ∑ ௞ܶ௞  to hold for  (ݕ,ݔ) 
those values of (ݔ, ݔ with (ݕ ∈ Int(݂,ܧ). 
     The preparation theorem of this section strengthens this line of results even further by 
considering an arbitrary positive integer ݊, not just ݊ = 1, and by considering all ܮ௣  classes 
simultaneously, not just ܮଵ. In order to convey the main idea of the theorem without getting 
bogged down in technicalities, let us use the Lebesgue measure on ℝ௡ (thus ߤ = 1, where ߤ 
is the function from (14)), and let us also only consider the ܮ௣  classes for finite values of ݌. 
Under these simplifying assumptions, the preparation theorems states that the sums  
∑ ௞ܶ௞∈௄  ௜ of{௜ܭ} in (15) can be constructed in such a way so that there is a partition (ݕ,ݔ)
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the finite index set ܭ such that for each ݔ ∈ ݌ and ܧ ∈ (0,∞) with ݂(ݔ,·) ∈  ௣(ℝ௡), and forܮ
each ݅, either ௞ܶ(ݔ,·) is in ܮ௣  for all ݇ ∈ ∑ ௜, or elseܭ ௞ܶ௞∈௄೔ (ݕ,ݔ) = 0  for all ݕ. So, for 
instance, if for some fixed value of ݌ the function ݂(ݔ,·) happened to be in ܮ௣(ℝ௡) for 
every ݔ ∈ ௣ܮ is in (·,ݔ)then the sums in (15) can be constructed so that each term ௞ܶ ,ܧ  for 
every ݔ ∈ -for we may simply omit the remaining terms in the sum because they collec ,ܧ
tively sum to zero. 
Part of the interest in developing a good integration theory for constructible functions comes 
from a desire to study various integral transforms in the constructible setting. And, to 
summarize, we now have three main tools at the disposal to conduct such studies: the 
constructible functions are stable under integration, they have simple asymptotic behavior, 
and they have a multivariate preparation theorem with good analytic properties. We apply 
these three tools to the field of harmonic analysis in [202] by proving a theorem that bounds 
the decay rates of parameterized families of oscillatory integrals. This is an adaptation of a 
classical theorem found in Stein [204] but with different assumptions. The classical theorem 
bounds a single oscillatory integral with an amplitude function that is smooth and compactly 
supported and a phase function that is smooth and of finite type. In contrast, we give a 
uniform bound on a parameterized family of oscillatory integrals with an amplitude function 
that is constructible and integrable and a phase function that is globally subanalytic and 
satisfies a certain “hyperplane condition” (which closely relates to the notion of “finite 
type” in the setting). Thus by restricting the attention to the special classes of constructible 
and globally subanalytic functions, we obtain a much more global, parameterized version of 
the classical theorem with significantly weaker analytic assumptions. This application of the 
preparation theorem was, in fact, the initial stimulus for the work in this section. 
   We begin by fixing some notation to be used throughout the section. 
Denote the set of natural numbers by ℕ = {0,1,2,3, … }. 
Denote the subset and proper subset relations by ⊂ and ⊊, respectively. Write ݔ = ,ଵݔ) . . .,
ݕ ௠) andݔ = ,ଵݕ) . . .  ௡) for the standard coordinates on ℝ௠ and ℝ௡ , respectively. Ifݕ,
݂ = ( ଵ݂, . . . , ௡݂):ܦ → ℝ௡ is a differentiable map with ܦ ⊂  ℝ௠ା௡, write 

߲݂
ݕ߲

(ݕ,ݔ)  = ൭
߲ ௜݂

௝ݕ߲
൱(ݕ,ݔ) 

(௜,௝)∈{ଵ,...,௡}మ
 

for its Jacobian matrix in ݕ. Define the coordinate projection Π௠: ℝ௠ା௡ → ℝ௡  by 
Π௠(ݕ,ݔ)  =  .ݔ 

For any ܦ ⊂ ℝ௠ା௡ and ݔ ∈ ℝ௠, define the fiber of ܦ over ݔ by 
௫ܦ = ݕ}  ∈  ℝ௡ ∶ (ݕ,ݔ)  ∈  .{ܦ

For any ݀ ∈ {0, . . . ,݊} and ∈ {<,≤, >,≥}, define ݕ ௗ = ௜(௜ݕ) ௗ . For example, ݕஸௗ = 
,ଵݕ) . . . ,  ௗ), and in accordance with the above notation for coordinate projections, the mapsݕ
Πௗ ∶ ℝ௡ → ℝௗ and Π௠ାௗ ∶ ℝ௠ା௡ → ℝ௠ାௗ are given by Πௗ(ݕ) = ,ݔ)ஸௗ and Π௠ାௗݕ (ݕ = 
ߣ More generally, if .(ஸௗݕ,ݔ) ∶ {1, . . . ,݀} → {1, . . . ,݊} is an increasing map, define Π௠,ఒ ∶
ℝ௠ା௡ → ℝ௠ାௗ by 

Π௠,ఒ(ݕ,ݔ) =  ,(ఒݕ,ݔ)
where ݕఒ = ,ఒ(ଵ)ݕ) . . .  .(ఒ(ௗ)ݕ,
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For any set ܦ ⊂ ℝ௡, call a function ݂ ∶ ܦ → ℝ௠ analytic if it extends to an analytic function 
on a neighborhood of ܦ in ℝ௡. A restricted analytic function is a function ݂:ℝ௡ → ℝ such 
that the restriction of ݂ to [−1,1] ௡ is analytic and ݂(ݔ) = 0 on ℝ௡\[−1,1]௡ . We shall 
henceforth call a set or function subanalytic if, and only if, it is definable (in the sense of 
first-order logic) in the expansion of the real field by all restricted analytic functions. Thus 
in this section, the word “subanalytic” is an abbreviation for the phrase “globally sub 
analytic”, and in this meaning, the natural logarithm log ∶ (0,∞) → ℝ  is not subanalytic. 
For any subanalytic set ܦ, let (ܦ)ܥ denote the ℝ-algebra of functions on ܦ generated by the 
functions of the form ݔ ⟼ ݔ and (ݔ)݂ ⟼ log݃(ݔ) , where ݂:ܦ → ℝ  and ݃ ∶ ܦ → (0,∞) 
are subanalytic. A function that is a member of (ܦ)ܥ for some sub-analytic set ܦ is called a 
constructible function.  
      Consider a Lebesgue measurable set ܦ ⊂ ℝ௠ା௡ and Lebesgue measurable functions 
ܦ:݂ → ℝ and ߥ ∶ ܦ → [0,∞), and put ܧ = Π௠(ܦ). Define the diagram of Lebesgue classes 
of ݂ over ܧ with respect to ߥ to be the set 

LC(݂, (ܧ,ߥ = (݌,ݔ)}  ∈ ܧ ×  (0,∞] ∶ (·,ݔ)݂ ∈  ,{(௫ߥ)௣ܮ 
where ߥ௫ is the positive measure on ܦ௫ defined by setting 

(ܻ)௫ߥ  =  නݕ݀(ݕ,ݔ)ߥ
 

௒
                                                     (16) 

for each Lebesgue measurable set ܻ ⊂  ௫, where the integration in (16) is with respect toܦ
the Lebesgue measure on ℝ௡. Thus for each ݔ ∈ when 0 ,ܧ  < ݌ < ∞, the function ݂(ݔ,·) 
is in ܮ௣(ߥ௫) if and only if 

න ,ݔ)ߥ ௣|(ݕ,ݔ)݂| > ݕ݀(ݕ  ∞
 

஽ೣ
 , 

and the function ݂(ݔ,·) is in ܮஶ(ߥ௫) if and only if there exist a constant ܯ > 0 and a 
Lebesgue measurable set ܻ ⊂ (ܻ)௫ߥ ௫ such thatܦ = 0 and |݂(ݕ,ݔ)| ≤ ݕ for all ܯ ∈  .ܻ \௫ܦ
     The fibers of LC ( ݂ ,  and over ( 0 ,∞ ] are both of interest, so we give ܧ over ( ܧ, ߥ
them special names. For each ݔ ∈  with ݔ define the set of Lebesgue classes of ݂ at ,ܧ
respect to ߥ  to be the set 

LC(݂, ,ߥ (ݔ = ݌} ∈ (0,∞] ∶ (·,ݔ)݂ ∈  .{(௫ߥ)௣ܮ 
For each ݌ ∈ (0,∞], define the ܮ௣-locus of ݂ in ܧ with respect to ߥ to be the set 

Int௣(݂, (ܧ,ߥ = ݔ} ∈ ܧ ∶ (·,ݔ)݂  ∈  .{(௫ߥ)௣ܮ
When ߥ = 1 (which is the case of most interest because it means we are simply using the ݊-
dimensional Lebesgue measure on ܦ௫), it is convenient to simply write LC(݂, ܧ), LC(݂,  (ݔ
and Int௣(݂,ܧ)and to drop the phrase “with respect to ߥ” in the names of theses sets. Also 
when ߥ = 1, we shall write ܮ௣(ܦ௫) rather than ܮ௣(ߥ௫).  
     We order the set [0,∞] in the natural way, and we topologize (0,∞] by letting 

{(ܽ, ܾ) ∶ 0 ≤  ܽ < ܾ < ∞} ∪ {{∞}} 
be a base for its topology. A convex subset of (0,∞] is called a subinterval of (0,∞]. The 
endpoints of a subinterval of (0,∞] are its supremum and infimum in [0,∞]. Note that the 
empty set is a subinterval of (0,∞], and that sup ∅ = 0 and inf∅ = ∞ . 
     It is elementary to see that LC(݂, ,ߥ ݔ is a subinterval of (0,∞] for each (ݔ ∈  Much .ܧ
more can be said when ݂ and ߥ are assumed to be constructible functions or their powers. 
Theorem(4.3.1)[201]: (The Structure of Diagrams of Lebesgue Classes). Let ݍ > 0 and 
݂, ߤ ∈ ܦ for some subanalytic set (ܦ)ܥ ⊂ ℝ௠ା௡, and put ܧ = Π௠(ܦ) and ॎ ,݂)ܥܮ} = ,௤|ߤ|
(ݔ ∶ ݔ ∈ ,Then ॎ is a finite set of open subintervals of (0,∞] with endpoints in spanℚ{1 .{ܧ
{ݍ ∩ [0,∞) ∪ {∞}, and for each ܫ ∈ ॎ there exists ݃ூ ∈  such that (ܧ)ܥ

ݔ} ∈ ܧ ∶ ܫ  ⊂ LC(݂, ,௤|ߤ| {(ݔ = ∋ ݔ} ܧ ∶ ݃ூ(ݔ) = 0}.                        (17) 
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Moreover, if ݂ and ߤ are subanalytic, then each of the functions ݃ூ can be taken to be sub 
analytic. 
Proof: in the Subanalytic Case. Suppose that ݍ > 0 and that ݂ and ߤ are real-valued sub 
analytic functions on ܦ ⊂ ℝ௠ା௡. Put ܧ = and ॎ (ܦ)௠ߎ = {LC(݂, ,௤|ߤ| :(ݔ ݔ ∈  Apply .{ܧ
Proposition (4.3.23) to ℱ = {݂,  over ℝ௠ such ܦ This constructs an open partition ࣛ of .{ߤ
that for each ܣ ∈ ࣛ, there exist a subanalytic analytic isomorphism ܤ:ܨ →  over ℝ௠ and ܣ
a rectilinear rational monomial map ߰ on ܤ over ℝ௠  such that ݂ ∘ ,ܨ ߤ ∘ and det డி ܨ

డ௬
  are 

߰-prepared. 
     Focus on one ܣ ∈ ࣛ, along with its associated maps ܤ :ܨ →  where ߰ is ,ܤ and ߰ on ܣ
݈-rectilinear over ℝ௠. Define ߥ ∶ ܤ → ℝ  by 

,ݔ)ߥ (ݕ = ߤ|  ∘ ௤|(ݕ,ݔ)ܨ ฬ݀݁ݐ
ܨ߲
ݕ߲

ฬ(ݕ,ݔ) . 

On ܤ write 
݂ ∘ (ݕ,ݔ)ܨ =  ,(ݕ,ݔ)ݑఈݕ(ݔ)ܽ
(ݕ,ݔ)ߥ  = ,ݔ)ݒఉݕ(ݔ)ܾ   ,(ݕ

for some analytic subanalytic functions ܽ and ܾ, tuples ߙ = ,ଵߙ) . . . (௡ߙ, ∈  ℚ௡ and ߚ =
,ଵߚ) . . . (௡ߚ, ∈ ൫spanℚ{1,  We may assume that ܽ and ܾ have .ݒ and ݑ ൯ ௡, and ߰-units{ݍ
constant sign. If ܽ = 0 or ܾ = 0, let ܫ஺ = (0,∞]. Otherwise, let ܫ஺   be the set consisting of 
all ݌ ∈ (0,∞) such that ߙ௜݌ ௜ߚ + > −1 for all ݅ ∈ {݈ + 1, . . . ,݊}, and also consisting of ∞ if 
௜ߙ ≥ 0 for all ݅ ∈ {݈ + 1, . . . ,݊}. Note that ܫ஺ is a subinterval of (0,∞] with endpoints in 
(spanℚ{1, {ݍ ∩ [0,∞)) ∪ {∞}. Also note that by Corollary (4.3.25),  

 LC(݂|஺ , , ௤|஺|ߤ| Π௠(ܣ)) =  LC(݂∘ܨ, ,ߥ Π௠(ܣ)) =  Π௠(ܣ) × ஺ܫ . 
Now, for each ݔ ∈ ,݂)the set LC ,ܧ  ,ߤ ,is a subinterval of (0 (ݔ ∞] with endpoints in 

൬spanℚ{1, {ݍ ∩ [0,∞)൰ ∪ {∞} because it equals the intersection of the sets ܫ஺ for all ܣ ∈ ࣛ 

with ݔ ∈ Π௠(ܣ). This, and the fact that ࣛ is finite, also implies that ॎ is finite. To finish, 
let ܫ ∈ ॎ, and note that {ݔ ∈ ܧ ∶ ܫ ⊂  LC(݂, ,ߤ    equals {(ݔ

ݔ} ∈ ܧ ∶ ܫ ⊂ ܣ  ஺  for allܫ ∈ ࣛ with  ݔ ∈ Π௠(ܣ)}, 
which is a subanalytic set, and hence is the zero locus of a subanalytic function.  
    Theorem (4.3.1) has been formulated in such a way so as to make it adaptable to a variety 
of situations. This section contains an extensive list of corollaries that further explain how 
the theorem elucidates the structure of LC(݂,  and how it can be easily adapted to ,(ܧ,௤|ߤ|
give analogous theorems about local ܮ௣  spaces, complex measures, and measures defined 
from differential forms on subanalytic sets, all within the context of constructible functions. 
   The proof of Theorem (4.3.1) is intimately linked to the proof of a preparation theorem for 
constructible functions that is stated in full strength in present section given below, where it 
is showed. Here we state only a simple version of the preparation theorem that is sufficient 
for the application to oscillatory integrals in [202]. But first, we need one more definition: a 
cell over ℝ௠ is a subanalytic set ܣ ⊂ ℝ௠ା௡such that for each ݅ ∈ {1, . . . ,݊},the set Π௠ା௜(ܣ) 
is either the graph of an analytic subanalytic function on Π௠ା௜ିଵ(ܣ), or 

Π௠ା௜(ܣ) = (ழ௜ݕ,ݔ) :(ஸ௜ݕ,ݔ)} ∈  Π௠ା௜ିଵ(ܣ),ܽ௜(ݕ,ݔழ௜) ଵ ݕ௜  ଶ ௜ܾ(ݕ,ݔழ௜)}         (18) 
for some analytic subanalytic functions ܽ௜ , ௜ܾ ∶ Π௠ା௜ିଵ(ܣ) → ℝ for which ܽ௜(ݔ, (ழ௜ݕ  <
௜ܾ(ݕ,ݔழ௜)  on Π௠ା௜ିଵ(ܣ), where ଵ and ଶ denote either < or no condition. 

Theorem(4.3.2)[201]: (Preparation of Constructible Functions-Simple Version). Let  ݌ ∈ 
(0,∞) and ݂ ∈ ⊃ ܦ for some subanalytic set (ܦ)ܥ   ℝ௠ା௡ , and assume that Int௣(݂,
Π௠(ܦ)) = Π௠(ܦ). Then there exists a finite partition ࣛ of ܦ into cells over ℝ௠ such that 
for each ܣ ∈ ࣛ whose fibers over Π௠(ܣ) are open in ℝ௡, we may write ݂ as a finite sum 
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(ݕ,ݔ)݂   =  ෍ ௞ܶ(ݕ,ݔ)
௞

 

on ܣ, with Int௣൫ ௞ܶ ,Π௠(ܣ)൯  =  Π௠(ܣ) for each ݇, as follows: there exists a bounded 
function ߮ ∶ ܣ → (0,∞)ெ of the form 

(ݕ,ݔ)߮ = ቌܿ௜(ݔ)ෑหݕ௝ − ழ௝൯หݕ,ݔ௝൫ߠ 
ఊ೔,ೕ

௡

௝ୀଵ

ቍ

௜∈{ଵ,...,ெ}

, 

and for each ݇, 

௞ܶ(ݕ,ݔ) = ݃௞(ݔ)൭ෑ|ݕ௜ − ௥ೖ,೔|(ழ௜ݕ,ݔ)௜ߠ 

௡

௜ୀଵ

(log|ݕ௜  (19)   , (ݕ,ݔ)߮ ௦ೖ,೔൱ܷ௞ο(|(ழ௜ݕ,ݔ)௜ߠ – 

where the ݃௞ ∶ Π௠(ܣ) → ℝ are constructible, the ܿ௜ ∶ Π௠(ܣ) → (0,∞) and ߠ௜ : Π௠ା௜ିଵ(ܣ) 
→ ℝ are analytic subanalytic functions, the graph of each ߠ௜ is disjoint from Π௠ା௜(ܣ), the 
-௞,௜ are natural numbers, and the ܷ௞ are positivelyݏ ௞,௜ are rational numbers, theݎ ௜,௝ andߛ
valued analytic functions on the closure of the range of ߮. 
     In addition, the fact that Int௣( ௞ܶ

 ,Π௠(ܣ)) = Π௠(ܣ) only depends on the values of the 
) ௞,௜, in the following sense: we have Intݏ ௞,௜, and not the values ofݎ ௞ܶ

ᇱ ,Π௠(ܣ))  = Π௠(ܣ) 
for any function ௞ܶ

ᇱ on ܣ of the form  

௞ܶ
ᇱ(ݕ,ݔ) = ෑ|ݕ௜ − ,ݔ)௜ߠ  ழ௜)|௥ೖ,೔ݕ

௡

௜ୀଵ

(log|ݕ௜  – ௦ೖ,೔(|(ழ௜ݕ,ݔ)௜ߠ 
ᇲ  , 

where the ݎ௞,௜, are as in (19) and the ݏ௞,௜
ᇱ are arbitrary natural numbers. 

     The key aspect of Theorem (4.3.2) that is of interest, and what makes its proof nontrivial, 
is that the piecewise sum representation of ݂ can be constructed so that each of its terms 
௞ܶ(ݔ,·) are in the same ܮ௣  class as ݂(ݔ,·); namely, Int௣( ௞ܶ ,Π௠(ܣ)) = Π௠(ܣ) for each ܣ 

and ௞ܶ, provided that Int௣(݂,Π௠(ܦ)) = Π௠(ܦ). There is an analog of Theorem (4.3.2) for 
݌ = ∞, but then one must replace (19) with the more complicated form 

               ௞ܶ(ݕ,ݔ) = ݃௞(ݔ)൭ෑ|ݕ௜ − ,ݔ)௜ߠ  ழ௜)|௥ೖ,೔ݕ

௡

௜ୀଵ

 

ቌlogෑหݕ௝ ழ௝൯หݕ,ݔ௝൫ߠ – 
࢐,࢏ࢼ

௡

௝ୀଵ

ቍ

௦ೖ,೔

ቍܷ௞ο ߮(ݕ,ݔ),             (20) 

where the ߚ௜,௝  are rational numbers and everything else is as before, and where the fact that 
Intஶ(݂,Π௠(ܣ)) = Π௠(ܣ) now depends on all the values of the ݎ௞,௜ ,  ௜,௝, not justߚ ௞,௜ andݏ
the values of the ݎ௞,௜ alone. 
      We  show a theorem on the fiberwise vanishing of constructible functions and a theorem 
on parameterized rectilinearization of  subanalytic functions, given below. 
Theorem(4.3.3)[201]: (Fiberwise Vanishing of Constructible Functions). If ݂  for a (ܦ)ܥ ∋
subanalytic set ܦ ⊂ ℝ௠ା௡ and ܧ = Π௠(ܦ), then there exists ݃ ∈  such that (ܧ)ܥ

ݔ} ∈ ܧ ∶ (ݕ,ݔ)݂ = 0 for all ݕ ∈ {௫ܦ  = ݔ}  ∈ ܧ ∶ (ݔ)݃ =  0}. 
Proof:  Let ݂ ∈ ܦ for a subanalytic set (ܦ)ܥ ⊂ ℝ௠ା௡, and put ܧ = Π௠(ܦ). Write ܸ =
ݔ} ∈ ܧ ∶ (ݕ,ݔ)݂ = 0  for all ݕ ∈  .݊ ௫}. We proceed by induction onܦ
     First suppose that ݊ = 1. By Corollary (4.3.10) we may fix a finite partition ࣛ of ܦ into 
cells over ℝ௠ such that the restriction of ݂ to ܣ is analytic for each ܣ ∈ ࣛ. We claim that 
for each ܣ ∈ ࣛ there exists ݃஺ ∈  such that ((ܣ)Π௠)ܥ

ݔ} ∈ Π௠(ܣ): ݂(ݕ,ݔ) = 0 for all ݕ ∈ {௫ܣ = ∋ ݔ}  Π௠(ܣ): ݃஺(ݔ) = 0}. 
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The theorem (with ݊ = 1) follows from the claim, for then 

ܸ =  ൝ݔ ∈ ܧ ∶ ෍൫݃஺ᇱ ൯ଶ(ݔ) 

஺∈ࣛ

= 0ൡ , 

where ݃஺ᇱ ∶ ܧ → ℝ  is the extension of ݃஺ by 0 on ܧ\Π௠(ܣ). To show the claim, fix ܣ ∈ ࣛ. 
We may assume that ܣ is open over ℝ௠, else the claim is trivial. Since ݂(ݔ,·) is analytic on 
ݔ ௫ for eachܣ ∈ Π௠(ܣ), and since ݂|஺ is definable in the expansion of the real field by all 
restricted analytic functions and the exponential function, which is o-minimal (see Van den 
Dries, Macintyre and Marker [205], or Lion and Rolin [195]), it follows that we may fix a 
positive integer ܰ such that for each ݔ ∈ Π௠(ܣ), (ݕ,ݔ)݂ = 0 for all ݕ ∈  ௫ if and only ifܣ 
there exist distinct ݕଵ, . . . ேݕ, ∈ (ଵݕ,ݔ)݂ ௫ such thatܣ = · · · = (ேݕ,ݔ)݂  = 0. So fix 
subanalytic functions ߦଵ, . . . , (ܣ)ே:Π௠ߦ → ℝ whose graphs are disjoint subsets of ܣ. Then 
the claim holds for the function 

݃஺(ݔ)  =  ෍ቀ݂൫ݔ, ൯ቁ(ݔ)௜ߦ
ଶ

ே

௜ୀଵ

. 

This establishes the theorem when ݊ = 1. 
Now suppose that ݊ > 1, and inductively assume the theorem holds with ݇ in place of n for 
each ݇ < ݊. The set ܸ is defined by the formula 

ݔ) ∈ (ܧ ∧ ∋ ݕ∀ ℝ௡((ݕ,ݔ) ∈ ܦ → (ݕ,ݔ)݂ = 0). 
Applying the induction hypothesis twice shows that that this formula is equivalent to 

ݔ) ∈ (ܧ ∧ ∋ ଵݕ∀ ℝ((ݕ,ݔଵ)  ∈  Π௠ାଵ(ܦ) → ℎ(ݕ,ݔଵ) = 0) 
for some ℎ ∈   which in turn is equivalent to ,((ܦ)Π௠ାଵ)ܥ

ݔ) ∈ (ܧ ∧ (ݔ)݃)  = 0) 
for some ݃ ∈ ܸ Thus .(ܧ)ܥ = ݔ} ∈ (ݔ)݃:ܧ = 0}.  
       The parameterized rectilinearization theorem requires some additional terminology to 
state. For any sets ܦ ⊂ ℝ௠ା௡ and ܤ ⊂ ℝ௠ାௗ, we call a map ݂ = ( ଵ݂, … , ௠݂ା௡) ∶ ܤ →  an  ܣ
analytic isomorphism over ℝ௠ if ݂ is a bijection, ݂ and ݂ିଵ are both analytic, and  
ଵ݂(ݔ, (ݖ = ,ଵݔ … , ௠݂(ݔ, (ݖ = ݖ ௠, whereݔ = ,ଵݖ) … ,  .(ௗݖ

     For ݈ ∈ {0, … , ݀}, we say that a set ܤ ⊂ ℝ௠ାௗ  is ݈-rectilinear over ℝ௠  if ܤ is a cell over 
ℝ௠ such that for each ݔ ∈ Π௠(ܤ), the fiber ܤ௫ is an open subset of (0,1)ௗ  of the form 

௫ܤ = Π௟(ܤ௫) ×  (0, 1)ௗି௟ , 
where the closure of Π௟(ܤ௫) is a compact subset of (0,1]௟. When ܤ ⊂ ℝ௠ାௗ is ݈-rectilinear 
over ℝ௠, we call a function ݑ on ܤ an l-rectilinear unit if it may written in the form 
ݑ = ܷ ο ߰, where ߰:ܤ → (0,∞)ேାௗି௟  is a bounded function of the form 

,ݔ)߰ (ݖ = ቌܿଵ(ݔ)ෑݖ௝
ఊభ,ೕ

௟

௝ୀଵ

, … , ܿே(ݔ)  ෑݖ௝
ఊభ,ೕ , ,௟ାଵݖ … , ௗݖ

௟

௝ୀଵ

ቍ           (21) 

for some positively-valued analytic subanalytic functions ci and rational numbers ߛ௜,௝, and 
where ܷ is a positively-valued analytic function on the closure of the range of ߰. 
Theorem(4.3.4)[201]:(Parameterized Rectilinearization of Subanalytic Functions). Let ℱ be 
a finite set of subanalytic functions on a subanalytic set ܦ ⊂ ℝ௠ା௡. Then there exists a 
finite partition ࣛ of ܦ into subanalytic sets such that for each ܣ ∈ ࣛ there exist ݀ ∈ {0, … ,
݊}, ݈ ∈ {0, . . . ,݀} and a subanalytic map ܨ ∶ ܤ →  is an analytic isomorphism ܨ such that ܣ
over ℝ௠, the set ܤ ⊂  ℝ௠ାௗ is l−rectilinear over ℝ௠, and each function ݃ in the set ࣡ 
defined by 
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࣡ =  ቐ
{݂ο ܨ}௙∈ℱ ,                            if ݀ < ݊,

{݂ο ܨ}௙∈ℱ ∪ ൜det
ܨ߲
ݕ߲
ൠ  ,     if ݀ =  ݊,

 

may be written in the form 

,ݔ)݃ (ݖ =  ℎ(ݔ)ቌෑݖ௝
௥ೕ

ௗ

௝ୀଵ

ቍݔ)ݑ,  (22)                                        (ݖ

on ܤ for some analytic subanalytic function ℎ, rational numbers ݎ௝, and ݈-rectilinear unit ݑ. 
Proof. Let ℱ be a finite set of subanalytic functions on a subanalytic set ܦ ⊂ ℝ௠ା௡. We 
proceed by induction on ݊. The base case of ݊ = 0 is trivial, so assume that ݊ > 0 and that 
the theorem holds with ݇ in place of ݊ for all ݇ < ݊. Let ࣛ be the open partition of ܦ over 
ℝ௠ given by applying Proposition (4.3.23) to ℱ, and let ܦ′ = ⋃ࣛ. Thus the theorem holds 
for ℱ|஽ᇱ . It follows from the induction hypothesis that the theorem also holds for ℱ|஽\஽ᇱ , 
since ܦ\ܦ′ may be partitioned into cells over ℝ௠, and each of these cells projects via an 
analytic isomorphism into ℝ௠ାௗ for some ݀ < ݊.   
     Note that if one desires, one can take the ߛ௜,௝ in (21) and the ݎ௝ in (22) to all be integers. 
To do this, simply pull back each map ܨ in Theorem (4.3.4) by a map (ݔ, (ݖ ⟼ ,ݔ) ଵݖ

௞భ , . . .,
ௗݖ
௞೏) for a suitable choice of positive integers ݇ଵ, . . . ,݇ௗ. 

      We formulate a version of the subanalytic preparation theorem of Lion and Rolin [195]. 
We begin with some multi-index notation. 
For any tuples ݕ = ,ଵݕ) . . . ߙ ௡) andݕ, = ,ଵߙ) . . .  ௡) in ℝ௡, defineߙ,

|ݕ|  = ,|ଵݕ|) . . . ,  ,(|௡ݕ|
logݕ =  (logݕଵ  , . . . , log ,ଵݕ   ௡ ) ,  provided thatݕ . . . , ௡ݕ > 0, 
ఈݕ = ଵݕ 

ఈభ  · · · ௡ݕ 
ఈ೙   provided that this is defined, 

|ߙ|  = ଵߙ  + · · · ௡ߙ +  , 
            supp(ߙ) = {݅ ∈ {1, . . . ,݊} ∶ ௜ߙ ≠  0}, which is called the support of ߙ. 
There is a conflict of notation between this use of |ݕ| and |ߙ|, but the context will always 
distinguish the meaning: if ߙ is a tuple of exponents of a tuple of real numbers, then |ߙ|  
means ߙଵ + ···  means |ݕ| ௡; if y is a tuple of real numbers not used as exponents, thenߙ +
,|ଵݕ|) . . . , ఈ|ݕ| ௡|). These notations may be combined, such as withݕ| = ଵ|  ఈభݕ| … ௡|ఈ೙ݕ|   
and (log|ݕ| )ఈ  =  (log|ݕଵ| )ఈభ  · · ·  (log|ݕ௡| )ఈ೙ . 
Definitions(4.3.5)[201]: Consider a subanalytic set ܣ ⊂  ℝ௠ା௡. We say that A is open over 
ℝ௠ if ܣ௫ is open in ℝ௡  for all ݔ ∈  Π௠(ܣ). 
We call a function ߠ = ,ଵߠ) . . . (௡ߠ, ∶ ܣ →  ℝ௡  a center for ܣ over ℝ௠ if ܣ is open over ℝ௠, 
and if for each ݅ ∈ {1, . . . ,݊} the component ߠ௜ is an analytic subanalytic function ߠ௜ ∶
Π௠ା௜ିଵ(ܣ) → ℝ  with the following two properties. 

I. The range of ߠ௜ is contained in either (−∞, 0), {0} or (0,∞). And, when ߠ௜ is non-
zero, the closure of the set {ݕ௜/ߠ௜(ݕ,ݔழ௜) ∶ (ݕ,ݔ) ∈  .is a compact subset of (0,∞) {ܣ

II. Let ݕ෤௜  = ௜ݕ   – ,ݔ)௜ߠ  ෤௜ݕ} ழ௜). The setݕ ∶ (ݕ,ݔ)   ∈  ,is a subset of either (−∞,−1) {ܣ 
(−1, 0), (0, 1) or (1,∞). 

We call (ݔ, (෤ݕ ∶= ,෤ଵݕ,ݔ)  . . .  .ߠ with center ܣ ෤௡) the coordinates onݕ,
A rational monomial map on ܣ over ℝ௠ with center ߠ is a bounded function ߮ ∶ ܣ → ℝெ  
of the form 

,ݔ)߮ (ݕ =  (ܿଵ(ݔ)|ݕ෤|ఊభ , . . . , ܿெ(ݔ)|ݕ෤|ఊಾ),                          (23) 
where ܿଵ, . . . , ܿெ are positively-valued analytic subanalytic functions on ߎ௠(ܣ) and 
,ଵߛ . . . , (ܣ)߮ ெ are tuples in ℚ௡. Note thatߛ ⊂ (0,∞)ெ. If ܣ ⊂ ℝ௠ × (0, 1)௡ and ߠ = 0, we 
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say that ߮ is basic. 
An analytic function is called a unit if its range is contained in either (−∞, 0) or (0,∞). A 
function ݂:ܣ → ℝ  is called a φ-function if ݂ =  whose ܨ ο ߮ for some analytic function ܨ
domain is the closure of the range of ߮; if  ܨ is also a unit, then we call ݂ a ߮-unit.  
     A function ݂ ∶ → ܣ  ℝ  is ߮-prepared if 

(ݕ,ݔ)݂  =  (ݕ,ݔ)ݑ ෤|ఈݕ|(ݔ)݃ 
on ܣ for some analytic subanalytic function ݃, tuple ߙ ∈  ℚ௡ and ߮-unit ݑ. 
Definition(4.3.6)[201]: To any rational monomial map ߮:ܣ → ℝெ over ℝ௠ with center ߠ, 
we associate a basic rational monomial map over ℝ௠.  denoted by ߮ఏ, as follows. For each 
݅ ∈ {1, . . . ,݊}, the set {ݕ෤௜ ∶ ,ݔ) (ݕ  ∈ ,is contained in either (−∞,−1) {ܣ  (−1, 0), (0, 1) or 
(1,∞), so there exist unique ߝ௜, ௜ߞ ∈ {−1, 1} such that 0 < ෤௜ݕ௜ߝ

఍೔ < 1 for all (ݕ,ݔ) ∈  .ܣ 
Define an analytic isomorphism ఏܶ ∶ ܣ →  ఏ byܣ 

ఏܶ(ݕ,ݔ)  = ൫ ݔ, ෤ଵݕଵߝ
఍భ , . . . , ෤௡ݕ௡ߝ

఍೙൯. 
Define ߮ఏ ∶= ߮ ο ఏܶ

ିଵ ∶ ఏܣ → ℝெ. 
Write ߮ఏ(ݕ,ݔ) = (ܿଵ(ݔ)ݕఊభ , . . . , ܿெ(ݔ)ݕఊಾ) for some ߛଵ, … , ெߛ ∈ ℚ௡. For each  ݅ ∈ {0, . . .,
݊}, define ߮ఏ,௜ to be the function on Π௠ା௜(ܣ) consisting of the components ௝ܿ(ݔ)ݕ௜

ఊೕ  of ߮ఏ 
such that supp(ߛ௝) ⊂ {1, . . . , ݅}, and when ݅ > 0, such that ݅ ∈ supp(ߛ௝). Thus 

߮ఏ(ݕ,ݔ) =  (߮ఏ,଴(ݔ),߮ఏ,ଵ(ݔ, ,(ଵݕ . . . ,߮ఏ,௡(ݕ,ݔଵ, . . .  .((௡ݕ,
For each ݅ ∈ {0, . . . ,݊} and ∈  {<,≤, >,≥}, define ߮ఏ, ௜ = ൫߮ఏ,௝൯௝ ௜

  on its appropriate 
domain. For example, ߮ఏ,ஸ௜ is the function on Π௠ା௜(ܣ) given by 

߮ఏ,ஸ௜(ݕ,ݔஸ௜)  =  (߮ఏ,଴(ݔ),߮ఏ,ଵ(ݕ,ݔଵ), . . . ,߮ఏ,௜(ݕ,ݔଵ, . . .  .((ஸ௜ݕ,
Definition(4.3.7)[201]: If ܥ ⊂ ℝ௠ା௡ is a cell over ℝ௠, then there exists a unique increasing 
map ߣ ∶ {1, . . . ,݀} → {1, . . . ,݊} whose image consists of the set of all ݅ ∈ {1, . . . ,݊} for 
which Π௠ା௜(ܥ) is of the form (18). We call ܥ a ߣ-cell. 
     Note that Π௠,ఒ defines an analytic isomorphism from a ߣ-cell ܥ onto Π௠,ఒ(ܥ), and 
Π௠,ఒ(ܥ) is a cell over ℝ௠ that is open over ℝ௠ . 
Definition(4.3.8)[201]: We say that ߮ is prepared over ℝ௠ if ܣ is a cell over ℝ௠ such that 
for each ݅ ∈ {1, . . . ,݊}, if we write 

Π௠ା௜(ܣఏ) = :(ஸ௜ݕ,ݔ)} (ழ௜ݕ,ݔ) ∈ Π௠ା௜ିଵ(ܣఏ),ܽ௜(ݕ,ݔழ௜)  <  ,{(ழ௜ݕ,ݔ)௜ ழ ௜ܾݕ 
then the functions ܽ௜ , ௜ܾ  and ௜ܾ − ܽ௜ are ߮ఏ,ழ௜-prepared, and ܽ௜ is either identically zero or is 
strictly positively-valued. 
Proposition(4.3.9)[201]: (Subanalytic Preparation). Suppose that ℱ is a finite set of sub-
analytic functions on a subanalytic set ܦ ⊂ ℝ௠ା௡. Then there exists a finite partition ࣛ of 
ܣ into cells over ℝ௠ such that for each ܦ ∈ ࣛ, if ܣ is a ߣ-cell over ℝ௠ and we write 
݃ ∶ (ܣ)௠,ఒߎ → ௠,ఒ|஺ߎ for the inverse of the projection ܣ ∶ ܣ →  then there exists a ,(ܣ)௠,ఒߎ
prepared rational monomial map ߮ ∶ (ܣ)௠,ఒߎ → ℝெ over ℝ௠ such that f∘ g is ߮-prepared 
for each ݂ ∈  ℱ. 
Corollary(4.3.10)[201]: Suppose that ℱ is a finite set of constructible functions on a sub-
analytic set ܦ ⊂ ℝ௠ା௡ . Then there exists a finite partition ࣛ of ܦ into cells over ℝ௠ such 
that for each ܣ ∈  ࣛ and ݂ ∈  ℱ, the restriction of ݂ to ܣ is analytic. Moreover, if each 
function in ℱ is subanalytic, then ࣛ can be chosen so that ݂(ܣ) is contained in either 
(−∞, 0), {0} or (0,∞) for each ܣ ∈ ࣛ and  ݂ ∈ ℱ. 
Proof: When ℱ consists entirely of subanalytic functions, this follows directly from Pro-
position (4.3.9). In the general constructible case, fix a finite set ℱ′ of subanalytic functions 
such that each function in ℱ is a sum of products of functions of the form (ݕ,ݔ) ⟼ ,ݔ)݂  (ݕ
and (ݕ,ݔ) ⟼ log ݃(ݕ,ݔ) with ݂,݃ ∈ ℱ′. Now apply the result of the subanalytic case to ℱ′.  



120 
 

Definition(4.3.11)[201]: If ࣭ is a set of subsets of a set ܺ, we say that a partition ࣛ of ܺ is 
compatible with ܵ if for each ܣ ∈ ࣛ and each ܵ ∈ ࣭, either ܣ ⊂ ܵ or ܣ ⊂ ܺ\ܵ. 
     Note that in Proposition(4.3.9) and Corollary(4.3.10), the partition ࣛ can be made to be 
compatible with any prior given finite set of subanalytic subsets of ܦ. 
Corollary(4.3.12)[201]: For each ܫ ∈ ॎ, 
 
∋ ݔ}                         ,݂)LC :ܧ ,௤|ߤ| (ݔ =  {ܫ

= ቐݔ ∈ ܧ ∶ (݃ூ(ݔ) = 0) ∧ ቌሥ  ݃௃(ݔ) ≠ 0 
௃∈ ಺࣮

ቍቑ  ,   (24) 

where ॎ୍ = ܬ}  ∈ ॎ ∶ ܫ  ⊊  .{ܬ 
Proof: This follows from (17) and from the fact that for each ݔ ∈ ,݂)LC ,ܧ ,ߤ (ݔ =  if and ܫ
only if ܫ ⊂ LC(݂, ,ߤ ܬ and (ݔ ⊄  LC(݂, ,ߤ ܬ for all (ݔ ∈  ॎ୍.  
    The final sentence of Theorem (4.3.1) shows that when ݂ is subanalytic, so is the set (24). 
Note that: The set LC(݂,  can be expressed as the disjoint union (ܧ,௤|ߤ|

ራ({ݔ ∈ ܧ ∶  LC(݂, ,௤|ߤ| (ݔ = {ܫ  × (ܫ
ூ∈ॎ

                       (25)  

and as the (not necessarily disjoint) union 
ራ({ݔ ∈ ܧ ∶ ܫ ⊂  LC(݂, ,௤|ߤ| (ݔ = {ܫ × (ܫ
ூ∈ॎ

                 (26)  

The fact that LC(݂,  equals (25), and that (25) is contained in (26), are both clear. To (ܧ,௤|ߤ|
see that (26) is contained in (25), note that if (݌,ݔ) is such that ܫ ⊂ LC (݂, ,௤|ߤ|  and (ݔ
݌ ∈ ܬ then ,ܫ = LC(݂, ,௤|ߤ| ݌ and (ݔ ∈ ܬ for some ܬ ∈  ॎ with ܫ ⊂  Observe that (24) and .ܬ
(17) show how to use the functions {݃ூ}ூ∈ॎ to define the sets occurring in (25) and (26). 
Corollary(4.3.13)[201]: For each ܲ ⊂ (0,∞] there exists ܩ௉ ∈  such that (ܧ)ܥ

∋ ݔ}  ܧ ∶ ܲ ⊂ LC(݂, ,௤|ߤ| {(ݔ = ∋ ݔ} ܧ  ∶ (ݔ)௉ܩ  =  0}.               (27) 
Proof. Define ܩ௉ to be the product of the ݃ூ for all ܫ ∈ ॎ with ܲ ⊂  Then (27) follows .ܫ
from (17) and from the fact that for each ݔ ∈ ܲ we have ,ܧ ⊂ LC(݂, ,௤|ߤ|    if and only if (ݔ
LC(݂, ,௤|ߤ| (ݔ = ܫ for some ܫ ∈ ॎ with ܲ ⊂   .ܫ
     For each ݌ ∈ (0,∞], taking ܲ = ,݂)in (27) shows that Int ௣ {݌}  is the zero locus (ܧ,௤|ߤ|
of a constructible function. A very elementary proof of this fact is given in [183] for the 
special case when ߤ = ݌,1 = 1 and ݊ = 1. 
Corollary(4.3.14)[201]:  The set {Int ௣(݂, (ܧ,௤|ߤ| ∶ ∋ ݌   (0,∞]} is finite. 
Proof: Since ॎ is finite by Theorem (4.3.1), we may fix a finite partition ࣤ of (0,∞] 
compatible with ॎ. If ܬ ∈ ࣤ and ݌ ∈ ܫ then for each ,ܬ ∈ ॎ, ݌ ∈ ܬ  if and only if ܫ ⊂  so ; ܫ
Int௣(݂, (ܧ,௤|ߤ| = ݔ} ∈ ܧ ∶ ܬ  ⊂ ,݂)ܥܮ ,௤|ߤ|  Therefore .{(ݔ

{Int௣(݂, ݌:(ܧ,௤|ߤ| ∈ (0,∞]}  = ݔ}}  ∈ ܧ ∶ ܬ ⊂ ,݂)ܥܮ  ,௤|ߤ| (ݔ ∶ ܬ  ∈  ࣤ}, 
which is finite because ࣤ is finite.  
Corollary (4.3.15)[201]:  There exists ݃ ∈  such that (ܧ)ܥ 

ݔ} ∈ ܧ ∶ {௫ܦ is bounded on (·,ݔ)݂ = ݔ} ∈ ܧ ∶ (ݔ)݃ = 0}. 
Proof: Zero loci of constructible functions are closed under intersections and unions (by 
taking sums of squares and by taking products, respectively), so we may assume by 
Corollary (4.3.10) that ܦ is a cell over ℝ௠ and that ݂ is analytic. By projecting into a lower 
dimensional space, we may further assume that ܦ is open over ℝ௠. Thus ݂(ݔ,·) is bounded 
on ܦ௫ if and only if it is in ܮஶ(ܦ௫), so we are done by applying Corollary (4.3.13) with 
ܲ = {∞}.  
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Corollary(4.3.16)[201]:  There exist ݃,ℎ ∈  such that (ܧ)ܥ
ݔ} ∈ ܧ ∶ (ݕ,ݔ)݂ = 0 for all  ݕ ∈ {௫ܦ = ݔ}  ∈ ܧ ∶ (ݔ)݃ = 0} 

and 
ݔ} ∈ :ܧ (ݕ,ݔ)݂ = ௫|ߤ| ݎ݋݂ 0 −almost all ݕ ∈ {௫ܦ = ݔ} ∈ :ܧ ℎ(ݔ) = 0}. 

Proof. Define ܨ ∶ ܦ × ℝ → ℝ by ݕ,ݔ)ܨ, (ݖ = ݔ Note that for each .(ݕ,ݔ)݂ݖ ∈ ,ܧ (ݕ,ݔ)݂ = 
0 for all ݕ ∈ ,ݕ) ௫ if and only ifܦ (ݖ ⟼ ,ݕ,ݔ)ܨ ௫ܦ is bounded on (ݖ × ℝ, and that ݂(ݕ,ݔ) =
0 for |ߤ|௫-almost all ݕ ∈ ,ݕ) ௫  if and only ifܦ (ݖ ⟼ ,ݕ,ݔ)ܨ ߥ where ,(௫ߥ)ஶܮ is in (ݖ ∶ ܦ ×
ℝ → [0,∞) is defined by ݔ)ߥ, ,ݕ (ݖ =  So we are done by applying Corollaries .|(ݕ,ݔ)ߤ|
(4.3.15) and (4.3.13) (with ܲ = {∞}) to ܨ.  
The following result generalizes [188]. 
Corollary(4.3.17)[201]: Let ݍ > 0,ܲ ⊂ (0,∞], and ܨ, ߥ ∈ ܺ)ܥ × ܻ × ℝ௞) for some sub-
analytic sets ܺ and ܻ. Suppose that for each ݔ ∈ ܺ, the set {ݕ ∈ ܻ ∶ ܲ ⊂ LC(ܨ, ,௤|ߥ|  {((ݕ,ݔ)
is dense in ܻ. Then there exists a subanalytic set ܥ ⊂ ܺ × ܻ such that ܥ × ܲ ⊂ LC(ܨ, ,௤|ߥ|
ܺ × ܻ) and ܥ௫ is dense in ܻ for each ݔ ∈  ܺ. 
Proof: Assume that ܺ ⊂ ℝ௠ . We may assume that ܻ = ℝ௡ because the case of a general 
subanalytic set ܻ follows from this special case by arguing as in [188]. By Corollary (4.3. 
13) we may fix ݃ ∈ ܺ)ܥ × ℝ௡) such that 

൛(ݕ,ݔ) ∈  ܺ × ℝ௡ ∶ ܲ ⊂ LC൫ܨ, ,௤|ߥ|       ൯ൟ(ݕ,ݔ)
= (ݕ,ݔ)} ∈ ܺ × ℝ௡ ∶ (ݕ,ݔ)݃ = 0}.             (28) 

     By Corollary (4.3.10) we may fix a partition ࣛ of ܺ × ℝ௡ into subanalytic cells over ℝ௠ 
such that ݃ restricts to an analytic function on each ܣ ∈ ࣛ. Let ܥ be the union of the 
members of ࣛ that are open over ℝ௠. Then ܥ is subanalytic, Π௠(ܥ) = ܺ, and ܥ௫ is open 
and dense in ℝ௡ for each ݔ ∈  ܺ. If there exists (ܽ, ܾ) ∈ ,ܽ)݃ such that ܥ ܾ) ≠ 0, then 
ݕ} ∈ ௔ܥ ∶ ݃(ܽ, (ݕ = 0} would be a proper analytic subset of the open set ܥ௔, so {ݕ ∈ ℝ௡ ∶
(ݕ,ܽ)݃ = 0} would not be dense in ℝ௡, contradicting (28) and the assumption on ܨ and 
,ݔ)݃ ௤. Therefore|ߥ| (ݕ = 0 for all (ݕ,ݔ) ∈   .which by (28) proves the corollary ,ܥ
We now show how Theorem(4.3.1) adapts easily to the study of local integrability, complex 
measures, and measures defined from constructible differential forms on subanalytic sets. 
     We only discuss the analogs of Theorem (4.3.1) itself, but it follows that analogs of the 
previous list of corollaries of this theorem hold as well, via the same proofs. 
    Suppose that ܻ ⊂ ℝ௡ and ݂:ܻ → ℝ are Lebesgue measurable, that ߥ is a positive measure 
on ܻ that is absolutely continuous with respect to the ݊-dimensional Lebesgue measure, and 
that ݌ ∈ (0,∞]. We say that ݂ is locally in ܮ௣(ߥ), written as ݂ ∈ locܮ

௣ ∋ ݕ if for each ,(ߥ) ܻ 
there exists a neighborhood ܷ of ݕ in ܻ such that ݂|௎ is in ݌ܮ(ߥ|௎). Similarly, we say that ݂ 
is locally bounded on ܻ if for each ݕ ∈  ܻ there exists a neighborhood ܷ of ݕ in ܻ such that 
݂(ܷ) is bounded. 
     For measurable functions ݂ ∶ ܦ → ℝ and ߥ ∶ ܦ → [0,∞), where ܦ ⊂ ℝ௠ା௡ and ܧ =
Π௠(ܧ), define the sets LCloc(݂, ,݂)LCloc ,(ܧ,ߥ ,ߥ and Intloc (ݔ

௣ (݂,  analogously to how (ܧ,ߥ
LC(݂, ,݂)LC   ,(ܧ,ߥ ,ߥ ,݂)and Int௣ (ݔ  were defined in above, but replacing the condition (ܧ,ߥ
(·,ݔ)݂ ∈ (·,ݔ)݂ with (௫ߥ)௣ܮ ∈ ୪୭ୡܮ 

௣  .(ݔߥ)
Proposition(4.3.18)[201]: The local analog of Theorem (4.3.1) holds, which describes the 
structure of  LCloc(݂, ,݂)rather than LC (ܧ,௤|ߤ|  .(ܧ,௤|ߤ|
Proof. By extending ݂ and ߤ by 0 on (ܧ × ℝ௡)\ܦ, we may assume that ܦ = ܧ × ℝ௡ .  
Define functions ܨ and ߥ on ܧ × ℝ௡ × [−1,1]௡ by ݕ,ݔ)ܨ, (ݖ = ݕ,ݔ)݂ + ,ݕ,ݔ)ߥ and (ݖ (ݖ =
ݕ,ݔ)ߤ| +  .௤|(ݖ
The compactness of [−1,1]௡ implies that for each ݔ ∈ ݌ and ܧ ∈ (0,∞], (·,ݔ)݂ ∈ ୪୭ୡܮ

௣ ௫|ߤ|)
௤) 

if and only if (·,ݕ,ݔ)ܨ ∈ ∋ ݕ for all ((௫,௬)ߥ)௣ܮ  ℝ௡  Therefore 
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LCloc(݂, ,௤|ߤ| (ݔ = ሩ LC(ܨ, ,ߥ ((ݕ,ݔ)
௬∈ℝ೙

 . 

Theorem (4.3.1) shows that {LC(ܨ, ,ߥ ((ݕ,ݔ) ∶ (ݕ,ݔ) ∈ ܧ  × ℝ௡} is a finite set of sub- 
intervals of (0,∞] with endpoints in (spanℚ{1, {ݍ ∩ [0,∞)) ∪ {∞}, so the set 

Tloc: =  {LCloc(݂, ,௤|ߤ| (ݔ ∶ ∋ ݔ   {ܧ 
is of this form as well. Let ܫ ∈ Tloc. By Corollary (4.3.13) we may fix ݃ ∈ ܧ)ܥ × ℝ௡) such 
that 

൛(ݕ,ݔ) ∈ ܧ × ℝ௡ ∶ ܫ ⊂ LC൫ܨ, ,ߥ ൯ൟ(ݕ,ݔ)  = (ݕ,ݔ)}  ∈ ܧ × ℝ௡: ݃(ݕ,ݔ)  = 0}. 
Thus 

ݔ} ∈ ܧ ∶ ܫ ⊂  LCloc(݂, ,௤|ߤ| {(ݔ = ݔ} ∈ (ݕ,ݔ)݃:ܧ = 0 for all ݕ ∈  ℝ௡}, 
and this set is the zero locus of a constructible function by Theorem (4.3.3) (or Corollary 
(4.3.16)).  
    Suppose that ݂and ߥ are complex-valued Lebesgue measurable functions on a measurable 
set ܦ ⊂ ℝ௠ା௡ such that (·,ݔ)ߥ is Lebesgue integrable on ܦ௫ for all ݔ ∈ ܧ where ,ܧ =
Π௠(ܦ). For each ݔ ∈  ௫ by settingܦ ௫ onߥ define a complex measure ,ܧ

(ܻ)௫ߥ   =  නݕ,ݔ)ߥ
 

௒

  ݕ݀( 

for each Lebesgue measurable set ܻ ⊂  ௣-class with respect to aܮ ௫ . The notion of anܦ
complex-measure is defined using the absolute variation of the measure, so we define 
LC(݂, (ܧ,ߥ ∶=  LC(|݂|, ,(ܧ,|ߥ| LC(݂, ,ߥ (ݔ ∶= LC(|݂|, ,|ߥ| ݔ for each (ݔ ∈ ,݂)and Int௣ ,ܧ ,ߥ
:(ܧ =  Int௣(|݂|, ݌ for each (ܧ,|ߥ| ∈ (0,∞]. 
Proposition(4.3.19)[201]: The complex analog of Theorem (4.3.1) holds with ݍ = 1, which 
describes the structure of  LC(݂, -on a sub ߤ for complex-valued functions ݂ and (ܧ,ߤ
analytic set ܦ ⊂ ℝ௠ା௡ whose real and imaginary parts are constructible, where (·,ݔ)ߤ is 
Lebesgue integrable on ܦ௫ for all ݔ in ܧ = Π௠(ܦ). 
Proof. Apply Theorem (4.3.1) to the constructible functions |݂|ଶ and |ߤ|ଶ with ݍ = ଵ

ଶ
. Then 

note that for any ݌ ∈ (0,∞], |݂| ∈ if and only if |݂|ଶ (௫|ߤ|)௣ܮ ∈ ௣ܮ  ଶ⁄ ௫|ߤ|)
 ).  

     We consider a subanalytic set ܦ ⊂ ℝ௠ା௡  such that for each ݔ in ܧ ∶=  Π௠(ܦ), the fiber 
ݔ ௫ is a smooth ݇-dimensional submanifold of ℝ௡. For eachܦ ∈ -݇ consider a smooth ,ܧ
form ߱௫ on ܦ௫ , such that moreover there exist constructible functions ߱௜భ ,...,௜ೖ(ݕ,ݔ) on ܦ 
with 1 ≤  ݅ଵ < · · · <  ݅௞ ≤ ݊ such that 

߱௫(ݕ) = ෍ ߱௜భ ,...,௜ೖ(ݕ,ݔ)݀ݕ௜భ
ଵஸ௜భழ···ழ௜ೖஸ௡

∧ · · · ∧ ௜ೖݕ݀  . 

For each ݔ ∈  ௫ associated to the smooth ݇-form ߱௫. Forܦ write |߱௫| for the measure on ,ܧ
݂ ∈  consider ,(ܦ)ܥ

LC(݂,߱௫, (ݔ  = ݌}  ∈  (0,∞] ∶ (·,ݔ)݂ ∈  ,{௣(|߱௫|)ܮ 
and  

LC(݂,߱,ܧ) = (݌,ݔ)} ∈ ܧ  × (0,∞] ∶ (·,ݔ)݂ ∈  ,{௣(|߱௫|)ܮ 
where ߱ stands for the family (߱௫)௫∈ா . 
Proposition(4.3.20)[201]: With the above notation for ܦ,߱,  and ܧ, and with ݂  the ,(ܦ)ܥ ∋
analog of Theorem (4.3.1) holds for LC(݂,߱,ܧ). To adapt the last sentence of Theorem 
(4.3.1) to LC(݂,߱,ܧ), the extra assumption that ߤ be subanalytic should be replaced by the 
condition that the ߱௜భ ,...,௜ೖ be subanalytic. 
Proof. Because ܦ is subanalytic, basic o-minimality implies that there exists a finite family 
࣯ of subanalytic subsets of ܦ which covers ܦ and is such that the following hold for each 
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ܷ ∈ ࣯: 
I. for every ݔ ∈ Π௠(ܷ), the fiber ܷ௫ is open in ܦ௫; 
II. there exists an increasing function ߣ௎: {1, . . . ,݇} → {1, . . . ,݊} such that for each 

ݔ ∈ Π௠(ܷ), the projection Πఒೆ is injective on ܷ௫ and has constant rank ݇. 
For each ܷ ∈ ࣯, let ܩ௎(ݔ, (ݖ = ,ݔ)௎݃,ݔ) be the inverse of Π௠,ఒೆ ((ݖ ∶ ܷ → Π௠,ఒೆ(ܷ), 
where ݖ = ,ଵݖ) . . . , ܷ ௞). Then for eachݖ ∈ ࣯, the functions ݂ ∘  ௎ andܩ

߱௎(ݔ, (ݖ ∶= ෍ ߱௜భ ,...,௜ೖ
ଵஸ௜భழ···ழ௜ೖஸ௡

,ݔ)௎݃,ݔ)  ((ݖ
߲൫݃௜భ

௎  , . . . , ௜݃ೖ
௎൯

,ଵݖ)߲ . . . ,  (௞ݖ
,ݔ)  (ݖ

are both constructible functions on ܷ, and in the case that ݂ and all the ߱௜భ ,...,௜ೖ are sub-
analytic, the ߱௎ and ݂ ∘ ݂)௎ also are. Hence, Theorem (4.3.1) applies to LCܩ ∘ ,௎ܩ |߱௎|,
Π௠(ܷ)). The proposition now follows relatively easily from this and from the fact that 

LC(݂|௎,߱|௎ , Π௠(ܷ)) =  LC(݂ ∘ ௎ܩ , |߱௎|, Π௠(ܷ)) 
for each  ܷ ∈ ࣯.  
Definition(4.3.21)[201]: Consider ݈ ∈ {0, . . . , ݊} and a rational monomial map ߰ on ܤ over 
ℝ௠, where ܤ ⊂ ℝ௠ା௡ . We say that ߰ is ݈-rectilinear over ℝ௠  if ܤ is ݈-rectilinear over ℝ௠ 
(as defined prior to Theorem 4.3.4) and if ψ is of the form 

(ݕ,ݔ)߰ = ܿଵ(ݔ)ݕஸ௟
ఊభ , . . . , ܿே(ݔ)ݕஸ௟

ఊಿ ,௟ାଵݕ,  . . . ,  ௡ݕ
for some positively-valued analytic subanalytic functions ܿଵ, . . . , ܿே on Π௠(ܤ) and tuples 
,ଵߛ . . . ,  over ℝ௠, is ܤ or a rational monomial map ߰ on ,ܤ ே in ℚ௟. We say that setߛ
rectilinear over ℝ௠ to mean that it is ݈-rectilinear over ℝ௠ for some ݈. 
Definition(4.3.22)[201]: For a subanalytic set ܦ ⊂ ℝ௠ା௡, an open partition of ܦ over ℝ௠ 
is a finite family ࣛ of disjoint subanalytic subsets of ܦ that are open over ℝ௠ and are such 
that dim(ܦ\⋃ࣛ) ݔ < ݊ for all ݔ ∈ Π௠(ܦ). 
Proposition(4.3.23)[201]:  Let ℱ be a finite set of subanalytic functions on a sub-analytic 
set ܦ ⊂ ℝ௠ା௡ . Then there exists an open partition ࣛ of ܦ over ℝ௠ such that for each 
∋ ܣ ࣛ there exists a subanalytic analytic isomorphism ܨ ∶ ܤ → ܤ over ℝ௠ with  ܣ ⊂
ℝ௠ା௡, and there exist rational monomial maps ߮ on ܣ and ߰ on ܤ over ℝ௠ with the 
following properties. 

I. Pullback Property: Each function in {݂ ∘ ௙∈ℱ{ܨ ∪  ቄdet డி
డ௬
ቅis ߰-prepared, and ߰ is 

rectilinear over ℝ௠. 
II. Pushforward Property: The components of ିܨଵ are ߮-prepared, and ߰ ∘ -߮ ଵ is aିܨ

function.   
Proof: Let ℱ be a finite set of subanalytic functions on ܦ ⊂  ℝ௠ା௡. Apply Proposition 
(4.3.9) to ℱ, and focus on one rational monomial map ߮:ܣ → ℝெ over ℝ௠ that this gives 
for which ܣ is open over ℝ௠. Thus ߮ is prepared, and each function in ℱ restricts to a ߮-
prepared function on ܣ. Let ߠ be the center of ߮. We will first construct finitely many 
sequences of maps diagrammed as follows, 

         (29) 
where for each ݅ ∈ {1, . . . ,݇} the maps ܨ௜ and ߮[௜] are a pullback construction for ߮[௜ିଵ] of 
one of the six types listed above, the map ߰ is rectilinear over ℝ௠, and the ranges of the 
maps ܤ:ܨ → ܨ given by ܣ = ఏܶ

ିଵ ∘ ଵܨ ∘ ·· ∘  ௞ for all such sequences (29) constructed formܨ 
an open partition of ܣ over ℝ௠ . Doing this shows the pullback property. We will construct 
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(29) to also have the following property. 

For each ݆ ∈ {1, . . . ,݊}, at most one map ܨ௜  in (29)is a ϐlip in ݕ௝ .         (30) 

Assuming we can construct (29) as such, to prove the pushforward property it suffices to 
define ܣ′ = ௞ܤ to inductively define ,(ܤ)ܨ = = ௜ିଵܤ and ܤ  ݅ for each (௜ܤ)௜ܨ ∈ {1, . . . ,݇}, 
and to show that we can construct maps diagrammed as follows, 

           (31)    
where for each ݅ ∈ {1, . . . ,݇},߰[௜ିଵ] is a pushforward construction for ܨ௜|஻೔ ∶ ௜ܤ →  ௜ିଵ andܤ
߰[௜]. (Thus the map φ : A → ℝெ in the statement of the theorem is being denoted by 
′ܣ:′߮ → ℝ ெᇲ  here in the proof.) These pushforward constructions will be possible because 
if a map ܨ௜ in (29) is a flip in ݕ௝  , we can ensure that ߰[௜] is of the form (33). Indeed, from 
among the six types of pullback and pushforward constructions we use, only blowups in one 
of the variables ݕ௝ , . . .  ,௡ can possibly destroy the form (33). So and (32) imply that, in factݕ,
all the maps ߮[௜] , . . . ,߮[௞] and ߰[௞], . . . ,߰[௜]  are of the form (33). 
      So it remains to construct the sequences (29). This is done by an induction, and to 
simplify notation we will write ߮ ∶ ܣ → ℝெ instead of the more cumbersome ߮[௜] ∶ ௜ܣ →
ℝெ೔ . (So we are now assuming that ߮ is basic.) Let ݀ ∈ {1, . . . ,݊}, and inductively assume 
that ߮ழௗ is ݈-rectilinear over ℝ௠ for some ݈ ∈ {0, . . . ,݀ − 1} and that ߮ is prepared over 
ℝ௠ାௗିଵ. Thus ܣ is a cell over ℝ௠, so we use the definition (4.3.21). To complete the 
construction, it suffices to show that after taking an open partition of ܣ over ℝ௠ and pulling 
back ߮, we may reduce to the case that ߮ஸௗ is rectilinear and ߮ is prepared over ℝ௠ାௗ. 
      By pulling back by a blowup in ݕௗ and then by power substitutions in ݕ௟ାଵ, . . .  ௗ, andݕ,
using Lemma (4.3.26), we may assume that ܾௗ = 1 and that all the powers of ݕ௟ାଵ, . . . ,  ௗݕ
occurring in the components of ߮ are natural numbers, and when ܽௗ > 0, that all the powers 
of ݕ௟ାଵ, . . .  ௗିଵ in the monomials occurring outside the units in the ߮ழௗ-prepared forms ofݕ,
ܽௗ and1 − ܽௗ are also natural numbers. There are two cases that can be handled very easily. 
Case ૚: ܽௗ =  0. 
In this case, ߎ௠ାௗ(ܣ) is ݈-rectilinear, so we are done after using Lemma (4.3.27.I) to adjust 
߮. 
Case 2: The closure of {ݕௗ ∶ (ݕ,ݔ) ∈ ,is contained in (0 {ܣ 1]. 
     In this case, use Lemma (4.3.27.II) to adjust φ to assume that ߮ is of the form (33), and 
then apply a flip in ݕௗ to reduce to Case 1. 
(Note that if we reduce to either of these two cases, we need not require that ܾௗ = 1 or that 
the requisite powers of ݕ௟ାଵ, . . . ,  ௗ are natural numbers, because the blowup and powerݕ
substitutions mentioned just prior to these cases can be applied if needed.) So assume that 
ܽௗ > 0, and write 

ܽௗ(ݕ,ݔழௗ)  =  ොܽ(ݔ)ݕழௗఈ  (ழௗݕ,ݔ)ݑ 
for some analytic subanalytic function ොܽ, tuple of rational numbers ߙ = ,ଵߙ) . .  ௗିଵ), andߙ ,.
߮ழௗ-unit ݑ. We proceed by induction on |supp(ߙவ௟)|, the cardinality of the set supp(ߙவ௟). 
     Suppose that supp(ߙவ௟) is empty, and write ݕஸ௟ఈ  instead of ݕழௗఈ . Fix a constant ܥ that is 
greater than the supremum of the range of ݑ. Construct a partition of ߎ௠ା௟(ܣ) into cells 
over ℝ௠ compatible with the condition ොܽ(ݔ)ݕஸ ௟

ఈ ܥ = 1. By considering the restriction of ߮ 
to ܣ ∩ ܤ) × ℝ௡ି௟) for each cell ܤ from this partition that is open over ℝ௠, we may assume 



125 
 

that either ොܽ(ݔ)ݕஸ ௟
ఈ ܥ > 1 on ܣ or ොܽ(ݔ)ݕஸ ௟

ఈ ܥ < 1 on ܣ. If ොܽ(ݔ)ݕஸ ௟
ఈ ܥ > 1 on ܣ, then ܽௗ is 

bounded below by a positive constant, and we are in Case 2. So assume that ොܽ(ݔ)ݕஸ ௟
ఈ ܥ < 1 

on ܣ.  
Consider the two sets 

(ݕ,ݔ)} ∈ (ழௗݕ,ݔ)ௗܽ :ܣ < ௗݕ < ොܽ(ݔ)ݕஸ ௟
ఈ ,ݔ)} and {ܥ (ݕ ∈ ܣ ∶ ොܽ(ݔ)ݕஸ ௟

ఈ ܥ < ௗݕ < 1}. 
By restricting ߮ to the first set and then pulling back by a blowup in ݕௗ, we reduce to Case 
2. By restricting φ to the second set and then swapping the coordinates ݕ௟ାଵ and ݕௗ, we 
reduce to the case that ߮ஸௗ is (݈ + 1)-rectilinear and ߮ is prepared over ℝ௠ାௗ, and we are 
done. This completes the proof when supp(ߙவ௟) is empty. 
Now suppose that supp(ߙவ௟) is nonempty. By pulling back by a swap, we may assume that 
݈ + 1 ∈ supp(ߙவ௟). By pulling back by the power substitution ݕௗ ⟼ ௗݕ

ఈ೗శభ ,we may also 
assume that ߙ௟ାଵ = 1. Let ݕ′ and ߙ′ be the tuples indexed by {1, . . . , ݀ − 1}\{݈ + 1} that are 
respectively obtained from ݕழௗ and ߙ by omitting their (݈ + 1)-th components, and write 
ழௗݕ = வ௟ߙ thus ;(௟ାଵݕ,ᇱݕ) = வ௟ᇱߙ and (வ௟ାଵߙ,1) = ܥ வ௟ାଵ. Fix a constantߙ > 1 that is 
greater than the supremum of the range of ොܽ(ݔ)(ݕᇱ)ఈᇲݑ(ݕ,ݔᇱ,ݕ௟ାଵ); this may may done 
because ොܽ(ݔ)(ݕᇱ)ఈᇲݕ௟ାଵ is bounded (since it equals ܽௗ൫(ݕ,ݔழௗ)/ݔ)ݑ,  ௟ାଵ mayݕ ழௗ)൯ andݕ
freely approach 1 independently of the other variables. Thus 

ܽௗ(ݕ,ݔᇱ,ݕ௟ାଵ) =  ොܽ(ݔ)(ݕᇱ)ఈᇲݕ௟ାଵݑ(ݕ,ݔᇱ,ݕ௟ାଵ) <    ௟ାଵݕܥ 
on A. Consider the three sets, 

(ݕ,ݔ)} ∈ ଵିܥ :ܣ < ௟ାଵݕ  < 1}, 
(ݕ,ݔ)} ∈ ܣ ∶ 0 < ௟ାଵݕ < (௟ାଵݕ,′ݕ,ݔ)ܽ ଵ andିܥ  < ௗݕ <  {௟ାଵݕܥ

and 
(ݕ,ݔ)} ∈ :ܣ 0 < ௟ାଵݕ < ௗݕ ௟ାଵݕܥ ଵ andିܥ  <  1}. 

By restricting ߮ to the first set, we reduce to the case that ߮ஸௗ is (݈ + 1)-rectilinear, and we 
are done by the induction hypothesis since |supp(ߙவ௟ାଵ)| < | supp(ߙவ௟)|. If we restrict ߮ 
to either the second or third set, we may pull back by a blowup in ݕ௟ାଵto assume that ܥ = 1. 
On the second set, we may then pull back by a blowup in ݕௗ, and we are done by the 
induction hypothesis since |supp(ߙ′வ௟)| < |supp(ߙவ௟)|. The third set can also be written as 
(ݕ,ݔ)} ∈ ܣ ∶ 0 < ௗݕ < 1, 0 < ௟ାଵݕ <  ௗ}, so we may reduce to Case 1 by swapping theݕ
coordinates ݕ௟ାଵ  and ݕௗ.       

The purpose of the pushforward property is that it ensures that for each sub-analytic 
function ℎ:ܤ → ℝ that is ߰-prepared, ℎ ∘  ଵ is ߮-prepared. This proposition is essentiallyିܨ
Theorem (4.3.4), the only differences being that the theorem does not mention the 
pushforward property and that the theorem deals with an actual partition of ܦ rather than 
just an open partition of ܦ over ℝ௠. In the proposition we use open partitions over ℝ௡, 
rather than actual partitions, because it allows the proof of the proposition to be stated 
somewhat more simply since we may ignore subsets of ܦ whose fibers over ℝ௠ have 
dimension less than ݊, and doing so is of no loss to the study of ܮ௣-spaces on ܦ௫ . 
     The following lemma of one-variable calculus, and its corollary, are apparent. 
Lemma(4.3.24)[201]: Let ߙ ∈ ℝ and ߚ ≥ 0. Then the function ݐ ⟼ ఈ(logݐ  ఉ is(ݐ

I. integrable on (0, 1) if and only if ߙ > −1; 
II. bounded on (0, 1) if and only if ߙ > 0 or ߙ = ߚ = 0. 

Corollary(4.3.25)[201]: Suppose that ܣ ⊂  ℝ௡ is l-rectilinear over ℝ଴, and let ߙ)ߙଵ, . . .,
(௡ߙ ∈ ℝ௡and ߚ = ,ଵߚ) . . . (௡ߚ, ∈ [0,∞)௡. Then the function ݕ ⟼ ఉ|ݕఈ|logݕ   is 

I. integrable on ܣ if and only if for all ݅ ∈ {݈ + 1, . . . ௜ߙ,{݊, >  −1; 
II. bounded on ܣ if and only if for all ݅ ∈  {݈ + 1, . . . ௜ߙ,{݊, > 0 or ߙ௜ = ௜ߚ = 0. 
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     Note that if ܣ ⊂ ℝ௠ା௡ is ݈-rectilinear over ℝ௠, then by applying Corollary (4. 3.25) to 
each of the fibers ܣ௫, we see that ݕ ⟼ ݔ ௫ either for allܣ ఉ is integrable on|ݕఈ|logݕ ∈
Π௠(ܣ) or for no ݔ ∈ Π௠(ܣ), according to whether the condition given in clause I of the 
corollary holds; and likewise for boundedness and clause II. 
Lemma(4.3.26)[201]: Let ܣ ⊂ ℝ௡ be l-rectilinear over ℝ଴, and let ߙ = ,ଵߙ) . . . ∋  (௡ߙ, ℚ௡. 

I. If {ݕఈ: ݕ ∈ ,௟ାଵߙ is bounded, then {ܣ . . . ௡ߙ, ≥ 0. 
II. Let ߚ ∈ ℚ and ܤ = ,ݕ)} (ݖ ∈ ܣ  × ℝ ∶ (ݕ)ܽ < ݖ <  1}, where 0 ≤ (ݕ)ܽ < 1 for all 

ݕ ∈ ఉݖఈݕ} If .ܣ ∶ ,ݕ) (ݖ ∈ ,௟ାଵߙ is bounded, then {ܤ . . . ௡ߙ,  ≥ 0. 
Proof: Statement I is clear. Statement II follows from statement I because {ݕఈ: ݕ ∈  is in {ܣ
the closure of the set {ݕఈݖఉ: ,ݕ) (ݖ ∈ ݕ :ఈݕ} so ,{ܤ ∈ :ఉݖఈݕ} is bounded if {ܣ ,ݕ) (ݖ ∈  is {ܤ
bounded.  
     The following lemma is apparent. 
Lemma(4.3.27)[201]: Let ߮ ∶ ܣ → ℝ be a basic rational monomial map over ℝ௠, where 
ܣ ⊂ ℝ௠ା௡  and ߮(ݕ,ݔ) =  .ఈݕ(ݔ)ܿ

I. If ܣ is l-rectilinear over ℝ௠ and ߙ ∈ ℚ௟ × ℕ௡ି௟, then ܿ(ݔ)ݕஸ௟ఈஸ௟   is bounded on 
Π௠ା௟(ܣ), and ߮ is a (ܿ(ݔ)ݕஸ ௟

ఈஸ௟ ௟ݕ, , . . .  .௡)-functionݕ,
II. Let ݆ ∈ {1, . . . ,݊}, and put ݕ′ = ′ߙ and (வ௝ݕ,ழ௝ݕ) = ൫ߙழ௝,ߙவ௝൯. If the closure of 

௝ݕ} ∶ (ݕ,ݔ) ∈ ఈᇲ(ᇱݕ)(ݔ)ܿ is contained in (0,1], then {ܣ  is bounded on ܣ, and ߮ is a 
൫ܿ(ݔ)(ݕᇱ)ఈᇲ  .௝൯-functionݕ,

Definition(4.3.28)[201]: Suppose we are given a basic rational monomial map ߮ ∶ ܣ → ℝெ 
over ℝ௠, where ܣ ⊂ ℝ௠ା௡ is a cell over ℝ௠. A pullback construction for φ consists of a 
subanalytic map ܨ ∶ ܤ → ߰ and a basic rational monomial map ܣ ∶ ܤ → ℝே over ℝ௠, 
diagrammed as follows, 

 
where ܤ ⊂ ℝ௠ା௡ is a cell over ℝ௠, ܤ:ܨ → is an analytic isomorphism over ℝ௠ (ܤ)ܨ ,
det డி

డ௬
 and the components of ܨ are ψ-prepared, and ߮ ∘  .is a ߰-function ܨ

     Observe that these properties ensure that if ℎ is any ߮-prepared function, then ℎ ∘ -߰ is ܨ
prepared. 
We will use the six types of pullback constructions listed below, where 

(ܣ)௠ା௝ߎ = ൛൫ݕ,ݔஸ௝൯: ൫ݕ,ݔழ௝൯ ∈ ,(ܣ)௠ା௝ିଵߎ  ௝ܽ൫ݔ, ழ௝൯ݕ < ௝ݕ < ௝ܾ൫ݕ,ݔழ௝൯ൟ    (32) 
for each ݆ ∈ {1, . . . ,݊}. When defining ܨ below, we only specify its action on coordinates on 
which it acts nontrivially. 

I. Adjustment: This means that ܨ is the identity map (but ߰ may be different from ߮). 
II. Restriction: This means that ܨ is an inclusion map and ߰ =  ߮|஻. 
III. Power Substitution in ݕ௝: This means that ܨ sends ݕ௝ ⟼ ௝ݕ

௣for some positive integer 
= ߰ and ,݌ ߮ ∘  .ܨ

IV. Blowup in ݕ௝:This means that we are assuming that ߮ஸ௝is prepared over ℝ௠ା௝ିଵ that 
௝ݕ sends ܨ ⟼ ௝ݕ ௝ܾ(ݕ,ݔழ௝), and that ߰ is the pullback of ߮ by the transformation 
sending ݕ௝ ⟼ ௝ݕ ෠ܾ(ݔ)ݕழ௝

ఉ  , where ௝ܾ൫ݕ,ݔழ௝൯ = ෠ܾ(ݔ)ݕழ௝
ఉ ,ݔ൫ݑ -ழ௝൯ is the ߮ழ௝ݕ

prepared form of ௝ܾ  and ߮ is the natural extension of ߮ to ߎ௠(ܣ) × (0,∞)௡  
V. Flip in ݕ௝: This  means we are assuming that ߮ is prepared over ℝ௠ା௝ିଵ, that the 

closure of {ݕ௝ ∶ (ݕ,ݔ) ∈ is contained in (0,1], that ௝ܾ {ܣ = 1, and that ߮ is of the 
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form 
,ݔ)߮  (ݕ = ቀ߮ழ௝൫ݕ,ݔழ௝൯,ݕ௝,߮வ௝൫ݕ,ݔழ௝,ݕவ௝൯ቁ ;                   (33) 

F is the transformation sending y୨ ⟼ 1 − y୨, and ߰ is defined by the formula on the 
right side of (33), but on ܤ rather than on ܣ. 

VI.  Swap in ݕ௜ and ݕ௝ ∶This means that ܨ is the transformation sending (ݕ௜ ⟼ (௝ݕ,
௝ݕ) ߰ ௜) andݕ, =  ߮ ∘  .is still a cell over ℝ௠ ܤ provided that the resulting set ,ܨ

      Note that when (ܨ,߰) is a flip in ݕ௝ , we always assume that ߮ is prepared over ℝ௠ା௝ିଵ 
and that the closure of {ݕ௝: (ݕ,ݔ) ∈  is contained in (0,1]. We may therefore additionally {ܣ
assume that for each ݅ ∈ {݆ + 1, . . . , ݊}, the monomials in ݕழ௜ occurring outside the units in 
the prepared forms of ܽ௜, ௜ܾ and ௜ܾ − ܽ௜  do not contain any nonzero powers of ݕ௝ , because 
any nonzero powers of ݕ௝  may be included in the units. 
Definition(4.3.29)[201]: Suppose that we are given a basic rational monomial map ߰ ∶ ܤ →
ℝே over ℝ௠ and a subanalytic analytic isomorphism ܤ:ܨ → ܤ,ܣ over ℝ௠, where ܣ ⊂
ℝ௠ା௡. A pushforward construction for ߰ and ܨ is a basic rational monomial map ߮:ܣ →
ℝெ over  ℝ௠, diagrammed as follows, 

 
where the components of ିܨଵare ߮-prepared and ߰ ∘  .ଵ is a ߮-functionିܨ
     Observe that these properties ensure that if ℎ is any ߰-prepared function, then ℎ ∘   ଵିܨ 
is ߮-prepared. 
      If  ܨ ∶ ܤ →  is a map from any one of the six types of pullback constructions described ܣ
above, ߰ᇱ ∶ ′ܤ → ℝேᇲ is a basic rational monomial map over ℝ௠ with ܤᇱ ⊂ ′ܣ and ,ܤ =
஻ᇱ|ܨ then the maps ,(′ܤ)ܨ ∶ ′ܤ →  and ߰′ have an obvious pushforward construction ′ܣ
߮ᇱ ∶ ′ܣ → ℝெᇲ , provided that when ܨ is a flip in ݕ௝ , the map ߰′ is of the form ߰′(ݔ, (ݕ =
ቀ߰ழ௝

ᇱ  ൫ݕ,ݔழ௝൯,ݕ௝ ,߰ழ௝
ᇱ ൫ݕ,ݔழ௝,ݕவ௝൯ቁ. 

     We now come to show the Proposition (4.3.33), which is a preparation result for constru-
ctible functions in transformed coordinates on rectilinear sets. 
For any set ܧ ⊂ ℝ௠ , let Øா denote the ring of all analytic germs on ܧ, and let Øா[ݕ] denote 
the ring of all polynomials in ݕ = ,ଵݕ) . . .  ௡) with coefficients in Øா. Each member ofݕ,
Øா[ݕ] is an equivalence class of functions defined on neighborhoods of ܧ × ℝ௡ in ℝ௠ା௡, 
and hence defines a function on ܧ × ℝ௡. For each ℱ ⊂ Øா[ݕ], define the variety of ℱ by 

ॽ(ℱ) = (ݕ,ݔ)}  ∈ ܧ × ℝ௡ ∶ (ݕ,ݔ)݂ = 0 for all ݂ ∈  ℱ}. 
For each  ݔ ∈ ℝ௠ , the ring Ø{௫} is Noetherian, so Ø{௫}[ݕ] is as well. This implies that when 
 form the collection of closed subsets of a Noetherian [ݕ]is compact, the varieties of Øா ܧ
topological space on ܧ × ℝ௡; in other words, for any ℱ ⊂ Øா[ݕ] there exists a finite ℱ′ ⊂ ℱ 
such that ॽ(ℱ′)  =  ॽ(ℱ). 
      We partially order ℕ௞ by defining ߙ ≤ ௝ߙ if and only if ߚ ≤ ݆ ௝ for allߚ ∈ {1, . . . ,݇}, 
where ߙ = ,ଵߙ) . . . ߚ ௞) andߙ, = ,ଵߚ) . . . ߙ ௞). For anyߚ, ∈ ℕ௞ write [ߙ] = ߚ} ∈ ℕ௞ ∶ ߚ ≥  ,{ߙ
and for any ܣ ⊂ ℕ௞ write [ܣ] = ⋃ ఈ∈஺[ߙ]  for the upward closure of ܣ. If ܣ ⊂ ℕ௞ is nonempty, 
define min ܣ to be the set of minimal members of ܣ, and define min ∅ = ∅. Dickson’s 
lemma states that min ܣ is finite for every ܣ ⊂ ℕ௞.The following is a parameterized version 
of Dickson’s lemma. 
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Lemma(4.3.30)[201]: Let ܧ ⊂ ℝ௠ be compact and { ఈ݂}ఈ∈ℕೖ ⊂  Øா[ݕ]. Then the set 

ራ min{ߙ ∈  ℕ௞ ∶ ఈ݂(ݕ,ݔ) ≠ 0}
(௫,௬)∈ா× ℝ೙

                                 (34) 

is finite. 
Proof. The proof is by induction on ݇, with the base case of ݇ = 0 being trivial. Forthe 
inductive step, use topological Noetherianity to fix ߚ ∈ ℕ௞ such that ॽ൫{ ఈ݂}ఈஸఉ൯ = 
ॽ൫{ ఈ݂}ఈ∈ℕೖ൯. Then (34) is finite because it is contained in 

ራራቌ ራ min{ߙ ∈  ℕ௡ ∶ ఈ݂(ݕ,ݔ) ≠ ௜ߙ,0  = ݆}
(௫,௬)∈ா× ℝ೙

ቍ
ఉ೔

௝ୀ଴

,
௞

௜ୀଵ

      (35) 

and each of the sets in parenthesis in (35) is finite by the induction hypothesis.  
Lemma(4.3.31)[201]: Let ܯ ⊂ ℕ௞ be finite. Then there exists a finite partition of [ܯ]\ܯ 
that is compatible with {[ߙ]}ఈ∈ெ and is such that each member of the partition has a unique 
minimal member. 
Proof. Define ߳ = (߳ଵ, . . . , ߳௞) by ߳௜ = max{ߙ௜ ∶ ߙ ∈ ݅ for each {ܯ ∈ {1, . . . ,݇}. Let the 
partition of [ܯ]\ܯ consist of all the singletons {ߙ} with ߙ ∈ ൫ ∏ [0, ߳௜]௞

௜ୀଵ ൯ ∩  and all ܯ\[ܯ]
sets of the form 

 ቐߙ ∈ ℕ௞ ∶  ൭ሥߙ௜ >  ߳௜
௜∈ே 

 ൱ ∧ ቌ ሥ ௝ߙ = ௝ߚ 
 ௝∈{ଵ,...,௞ }\ே

 ቍ ቑ  , 

for each nonempty ܰ ⊂ {1 . . .݇} and ߚ = .ଵߚ) . ∏௞) in ൫ߚ. [0, ߳௜]௞
௜ୀଵ ൯ ∩   [ܯ]

Lemma(4.3.32)[201]: Let ܧ ⊂ ℝ௠  be compact, and suppose that ݂ is represented by a 
convergent power series 

,ݕ,ݔ)݂ (ݖ  = ෍ ఈ݂(ݕ,ݔ)ݖఈ

ఈ∈ℕೖ
  

on ܧ × ℝ௡ × [0, 1] ௞, where f஑  ∈  Øா[ݕ] for each ߙ ∈ ℕ௞. Then we may write 
,ݔ)݂  ,ݕ (ݖ = ෍ ఈݖ ఈ݂(ݕ,ݔ)

ఈ∈ெౙ౨

 + ෍ ఉݖ ఉ݂(ݕ,ݔ, (ݖ
ఉ∈ெ౤ౙ

              (36) 

on ܧ × ℝ௡ × [0,1]௞, where the sets ܯୡ୰,ܯ୬ୡ ⊂ ℕ௞ are finite and disjoint, each ఉ݂ with 
ߚ ∈ ∑  ୡ୰ is represented by a subseries ofܯ ఈ݂(ݕ,ݔ)ݖఈିఉ,ఈஹఉ   and for each (ݕ,ݔ) ∈ ܧ × ℝ௡ 
and each ߚ ∈ ,ݕ,ݔ)୬ୡ, if ఉ݂ܯ (ݖ ≠ 0 for some ݖ ∈ [0,1]௞ , then ఈ݂(ݕ,ݔ) ≠ 0 for some 
ߙ ∈ ߙ ୡ୰ withܯ ≤   .ߚ
Proof. Let ܯୡ୰ be the set defined in (34), let ܵ be the partition of [ܯୡ୰]\ܯୡ୰ given by 
Lemma(4.3.31) , and let ܯ୬ୡ be the set of minimal members of the sets in ܵ. For each 
ߚ ∈  and define ,ߚ ୬ୡ, write ఉܵ for the unique member of ܵ whose minimal member isܯ
ఉ݂(ݕ,ݔ, (ݖ = ∑ ఈ݂(ݕ,ݔ)ݖఈିఉఈ∈ௌഁ  . Then (36) holds. Consider ߚ ∈ ,ݔ) ୬ୡ andܯ ∋ (ݕ ܧ × ℝ௡ 

such that ఉ݂(ݕ,ݔ, (ݖ ≠ 0 for some ݖ ∈ [0, 1]௞. Then ఊ݂(ݕ,ݔ) ≠ 0 for some ߛ ∈  ఉܵ. Fix 
ߙ ∈ (ݕ,ݔ)ୡ୰ such that ఈ݂ܯ ≠ 0 and ߙ ≤ Thus ఉܵ .ߛ ∩ is nonempty, so ఉܵ [ߙ] ⊂  by the [ߙ]
compatibility property of ܵ, and hence ߙ ≤   .ߚ 
Proposition(4.3.33)[201]: Let ℱ be a finite set of constructible functions on a sub-analytic 
set ܦ ⊂ ℝ௠ା௡. There exists an open partition ࣛof D over ℝ௠such that for each ܣ ∈  ࣛ 
there exist a subanalytic analytic isomorphism ܨ = ,ଵܨ) . . . ܤ:(௠ା௡ܨ, →  over ℝ௠, rational ܣ
monomial maps ߮ on ܣ and ߰ on ܤ over ℝ௠, and ݈ ∈ {0, . . . ,݊} with the following  
properties. 
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I. Pullback Property: The map ψ is l-rectilinear over ℝ௠, det డி
డ௬

 is ߰-prepared, and 
for every ݂ ∈ ℱ we may write ݂ ∘  in the form ܨ 

݂ ∘ (ݕ,ݔ)ܨ =  ෍(logݕவ௟ )௦
௦∈ௌ

ቌ ෍ வ௟௥ݕ  ௥݂,௦(ݕ,ݔ )
௥∈ோ౩ౙ౨ 

  + ෍ வ௟௥ݕ  ௥݂,௦(ݕ,ݔஸ௟)
௥∈ோ౩౤౨ 

ቍ          (37) 

on ܤ, where the sets ܵ ⊂ ℕ௡ି௟ and ܴୱୡ୰ ,ܴୱ୬ୡ ⊂ ℤ௡ି௟ are finite with ܴୱୡ୰ ∩ ܴୱ୬ୡ = ∅ for each 
 and each function ௥݂,௦ may be written as a finite sum ,ݏ

⎩
⎪
⎨

⎪
⎧ ௥݂,௦(ݔ, (ஸ௟ݕ = ෍݃௝(ݔ)ݕஸ௟

ఈೕ(logݕஸ௟  )ఉೕℎ௝(ݕ,ݔஸ௟)
௝

, if  ݎ ∈ ܴୱୡ୰ 

 

௥݂,௦(ݕ,ݔ) = ෍݃௝(ݔ)ݕஸ௟
ఈೕ(logݕஸ௟ )ఉೕℎ௝(ݕ,ݔ)

௝

, if  ݎ ∈ ܴୱ୬ୡ 
                  (38) 

where ݃௝ ∈ ௝ߙ,൯(ܣ)൫Π௠ܥ ∈  ℤ௜,ߚ௝ ∈  ℕ௟,ℎ௝  is either a ߰ஸ௟-function or a ߰-function 
according to whether ݎ is in ܴୱୡ୰ or ܴୱ୬ୡ , and the following holds: 

ቐ
For each some ݏ ∈ ܵ, ᇱݎ ∈ ܴ௦௡௥  and (ݕ,ݔஸ௟) ∈ ,(ܤ)௠ା௟ߎ if ݂௥ᇲ,௦(ݕ,ݔஸ௟,ݕவ௟) ≠ 0   (39)
for some ݕவ௟ ∈ (0,1)௡ି௟ then ௥݂,௦(ݕ,ݔஸ௟) ≠ 0 for some ݎ ∈ ܴ௦௖௥ with ݎ ≤                 ′ݎ

 
 

II. Pushforward Property: The components of ିܨଵ are φ-prepared, and ߰ ∘  ଵ is aିܨ
߮-function. 

The superscripts “ܿݎ” and “݊ܿ” in the notation ܴ௦௖௥ and ܴ௦௡௖ stand for critical and noncritical. 
We will use (39) to see that the ܮ௣-classes of ݂(ݔ,·) are determined by which of the terms 
௥݂,௦(ݔ,·) with ݎ ∈ ܴ௦௖௥ are identically zero, so in this sense these are the “critical” terms. 

     In the degenerate case of  ݈ =  ݊, (37) and (38) simply mean that 
݂ ∘ (ݕ,ݔ)ܨ = ෍݃௝(ݔ)ݕ 

ఈೕ(log (ݕ,ݔ)ఉೕℎ௝( ݕ
௝

 

for some constructible functions ݃௝, tuples ߙ௝ ∈ ℤ௡ and ߚ௝ ∈ ℕ௡, and ߰-functions ℎ௝ . To see 
this, note that if ݂ ∘ ݈ is nonzero and ܨ = ݊, then ܵ = ℕ଴ = {0} and ܴ଴௖௥ , ܴ଴௡௖ ⊂ ℤ଴ = {0} 
with ܴ଴௖௥ ∩ ܴ଴௡௖ = ∅, so ܴ଴௖௥ = {0} and ܴ଴௡௖ =  ∅ by (39). 
Proof. For each ݂ ∈  ℱ write ݂(ݕ,ݔ) =  ∑ ௜݂(ݕ,ݔ)∏ log ௜݂,௝(ݔ, ௝௜(ݕ  for finitely many sub-
analytic functions ௜݂: ܦ → ℝ and ௜݂,௝:ܦ → (0,∞). Apply Proposition (4.3.23) to ⋃ { ௜݂,௙∈ℱ

௜݂,௝}௜,௝, and focus on one set ܣ in the open partition of ܦ over ℝ௠ that this gives, along with 
its associated maps ܨ ∶ ܤ → ,ܣ ߮ on ܣ, and ߰ on ܤ, where ߰ is ݈-rectilinear over ℝ௠. Thus  
det డி

డ௬
  is ߰-prepared, and we may write 

݂ ∘ ,ݔ)ܨ (ݕ =  ෍ܽ௜(ݔ)ݕఈ೔ ݑ௜(ݕ,ݔ)
௜

ෑ logܽ௜,௝(ݔ)ݕఈ೔,ೕ (ݕ,ݔ)௜,௝ݑ 
௝

  

on ܤ for some analytic subanalytic functions ܽ௜and ܽ௜,௝, tuples ߙ௜  and ߙ௜,௝ in ℚ௡, and ߰-
units ݑ௜ and ݑ௜,௝. By expanding the logarithms and distributing, we may rewrite this in the 
form 

݂ ∘ ,ݔ)ܨ (ݕ =  ෍ ௜݃(ݔ)ݕఈ೔ 
௜

(log y)ఉ೔  ℎ௜(ݕ,ݔ)                              (40) 

for some constructible functions ௜݃, tuples ߙ௜ ∈ ℚ௡ and ߚ௜  ∈  ℕ௡, and ߰-functions ℎ௜. 
Bypulling back by power substitutions in ݕ, we may assume that ߙ௜ ∈ ℤ௡ for each ߙ௜ in 
(40). 
Write ℎ௜(ݕ,ݔ) =  on the closure (வ௟ݕ,ܺ)௜ܪ for some analytic function (வ௟ݕ,(ஸ௟ݕ,ݔ)ஸ௟߰)௜ܪ
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of the image of ߰. 
     We are done if ݈ = ݊, so assume that ݈ < ݊ and work by induction on ݊ − ݈. Since the 
closure of the range of ߰ஸ௟ is compact, we may fix ߳ > 0 such that each function ܪ௜ is given 
by a single convergent power series in ݕவ௟ with analytic coefficients in (ܺ,ݕஸ௟), say 

(வ௟ݕ,ܺ)௜ܪ = ෍ வ௟ݕ(ܺ)௜,ఊܪ
ఊ

ఊ∈ℕ೙ష೗
  ,                                         (41) 

for all ܺ in the closure of the range of ߰ஸ௟ and all ݕவ௟in [0, ߳]௡ି௟ . For each ݆ ∈ {݈ + 1, . . .݊}, 
by restricting ߰ to {(ݕ,ݔ) ∈ ௝ݕ:ܤ > ߳} and swapping the coordinates ݕ௟ାଵ and ݕ௝ , we may 
reduce to the case that ߰ is (݈ + 1)-rectilinear, in which case we are done by the induction 
on ݊ − ݈. So it suffices to restrict ߰ to ܤ ∩ (ℝ௠ା௟ × (0, ߳)௡ି௟ ). After pulling back by the 
maps sending ݕ௝ ⟼ ௝ݕ߳  for each ݆ ∈ {݈ + 1, . . . ,݊}, and again expanding the logarithms 
logݕ௝ ߳ =  log ௝ݕ + log ߳ and distributing, we may assume that ߳ = 1. We are now done 
pulling back ߰. The pushforward property of the proposition we are showing follows from 
the fact that ߮ satisfies the pushforward property of Proposition (4.3.23), because we have 
only applied some very simple pullback constructions to the map ߰ originally given by 
Proposition (4.3.23). It remains to show that we can express ݂ ∘  as a sum in the desired ܨ
form. 
     By grouping terms in (40) according to like powers of log ݕவ௟, factoring out suitable 
monomials in ݕ, and absorbing any remaining monomials in ݕவ௟ with nonnegative powers 
inside of ߰-functions, we may rewrite (40) in the form 

݂ ∘ (ݕ,ݔ)ܨ =  ෍(log yவ௟)௦ݕఋೞ
௦∈ௌ

෍݃௝(ݔ)ݕஸ௟
ఈೕ(logݕஸ௟ )ఉೕ  ℎ௝(ݕ,ݔ)

௝∈௃ೞ

            (42) 

for some finite ܵ ⊂ ℕ௡ି௟ and finite index sets ܬ௦, constructible functions ݃௝, tuples ߜ௦ ∈ ℤ௡ 
and ߙ௝ ௝ߚ, ∈  ℕ௟, and ߰-functions ℎ௝ , which we still write as ℎ௝ = ௝ܪ  ∘ ߰ with ܪ௝  written as 
a power series (41). For each ݏ ∈  ܵ write 

௦ܩ ∘ (ݕ,ݔ)ݏߖ  =  ෍݃௝(ݔ)ݕஸ௟
ఈೕ(logݕஸ௟ )ఉೕ  ℎ௝(ݕ,ݔ)

௝∈௃ೞ

, 

where 

(ݕ,ݔ)ݏߖ  =  ൬߰ஸ௟(ݕ,ݔஸ௟), log ஸ௟ݕ , ቀ݃௝(ݔ)ቁ
௝∈௃ೞ

൰ݕ,   , 

,௦(ܺ,ܻ,ܼ௦ܩ (ݕ  =  ෍ ௝ܼݕஸ௟
ఈೕܻఉೕ (வ௟ݕ,ݔ)௝ܪ 

௝∈௃ೞ

, 

with ܼ௦ = ( ௝ܼ)௝∈௃ೞ   and ܻ = ( ଵܻ, . . . , ௟ܻ). By computing 

෍ቌ ௝ܼݕஸ௟
ఈೕܻఉೕ ෍ வ௟ݕ(ܺ)௝,ఊܪ

ఊ

ఊ∈ℕ೙ష೗
ቍ 

௝∈௃ೞ

= ෍ ቌ෍ ௝ܼݕஸ௟
ఈೕܻఉೕܪ௝,ఊ(ܺ)

௝∈௃ೞ

ቍݕவ௟
ఊ           (43)

ఊ∈ℕ೙ష೗
 

we may write 
௦(ܺ,ܻ,ܼ௦ܩ (வ௟ݕ, = ෍ ,ܻ,ܺ)௦,ఊܩ ܼ௦,ݕஸ௟)ݕவ௟

ఊ

ఊ∈ℕ೙ష೗
  

with each 
௦,ఊ(ܺ,ܻ,ܼ௦ܩ (ஸ௟ݕ, = ෍ ௝ܼݕஸ௟

ఈೕܻఉೕܪ௝,ఊ(ܺ)
௝∈௃ೞ

. 

Note that each ܩ௦,ఊ is a polynomial in (ܻ,ܼ௦,  ܺ ஸ௟) with analytic coefficients in ܺ, andݕ
ranges over a compact set. So we may apply Lemma (4.3.32) to get 
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௦(ܺ,ܻ,ܼ௦ܩ (ݕ, = ෍ வ௟ݕ
ఊ ௦,ఊ(ܺ,ܻ,ܼ௦ܩ (ஸ௟ݕ,

 ఊ∈ோೞ೎ೝ
 + ෍ வ௟ݕ

ఊ ௦,ఊܩ
୬ୡ(ܺ,ܻ,ܼ௦, ,(ݕ

 ఊ∈ோೞ೙೎
 

where ܴ௦௖௥ and ܴ௦௡௖ are disjoint subsets of ℕ௡ି௟, each ܩ௦,ఊ
୬ୡ is an analytic function represented 

by a subseries of ∑ வ௟ݕ
ఋିఊܩ௦,ఋ(ܺ,ܻ,ܼ௦, ஸ௟)ఋஹఊݕ  , and for each choice of (ܺ,ܻ, ܼ௦,ݕஸ௟) and 

′ߛ ∈ ܴ௦௡௖, if ܩ௦,ఊᇱ
௡௖ (ܺ,ܻ,ܼ௦ (வ௟ݕ,ஸ௟ݕ, ≠ 0 for some ݕவ௟ ∈ [0, 1]௡ି௟, then there exists ߛ ∈ ܴ௦௖௥ 

such that ܩ௦,ఊ(ܺ, ܻ, ܼ௦,ݕஸ௟) ≠ 0 and ߛ ≤  Write .′ߛ 

݂ ∘ ,ݔ)ܨ (ݕ = ෍(logݕவ௟)௦ ݕఋೞ
௦∈ௌ

ቌ ෍ வ௟ݕ
ఊ ௦,ఊܩ ∘ ,ݔ)௦,ஸ௟ߖ (ஸ௟ݕ

 ఊ∈ோೞ೎ೝ
  

+ ෍ வ௟ݕ
ఊ ௦,ఊܩ

୬ୡ ∘ (ݕ,ݔ)௦ߖ
 ఊ∈ோೞ೙೎

ቍ ,       (44) 

where ߖ௦,ஸ௟ is the map obtained from ߖ௦ by omitting its components ݕவ௟. By distributing 
each ݕఋೞ and expressing each function ܩ௦,ఊ

୬ୡ as a sum of terms indexed by ݆ ∈  ௦, via aܬ 
computation analogous to what was done in (43) for ܩ௦ (but going from right to left rather 
than from left to right), we see that (44) expresses ݂ ∘  .in the desired form ܨ
Definition(4.3.34)[201]: Consider a finite set ℱof constructible functions on a subanalytic 
set ܦ ⊂ ℝ௠ା௡, and let ࣛ be an open partition of ܦ over ℝ௠ obtained by applying Proposi-
tion (4.3.33) to ℱ. Focus on one ܣ ∈ ࣛ, along with its associated maps ܨ = ,ଵܨ) . . . (௠ା௡ܨ, ∶
ܤ →  where ߰ is ݈-rectilinear over ℝ௠, as in the statement of the ,ܤ and ߰ on ,ܣ on ߮,ܣ
proposition. Write (ݕ,ݔ෤) for the coordinates on ܣ with center ߠ, where ߠ is the center of ߮. 
Write 

det 
ܨ߲
ݕ߲

(ݕ,ݔ)   =  (ݕ,ݔ)ఊܷݕ(ݔ)ܪ 

on ܤ for some analytic subanalytic function ܪ, tuple ߛ = ,ଵߛ) . . . ,  .ܷ ௡) in ℚ௡, and ߮-unitߛ
For each ݂ ∈ ℱ write equation (34) as 

݂ ∘ (ݕ,ݔ)ܨ  =  ෍ መ݂௥,௦(ݔ, (ݕ
(௥,௦)∈∆(௙,஺)

 

on B, where 
∆ୡ୰(݂,ܣ) = ,ݎ)}  (ݏ ∶ ∋ ݏ  ܵ and ݎ ∈  ܴୱୡ୰} , 
∆୬ୡ(݂,ܣ) = ,ݎ)}  (ݏ ∶ ∋ ݏ  ܵ and ݎ ∈  ܴୱ୬ୡ} , 

(ܣ,݂)∆                 =  ∆ୡ୰(݂,ܣ)  ∪  ∆୬ୡ(݂,ܣ), 

             መ݂௥,௦(ݕ,ݔ) = ቊ
வ௟௥ݕ   (logݕவ௟)௦ ௥݂,௦(ݕ,ݔஸ௟), if        (ݎ, (ݏ ∈ ∆ୡ୰(݂,ܣ),
வ௟௥ݕ  (logݕவ௟)௦ ௥݂,௦(ݔ, ,ݎ)     if          ,(ݕ (ݏ ∈ ∆୬ୡ(݂,ܣ),   

for the sets ܵ,ܴୱୡ୰ and ܴୱ୬ୡ and the functions ௥݂,௦ defined from ݂ and ܣ in Proposition (4. 
3.33). For each ݂ ∈ ℱ and ݔ ∈ Π௠(ܣ), define 
∆ୡ୰(݂,ܣ, (ݔ = ,ݎ)} (ݏ ∈ ∆ୡ୰(݂,ܣ): ௥݂,௦(ݕ,ݔஸ௟)  ≠  0 for some ݕஸ௟ ∈  Π௟(ݔܤ)}, 
∆୬ୡ(݂,ܣ, (ݔ = ,ݎ)} (ݏ ∈ ∆୬ୡ(݂,ܣ): ௥݂,௦(ݕ,ݔ)  ≠  0   for some ݕ ∈  ,{௫ܤ 
,ܣ,݂)∆ (ݔ  =  ∆ୡ୰(݂,ܣ, (ݔ  ∪  ∆୬ୡ(݂,ܣ,  ,(ݔ

   Ω(݂,ܣ, (ݔ = ஸ௟ݕ}  ∈  Π௟(ܤ௫): ௥݂,௦(ݕ,ݔஸ௟) ≠ 0 for all (ݎ, (ݏ ∈ ∆ୡ୰(݂,ܣ,  .{(ݔ
For each ݔ ∈ Π௠(ܣ) and ݅ ∈ {݈ + 1, . . . ,݊}, define 

,ܣ,݂)௜ݎ̅ (ݔ  =  inf{ݎ௜: ,ݎ) (ݏ  ∈  ∆ୡ୰(݂,ܣ,  ,{(ݔ
,ܣ,݂)௜̅ݏ (ݔ  =  sup{ݏ௜: ,ݎ) (ݏ  ∈  ∆ୡ୰(݂, ௜ݎ and (ݔ = ,ܣ,݂)௜ݎ̅   ,{(ݔ

under the convention that ̅ݎ௜(݂,ܣ, (ݔ = ∞ and ݏ௜̅(݂,ܣ, (ݔ = 0 when ∆ୡ୰(݂,ܣ,  .is empty (ݔ
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Remarks(4.3.35)[201]: Consider the situation described in Definition (4.3.34), and let  
݂ ∈ ℱ. 

I. For each ݔ ∈ Π௠(ܣ), the set Ω(݂,ܣ,  .(௫ܤ)is dense and open in Π௟ (ݔ
Proof. This follows from the fact that for each ݔ ∈ Π௠(ܣ) and (ݎ, (ݏ ∈ ∆ୡ୰(݂,ܣ,  (·,ݔ)௥݂,௦ ,(ݔ
is a nonzero analytic function on Π௟(ܤ௫), and Π௟(ܤ௫) is connected and open in ℝ௟.  

II. For each ݔ ∈ Π௠(ܣ),, the set ∆ୡ୰(݂,ܣ, (ݕ,ݔ)݂ is empty if and only if (ݔ = 0 
for all ݕ ∈  .௫ܣ 

Proof. If ∆ୡ୰(݂,ܣ,  ௫ . Ifܣ is identically zero on (·,ݔ)݂ is empty, then (39) implies that (ݔ
∆ୡ୰(݂,ܣ,  is not identically (·,ݔ)݂ is nonempty, then the following lemma implies that (ݔ
zero on ܣ௫.  
Lemma(4.3.36)[201]: Consider the situation described in Definition (4.3.34). Fix ݂ ∈ ℱ, ݅ ∈
{݈ + 1, . . . ,݊}, ݔ ∈ Π௠(ܣ) with ∆ୡ୰(݂,ܣ, (ݔ ≠ ∅, and ݕஸ௟ ∈  Ω(݂,ܣ,  = வ௟ݕ For any tuple .(ݔ
,௟ାଵݕ) . . . , ′ݕ ௡), writeݕ =  ൫ݕ௝൯௝∈{௟ାଵ,...,௡}\{௜}

 and ݕவ௟ =  Then the limit .(௜ݕ,′ݕ)

lim
௬೔→଴

݂ ∘ (ݕ,ݔ)ܨ

௜ݕ
௥̅೔(௙,஺,௫) (logݕ௜)௦೔̅(௙,஺,௫) 

                                                  (45) 

exists for all ݕ′ ∈ (0, 1)௡ି௟ିଵ, and the set 
ᇱݕ }  ∈  (0, 1)௡ି௟ିଵ ∶  (45) is nonzero}                                  (46) 

is dense and open in (0, 1)௡ି௟ିଵ. 
Proof. Define 

∆௜(݂,ܣ, (ݔ = ,ݎ)} (ݏ ∈ ,ܣ,݂)∆ (ݔ ∶ ௜ݎ  = ,݂)௜ݎ̅  ௜ݏ and (ݔ = ,݂)௜̅ݏ   ,{(ݔ
∆௜௖௥ (݂,ܣ, (ݔ  =  ∆௜(݂,ܣ, (ݔ  ∩  ∆௖௥(݂,ܣ), 
∆௜௡௖ (݂,ܣ, (ݔ  =  ∆௜(݂,ܣ, (ݔ  ∩  ∆௡௖(݂,ܣ). 

It follows from (39) that for each (ݎ, (ݏ ∈ ௜ݎ either ,(ݔ,ܣ,݂)∆ > ௜ݎ or ,(ݔ,ܣ,݂)௜ݎ̅ = ,ܣ,݂)௜ݎ̅  (ݔ
and ݏ௜ ≤ ,ܣ,݂)௜̅ݏ   ,(′ݕ)݃ Therefore the limit (45) exists and equals .(ݔ
where ݃: (0, 1)௡ି௟ିଵ → ℝ is the analytic function defined by 

(′ݕ)݃ = ෍ ௥ᇲ(log(ᇱݕ) ᇱ)௦ᇲݕ  ௥݂,௦(ݕ,ݔஸ௟)
(௥,௦)∈∆೔

೎ೝ(௙,஺,௫)

 

+ ෍ ௥ᇲ(log(ᇱݕ) ᇱ)௦ᇲݕ  ௥݂,௦(ݕ,ݔஸ௟,ݕ′, 0)
(௥,௦)∈∆೔

೙೎(௙,஺,௫)

. 

So to show that (46) is dense and open in (0, 1)௡ି௟ିଵ , it suffices to show that ݃ is not 
identically zero. To do that we will show that ݃ ∘ ߟ is not identically zero, where ߟ ∶ Λ ×
(0, 1) →  (0,1)௡ି௟ିଵ  is defined by 

,ߣ)ߟ (ݐ =  ൫ݐఒೕ  ൯
௝∈{௟ାଵ,...,௡}\{௜}

  
for some suitably chosen open set Λ ⊂ (0,∞)௡ି௟ିଵ. 
Note that 
                         ݃ ∘ ,ߣ)ߟ (ݐ = ෍ ௦ᇲ(logߣఒ·௥ᇲݐ (ஸ௟ݕ,ݔ)ห ௦ᇲห ௥݂,௦(ݐ

(௥,௦)∈∆೔
ౙ౨ (௙,஺,௫)

 

                        + ෍ ௦ᇲ(logߣఒ·௥ᇲݐ ,ஸ௟ݕ,ݔ)ห ௦ᇲห ௥݂,௦(ݐ ,ߣ)ߟ ,(ݐ 0).
(௥,௦)∈∆೔

౤ౙ (௙,஺,௫)

 

We may choose Λ so that there exist ̅ݎᇱ ∈ :′ݎ} ,ݎ) (ݏ ∈ ∆௜ୡ୰(݂,ܣ, ܿ and {(ݔ > 0 such that for 
all (ݎ, (ݏ ∈  ∆௜ୡ୰(݂,ܣ, ≠ ′ݎ with (ݔ  ,ᇱݎ̅ 

· ߣ ᇱݎ̅ +  ܿ < ߣ  · ∋ ߣ ᇱ  for allݎ  Λ.                               (47) 
By (39), for each (ݎ, (ݏ ∈ ∆௜୬ୡ(݂,ܣ, ,ߩ) such that ߩ there exists (ݔ (ݏ ∈ ∆௜ୡ୰ (݂,ܣ,  and (ݔ
ߩ ≤ ߩ and necessarily) ݎ ≠ ߣ so ,(ݎ · ᇱߩ < ߣ · ߣ for all ′ݎ ∈  Λ. Therefore by shrinking Λ and 
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ܿ, we can ensure that (47) also holds for all (ݎ, (ݏ ∈  ∆௜୬ୡ (݂,ܣ,  So by defining .(ݔ
ᇱݏ̅                   = max{|ݏᇱ|: (ݎ, (ݏ ∈  ∆௜ୡ୰ (݂,ܣ, ᇱݎ and(ݔ = {ᇱݎ̅  , 
∆௜,ஃୡ୰ ,ܣ,݂) (ݔ  = ,ݎ)}  (ݏ ∈  ∆௜ୡ୰ (݂,ܣ, :(ݔ ᇱݎ = |ᇱݏ| ᇱandݎ̅ =  ,{ᇱ̅ݏ 

we see that as ݐ tends to 0, ݃ ∘ ,ߣ)ߟ  is asymptotic with (ݐ

ఒ·௥̅ᇲ(logݐ ௦̅ᇲ(ݐ  ቌ ෍ ௦ᇲߣ ௥݂,௦(ݕ,ݔஸ௟)
(௥,௦)∈∆೔,౻

ౙ౨ (௙,஺,௫)

ቍ , 

which is not identically zero because the sum in parentheses is a nonzero polynomial in ߣ.  
     To show the next lemma, we need the following inequality: 

ଵݔ) + ··· ௞)௣ݔ + ≤ ଵݔ 
௣ + ··· ௞ݔ +

௣  if ݔଵ, . . . , ௞ݔ ≥ 0 and 0 < ݌ ≤ 1.          (48) 
The inequality (48) can be verified when ݇ =  2 by considering ݂(ݐ)  = ଵݔ)  +  ௣ and(ݐ
(ݐ)݃ = ଵݔ

௣ + ଵݔ ௣, whereݐ ≥ 0 and 0 < ݌ ≤ 1, and then showing that ݂(0) = ݃(0) and 
(ݐ)′݂ ≤ ݐ for all (ݐ)′݃ > 0. The general case then follows by induction on ݇. 
Lemma(4.3.37)[201]: Let ߥ be a positive measure on a set ܻ, let { ௜݂}௜∈ூ  and ൛݃௝ൟ௝∈௃ be 
finite families of real-valued ߥ-measurable functions on ܻ, and let  ݌, ݍ > 0. Put ܯ =
max {݌,  Then .{ݍ

න อ෍ ௜݂  
௜∈ூ

อ
௣

ቮ෍݃௝ 
௝∈௃

ቮ

௤

 ߥ݀
 

௒
 ≤

⎩
⎪
⎨

⎪
⎧ ෍ න | ௜݂|௣ห݃௝ห

௤݀ߥ                            if ܯ < 1,
 

௒(௜,௝)∈ூ×௃

ቌ ෍ ቆන | ௜݂|௣ห݃௝ ห௤݀ߥ
 

௒
ቇ
ଵ
ெൗ

(௜,௝)∈ூ×௃

ቍ

ெ

, if ܯ ≥ 1
 

 
Proof. By symmetry we may assume that ݌ ≥  Then .ݍ

 න อ෍ ௜݂  
௜∈ூ

อ
௣

ቮ෍݃௝  
௝∈௃

ቮ

௤

 ߥ݀
 

௒
≤ න ൭෍| ௜݂| 

௜∈ூ

൱
௣

ቌ෍ห݃௝ห 
௝∈௃

ቍ

௤

ߥ݀
 

௒
 

                                                  = න ൮൭෍| ௜݂| 
௜∈ூ

൱
 

ቌ෍ห݃௝ห 
௝∈௃

ቍ

௤ ௣⁄

൲

௣

ߥ݀
 

௒
 

                                                   ≤ න ൮൭෍| ௜݂| 
௜∈ூ

൱
 

ቌ෍ห݃௝ห
௤ ௣⁄  

௝∈௃

ቍ൲

௣

by (48)  ߥ݀
 

௒
 

                                                    = න ቌ ෍ | ௜݂|ห݃௝  ห௤ ௣⁄

( ௜,௝)∈ூ×௃

ቍ

௣

ߥ݀
 

௒
, 

                                                    ≤  

⎩
⎪
⎨

⎪
⎧ ෍ න | ௜݂|௣ห݃௝  ห௤݀ߥ

 

௒
,                           if ݌ < 1

(௜,௝)∈ூ×௃

ቌ ෍ ቆන | ௜݂|௣ห݃௝ ห௤݀ߥ
 

௒
ቇ
ଵ ௣⁄

,
(௜,௝)∈ூ×௃

ቍ

௣

          if ݌ ≥ 1
 

with the last inequality following from (48) when ݌ < 1 and from the triangle inequality for 
݌ when (ߥ)௣ܮ ≥ 1.  
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Lemma(4.3.38)[201]: Consider the situation described in Definition(4.3.34), and suppose 
that ݂, ∋ ߤ ℱ, ݍ > 0 and ݔ ∈  Then .(ܣ)௠ߎ
        LC( ݂|஺, ,௤|஺|ߤ| (ݔ ∩ (0,∞) 

                    = ሩ ݌} ∈ ,ܣ,݂)௜ݎ̅ :(∞,0) ݌(ݔ + ,ܣ,ߤ)௜ݎ̅ ݍ(ݔ + ௜ߛ > −1}.
௡ 

௜ୀ௟ାଵ

 

And, ∞ ∈ LC( ݂|஺, ,௤|஺|ߤ| ,ܣ,ߤ)if and only if either ∆ୡ୰ (ݔ ݅ is empty or else for each (ݔ ∈
{݈ + 1, … ,݊}, ,ܣ,݂)௜ݎ̅ (ݔ > 0 or ̅ݎ௜(݂,ܣ, (ݔ = ,ܣ,݂)௜̅ݏ  (ݔ = 0. 
Proof. Let ݔ ∈  Π௠(ܣ). The conclusion is clear from Remark (4.3.35.II) when either 
∆ୡ୰(݂,ܣ, ,ܣ,ߤ)or ∆ୡ୰ (ݔ ,݂)is empty, for then LC (ݔ (ݔ,௤|ߤ| = (0,∞] and either ̅ݎ௜(݂,ܣ,
(ݔ = ∞ for all ݅ ∈ {݈ + 1, … , ݊} (when ∆ୡ୰(݂,ܣ, ,ܣ,ߤ)௜ݎ̅ is empty), or (ݔ (ݔ = ∞ for all 
݅ ∈ {݈ + 1, … ,݊} (when ∆ୡ୰(ܣ,ߤ, ,ܣ,݂)is empty). So we assume that ∆ୡ୰ (ݔ    ,ߤ)and ∆ୡ୰ (ݔ
,ܣ ݌ are both nonempty. Let (ݔ ∈ (0,∞). 
     Suppose that 

,ܣ,݂)௜ݎ̅  ,ܣ,ߤ)௜ݎ̅ + ݌(ݔ + ݍ(ݔ ௜ߛ  >  −1                              (49) 
for all ݅ ∈ {݈ + 1, … ,݊}. Then 

+ ݍ௜ᇱݎ + ݌௜ݎ ௜ߛ   >  −1           
for all ݅ ∈ {݈ + 1, … ,݊}, ,ݎ) (ݏ ∈ ,ܣ,݂)∆ ,′ݎ) and (ݔ (′ݏ ∈ ,ܣ,ߤ)∆  By applying Lemma .(ݔ
(4.3.37) to the sums ݂   ⃘ ܨ = ∑ መ݂௥,௦(௥,௦)   and ܨ ⃘   ߤ = ∑ ௥,௦(௥,௦)ߤ̂  using the measure defined 
from the Jacobian of ܨ in ݕ, and then by applying Corollary (4.3.25), we see that ݌ ∈
LC( ݂|஺, ,௤|஺|ߤ|  .(ݔ
    Conversely, suppose that ݌ ∈ LC( ݂|஺, ,௤|஺|ߤ| ݅ and let ,(ݔ ∈ {݈ + 1, … ,݊}. Fubini’s 
theorem and Remark (4.3.35.I) imply that there exist ݕஸ௟ ∈ Ω(݂,ܣ, (ݔ ∩ Ω(ܣ,ߤ,  in ′ݕ and (ݔ
then set (46) such that 

⟼ ݅ݕ ,ݔ)ܨ ⃘   ݂| ௤  det|(ݕ,ݔ)ܨ ⃘   ߤ| ௣|(ݕ
ܨ߲
ݕ߲

 (ݕ,ݔ) 

is integrable on (0, 1). So (49) holds by Lemmas (4.3.24) and (4.3.36). 
The ܮஶ case is similar. Indeed, suppose that ̅ݎ௜(݂,ܣ, (ݔ > 0 or ̅ݎ௜(݂,ܣ, (ݔ = ,ܣ,݂)௜̅ݏ (ݔ = 0 
for all ݅ ∈ {݈ + 1, … ,݊}. Then ݎ௜ > 0 or ݎ௜ = ௜ݏ = 0 for all ݅ ∈ {݈ + 1, … ,݊} and (ݎ, (ݏ ∈
,ܣ,݂)∆ ܨ ⃘   ݂ So applying Corollary (4.3.25) to each term of the sum .(ݔ = ∑ መ݂௥,௦(௥,௦)  shows 
that ݂  ⃘(·,ݔ)ܨ is bounded on ܤ௫, and hence ∞ ∈ LC( ݂|஺, ,௤|஺|ߤ|   .(ݔ
     Conversely, suppose that ∞ ∈ LC( ݂|஺, ,௤|஺|ߤ|  ௫. Soܤ is bounded on (·,ݔ)ܨ ⃘   ݂ Then .(ݔ
for each ݅ ∈  {݈ + 1, … ,݊} we may choose ݕஸ௟ ∈ Ω(݂,ܣ,  in the set (46), and ′ݕ and (ݔ
thereby conclude that ̅ݎ௜(݂,ܣ, (ݔ > 0 or ̅ݎ௜(݂,ܣ, (ݔ = ,ܣ,݂)௜ݏ (ݔ = 0 by Lemmas (4.3.24) 
and (4.3.36).  
Proof of Theorem (4.3.1) in the Constructible Case. Let ݂, ߤ ∈  for a subanalytic set (ܦ)ܥ
ܦ ⊂  ℝ௠ା௡, fix ݍ > 0, and write ܧ = Π௠(ܦ). Apply Proposition (4.3.33) to ℱ = {݂,  ,{ߤ
and use definition (4.3.34). We claim that for each ܣ ∈ ࣛ, the set 

ॎ஺: =  {LC( ݂|஺, ,௤|஺|ߤ| (ݔ ∶ ∋ ݔ   Π௠(ܣ)} 
is a finite set of open subintervals of (0,∞] with endpoints in (spanℚ{1, {ݍ ∩ [0, ∞)) ∪
{∞}, and that for each ܫ ∈ ॎ஺ there exists ݃஺,ூ ∈  such that ((ܣ)Π௠)ܥ

ݔ} ∈ (ܣ)௠ߎ ∶ ܫ ⊂ LC( ݂|஺, ,௤|஺|ߤ| {(ݔ = ݔ} ∈ Π௠(ܣ):݃஺,ூ(ݔ) = 0}. 
The claim implies the theorem because for each ݔ ∈  ,ܧ 

,݂)ܥܮ ,௤|ߤ| (ݔ = ሩ LC( ݂|஺, ,௤|஺|ߤ| (ݔ
஺∈ࣛ ௦.௧.
௫∈ஈ೘(஺)

, 

so the claim shows that ॎ is a finite set of open subintervals of (0,∞] with endpoints in 
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,ℚ{1݊ܽ݌ݏ) {ݍ ∩ [0,∞)) ∪ {∞}, and that for each ܫ ∈ ॎ, 
ݔ} ∈ ܧ ∶ ܫ ⊂ LC(݂, ,௤|ߤ| {(ݔ = ݔ} ∈ ܧ ∶ ܫ ⊂  LC(݂|஺ , , ௤|஺|ߤ| ܣ for all (ݔ ∈ ࣛ with ݔ 

∈  Π௠(ܣ)} 

=

⎩
⎨

⎧
ݔ ∈ ܧ  ∶ ෍ ෍ ൬݃ᇱ஺,௃(ݔ)൰

ଶ
=  0

௃∈ॎಲ ௦.௧.
ூ⊂௃

஺∈ࣛ ⎭
⎬

⎫
  , 

where each ݃ᇱ஺,௃: ܧ → ℝ is defined by extending ݃஺,௃ by 0 on ܧ \Π௠(ܣ). 
     To show the claim, focus on one ܣ ∈ ࣛ. Lemma (4.3.38) shows that each member of ॎ஺ 
is an open subinterval of (0,∞] with endpoints in (spanℚ{1, {ݍ ∩  [0,∞)) ∪ {∞}, and that 
ॎ஺  is finite because 

ܮ ⊂  LC(݂|஺ , , ௤|஺|ߤ| (ݔ =  LC(݂|஺ , , ௤|஺|ߤ|  (′ݔ
for all ݔ, ′ݔ ∈ Π௠(ܣ) such that ∆ୡ୰(݂,ܣ, (ݔ = ∆ୡ୰(݂,ܣ, ,ܣ,ߤ)and ∆ୡ୰ (′ݔ (ݔ = ∆ୡ୰∆(ܣ,ߤ,  .(′ݔ
Fix ܫ ∈ ॎ஺ .We may define ݃஺,ூ = 0 if ܫ is empty, so assume that ܫ is nonempty. Let ܽ = 
inf ܫ and ܾ = sup ܫ. Lemma (4.3.38) implies that for any ݔ ∈ Π௠(ܣ), when the infimum of 
LC(݂|஺ , , ௤|஺|ߤ| ݅ is finite, this infimum is determined by the inequalities (49) for all (ݔ ∈ 
{݈ + 1 , . . ., ݊} for which ̅ݎ௜  (݂, ,ܣ  is positive; and similarly, when the supremum of (ݔ
LC(݂|஺ , , ௤|஺|ߤ|  is finite, this supremum is determined by the inequalities (49) for all (ݔ
݅ ∈ {݈ + 1, … ,݊} for which ̅ݎ௜(݂,ܣ, ܫ is negative. Therefore (ݔ ⊂ LC(݂|஺ , , ௤|஺|ߤ|  if and (ݔ
only if each of the following two conditions hold. 

I.  If ܫ ∩ (0,∞) is nonempty, then 
௥݂,௦(ݕ,ݔஸ௟) = 0 and ߤ௥ᇱ,௦ᇱ(ݕ,ݔஸ௟) = 0 for all ݕஸ௟ ∈  Π௟(ܤ௫), 

  for every (ݎ, (ݏ ∈ ∆ୡ୰(݂,ܣ) and (ݎ′, (′ݏ ∈ ∆ୡ୰(ܣ,ߤ) such that for all ݅ ∈ {݈ + 1, . . . ,݊}, 

 ቐ
௜ܽݎ + + ݍ௜ᇱݎ ௜ߛ  < −1,             if   ݎ௜  >  0,
+ ݍ௜ᇱݎ ௜ߛ  ≤ −1,                       if   ݎ௜ =  0,
௜ܾݎ + ௜ߛ + ݍ௜ᇱݎ < −1,             if   ݎ௜ <  0,

 

     with the understanding that we are allowing computations in the extended real number 
system since ܽ or ܾ could be ∞. 
        II.      If ∞ ∈  .then at least one of the following two conditions hold ,ܫ
(a) We have 

(ஸ௟ݕ,ݔ)௥ᇲ,௦ᇲߤ = 0 for all ݕஸ௟ ∈ Π௟(ܤ௫), 
for every (ݎ′, (′ݏ ∈ ∆ୡ୰(ܣ,ߤ). 
(b) We have 

௥݂,௦(ݕ,ݔஸ௟) =  0 for all ݕஸ௟  ∈  Π௟(ܤ௫), 
for every (ݎ, (ݏ ∈  ∆ୡ୰(݂,ܣ) such that for all ݅ ∈ {݈ + 1, . . . ,݊}, either ݎ௜ < 0, or else  ݎ௜ =
0 and ݏ௜ >  0. 
Therefore ݃஺,ூ can be constructed using Theorem (4.3.3).  
We now turn the attention to stating and showing the preparation theorem. 
Definition(4.3.39)[201]: When considering the situation described in Definition (4.3.34), 
we shall now also write ܩ = ,ଵܩ) . . . ܣ:(௠ା௡ܩ, →  and for each ,ܨ for the inverse of ܤ
݆ ∈ {݈ + 1, . . . ,݊} write 

(ݕ,ݔ)௠ା௝ܩ = ෤|ఉೕݕ|(ݔ)௝ܪ   ௝ܸ(ݕ,ݔ) 
on ܣ, where ܪ௝  is an analytic subanalytic function, ߚ௝ ∈  ℚ௡, and ௝ܸ is a ߮-unit. 
Lemma(4.3.40)[201]: Consider the situation described in Definition (4.3.34) and (4.3.39) 
Let ݂ ∈ ℱand (ݎ, (ݏ ∈ ݎ where ,(ܣ,݂)∆ = ,௟ାଵݎ) . . . , ݏ ௡) andݎ = ,௟ାଵݏ) . . . ,   .(௡ݏ
We may express መ݂௥,௦  ⃘ ܩ in the form 
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 መ݂௥,௦   ⃘ (ݕ,ݔ)ܩ  =  ෍ ௞ܶ(ݕ,ݔ)
௞∈௄ೝ,ೞ(௙,஺)

                                        (50) 

on ܣ, where ܭ௥,௦(݂,ܣ)is a finite index set and for each ݇ ∈  ,(ܣ,݂)௥,௦ܭ

௞ܶ(ݕ,ݔ) =  ݃௞(ݔ)ܩவ௠(ݕ,ݔ)ோೖ   ቌෑ൫log|ݕ෤|ఉೕ൯ௌೖ,ೕ

௡

௝ୀଵ

ቍݑ௞(ݕ,ݔ)               (51) 

for some ݃௞ ∈ ൯, tuples ܴ௞(ܣ)൫Π௠ܥ = ൫ܴ௞,ଵ, . . . ,ܴ௞,௡൯ ∈ ℚ௡and ܵ௞ = ൫ܵ௞,ଵ, . . . , ܵ௞,௡൯ ∈ ℕ௡  
satisfying ܴ௞,௝ = ௝ and ܵ௞,௝ݎ ≤ ௝ݏ   for all ݆ ∈ {݈ + 1, . . . ,݊}, and ߮-units ݑ௞. 
Proof. By (38) we may write መ݂௥,௦ (ݕ,ݔ) as a finite sum of terms of the form 

ோ(logݕ(ݔ)݃  (52)                                              (ݕ,ݔ)ௌℎ(ݕ
on ܤ, where ݃ ∈ ܴ ൯, the tuples(ܣ)൫Π௠ܥ = (ܴଵ, . . . ,ܴ௡) ∈ ℚ௡  and ܵ = (ܵଵ, . . . , ܵ௡) ∈ ℕ௡ 
satisfy ௝ܴ = ௝ and ௝ܵݎ = ݆ ௝ for allݏ ∈ {݈ + 1, . . . ,݊}, and ℎ is a ߰-function. Pulling back (52) 
by ܩ gives 

 (ݕ,ݔ)ܩ ⃘   ௌ ℎ((ݕ,ݔ)வ௠ܩlog) ோ(ݕ,ݔ)வ௠ܩ(ݔ)݃
on ܣ. In the above equation, by writing 

logܩ௠ା௝(ݔ, (ݕ  = logܪ௝(ݔ)  + log ෤|ఉೕݕ|  + log ௝ܸ(ݔ,   (ݕ
for each ݆ ∈ {1, . . . ,݊}, and then distributing, we obtain the desired form given in (50) and 
(51), except that each ݑ௞ is only a ߮-function, not necessarily a ߮-unit. But then by writing 
௞ݑ = ௞ݑ)  − ܿ) +  ܿ for some sufficiently large constant ܿ so that ݑ௞ − ܿ and ܿ are both 
units, and then separating each term in (50) into two terms, we may further assume that each 
  .௞in (50) is a ߮-unitݑ
Lemma(4.3.41)[201]: Consider a single term ௞ܶ given in (51). We may express ௞ܶ   ⃘  ܨ as a 
finitesum 

௞ܶ   ⃘ (ݕ,ݔ)ܨ =  ෍݃఍
఍

ௌഅ(ݕlog)ோೖݕ(ݔ)  ℎ఍(ݕ,ݔ)                         (53) 

on ܤ for some ݃఍ ∈ tuples ܵ఍ ,((ܣ)Π௠)ܥ = (ܵ఍,ଵ, . . . , ܵ఍,௡) ∈ ℕ௡ satisfying ܵ఍,௝ ≤ ܵ௞,௝ for 
each ݆ ∈ {1, . . . , ݊}, and bounded functions ℎ఍. 
Proof. Since 

෤|ఉೕݕ| =  
(ݕ,ݔ)௠ା௝ܩ
(ݔ)௝ܪ ௝ܸ(ݕ,ݔ)

 

for each ݆ ∈ {1, . . . ,݊}, it follows from (51) that 

௞ܶ   ⃘ (ݕ,ݔ)ܨ = ݃௞(ݔ)ݕோೖ ቌ ෑቆlog
௝ݕ

(ݔ)௝ܪ ௝ܸ  ⃘ (ݕ,ݔ)ܨ
ቇ
ௌೖ,ೕ௡

௝ୀଵ

ቍݑ௞ ,ݔ)ܨ ⃘    (ݕ

on ܤ. In the above equation, write 
log

௝ݕ
(ݔ)௝ܪ ௝ܸ (ݕ,ݔ)ܨ ⃘  

= logݕ௝ − logܪ௝(ݔ) − log ௝ܸ  ⃘ (ݕ,ݔ)ܨ  

for each ݆ ∈  {1, . . . ,݊}, and then distribute.  
Theorem(4.3.42)[201]: (Preparation of Constructible Functions-Full Version). Let ߔ be a 
finite subset of (ܦ)ܥ × (ܦ)ܥ × (0,∞) for some subanalytic set ܦ ⊂ ℝ௠ା௡. For each 
(݂, ,ߤ (ݍ  ∈  let ߔ 

ॎ(݂, ,ߤ (ݍ = {LC(݂, , ௤|ߤ| (ݔ ∶ ݔ  ∈  Π௠(ܦ)}, 
and let ℱ =  {݂, ߤ ∶ (݂, ,ߤ (ݍ ∈  over ℝ௠ into ܦ Then there exists an open partition ࣛ of .{ߔ 
subanalytic cells over ℝ௠ such that for each ܣ ∈ ࣛ there exist a rational monomial map ߮ 
on ܣ over ℝ௠ and rational numbers ߚ௜,௝ , where ݅, ݆ ∈ {1, . . . ,݊}, for which we may express 
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each ݂ ∈ ℱ in the form 
(ݕ,ݔ)݂  = ෍ ௞ܶ(ݕ,ݔ)

௞∈௄(௙,஺)

                                                    (54) 

on ܣ, where (ܣ,݂)ܭ is a finite index set and for each ݇ ∈  ,(ܣ,݂)ܭ 

 ௞ܶ(ݕ,ݔ) = ݃௞(ݔ)

⎝

⎛൭ෑ|ݕ෤௜|௥ೖ,೔ 

௡

௜ୀଵ

൱ቌlogෑหݕ෤௝ห
ఉ೔,ೕ

௡

௝\ୀଵ

ቍ

௦ೖ,೔

⎠

 (55)     (ݕ,ݔ)௞ݑ⎞

for some ݃௞ ∈  ,௞ݑ ௞,௜, and ߮-unitsݏ ௞,௜ , natural numbersݎ rational numbers ,((ܣ)Π௠)ܥ
where we are writing (ݕ,ݔ෤) for the coordinates on ܣ with center ߠ, with ߠ being the center 
for ߮. Moreover, for each ݂ ∈  ℱ and ܣ ∈  ࣛ there exists a partition ࣪(݂,ܣ) of  (ܣ,݂)ܭ 
described as follows. For each ܣ ∈ ࣛ, (݂, ,ߤ (ݍ  ∈ ,ߔ  ∋ ܭ ,(ܣ,݂)࣪  Λ ∈  and ,(ܣ,ߤ)࣪ 
ܫ ∈ ॎ(݂, ,ߤ  :at least one of the following two statements holds ,(ݍ
        I.   for all (ߢ, (ߣ ∈ ܭ × Λ, we have Π௠(ܣ) × ܫ ⊂ LC( ఑ܶ, | ఒܶ|௤,Π௠(ܣ)); 
       II. for all ݔ ∈  Π௠(ܣ) such that ܫ ⊂  LC(݂, ,௤|ߤ| ∑ either ,(ݔ ఑ܶ(ݕ,ݔ) =  0఑∈௄   for all 
ݕ ∈ ∑ ௫ orܣ ఒܶ(ݕ,ݔ) = 0ఒ∈௸  for all ݕ ∈  ௫; and if statement II does not hold, thenܣ

 Π௠(ܣ) × ({∞}\ܫ) ⊂ LC൫ ఑ܶ
ᇱ , | ఒܶ

ᇱ|௤,Π௠(ܣ)൯                              (56) 
for all (ߢ, (ߣ ∈ ܭ  × Λ and all functions ఑ܶ

ᇱ and ఒܶ
ᇱ of the form 

఑ܶ
ᇱ(ݕ,ݔ) = ෑ|ݕ෤௜|௥ೖ,೔ ቌlogෑ|ݕ෤௜|ఉഉ,೔,ೕ

ᇲ
௡

௝ୀଵ

ቍ

௦ഉ,೔
ᇲ

௡

௜ୀଵ

 

ఒܶ
ᇱ(ݔ, (ݕ = ෑ|ݕ෤௜|௥ഊ,೔ ቌlogෑ|ݕ෤௜|ఉഊ,೔,ೕ

ᇲ
௡

௝ୀଵ

ቍ

௦ഊ,೔
ᇲ

௡

௜ୀଵ

 

where the ߚ఑,௜,௝
ᇱ ఒ,௜,௝ߚ, 

ᇱ ∈ ℚ and ݏ఑,௜
ᇱ , ఒ,௜ݏ

ᇱ ∈ ℕ are arbitrary and the ݎ఑,௜ ,  .ఒ,௜  are as in (55)ݎ
Proof. Apply Proposition (4.3.33) to ℱ. Fix ܣ ∈ ࣛ and use the notation found in Definition 
(4.3.34) and (4.3.39) and in Lemmas (4.3.40) and (4.3. 41). Lemma (4. 3.40)  shows that 
each ݂ ∈ ℱ may be written in the form given in (54) and (55), where each ௞ܶ is defined as in 
(51) and 

(ܣ,݂)ܭ =  ራ (ܣ,݂)௥,௦ܭ
(௥,௦)∈∆(௙,஺)

. 

For each ݂ ∈ ℱ, define 
(ܣ,݂)࣪ =  ൛ܭ௥,௦(݂,ܣ)ൟ

(௥,௦)∈∆(௙,஺)
. 

Now also fix (݂, ,ߤ (ݍ ∈ ܭ,ߔ ∈ Λ,(ܣ,݂)࣪ ∈ ܫ and (ܣ,ߤ)࣪ ∈ ॎ(݂, ,ߤ ܭ Write.(ݍ =  ,݂)௥,௦ܭ
߉ and (ܣ = ,ݎ) for some (ܣ,ߤ)௥ᇱ,௦ᇱܭ (ݏ ∈ ,′ݎ) and (ܣ,݂)∆ (′ݏ ∈  We are done if .(ܣ,ߤ)∆
statement II in the last sentence of the theorem holds, so assume otherwise. Therefore we 
may fix ݔ଴ ∈ Π௠(ܣ) such that ܫ ⊂ LC(݂, , ௤|ߤ| ,(଴ݔ ,ݎ) (ݏ ∈ ,ܣ,݂)∆ ,ᇱݎ) ଴) andݔ (ᇱݏ ∈ ,ߤ)∆
,ܣ  .଴). Lemma (4.3.35) gives the followingݔ

 ൜ For all ݌ ∈ ܫ ∩ (0,∞)and all ݅ ∈ {݈ +  1, . . . ,݊}
,ܣ,݂)௜ݎ̅            ݌(଴ݔ + ,ܣ,ߤ)௜ݎ̅  ௜ߛ + ݍ(଴ݔ >  −1.                        (57) 

൜If ∞ ∈ ,ܫ  then For all ݅ ∈ {݈ +  1, . . . ,݊}                            
,ܣ,݂)௜ݎ̅ (଴ݔ > 0 or  ̅ݎ௜(݂,ܣ, (଴ݔ = ,ܣ,݂)௜̅ݏ (଴ݔ = 0.          (58) 

Let ߢ ∈ ߣ and ܭ ∈ Λ. Write ఑ܶ  and ఒܶ as in (51) with ݇ = ݇ and ߢ =  respectively, and ,ߣ
write 
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఑ܶ (ݕ,ݔ)ܨ ⃘    =  ෍݃఍
఍

 (59)                         (ݕ,ݔ)ௌഅℎ఍(ݕlog)ோೖݕ(ݔ)

ఒܶ   ⃘ ݔ)ܨ, (ݕ =  ෍݃ఎ
ఎ

 (60)                        (ݕ,ݔ)ௌആℎఎ(ݕlog)ோഊݕ(ݔ)

as in (53). Note that for each ݅ ∈ {݈ + 1, . . . ,݊}, 
 ܴ఑,௜ = ௜ݎ   ≥ ,ܣ,݂)௜ݎ̅  ଴) and ఒܴ,௜ݔ = ௜ᇱݎ  ≥ ,ܣ,ߤ)௜ݎ̅   ଴).                  (61)ݔ

So (57) holds with ܴ఑,௜ and ఒܴ,௜ in place of ̅ݎ௜(݂,ܣ, ,ܣ,ߤ)௜ݎ̅ ଴) andݔ   .଴), respectivelyݔ
Therefore by Corollary (4.3.25), Lemma (4.3.37), (59) and (60), it follows that 

Π௠(ܣ) × ({∞}\ܫ) ⊂ LC( ௞ܶ, | ఒܶ|௤,Π௠(ܣ)). 
Note that the proof of this fact depends only the values of ݎ and ݎ′, being independent the 
values of ߚଵ, . . . ௡ߚ, ,  .so (56) follows ,′ݏ and ݏ
    Now suppose that ∞ ∈ ݅ and ߞ Note that for each .ܫ ∈ {݈ + 1, … ,݊}, we have ܵ఍,௜ ≤ ܵ఑,௜ ≤
݅ ௜. Combining this with (61) shows that for eachݏ ∈ {݈ + 1, . . . ,݊}, either ܴ఑,௜ > 0 or else 
ܴ఑,௜ =  ܵ఍,௜ = 0 for all ߞ. Therefore Corollary (4.3.25) and (59) show that ఑ܶ   ⃘ (·,ݔ)ܨ is 
bounded on ܤ௫  
for each ݔ ∈  Π௠(ܣ). So Π௠(ܣ) × {∞} ⊂  LC൫ ௞ܶ, | ఒܶ|௤ ,Π௠(ܣ)൯. 
     This completes the proof of the theorem, except for the fact that ܣ need not be a cell over 
ℝ௠. To remedy this, simply construct an open partition of  ܣ  over  ℝ௠ consisting of cells 
over  ℝ௠ (for instance, using Proposition (4.3.9)), and then restrict to each of these cells.  
     Theorem (4.3.42) was formulated in such a way so as to be as strong and general as 
possible, but at the cost of having a technical formulation that may obscure the fact that it 
implies the simpler Theorem (4.3.2). The corollary of Theorem(4.3.42) given below directly 
implies Theorem (4.3 .2) and its analog for ݌ = ∞ described in (20), and it generalizes the 
interpolation theorem [183]. 
     The proof of the corollary makes use of the following observation: for the set ℱ from 
Theorem (4.3.42), if ݂ ∈ ℱ is subanalytic, then the restriction of ݂ to ܣ is ߮-prepared(as 
opposed to being in the more general form allowed by (54)and(55)). This observation 
follows from the way the proof of Theorem (4.3.42) uses Proposition (4. 3.33), and from the 
way the proof of Proposition (4.3.33) uses Proposition (4.3.23). 
Corollary(4.3.43)[201]: Suppose that ܲ ⊂ (0,∞], that ܦ ⊂ ℝ௠ା௡ is subanalytic, and that 
,݂) is a finite set of triples ߔ ,ߤ ܦ:݂ for which (ݍ → ℝ is constructible, ܦ:ߤ → ℝ is sub-
analytic, and ݍ > 0. Define ܧ = Π௠(ܦ) and ℱ = {݂ ∶ (݂, ,ߤ (ݍ ∈ ݂ Then to each .{ߔ ∈ ℱ 
we may associate a function ݂∗ ∈  .in such a way so that the following statements hold (ܦ)ܥ

I. There exists an open partition ࣛ of D over ℝ௠ such that for each ܣ ∈ ࣛ 
there exists a rational monomial map ߮ on ܣ over ℝ௠  such that for every 
(݂, ,ߤ (ݍ ∈  is ߮-prepared and we may express ݂∗ as a finite ߤ the function ,ߔ
sum 

(ݕ,ݔ)∗݂ = ෍ ௞ܶ(ݕ,ݔ)
௞

                                                    (62)  

on ܣ, where each function  ௞ܶ is of the form (55). 
II. The following hold for all (݂, ,ߤ (ݍ ∈  .ߔ

(a)  We have ݂ = ݂∗ on {(ݕ,ݔ) ∈ ܲ:ܦ ⊂ LC(݂, , ௤|ߤ|  .{(ݔ
(b)   For all ܣ ∈ ࣛ and all terms ௞ܶ in the sum (62), we have Π௠(ܣ) × ܲ ⊂

LC൫ ௞ܶ, ܧ ൯. (Hence(ܣ)௤,Π௠|ߤ| × ܲ ⊂  LC(݂∗,  .(.(ܧ,௤|ߤ|
III. If ∞ ∉ ܲ, then we may take each function ௞ܶ  to be of the simpler form 
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௞ܶ(ݔ, (ݕ = ݃௞(ݔ)൭ෑ|ݕ෤௜|௥ೖ,೔ (log|ݕ෤௜|)௦ೖ,೔  
௡

௜ୀଵ

൱
௦ೖ,೔

 (63)                   ,(ݕ,ݔ)௞ݑ

and the fact that Π௠(ܣ) × ܲ ⊂ LC൫ ௞ܶ,  , ௞,௜ݎ ൯ only depends on the values of the(ܣ)௤,Π௠|ߤ|
and not the values of the ݏ௞,௜ , in the following sense: we have Π௠(ܣ) × ܲ ⊂ LC൫ ௞ܶ

ᇱ , ,௤|ߤ|
Π௠(ܣ)൯ for any function ௞ܶ

ᇱ on ܣ of the form  

௞ܶ
ᇱ(ݕ,ݔ)  = ෑ|ݕ෤௜|௥ೖ,೔ (log|ݕ෤௜|)௦ೖ,೔

ᇲ
 

௡

௜ୀଵ

, 

     where the ݎ௞,௜  are as in (63) and the ݏ௞,௜
ᇱ  are arbitrary natural numbers. 

Proof. Let ࣛ be the open partition of ܦ obtained by applying Theorem (4 .3.42) to ߔ; we 
use the notation of the theorem. Because ߤ is subanalytic for every (݂, ,ߤ (ݍ ∈  it follows ,ߔ
that we may partition the members of ࣛ further in the ݔ-variables to assume that for each 
∋ ܣ ࣛ and each (݂, ,ߤ (ݍ  ∈ (ݕ,ݔ)ߤ either ,ߔ  = 0 for all (ݕ,ݔ)  ∈  or else for each ,ܣ 
ݔ ∈ Π௠(ܣ) there exists ݕ ∈ (ݕ,ݔ)ߤ ௫ such thatܣ  ≠ 0. Therefore for all (݂, ,ߤ (ݍ ∈ ,ߔ ܫ ∈
ॎ(݂, ,ߤ ܣ,(ݍ ∈ ࣛ and ܭ ∈  .at least one of the following two statements holds ,(ܣ,݂)࣪
     I.   For every ݇ ∈ (ܣ)we have Π௠ ܭ  × ܫ ⊂ LC൫ ௞ܶ,  .൯(ܣ)௤,Π௠|ߤ|
    II.  We have ∑ ௞ܶ(ݔ, ௞∈௄(ݕ = 0 on {(ݕ,ݔ) ∈ ܣ ∶ ܫ ⊂ ,݂)ܥܮ  ,௤|ߤ||  .{(ݔ
For each (݂, ,ߤ (ݍ ∈ ܣ and ߔ ∈ ࣛ, define (ܣ,݂)∗ܭ to be the union of all ܭ ∈  for (ܣ,݂)࣪
which there exists ܫ ∈ ॎ(݂, ,ߤ ܲ such that (ݍ ⊂  and the above statement I  holds. For each ܫ
(݂, ,ߤ (ݍ ∈  define  ݂∗ by ,ߔ 

(ݕ,ݔ)∗݂  =  ቐ
෍ ௞ܶ(ݔ, (ݕ,ݔ) if         (ݕ ∈ ܣ  with  ܣ ∈ ࣛ,

௞∈௄∗(௙,஺)

,ݔ) if                                 (ݕ,ݔ)݂ (ݕ ∈                .ࣛ∪\ܦ
  

Observe that statements I and II of the corollary hold. 
To prove statement III, suppose that ∞ ∉ ܲ. By writing 

logෑหݕ෤௝ห
ఉ೔,ೕ

௡ 

௝ୀଵ

= ෍ߚ௜,௝ logหݕ෤௝ห
௡

௝ୀଵ

   

in (55) and then distributing, we may write each term ௞ܶ as a finite sum of terms of the form 
(63) with the same values of the ݎ௞,௜ but possibly different values of the the  ݏ௞,௜. But only 
the values of the ݎ௞,௜ are relevant by (56) since ∞ ∉ ܲ.  
    The analog of Theorem (4.3.2) for ݌ = ∞ mentioned can be stated as follows: if ܦ ⊂
ℝ௠ା௡ is subanalytic and ݂ ∈ ൯(ܦ)is such that Intஶ൫݂,Π௠ (ܦ)ܥ = Π௠(ܦ), then there exists 
an open partition ࣛ of ܦ over ℝ௠  into cells over ℝ௠ such that for every ܣ ∈ ࣛ we may 
express ݂ as a finite sum ݂(ݕ,ݔ) = ∑ ௞ܶ௞ for terms ௞ܶwith LCஶ൫ ܣ on (ݕ,ݔ)  ௞ܶ,Π௠(ܣ)൯ =
Π௠(ܣ) that are of the form 

௞ܶ(ݕ,ݔ) = ݃௞(ݔ)ቌෑ|ݕ෤௜|௥೔ 
௡

௜ୀଵ

ቌlogෑหݕ෤௝ห
ఉ೔,ೕ

௡

௝ୀଵ

ቍ

௦ೖ,೔

ቍݑ௞(ݕ,ݔ),                     (64) 

as denoted in the above. This statement was proven in Corollary (4.3. 43). A more literal 
analog of Theorem (4.3.2) for ݌ = ∞ would require the terms ௞ܶ to be of the simpler form 

௞ܶ(ݕ,ݔ) = ݃௞(ݔ)൭ෑ|ݕ෤௜|௥೔ 
௡

௜ୀଵ

(log|ݕ෤௜|)௦ೖ,೔ ൱ݑ௞(ݕ,ݔ);                        (65) 

however, this more literal analog is false, and the purpose of this part is to prove this by 
giving a counterexample. It follows that in Statement III of Corollary (4.3.43), one may not 
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drop the assumption that ∞ ∉ ܲ; and in Theorem (4.3.42), one may not replace (56) with 
the statement Π௠(ܣ) × ܫ ⊂ LC( ఑ܶ

ᇱ , | ఒܶ
ᇱ|௤,Π௠(ܣ)). 

We write (ݕ,ݔ) = ,ݔ) ܦ:݂ ଶ) for coordinates on ℝଷ, and defineݕ,ଵݕ → ℝ by 

(ݕ,ݔ)݂ = log ൬
ଵݕ
ଶݕ
൰ ,                                                              (66) 

where 
ܦ = (ݕ,ݔ)}  ∈ ℝଷ: 0 < ݔ < 1, 0 < ଵݕ < 1, ଵݕݔ < ଶݕ <  ଵ}.            (67)ݕ 

Note that the function ݂(ݔ,·) is bounded on ܦ௫ for every ݔ ∈ (0, 1), and that the function ݂ 
is already a single term of the form given in (64) on ܦ. The obvious way to express ݂ as a 
sum of terms of the form (65) is to write 

(ݕ,ݔ)݂ = logݕଵ − logݕଶ 
on ܦ; however, the terms log ݕଵ and log ݕଶ now become unbounded on each fiber ܦ௫. It 
should therefore seem feasible that ݂ is a counterexample for the more literal analog of 
Theorem (4.3.2) for ݌ =  ∞. To show that this is in fact the case, we show an assertion 
below. 
Lemma(4.3.44)[201]: Let ܣ = ,ݔ)} (ݖ ∈ ℝଶ ∶ 0 < ݔ < 1, ݔ < ݖ < 1}, and define an 
analytic isomorphism ߟ ∶  (0, 1)ଶ  →  by ܣ 

,ݔ)ߟ (ݐ  = ,ݔ)   .(௧ݔ
Suppose that ݃:ܣ → ℝ is a function of the form 

,ݔ)݃  (ݖ =  ෍(logݔ )௜ݔఈ೔ݖఉ೔ ௜݃(ݔ, (ݖ
௜∈ூ

                               (68) 

where ܫ ⊂ ℕ is finite and nonempty, the ߙ௜ and ߚ௜ are integers, and each ௜݃  is a function on 
 that is not identically zero and is of the form ܣ

௜݃(ݔ, (ݖ = ௜ܩ  ቀݔ, ,ݖ
ݔ
ݖ
ቁ   

for an analytic function ܩ௜ on [0,1]ଷ represented by a single convergent power series, say 
(ܺ)௜ܩ = ෍ ௜,ఊܺఊܩ

 ఊ∈ℕయ
,     for     ܺ ∈ [0,1]ଷ. 

Then there exist ߳ ∈ (0, 1], a nonzero real number ܽ, a natural number r, and integers ݌ and 
ݐ such that for all ݍ ∈ (0, ߳), 

lim
௫→଴

݃ ∘ ,ݔ)ߟ (ݐ
௣ା௤௧ݔ  (logݔ)௥ =  ܽ.                                               (69) 

Proof.  By factoring out the lowest powers of ݔ and ݖ in (68), we may assume that the ߙ௜ 
and ߚ௜ are all natural numbers. But then each monomial ݔఈ೔ݖ  ఉ೔ can be incorporated into the 
function ௜݃, so we may in fact assume that the numbers ߙ௜ and ߚ௜  are all zero. For each 
                                 ௜݃   ⃘ ݔ)ߟ, (ݐ = ,ݔ)௜ܩ  ,௧ݔ  (ଵି௧ݔ

                            = ෍ ఊభା௧ఊమା(ଵି௧)ఊయݔ ௜,ఊܩ

 ఊ∈ℕయ
෍ ෍ ௜ܩ

[௞,௟] ݔ௞ା௟௧
ஶ

௟ୀି௞

ஶ

௞ୀ଴

, 

where 
௜ܩ

[௞,௟]    = ෍ ௜,ఊܩ .
 ఊ∈ℕయୱ.୲

ఊభାఊయୀ௞,ఊమିఊయୀ௟
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So 
,ݔ)ߟ ⃘  ݃                                          (ݐ = ෍(logݔ)௜ ௜݃ ,ݔ)ߟ ⃘    (ݐ

௜∈ூ

  

= ෍෍ ෍ ௜ܩ
[௞,௟] ݔ௞ା௟௧

ஶ

௟ୀି௞

ஶ

௞ୀ଴

 

௜∈ூ

(log  ௜.                                    (70)(ݔ

Note that for each ݅ ∈ is a bijection, so ௜݃ ߟ the function ௜݃ is not identically zero and ,ܫ  ߟ ⃘   
is not identically zero, which implies that ܩ௜

[௞,௟] ≠ 0 for some ݇ and ݈. 
     Let (݌,  be the lexicographically minimum member of the set (ݍ

ራ൛(݇, ݈) ∈ ℕ ×  ℤ ∶ ݇ + ݈ ≥  0 and ܩ௜
[௞,௟] ≠  0ൟ

௜∈ூ

,                  (71) 

and define ݎ = maxቄ݅ ∈ ௜ܩ:ܫ
[௣,௤]  ≠ 0ቅ , ܽ = ௥ܩ 

[௣,௤], and ߳ = ଵ
௣ା௤ାଵ

. We claim that for all 
(݇, ݈) ≠ ,݌) ݐ in the set (71) and all (ݍ ∈ (0, ߳), 

 ݇ + ݐ݈ > ݌ +  (72)                                                        .ݐݍ
The claim and (70) together imply (69). To prove the claim, consider (݇, ݈) ≠ ,݌)  .in (71) (ݍ
If ݇ = ݈ then ,݌ > ݐ in which case (72) holds for all ,ݍ > 0. So suppose that ݇ ≥ ݌  + 1. 
Simplifying the inequality (݌ +  1)(1 − (ݐ   > ݌  +  shows that it is equivalent to the ݐݍ
inequality ݐ < ߳. So for all ݐ ∈ (0, ߳), 

݇ + ݐ݈ = ݇(1 − (ݐ + (݇ + ݐ(݈ ≥ ݌) + 1)(1 − (ݐ + ݐ0 > ݌ +  ,ݐݍ
which proves the claim.    
Assertion(4.3.45)[201]: For the function ݂:ܦ → ℝ defined in (66) and (67), there does not 
exist an open cover ࣛ of ܦ over ℝ such that for each ܣ ∈ ࣛ, ݂ may be written as a finite 
sum of terms ௞ܶ of the form (65) with each ௞ܶ(ݔ,·) bounded on ܣ௫  for all ݔ ∈ Π௠(ܣ). 
     In the following proof, we shall say that two functions ݃,ℎ ∶ ܣ → ℝ\{0} are equivalent 
on ܣ if the range of ݃/ℎ is contained in a compact subset of (0,∞). 
Proof: Suppose for a contradiction that there exists an open cover ࣛ′ of ܦ over ℝ such that 
for each ܣᇱ ∈ ࣛᇱ, ݂ may be written as a finite sum ݂(ݕ,ݔ) = ∑ ௞ܶ(ݕ,ݔ)௞  on ܣ′ for terms 
௞ܶof the form (65) with each ௞ܶ(ݔ,·) bounded on ܣ௫ᇱ  for all ݔ ∈ Π௠(ܣ′); note that we 

associate to ܣ′ a certain rational monomial map ߮′ on ܣ′ over ℝ that is used to defined the 
terms ௞ܶ. By Proposition (4.3.9) there exists an open cover ࣛ of ܦ over ℝ଴ such that for 
each ܣ ∈ ࣛ there exist a unique ܣ′ ∈ ࣛ′ containing ܣ and a prepared rational monomial 
map ߮ on ܣ over ℝ଴ such that for each function ݃௞ occurring in (65), say of the form 

 ݃௞(ݔ) = ෍݃௞,௜(ݔ)
௜

ෑ log݃௞,௜,௝(ݔ) 
௝

                                             (73) 

for subanalytic functions ݃௞,௜ and ݃௞,௜,௝, the functions ݃௞,௜ and ݃௞,௜,௝ are  all ߮ஸଵ-prepared on 
Πଵ(ܣ). The functions ݕݔଵ and ݕଵ are not equivalent for ݔ near 0, so we may fix ܣ ∈ ࣛ of 
the form 

ܣ = :(ݕ,ݔ)} 0 < ݔ < ܾ଴, 0 < ଵݕ < ܾଵ(ݔ),ܽଶ(ݕ,ݔଵ) < ଶݕ < ܾଶ(ݕ,ݔଵ)} 
with ܽଶand ܾଶ not equivalent on Πଶ(ܣ). Let ߮ be the rational monomial map on ܣ over ℝ଴ 
associated with ܣ. Note that ݔ is not equivalent on ߎଵ(ܣ) to a constant, that ݕଵ is not 
equivalent on Πଶ(ܣ) to a function of ݔ, and that ݕଶ is not equivalent on ܣ to a function of 
 ′ࣛ so ߮ must have center 0. For the same reason, if A′ is the unique member of ,(ଵݕ,ݔ)
containing ܣ, and if ߮′ is the rational monomial map over ℝ associated with ܣ′, then φ′ 
must also have center 0. We are only interested in the restriction of ݂ to ܣ, so we may 
therefore simply assume that ܣ′ = ߮ and ܣ = ߮′. So we may write 
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      log൬
ଵݕ
ଶݕ
൰  = ෍݃௞(ݔ)ݕଵ

௥ೖ,భݕଶ
௥ೖ,మ , (logݕଵ )௦ೖ,భ(log (ଶݕ,ଵݕ,ݔ)௞ݑଶ )௦ೖ,మݕ

௞

               (74) 

on ܣ for the constructible functions ݃௞ given in (73), rational numbers ݎ௞,ଵ and ݎ௞,ଶ, natural 
numbers ݏ௞,ଵ and ݏ௞,ଶ, and ߮-units ݑ௞; and we may write  

ܽଶ(ݕ,ݔଵ)  = ,ݔ)ݑଵݕఈݔ  (ଵݕ,ݔ)ଵ) and ܾଶݕ  =  (ଵݕ,ݔ)ݒଵݕఉݔ 
on Πଶ(ܣ) for some rational numbers ߙ and ߚ satisfying 0 ≤ ߚ < ߙ ≤ 1 and some ߮ஸଶ-units 
 .ݒ and ݑ
Fix positive constants ܿ and ݀ satisfying ܿ > ,ݔ)ݑ ݀ ଵ) andݕ <  Since .(ܣ)on Πଶ (ଵݕ,ݔ)ݒ
ߙ >  by shrinking ܾ଴ we may assume that ,ߚ 

ܣ = ൛(ݕ,ݔ): 0 < ݔ <  ܾ଴, 0 < ଵݕ  <  ܾଵ(ݔ), ଵݕఈݔܿ < ଶݕ <  .ଵൟݕఉݔ݀
Pulling back the equation (74) by the map (ݕ,ݔଵ,ݕଶ) ⟼  gives (ଶݕଵݕ,ଵݕ,ݔ)

log ൬
1
ଶݕ
൰ =෍݃௞(ݔ)ݕଵ

௥ೖ,భା௥ೖ,మݕଶ
௥ೖ,మ(log ଵ )௦ೖ,భା௦ೖ,మݕ

௞

  ൬1 +
logݕଶ
log ଵݕ

൰
௦ೖ,మ

,ଵݕ,ݔ)௞ݑ  ଶ)   (75)ݕ ଵݕ

on the set 
൛(ݕ,ݔଵ,ݕଶ): 0 < ݔ <  ܾ଴, 0 < ଵݕ  < ܾଵ(ݔ), ఈݔܿ < ଶݕ <  .ఉൟݔ݀

By assumption, each term of (75) is bounded for each fixed value of ݔ, so letting ݕଵtend to 0 
for each fixed value of (ݕ,ݔଶ) shows that for each ݇, either ݎ௞,ଵ + ௞,ଶݎ > 0 or ݎ௞,ଵ + ௞,ଶݎ =
௞,ଵݏ + ௞,ଶݏ  = 0 (and ݏ௞,ଵ + ௞,ଶݏ = 0 means that ݏ௞,ଵ = ௞,ଶݏ = 0). So letting ݕଵ tend to 0 in 
(75) gives 

log ൬
1
ଶݕ
൰  = ෍݃௞(ݔ)ݕଶ

௥ೖ,మݒ௞(ݕ,ݔଶ)
௞

                                            (76) 

on 
൛(ݕ,ݔଶ): 0 < ݔ <  ܾ଴, ఈݔܿ < ଶݕ <  ,ఉൟݔ݀

where each ݒ௞ is a ߰-unit with ߰ defined by ߰(ݕ,ݔଶ) = lim௬భ→଴ ߮(ݕ,ݔଵ,ݕଵݕଶ). 
By pulling back (76) by the map (ݕ,ݔଶ) ⟼ ൫ݔ, ଶݕఉݔܿ

ఈିఉ൯ and expanding logarithms using 
(73), we may write 

logݕଶ =  ෍(logݔ)௜ ఈ೔ݔ  ଶݕ 
ఉ೔

௜݂(ݕ,ݔଶ)             
௜

                        (77) 

on 
,ݔ)}  (ଶݕ ∶  0 < ݔ <  ܾ଴,   ݔ < ଶݕ  <  (78)                                               {ܥ

for some ܥ > 0, rational numbers ߙ௜ and ߚ௜, and ߰-functions ௜݂ (for an appropriately 
modified ߰), where ݅ ranges over some finite set of natural numbers. By pulling back by 
(ଶݕ,ݔ) ⟼  ௜ߙ we may further assume that all the ,ݎ for a suitable positive integer (ଶ௥ݕ,௥ݔ)
and ߚ௜ are integers, and that the components of ߰(ݕ,ݔଶ) are also all monomial in (ݕ,ݔଶ) 
with integer powers. Thus each component of ߰ is either of the form ݔ௣ for some positive 
integer ݌, is of the form ݕଶ

௤ for some positive integer ݍ, or is of the form ௫
೛

௬మ
೜ =   ௤(ଶݕ/ݔ)௣ି௤ݔ

for some positive integers ݌ and ݍ with ݌ ≥ (ଶݕ,ݔ)߰ So we may assume that .ݍ = ,ଶݕ,ݔ)
(ଶݕ,ݔ)ଶ), and therefore write ௜݂ݕ/ݔ = ,ଶݕ,ݔ)௜ܨ  ௜ definedܨ ଶ) for some analytic functionݕ/ݔ
on the closure of {(ݕ,ݔଶ, (ଶݕ/ݔ ∶ (ଶݕ,ݔ) ∈ ߜ Fix .{ܣ > 0 sufficiently small so that 

(ଶݕ,ݔ)}  ∶ 0 < ݔ < ,ଶߜ  0 < ଶݕ < ,ߜ ଶݕ/ݔ <  (79)                          {ߜ
is contained in (78) and that ܨ௜ is represented by a single convergent power series on 
,ଶߜ−] [ଶߜ × ,ߜ−] [ߜ × ,ߜ−] (ଶݕ,ݔ) Thus restricting to (79) and then pulling back by .[ߜ ⟼
,ݔଶߜ)  ଶ) gives an equation of the formݕߜ
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logݕଶ  =  ෍(logݔ)௜ ݔఈ೔ ଶݕ 
ఉ೔ܨ௜ ൬ݕ,ݔଶ,

ݔ
ଶݕ
൰             

௜

                         (80) 

on 
0 :(ଶݕ,ݔ)}  < ݔ < 1, ݔ < ଶݕ  < 1}, 

with each ܨ௜ represented by a single convergent power series on [−1,1]ଷ centered at the 
origin. 
     Applying Lemma (4.3.44) to the right side of (80) shows that there exist ߳ ∈ (0,1], a 
nonzero real number ܽ, a natural number ݎ, and  integers ݌ and ݍ such that for all ݐ ∈ (0, ߳), 

lim
௫→଴

ݐ logݔ 
௥(ݔlog)௣ା௤௧ݔ  =  ܽ. 

Considering this limit for any fixed value of ݐ ∈ (0, ߳) shows that ݎ = 1 and that ݌ + ݐݍ =
0, so in fact ݌ = ݍ = 0 since ݐ ∈ (0, ߳) is arbitrary.  
But then ݐ = ܽ for all ݐ ∈ (0, ߳), which is a contradiction that completes the proof.  
 
 
 
 
 
 
 
 


