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Chapter 3 
Non-Selfadjoint Spectral Problems and Spectral Decomposition   

       In this chapter we establish completeness results for normal problems in certain finite co-
dimensional subspaces of ଶܹ

௞(0,1) which are characterized  by means of Jordan chains in 0 of 
the adjoint of the compact operator ८ = ℍॶିଵ. Under an additional assumption, the spectrum 
of ܣሚ consists of one part in the extended right and one part in the left half plane, and the 
corresponding spectral subspaces allow representations by means of angular operators. If the 
part of the spectrum of ܣሚ in the right half plane is discrete, a half range completeness statement 
follows. As an essential tool the quadratic numerical range of a block operator matrix is 
introduced. 
Sec(3.1): Linear Pencils ܰ −   Linear-ࣅ  of Ordinary Differential Operators with ܲߣ
               Boundary Conditions 
       We consider boundary eigenvalue problems for pairs of ordinary differential operators of 
the form 

−(ݕ)ܰ (ݕ)ܲߣ =  0,                                                            (1) 
௝ܷ(ݕ)− ߣ ௝ܸ(ݕ) =  0, ݆ =  1,2, . . . , ݊,                      (2) 

on the finite interval [0,1] where the boundary conditions depend linearly on the eigenvalue 
parameter. Here ܰ and ܲ are ordinary linear differential expressions of order ݊ and ݌, 
respectively, with ݊ > ݌ ≥ 0, and ௝ܷ, ௝ܸ  are boundary values in 0 and 1 of order ≤ ݊ − 1 and 
≤ ݌ − 1, respectively. 
       The study of spectral problems which are not of the form (ܶ– ݕ(ߣ = 0 with some linear 
operator ܶ is motivated by concrete examples. Both kinds of examples lead to nonself-adjoint 
boundary eigenvalue problems of the form (1), (2) where the order of ܲ is greater than 0. In the 
first case the boundary conditions are independent of ߣ, in the second example they may de-
pend on ߣ linearly. 
       The present section solves the problem of the completeness of the eigenfunctions and 
associated functions for non-selfadjoint problems (1), (2).  The completeness results of [147] 
for ߣ-independent boundary conditions are obtained as a particular case. However, if the 
boundary conditions depend on the eigenvalue parameter, a different operator approach has to 
be used. The operators cannot be settled in ܮଶ(0,1), they are defined on ܮଶ(0,1) but act to the 
larger space ܮଶ(0,1) × ℂ௡. A similar method of extending the space is often used in the 
selfadjoint case. However, following to some extent the lines of [138], the operators we 
associate with the given problem act between different spaces. Moreover, they involve the λ-
dependent as well as the λ-independent boundary conditions. 
       These operators are introduced in next part below. The spectral problem (1), (2) is written 
equivalently as ॶݕ − ݕℍߣ = 0  where ॶ  and ℍ act from ܮଶ(0,1) to space ܮଶ(0,1) × ℂ௡, 

ॶݕ = ቆ
(ݕ)ܰ

൫ ௝ܷ(ݕ)ଵ௡൯
ቇ ,   ℍݕ = ቆ

(ݕ)ܲ
൫ ௝ܸ(ݕ)ଵ௡൯

ቇ 

Some well-known facts about the spectral properties of (1), (2) are stated in terms of the linear 
pencil ॷ(ߣ)  =  ॶ−  is (ॷ)ߪ is nonempty, then the spectrum (ॷ)ߩ ℍ  . If the resolvent setߣ
discrete and all eigenvalues have finite algebraic multiplicity. 
       The crucial step to show completeness of the corresponding eigenfunctions and associated 
functions in the Sobolev spaces ଶܹ

௞ (0 , 1) for ݇ = 0,1, . . . ,݊ is to define the subspaces ࣱ࣯,௥
௞ . 
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In this section we establish these function spaces by means of the operator 
८ =  ℍॶିଵ 

which acts in the space ܮଶ(0, 1)  × ℂ௡. The algebraic eigenspace Ker( ८∗ )௥ of the adjoint 
operator ८∗ corresponding to the eigenvalue 0 gives rise to a set of boundary conditions { ௝࣯} 
which define the spaces ࣱ࣯,௥

௞ . Here the ߣ-independent boundary conditions (2) arise from the 
geometric eigenspace Ker ८∗. However, even in the case that all boundary conditions are inde-
pendent of  ߣ, the length of the Jordan chains of ८∗ in 0 may exceed 1, and some additional 
boundary conditions may occur. 
     This section provides an estimate for the growth of the adjoint of ℍ(ॶ− ,ଶ(0ܮ ℍ)ିଵ inߣ
1) × ℂ௡ or, equivalently, of the resolvent of ܫ −  ८∗. This estimate is the second important stepߣ
to show the completeness of the eigenfunctions and associated functions in the spaces ࣱ࣯,௥

௞ . In 
this respect the theorem on the existence of an asymptotic fundamental system for the differen-
tial equation (1) is fundamental.  Based on this theorem, we establish a detailed asymptotic 
expansion of the modified resolvent ℍ(ॶ−  ℍ)ିଵ. For Stone-regular problems (1), (2) we areߣ
then able to estimate the growth of (ℍ(ॶ−         .ߣ ℍ)ିଵ)∗ for large values ofߣ
    We show the completeness of the eigenfunctions and associated functions in the spaces ࣱ࣯,௥

௞  
for normal problems (1), (2) where the number ݎ is determined by the order of normality. To 
this end we write the spectral problem (ॶ− ݕ(ℍߣ = 0 in the equivalent form (ܫ − ݕ८)ॶߣ = 0  
and we show that the eigenfunctions and associated functions of ܫ −  ८ are complete in theߣ
closure of the range of ८௥ାଵ using the so-called method of Keldysh [131]. 
     We apply the results to some concrete examples. Starting with the simplest problem (1), (2) 
with ݌ > 0 and ending with a concrete example from the theory of elasticity, we show how to 
calculate the boundary conditions { ௝࣯}, we determine the spaces ࣱ ,࣯௥

௞  explicitly and formulate 
the respective completeness results. 
      We are going to consider boundary eigenvalue problems (1), (2) where ܰ and ܲ are linear 
differential operators on [0,1] of order ݊ and ݌, respectively, with ݊ > ݌ ≥ 0 and sufficiently 
smooth coefficients (see Theorem (3.1.12), 

(ݕ)ܰ = (௡)ݕ   +  ௡݂ିଵ ݕ(௡ିଵ)  + ⋯+ ଴݂ (3)                                      ,ݕ 
(ݕ)ܲ = (௣)ݕ   +  ݃௣ିଵ ݕ(௣ିଵ)  + ⋯+ ݃଴(4)                                     ,ݕ 

and ௝ܷ, ௝ܸ are two-point boundary conditions in 0 and 1 of order  ≤ ݊ − 1 and ≤ ݌ − 1, 
respectively, with complex coefficients,  

௝ܷ(ݕ) = ෍൫ߙ௝ఓ଴ (0)(ఓ)ݕ + ௝ఓଵߙ ݆          ,൯(1)(ఓ)ݕ = 1,2, … , ݊,               (5)

ூೕ

ఓୀ଴

 

௝ܸ(ݕ) = ෍൫ߚ௝ఓ଴ (0)(ఓ)ݕ + ௝ఓଵߚ ݆          ,൯(1)(ఓ)ݕ = 1,2, … , ݊,               (6)

௛ೕ

ఓୀ଴

 

Where   
0 ≤  ௝݈ ≤ ݊ − 1, ቚߙ௝௟ೕ

଴ ቚ + ቚߙ௝௟ೕ
ଵ ቚ > 0,   0 ≤ ℎ௝ ≤ ݌ − 1  if   ௝ܸ ≢ 0, 

                         ቚߚ௝௛ೕ
଴ ቚ + ቚߚ௝௛ೕ

ଵ ቚ > 0  and  ℎ௝ ∶= −(݊ − if   ௝ܸ  (݌ ≡  0. 
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      With regard to the substitution ߣ =  ௝ of a boundary conditionߢ ௡ି௣  we define the orderߩ−

௝ܷ(ݕ)–ߣ ௝ܸ(ݕ) = 0 by 
:௝ߢ = max൛ ௝݈,݊ − ݌ + ℎ௝ൟ,        ݆ =  1 , 2 , . . . ,݊ , 

and the total order ߢ of the boundary conditions (2) as 
ߢ ∶= ଵߢ  + ଶߢ + ⋯+  .௡ߢ

We assume that the boundary conditions (2) are normalized, that is, ߢଵ ≤ ଶߢ ≤ ⋯ ≤  ௡, andߢ
for each equivalent system of boundary conditions of total order ̃ߢ, we have ߢ ≤  For .ߢ̃ 
݇ ∈  ℕ଴, we denote by 

ଶܹ
௞(0,1) ∶= {݂ ∈ ଶ(0,1)ܮ ∶  ݂ (௝) ∈ ݆   ,ଶ(0,1)ܮ = 1, 2 , … ,݇ } 

the Sobolev space of order ݇. 
     With the boundary eigenvalue problem (1), (2), we associate operators acting from ܮଶ(0,1)) 
to ܮଶ(0,1) × ℂ௡ in the following way. We consider the linear pencil 

ॶ− ℍߣ ∶ ଶ(0,1)ܮ → ଶ(0,1)ܮ × ℂ௡,    ߣ ∈ ℂ, 
where the operators ॶ,ℍ  are given by ܦ(ॶ ) ∶= ଶܹ

௡(0, (ℍ)ܦ,(1 ∶= ଶܹ
௣(0,1) and 

ॶݕ = ቆ
(ݕ)ܰ

൫ ௝ܷ(ݕ)ଵ௡൯
ቇ ,   ℍݕ = ቆ

(ݕ)ܲ
൫ ௝ܸ(ݕ)ଵ௡൯

ቇ. 

Moreover, we define 
ݕ(ߣ)஽ܮ ∶= −(ݕ)ܰ                      ,(ݕ)ܲߣ
ݕ(ߣ)ோܮ ∶=  ቀ ௝ܷ(ݕ)ቁ

ଵ

௡
− ߣ  ቀ ௝ܸ(ݕ)ቁ

ଵ

௡
,    

so that 

 ॷ(ߣ) ∶= ॶ − = ℍߣ ൬ܮ
஽(ߣ)
(ߣ)ோܮ

൰  , ߣ ∈ ℂ.                                          (7) 

Then the boundary eigenvalue problem (1), (2) can be written in the equivalent form 
ॶݕ − = ݕℍߣ  0, ݕ ∈ ଶܹ

௡(0,1).                                       (8) 
The spectrum of the boundary eigenvalue problem (1), (2) coincides with the spectrum of (8), 
that is, with the spectrum ߪ(ॷ) of the corresponding linear pencil ॷ. Here ߪ(ॷ) ∶= ℂ \ ߩ(ॷ)  
where 

(ॷ)ߩ  ∶= ߣ}  ∈ ℂ ∶ ॷ(ߣ) is boundedly invertible} 
is the resolvent set of ॷ (see also [137]), The problem (1), (2) is called nondegenerate if its 
spectrum is not the whole complex plane, that is, if the resolvent set ߩ(ॷ) is not empty. In this 
case ߪ(ॷ) is a discrete subset of ℂ (see [128], [138]). For the boundary eigenvalue operator 
function ॷ is holomorphic in ℂ, and for each ߣ ∈ ℂ , the operator ॷ(ߣ): ଶܹ

௡(0,1) → ଶ(0,1)ܮ ×
ℂ௡ n is a Fredholm operator. Moreover, the spectrum of ॷ consists only of eigenvalues of finite 
algebraic multiplicity, ߪ(ॷ) =  ௣(ॷ) whereߪ 

௣(ॷ)ߪ ∶= ߣ}  ∈ ℂ ∶  ॷ(ߣ) is not injective}, 
and the inverse ॷିଵ, given by ॷିଵ(ߣ) ∶= ॷ(ߣ)ିଵ, ߣ ∈ ℂ, is a meromorphic operator function 
whose poles are the eigenvalues of  ॷ  or, equivalently, of (1), (2). 
     In the following we will only consider nondegenerate problems. We denote the set of eigen-
values by {ߣఔ} and, correspondingly, the system of eigenfunctions and associated functions by 
 ఔ଴ areݕ ,Here the eigenvalues are enumerated according to their geometric multiplicities .{ఔ௦ݕ}
the eigenvectors corresponding to ߣఔ and ݕఔ௦, ݏ =  1, 2, . . .,  ,ఔ, are the associated vectors݌

ॶݕఔ௦ − ఔ௦ݕఔℍߣ  = ℍݕఔ௦ିଵ, ݏ =  0,1, . . . ఔ݌, ,                           (9) 
where ݕఔିଵ ∶=  0 for ݏ = 0. 
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It is immediate from (9) that the eigenfunctions and associated functions satisfy all boundary 
conditions (2) which do not depend on ߣ . However, to show completeness of the system {ݕఔ௦} 
in subspaces of the Sobolev spaces ଶܹ

௞(0,1), ݇ = 0,1 , . . ,݊, it is not enough to impose these ߣ-
independent boundary conditions.  
Even in the case that the boundary conditions (2) do not depend on ߣ at all, it may happen that 
a certain additional finite dimensional defect occurs (see [147]). For the more general situation 
of  ߣ-linear boundary conditions, this phenomenon will be describeed by introducing the spaces 
ࣱ࣯,௥

௞ . 
      Since the problem is nondegenerate, we may assume without loss of generality that ॶ is 
invertible. Then the operator ८ ∶ ଶ(0,1)ܮ × ℂ௡ → ଶ(0,1)ܮ × ℂ௡ given by 

 ८ ∶= ℍॶିଵ 
is well-defined on ܮଶ(0,1) × ℂ௡ . 
Lemma (3.1.1)[117]: The operator ८ is compact in ܮଶ(0,1) × ℂ௡ 
Proof. The operators 

ॶିଵ ∶ ଶ(0,1)ܮ × ℂ௡ →  ଶܹ
௡(0, 1), ℍ ∶ ଶܹ

௣(0,1) → ଶ(0,1)ܮ × ℂ௡ 
are bounded. Since ݊ >  by assumption, the identity operator ݌

ܫ ∶ ଶܹ
௡(0,1) → ଶܹ

௣(0,1) 
is compact by the Lemma of Sobolev. Hence  ८  is compact.  
According to the definition of ८, the spectral problem (8) is equivalent to 

ܫ) − ݖ(८ߣ = 0, ݖ ∈ ଶ(0,1)ܮ × ℂ௡,                              (10) 
in the following sense: The spectrum of (10) coincides with the spectrum of ॷ, -ఔ, is an eigenߣ
value of ॷ if and only if ߣఔ is an eigenvalue of the linear pencil ܫ – -ఔ௦ is an eigenݕ ८, andߣ
function or an associated function of ॷ at ߣఔ, if and only if ݖఔ௦ ∶= ॶݕఔ௦ is an eigenfunction or an 
associated function of ܫ –  ,ఔ, that isߣ ८ corresponding toߣ

– ܫ) ఔ௦ݖ( ఔ८ߣ  = ८ݖఔ௦ିଵ  , ݏ =  0 , 1 , . . . ,  ఔ ,                      (11)݌
where ݖఔିଵ ∶= ॶݕఔିଵ = 0. The resolvent 

– ܫ) ८ )ିଵߣ = ॶ(ॶ−  ℍ )ିଵߣ
is a meromorphic operator function whose poles are the eigenvalues of ॷ. 
Lemma(3.1.2)[117]: The principal part of the Laurent representation of ൫ܫ – ८൯ߣ

ିଵ
 in a neigh-

bourhood of an eigenvalue ߤ is of the form 

෍෍
൫∙, ௝௦ݖ௝଴൯ݒ + ൫∙,ݒ௝ଵ൯ݖ௝௦ିଵ + ⋯+ ൫∙,ݒ௝௦൯ݖ௝଴

ߣ) − ௣ೕାଵି௦(ߤ

௣ೕ

௦ୀ଴

௠

௝ୀଵ

                               (12) 

Where ቄݖ௝଴, , ௝ଵݖ … , ௝ݖ
௣ೕቅ

௝ୀଵ

௠
is a canonical system of eigenfunctions and associated functions of ८ 

in ߤ, and ቄݒ௝଴,ݒ௝ଵ , … , ௝ݒ
௣ೕቅ

௝ୀଵ

௠
 is a canonical system of eigenfunctions and associated functions 

of ८∗ in ߤ uniquely determined by the system ቄݖ௝଴, ,௝ଵݖ … , ௝ݖ
௣ೕቅ

௝ୀଵ

௠
 and such that 

൫ݖ௝௦, ௞ݒ
௣ೖି௧൯ = ,௝௞ߜ− ݏ   , ௦௧ߜ = 0,1, … . , ݐ   , ௝݌ = 0,1 , … , ,݆   ,௞݌ ݇ = 1, 2, . . . ,݉. 

Analogously, the principal part of ൫ܫ – ८∗൯ߣ
ିଵ

 in a neighbourhood of an eigenvalue ߤ of ८∗ is 
of the form 
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෍෍
൫∙, ௝௦ݒ௝଴൯ݖ + ൫∙, ௝௦ିଵݒ௝ଵ൯ݖ + ⋯+ ൫∙, ௝଴ݒ௝௦൯ݖ

ߣ) − ௣ೕାଵି௦(ߤ

௣ೕ

௦ୀ଴

௠

௝ୀଵ

                                (13) 

Proposition(3.1.3)[117]: Let ݎ ∈ ℕ. Then we have dimKer(८∗)௥ = dimKer(८௥)∗ < ∞ and  
Ker ℍ∗ = Ker ८∗ ⊂ Ker (८∗)௥ . 
Proof. Since ℍ and ॶିଵ are Fredholm operators and ℍ is densely defined, ८௥ is Fredholm for 
ݎ ∈ ℕ  (see [127]). Since ८∗ is compact, we have (८∗)௥ = (८௥)∗ and hence 

dimKer(८∗)௥ = dimKer(८௥)∗ =  codim Im(८௥) < ∞. 
As  Imॶିଵ = ଶܹ

௡(0,1) and ଶܹ
௡ି௣(0,1) is dense in ܮଶ(0,1), it follows 

Ker ८∗ =  (Im८)ୄ  = (Imℍ )ୄ = Ker ℍ∗. 
This completes the proof of the proposition. 
     We are now ready to introduce the subspaces ࣱ࣯,௥

௞  of the Sobolev spaces ଶܹ
௞(0, 1) and to 

establish some of their crucial properties. 
Definition(3.1.4)[117]: Let ݎ ∈ ℕ. Suppose {߮௝௞}௞ୀ଴,௝ୀଵ

௥ିଵ ௟ೖ ⊂ ଶ(0,1)ܮ × ℂ௡ to be a basis of  
Ker (८∗)௥ such that 

i) {߮௝଴}௝ୀଵ
௟బ  is a basis of Ker ८∗, 

ii) {߮௝௞}௝ୀଵ
௟ೖ  is a basis of Ker (८∗)௞ାଵ⊝ Ker (८∗)௞ , ݇ = 1, 2, … , ݎ − 1 

Then we introduce linear forms ௝ܷ
௞ by 

௝ܷ
௞(ݕ) ∶= ൫ॶݕ,߮௝௞൯,ݕ ∈ ଶܹ

௡(0, 1),    ݇ = 0,1, … , ݎ − 1 ,    ݆ = 1, 2 , … , ݈௞  , 
where 〈⋅ , ⋅〉 denotes the canonical scalar product in ܮଶ(0,1) × ℂ௡. The linear forms ௝ܷ

௞ are of 
the form 

௝ܷ
௞(ݕ) = ෡ܷ௝௞(ݕ) + න തതതതതതതത(ݔ)ఫ௞ݑ(ݔ)ݕ

ଵ

଴
,ݔ݀ ݇ = 0,1, … , ݎ − 1 ,   ݆ = 1, 2, … , ݈௞ , 

with some two point boundary conditions ෡ܷ௝௞(ݕ) and certain functions ݑ௝௞ ∈  ଶ(0,1). The orderܮ
of a linear form ௝ܷ

௞ is defined by the order of ෡ܷ௝௞ if  ෡ܷ௝௞ ≢ 0, and by −1 if ෡ܷ௝௞ ≡ 0,. 
On normalizing the system { ௝ܷ

௞}௞ୀ଴,௝ୀଵ
௥ିଵ ௟ೖ , we obtain an equivalent system of linear forms ൛ ௝࣯ൟଵ

௠
, 

and we define the spaces ࣱ࣯,௥
௞  by 

ࣱ࣯,௥
௞ ∶= ݕ} ∈ ଶܹ

௞(0,1) ∶ ௝࣯(ݕ) = 0 if ord ௝࣯ ≤ ݇ − 1} 
for ݇ = 0,1 , . . . , ݊ . 
Lemma(3.1.5)[117]: We have {ݕఔ௦} ⊂ ࣱ࣯,௥

௞   for ݇ = 0,1, … , ݊, ݎ ∈ ℕ. 
Proof. Obviously, {ݕఔ௦} ⊂ ଶܹ

௡(0,1). By (9) and with ݖఔ௦ = ॶݕఔ௦, we obtain   
            ௝ܷ

௞(ݕఔ௦) =  〈ॶݕఔ௦,߮௝௞〉 = 〈ఔ௦,߮௝௞ݕℍ〉ఔߣ  + 〈ℍݕఔ௦ିଵ,߮௝௞〉  
= 〈ఔ௦,߮௝௞ݖ८〉ఔߣ + 〈८ݖఔ௦ିଵ,߮௝௞〉 = 〈ఔ௦,८∗߮௝௞ݖ〉ఔߣ + 〈ఔ௦ିଵ,८∗߮௝௞ݖ〉 = 0 

for ݇ = 0, 1, … , ݎ − 1, ݆ = 1,2, . . , ݈௞ , since ८∗߮௝௞ ∈ Ker (८∗)௥ିଵ = Ker(८௥ିଵ)∗ = (Im८௥ିଵ)ୄ  
and ݖఔ௦, ఔ௦ିଵݖ ∈ Im८௥ିଵ because, by induction, 

ఔ௦ݖ = ८௥ିଵቌ ෍ ቀݎ − 1
ݏ − ݇ቁߣఔ

௞ି(௦ି௥ାଵ)ݖఔ௞
௦

௞ୀ୫ୟ୶{଴,௦ି௥ାଵ}

ቍ 

for ݏ =  0, 1, . . .  .ఔ. This completes the proof of the Lemma݌,
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Definition(3.1.6)[117]: Let ߟ ∈ {0, 1, . . . , ݊} be the number of ߣ-independent boundary condi-
tions (2), and let Λ ∶= ൛݉ଵ,݉ଶ, . . . ,݉ఎൟ ∶= {݆ ∈ {1,2, . . . , ݊ } ∶ ௝ܸ ≡ 0}. Then we define 

௎ܹ
௞ ∶= ݕ} ∈ ଶܹ

௞(0, 1) ∶  ܷ௠ೕ(ݕ) = 0,    ݆ = 1, 2 , . . . if ord  ܷ௠    ,ߟ, ≤ ݇ − 1} 
for ݇ = 0,1 , . . . , ݊.  
Remark(3.1.7)[117]: The inclusion ௎ܹ

௞ ⊂ ࣱ࣯,ଵ
௞ ⊂ ࣱ࣯,௥

௞  holds for ݇ = 0,1, . . . , ݊, ݎ ∈ ℕ. 
Proof. From ௠ܸೕ ≡ 0 for ݆ = 1, 2 , . . . ,  we infer , ߟ

൜ቀ0 ݁௠ೕቁ
௧
ൠ
௝ୀଵ

ఎ
∈ (Imℍ)ୄ = Ker ℍ∗ = Ker ८∗. 

by Proposition (3.1.3) where ൫0 ௝݁൯
௧ ∈ ଶ(0,1)ܮ × ℂ௡ , ௝݁ denoting the ݆-th unit vector in ℂ௡.  

Hence we can choose ߮ ௝
଴ = ቀ0 ݁௠ೕቁ

௧
, ݆ = 1,2, . . . ,   and we obtain ,ߟ

௝ܷ
଴ = 〈ॶݕ, ቀ0 ݁௠ೕቁ

௧
〉 = ܷ௠ೕ

݆    ,(ݕ) = 1,2, . . .  ,ߟ,
and hence the assertion follows. 
For ߣ-independent boundary conditions, the spaces ࣯ܹ

௞ have been introduced in [147] by 
࣯ܹ
௞ ∶= ݕ} ∈ ଶܹ

௞(0, 1) ∶  ௝࣯(ݕ) = 0,   if ord  ௝࣯ ≤ ݇ − 1} 
for ݇ = 0,1, . . . , ݊ where { ௝࣯}ଵ௠ is a system of linear forms equivalent to ൛ ௝ܷൟଵ

௡ ∪ ൛ ෩ܷ௝ൟଵ
௟
,  

normalized in case of need, with 
෩ܷ௝(ݕ) ∶= ൫ܰ(ݕ),߮௝൯௅మ(଴,ଵ)

ݕ   , ∈ ଶܹ
௡(0,1),   ݆ = 1,2, . . . , ݈. 

Here ൛߮௝ൟଵ
௟
 is a basis of  Ker ܲ∗ where ܲ∗ is the adjoint of the operator ܲ ∶ ଶ(0,1)ܮ → ,ଶ(0ܮ 1),

(ܲ)ܦ =  ௎ܹ
௣ = ݕܲ,  .(ݕ)ܲ 

Proposition(3.1.8)[117]: Suppose the boundary conditions (2) to be ߣ-independent. Then 
ࣱ࣯,ଶ

௞ = ࣯ܹ
௞   for ݇ = 0, 1, … , ݊. 

Proof. Let ݃ = (݃ଵ݃ଶ)௧ ∈ ଶ(0,1)ܮ  × ℂ௡. Then 
                            (८∗)ଶ݃ = 0 ⟺ ८∗݃ ∈ Kerℍ∗ ⟺  〈८∗݃, ቀ0ݒቁ〉 = ݒ               ,0 ∈  ଶ(0,1)ܮ

      ⟺ 〈݃,ℍॶିଵ, ቀ0ݒቁ〉 = 0, ݒ      ଶ(0,1)ܮ∋

      ⟺ 〈݃, ቀܲܰ
ିଵݒ

0
ቁ〉 = 0, ݒ        ଶ(0,1)ܮ∋

     ⟺ (݃ଵ,ܲ߱)௅మ(଴,ଵ) = 0, ߱ ∈ ଶܹ
௣(0,1)  

      ⟺ ݃ଵ ∈ Ker ܲ∗                                         
since Im ܰିଵ = ଶܹ

௡(0,1) where  ܰ ∶ ଶ(0,1)ܮ → ,ଶ(0,1)ܮ (ܰ)ܦ = ௎ܹ
௡,  and ܰ ݕ =   and (ݕ)ܰ

ଶܹ
௡ି௣(0,1) is dense in ܮଶ(0,1). 

Consequently, a basis of  Ker(८∗)ଶ is given by ቄ൫0 ௝݁൯
௧ቅ
ଵ

௡
∪ ቄ൫߮௝ 0൯

௧ቅ
ଵ

௟
=: ൛߮௝଴ൟଵ

௡ ∪ ൛߮௝ଵൟଵ
௟
   

where  ൛߮௝ ൟଵ
௟ ⊂   ଶ(0,1) is a basis of Ker ܲ∗. Thus we obtainܮ

௝ܷ
଴(ݕ) =  〈ॶݕ, ൫0 ௝݁൯

௧〉 =  ௝ܷ(ݕ),   ݆ =  1, 2 . . . . , ݊, 

௝ܷ
ଵ(ݕ)  =  〈ॶݕ, ൫߮௝ 0൯

௧〉 =  ෩ܷ௝(ݕ),   ݆ =  1, 2 . . . . , ݈. 
This completes the proof of the proposition. 
     We have showed now that the spaces ࣱ࣯,௥

௞  involve all given ߣ-independent boundary condi-
tions and some additional boundary conditions which are, however, also fulfilled by the eigen 
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functions and associated functions. 
      It is our aim to show that the system {ݕఔ௦} of eigenfunctions and associated functions is even 
complete in the spaces ࣱ࣯,௥

௞  by proving completeness of the system {ݖఔ௦} = {ॶݕఔ௦} of eigen-
functions and associated functions of the linear pencil ܫ –  ८. For this we first need to estimateߣ
the growth of the resolvent of ܫ – −८  and hence of the modified resolvent ℍ(ॶߣ  ℍ)ିଵ sinceߣ

– ܫ) ८ )ିଵߣ  = (ॶ− ℍߣ + −ℍ )(ॶߣ  ℍ)ିଵߣ
= ܫ + −ℍ(ॶߣ  ℍ)ିଵ                                                       (14)ߣ

The resolvent (ॶ− ℍ)ିଵߣ ∶ ଶ(0,1)ܮ  × ℂ௡ →  ଶ(0,1) is given by (comp.[138])ܮ

(ॶ− ℍ)ିଵߣ ൬ ଵ݂

ଶ݂
൰ = ܴଵ(ߣ) ଵ݂+ܴଶ(ߣ) ଶ݂ ,   ൬ ଵ݂

ଶ݂
൰ ∈ ଶ(0,1)ܮ × ℂ௡                  (15) 

where 

ܴଵ(ߣ) ଵ݂ ≔ න ,⋅)ܩ ,ߦ (ߣ
ଵ

଴
ଵ݂(ߦ)݀ߦ,                             ଵ݂ ∈ ଶ(0,1)ܮ

ܴଶ(ߣ) ଶ݂ ≔ ൫ݕଵ(⋅, (ߣ … ,⋅)௡ݕ ଵି(ߣ)ܯ൯(ߣ ଶ݂,      ଶ݂ ∈ ℂ௡              
                        (16) 

Here {ݕଵ(⋅, (ߣ ,⋅)௡ݕ… (ݕ)ܲߣ– (ݕ)ܰ is a fundamental system of {(ߣ = 0, 
(ߣ)ܯ ∶= ൫ܮோ(ߣ)ݕଵ(⋅, (ߣ … ,⋅)௡ݕ(ߣ)ோܮ  ൯(ߣ

is the corresponding characteristic matrix function and 

,⋅)ܩ ,ߦ (ߣ ≔
(−1)௡

(ߣ)∆
det ൬

,⋅)ଵݕ (ߣ … ,⋅)௡ݕ (ߣ ݃(⋅, ,ߦ (ߣ
(ߣ)ܯ ,⋅)݃(ߣ)ோܮ ,ߦ ൰(ߣ , ߦ    ∈ [0.1],     (17) 

is the Green's function of (1), (2) where 
(ߣ)∆ ∶=  det (ߣ)ܯ 

denotes the characteristic determinant. The function ݃ is given by 

,ݔ)݃ ,ߦ (ߣ ∶=
1
2

 sign(ݔ − ,ݔ)ఔݕ෍(ߦ ,ߦ)ఔݖ(ߣ (ߣ
௡

ఔିଵ

, ,ݔ ߦ ∈ [0.1],               (18) 

where {ݖଵ(⋅, (ߣ … ,⋅)௡ݖ   is the fundamental system of the formally adjoint differential {(ߣ
equation of ܰ(ݕ) –(ݕ)ܲߣ = 0 defined by 

,⋅)ఔݖ (ߣ ≔ ఔܹ(⋅, (ߣ
ܹ(⋅, (ߣ ߥ   , = 1 , 2 , . . . , ݊ , 

with ܹ(ߣ) denoting the Wronskian determinant of{ݕଵ(⋅, ,(ߣ … , ,⋅)௡ݕ  being the (ߣ)and ఔܹ {(ߣ
algebraic complement of ݕఔ

(௡ିଵ)(⋅,  .(ߣ)ܹ in (ߣ
       The basis for the asymptotic expansion of the resolvent (ॶ−  ℍ )ିଵ is a theorem on theߣ
existence of an asymptotic fundamental system for the differential equation ܰ(ݕ) =  .(ݕ)ܲߣ
This theorem has its roots in early works of G.D. Birkhoff [119,120]. Later contributions to a 
more detailed structure of these asymptotic expansions are due to W. Eberhard and G. Freiling 
[126] as well as R. Mennicken and M. Moller[138]. 
       Using the standard substitution ߣ = ௡ି௣, we define sectors ܵ఑ߩ− =  ݁|఑గ (ଶ(௡ି௣))⁄ ܵ଴ for 
ߢ = 0, 1, 2 , . . . , 4(݊ − (݌ − 1 in the complex plane where  

ܵ଴ ∶=  ൜ݖ ∈ ℂ ∶  0 ≤  arg ݖ ≤
ߨ

2(݊ − ൠ (݌ , 

We denote the (݊ –݌)-th roots of −1 by ߱ଵ,߱ଶ , . . . ,߱௡ି௣ and enumerate them in such a way 
that 

ℜ(߱ߩଵ) ≤ ⋯ ≤ ℜ(߱ߩௗ) ≤ 0 ≤ ℜ(߱ߩௗାଵ) ≤ . . .≤  ℜ൫߱ߩ௡ି௣൯,ߩ ∈ ܵ଴,              (19) 
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where ݀ ∈  {1, 2, . . . , ݊ − ܵ and accordingly for all sectors ,{݌ ఑. 
     To arrange the subsequent asymptotic expansions clearly, we introduce the following  
abbreviation. 
Let ݈ ∈ ℕ଴. Suppose ݃ to be a function on some sector ܵ of the complex plane with values in a 
Banach space ܧ.  If ݃ has an asymptotic expansion 

(ߩ)݃ = (ߩ)݂  +  Ο൬ 
1

௟ାଵߩ
 ൰ (ߩ)݂, =  ଴݂ + ଵ݂

ߩ
+ . . . + ௟݂

௟ߩ
, 

with ଴݂, ଵ݂ , . . . , ௟݂ ∈ ߩ for ܧ ∈ ܵ with respect to the norm in ܧ, then we write 
(ߩ)݃ =  ,௟[(ߩ)݂]

omitting the index ݈ if ݈ =  0. 
    This notation will be applied with ܧ = ℂ and ܧ = ,0]ܥ 1]. Whenever precise information is 
unnecessary, we will write [⋅ ⋅]  ௟  and[(ߩ)   ,ݔ ௟, respectively, where[(ߩ,ݔ)
for example, indicates the independent variable if ܧ = ,0]ܥ 1]. 
Theorem(3.1.9)[117]: Let ݈ ∈ ℕ଴, ߢ ∈ { 0,1, … ,4( ݊ − ( ݌ − 1} , and let ݖ଴ ∈ ℂ. Suppose that 
ఔ݂, ݃ఔ ∈ ଶܹ

ఔା௟ା௦(0,1) where ݏ ∶= max{݊ − 1, ݌)2 − 1)}. Then there exists a fundamental  
system {ݕଵ(⋅,ߣ) … , ,⋅)௡ݕ (ݕ)ܰ of {(ߣ = ܵ in the sector (ݕ)ܲߣ = ଴ݖ  + ܵ఑ such that 

ቐݕఔ
(௝)(ߩ,ݔ) = ℎఔ

(௝)(ݔ) +
ℎఔଵ

(௝)(ݔ)
ߣ

+ ⋯+
ℎఔ௅

(௝)(ݔ)
௅ߣ

+ Ο൬
1

௅ାଵߣ
൰ , ߥ = 1,2, … ,      ݌

ఔݕ
(௝)(ݔ, (ߩ = ⋅]௝݁ఘఠഌష೛௫ߩ ߥ                                             ௟[(ߩ,ݔ) = ݌ + 1, … ,݊

           (20) 

for ݆ = 0, 1, . . . , ݊ − 1, ݔ ∈ [0,1], where ߣ = ,௡ି௣ߩ− ܮ ∶= ቂ ௟
௡ି௣

ቃ , {ℎଵ , … , ℎ௣} is a fundamental 
system of ܲ(ݕ) = 0, and 

⎩
⎪
⎨

⎪
⎧
ఔݖ

(௝)(ߩ,ߦ) =
1
ߣ
ቌℎఔ

∗(௝)(ߦ) +
ℎఔଵ
∗(௝)(ߦ)
ߣ

+⋯+
ℎఔ௅
∗(௝)(ߦ)
௅ߣ

+ Ο ൬
1

௅ାଵߣ
൰ቍ , ߥ = 1,2, … ,      ݌

ఔݖ
(௝)(ߩ,ߦ) =

1
௡ିଵି௝ߩ

⋅]௝݁ఘఠഌష೛కߩ ߥ                                             ௟[(ߩ,ߦ) = ݌ + 1, … , ݊

     (21) 

for ݆ = 0, 1 , . . . , ݊ − 1, ߦ ∈ [0,1], where {ℎଵ∗, … , ℎ௣∗ } is a fundamental system of the formally 
adjoint differential equation ܲ∗(ݖ) = 0. 
In the following we will always assume that the coefficients ఔ݂,݃ఔ of the differential equation 
(1) fulfill the smoothness conditions of Theorem (3.1.9) with some ݈ ∈ ℕ଴. Then, with the aid 
of this theorem, the asymptotic expansion of the characteristic determinant ∆ of the problem 
(1), (2) can be established. 
Proposition(3.1.10)[117]: For ߩ ∈ ܵ଴, we have 

(ߩ)∆ = ௟[(ߩ)Θ଴])ఊ ݁ఘஐߩ  + [Θଵ(ߩ)]௟݁ఘனೖ)   if  ݊ − ݌ = 2݇ − 1, 
and 

(ߩ)∆           = ௟[(ߩ)Θ଴])ఊ ݁ఘஐߩ  + [Θଵ(ߩ)]௟݁ఘனೖ + [Θଶ(ߩ)]௟݁ଶఘனೖ)  if ݊ − ݌ = 2݇ ,     
with 

ߛ ∶= ෍ ≕ ௝,      Ωߢ ߱௞ାଵ + ⋯+ ߱௡ି௣

௡

௝ୀ௣ାଵ

, 

and polynomials Θ௜ in ିߩଵ, 
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Θ௜(ߩ) =  Θ௜଴ +
Θ௜ଵ
ߩ

  + ⋯  +
Θ௜௟
௟ߩ

, ݅ = 0,1,2, 

Analogous representations hold in all other sectors ܵ఑. 
       Now the notions of Stone-regularity and normality can be formulated as follows. 
Definition(3.1.11)[117]: A problem (1), (2) is called Stone-regular if there exists an integer 
݉ ∈  ℕ଴ such that  

൭෍|Θ଴௦|
௠

௦ୀ଴

൱൭෍|Θଵ௦|
௠

௦ୀ଴

൱ ≠ 0  if  ݊ − ݌ = 2݇ − 1,

෍|Θ଴௦| ≠ 0
௠

௦ୀ଴

                       if  ݊ − ݌ = 2݇    

                             (22) 

If ݉ is minimal, then the problem is said to be Stone-regular of order ݉. 
The problem is called normal of order m if either ݊ − ݌ ≤ 2 and (22) holds for some ݉ ∈ ℕ଴ 
or if ݊ − ݌ > 2 and 

෍(|Θ଴௦| + |Θଵ௦|) ≠ 0                                                                   (23)
௠

௦ୀ଴

 

where ݉ is minimal. 
For abbreviation we introduce functions ߰ఔ on [0, 1] by 

߰ఔ(ݔ) ∶= ቊ
߱ఔି௣ߥ           ,ݔ = ݌ + 1, . . . ݌, + ݀,
߱ఔି௣(ݔ − 1), ߥ = ݌ + ݀ + 1, . . . , ݊ ݔ       ∈ [0,1],                (24) 

where d is given by (19). 
        Now we are ready to establish the asymptotic expansion of ॶ(ॶ−  .ℍ )ିଵߣ
Theorem(3.1.12)[117]:The modified resolvent ॶ(ॶ− ℍ )ିଵߣ ∶ ଶ(0,1)ܮ × ℂ௡ → ଶ(0,1)ܮ × ℂ௡ 
is of the form 

ॶ(ॶ− ℍ )ିଵߣ ൬ ଵ݂

ଶ݂
൰ =

⎝

⎜
⎛

න ,⋅)ଵ஽ܩ ,ߦ (ߣ
ଵ

଴
ଵ݂(ߦ)݀ߦ + ,⋅)ଶ஽ܩ ௧(ߣ ଶ݂

ቆන ଵ௝ோܩ ,ߦ) (ߣ
ଵ

଴
ଵ݂(ߦ)݀ߦ + ଶ௝ோܩ ௧(ߣ) ଶ݂ቇ

௝ୀଵ

௡

⎠

⎟
⎞

, ൬ ଵ݂

ଶ݂
൰ ∈ ଶ(0,1)ܮ  × ℂ௡ , 

where ܩଵ஽,ܩଵ௝ோ  are scalar functions and ܩଶ஽ ଶ௝ோܩ,  are vector valued functions of size ݊ × 1 having 
the following asymptotic representations: 
    i) For sufficiently large ߩ ∈  ܵ଴ and ݔ, ߦ ∈ [0, 1], we have 

,ݔ)ଵ஽ܩ ߦ (ߩ,  =  
1

௡ି௣ߩ
 ෍ܪ௜஽(ݔ, ,ߦ (ߩ
ସ

௜ୀ଴

 

where ܪ଴஽ is a holomorphic and bounded function with respect to ߩ, 

,ݔ)ଵ஽ܪ           ,ߦ (ߩ  = ߩ ෍ [⋅ ⋅][(ݔ) ఘటഌ(௫)  ݁ఘటഋ(ଵିక)݁ [(ߞ)
௡

ఔ,ఓୀ௣ାଵ

ܴఔ,ఓ(ߩ), 

,ݔ)ଶ஽ܪ           ,ߦ (ߩ  = ௣ି఑೛శభߩ  ෍ ෍[⋅ ⋅][(ݔ)   ఘటഌ(௫)݁ [(ߦ)
௣

ఓୀଵ

௡

ఔୀ௣ାଵ

ܴఔ,ఓ(ߩ), 
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,ݔ)ଷ஽ܪ           ,ߦ (ߩ = ఑೛ି௡ାଵ෍ߩ ෍ [⋅ ⋅][(ݔ) ,(ߩ)ఘటഋ(ଵିక)ܴఔ,ఓ݁  [(ߦ)
௡

ఓୀ௣ାଵ

௣

ఔୀଵ

 

,ݔ)ସ஽ܪ           ,ߦ (ߩ  =
1

௡ି௣ߩ
෍ [⋅ ⋅][(ݔ) ,(ߩ)ఔ,ఓܴ [(ߦ)
௣

ఔ,ఓୀଵ

 

For sufficiently large ߩ ∈  ܵ଴ and ݔ ∈ [0, 1], we have 

,ݔ)ଶ஽ܩ (ߩ  =
1

௡ି௣ߩ
෍ܨ௜஽(ߩ,ݔ) 
ଶ

௜ୀଵ

 

where 

(ߩ,ݔ)ଵ஽ܨ              = ൭෍[⋅  (ߩ)ఔ௞ܴ [⋅][(ݔ)
௣

ఔୀଵ

൱
௞ୀଵ

௡

, 

(ߩ,ݔ)ଶ஽ܨ              = ௡ି఑೛శభߩ ቌ ෍ ݁ఘటഌ(௫)[⋅  (ߩ)ఔ௞ܴ [⋅][(ݔ)
௡

ఔୀ௣ାଵ

ቍ

௞ୀଵ

௡

. 

    ii) For sufficiently large ߩ ∈ ܵ଴ and ߦ ∈ [0,1], we have, with Λ = ൛݆ ∈ {1,2, … , ݊}: ௝ܸ ≡ 0ൟ 
ଵ௝ோܩ (ߩ,ߦ)  =  0,                                ݆ ∈ Λ                     

ଵ௝ோܩ (ߩ,ߦ)  =  
1

௡ି௣ߩ
 ෍ܪ௜௝ோ(ߦ, ,(ߩ
ସ

௜ୀ଴

݆ ∈ {1,2, . . . ,݊} \ Λ
 

where, for ݆ ∈ {1,2, . . . ,݊}\ Λ, ଴௝ோܪ  are holomorphic and bounded functions with respect to ߩ, 

ଵ௝ோܪ           (ߩ,ߦ)  = ௟ೕି௡ାଵߩ ෍ [⋅][⋅ ,(ߩ)ఘటഋ(ଵିక)ܴఔఓ௝݁  [(ߦ)
௡

ఔ,ఓୀ௣ାଵ

 

ଶ௝ோܪ           (ߩ,ߦ)  = ௟ೕି఑೛శభష(೙ష೛)ߩ ෍ ෍[⋅][⋅ ,(ߩ)ఔఓ௝ܴ [(ߦ)
௣

ఓୀଵ

௡

ఔୀ௣ାଵ

 

ଷ௝ோܪ            ,ߦ) (ߩ  = ఑೛ି௡ାଵ෍ߩ ෍ [⋅][⋅ ,(ߩ)ఘటഋ(ଵିక) ܴఔఓ௝݁[(ߦ)
௡

ఓୀ௣ାଵ

௣

ఔୀଵ

 

ସ௝ோܪ             (ߩ,ߦ)  =  
1

௡ି௣ߩ
෍ [⋅][⋅ .(ߩ)ఔఓ௝ܴ [(ߦ)
௣

ఔ,ఓୀଵ

 

For sufficiently large ߩ ∈  ܵ଴, we have 
ଶ௝ோܩ (ߩ)  =  0,                            ݆ ∈ Λ                     

ଶ௝ோܩ (ߩ)  =  
1

௡ି௣ߩ
 ෍ܨ௜௝ோ(ߩ),
ଶ

௜ୀଵ

݆ ∈ {1,2, . . . , ݊} \ Λ
 

where, for  ݆ ∈ {1,2, . . . ,݊}\ Λ , 
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ଵ௝ோܨ                                  (ߩ) = ௡ି௣ߩ ൭෍[⋅] ܴఔ௞௝(ߩ) 
௣

ఔୀଵ

൱
௞ୀଵ

௡

,                       

ଶ௝ோܨ                                 (ߩ) = ௛ೕି఑೛శభశ೙ష೛ߩ  ቌ ෍ [⋅] ܴఔ௞௝(ߩ) 
௡

ఔୀ௣ାଵ

ቍ

௞ୀଵ

௡

. 

In all cases the functions ܴఔఓ,ܴఔ௞ ,ܴఔఓ௝ and ܴఔ௞௝ are asymptotically of the form 

⎩
⎪
⎨

⎪
⎧ [⋅] + [⋅]݁ఘனೖ

[Θ଴(ߩ)]௟ + [Θଵ(ߩ)]௟݁ఘனೖ
if  ݊ − = ݌ 2݇ − 1,

[⋅] + [⋅]݁ఘனೖ + [⋅]݁ଶఘனೖ

[Θ଴(ߩ)]௟ + [Θଵ(ߩ)]௟݁ఘனೖ+[Θଶ(ߩ)]௟݁ଶఘனೖ
if  ݊ − ݌ = 2݇,       

    

Analogous representations hold in all other sectors ܵ఑. 
Proof. Let ( ଵ݂ ଶ݂)௧ ∈ ଶ(0,1)ܮ  × ℂ௡ and  ߩ ∈  ܵ଴. Then we have 

ℍ(ॶ+ ௡ି௣ℍ )ିଵߩ  ൬ ଵ݂

ଶ݂
൰ = න ,⋅)ܩ (ߩ,ߦ

ଵ

଴
ଵ݂(ߦ)݀ߦ + ൫ݕଵ(⋅,ߩ), … , ଵି(ߩ)ܯ൯(ߩ,⋅)௡ݕ ଶ݂. 

For simplicity we keep the notations for the Green's function ܩ, for the fundamental system 
 ఔୀଵ{(ߩ,⋅)ఔݕ}

௡ and for the characteristic matrix ܯ also after the substitution ߣ =  .௡ି௣ߩ−
In view of the different asymptotic structure of the fundamental system {ݕఔ(⋅,ߩ)}ఔୀଵ 

௡ for  
ߥ = 1, 2, . . . , ߥ and ݌ = ݌ + 1, . . . ,݊, we write the function ݃ defined in (18) as 

,ݔ)݃ ,ߦ (ߩ  =  ݃ଵ(ݔ, ,ߦ (ߩ + ݃ଶ(ݔ, ,ߦ  (ߩ
where 

݃ଵ(ݔ, (ߩ,ߦ = ൞

0, ݔ > ,ߦ

−෍ݕఔ(ߩ,ݔ)ݖఔ

௣

ఔୀଵ

(ߩ,ߦ) ݔ <            ,ߦ

݃ଶ(ݔ, ,ߦ (ߩ =

⎩
⎪
⎨

⎪
⎧ ෍ ,ݔ)ఔݕ ఔݖ(ߩ

௣ାௗ

ఔୀ௣ାଵ

(ߩ,ߦ) ݔ > ߦ ,

− ෍ ఔݖ(ߩ,ݔ)ఔݕ

௡

ఔୀ௣ାௗାଵ

,(ߩ,ߦ) ݔ < ߦ ,

 

If we expand the determinant in the numerator of the Green's function ܩ with respect to its first 
row, this implies the decomposition 

,ݔ)ܩ ߦ (ߩ, = ݃ଵ(ݔ, (ߩ,ߦ + ݃ଶ(ݔ, (ߩ,ߦ −෍෍ݕఔ(ߩ,ݔ)
∆ఔ௜ ,ߦ) (ߩ
(ߩ)∆

௡

ఔୀଵ

ଶ

௜ୀଵ

.               (25) 

Here the functions ∆ఔ௜ (∙ ,   are determined by (ߩ

∆ఔ௜ (ߩ,ߦ) = det൫ܮோ(ߩ)ݕଵ(∙ ,ߩ)൯… , ∙)௜݃(ߩ)ோܮ (ߩ,ߦ
஝ି୲୦ ୡ୭୪୳୫୬

 , ((ߩ, ∙)௡ݕ(ߩ)ோܮ …
that is, by substituting the ߥ-th column ܮோ(ߩ)ݕఔ(∙ ,  by (ߩ)∆ of the characteristic determinant (ߩ
(ߩ)ோܮ ௜݃(∙ ,  .(see also [130], [151])  (ߩ,ߦ
    i) Suppose ߩ ∈ ܵ଴ to be sufficiently large. According to the decomposition (25), we have 
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,ݔ)ଵ஽ܩ ,ߦ (ߩ =
1

௡ି௣ߩ
 ෍ܪ௜஽(ݔ, ,ߦ (ߩ
ସ

௜ୀ଴

, ,ݔ)ଶ஽ܩ (ߩ =
1

௡ି௣ߩ
 ෍ܨ௜஽(ߩ,ݔ)
ଶ

௜ୀଵ

, 

For  ݔ, ߦ ∈ [0, 1] with 
,ݔ)଴஽ܪ                      (ߩ,ߦ ≔ ௡ି௣ߩ ௫ܲ൫݃ଵ(ݔ , ,ߦ (ߩ + ݃ଶ(ݔ , ,ߦ  ,൯(ߩ

,ݔ)ଵ஽ܪ                      (ߩ,ߦ ≔ ௡ି௣ߩ− ෍ ,ݔ)ఔݕܲ ,(ߩ
∆ఔଶ(ߦ, (ߩ
(ߩ)∆

௡

ఔୀ௣ାଵ

, 

,ݔ)ଶ஽ܪ                       (ߩ,ߦ ≔ ௡ି௣ߩ− ෍ ,(ߩ,ݔ)ఔݕܲ
∆ఔଵ(ߦ, (ߩ
(ߩ)∆

௡

ఔୀ௣ାଵ

, 

,ݔ)ଷ஽ܪ                        ,ߦ (ߩ ≔ ,(ߩ,ݔ)ఔݕ௡ି௣෍ܲߩ−
∆ఔଶ(ߩ,ߦ)
(ߩ)∆

௣

ఔୀଵ

, 

,ݔ)ସ஽ܪ                         (ߩ,ߦ ≔ ,(ߩ,ݔ)ఔݕ௡ି௣෍ܲߩ−
∆ఔଵ(ߦ, (ߩ
(ߩ)∆

௣

ఔୀଵ

, 

and 
,ݔ)ଵ஽ܨ ௧(ߩ ≔ ,ݔ)ଵݕܲ)௡ି௣ߩ ⋯  (ߩ (ߩ,ݔ)௣ݕܲ 0     ⋯  ,ଵି(ߩ)ܯ(0    

,ݔ)ଶ஽ܨ ௧(ߩ ≔ ⋯    ௡ି௣(0ߩ    0 ⋯(ߩ,ݔ)௣ାଵݕܲ ,ݔ)௡ݕܲ  ,ଵି(ߩ)ܯ((ߩ

First let ߥ ∈ ݌}  + 1, . . . , ݊}. By Theorem (3.1.9) we have 
(ߩ,ݔ)ఔݕܲ               = ∙]௣݁ఘఠഌష೛௫ߩ   ,[(ݔ)

                 
∆ఔଵ(ߩ,ߦ)
(ߩ)∆

=
఑೛శభିߩ

௡ି௣ߩ
݁ఘటഌ(଴) ෍[∙ [(ߦ)

௣

ఓୀଵ

ܴఔఓ(ߩ), 

                 
∆ఔଶ(ߩ,ߦ)
(ߩ)∆

=
1

௡ିଵߩ
݁ఘటഌ(଴) ෍ [∙ ఘటഌ(ଵିక)݁[(ߦ)

௡

ఓୀ௣ାଵ

ܴఔఓ(ߩ), 

The last two representations are obtained by expanding the determinants ∆ఔଵ(ߦ,  with respect (ߩ
to the ݊ − ݌ − 1 columns ݌ + 1 , . . . , ߥ − 1, ߥ + 1, … , ݊, and ∆ఔଶ(ߦ,  with respect to the last (ߩ
݊ −  (ߩ)∆ columns and using the asymptotic expansion of the characteristic determinant ݌
given in Proposition (3.1.10). 
 
Now let ߥ ∈  {1, . . .  ,Then we have, again by Theorem (3.1.9) .{݌,

(ߩ,ݔ)ఔݕܲ                   =
1

௡ି௣ߩ
[∙  ,[(ݔ)

                     
∆ఔଵ(ߩ,ߦ)
(ߩ)∆

=
1

௡ି௣ߩ
෍[∙ [(ߦ)
௣

ఓୀଵ

ܴఔఓ(ߩ), 

                    
∆ఔଶ(ߦ, (ߩ
(ߩ)∆

=
఑೛ߩ

௡ିଵߩ
෍ [∙ ఘటഋ(ଵିక)݁[(ߦ)
௡

ఓୀ௣ାଵ

ܴఔఓ(ߩ),                

on expanding ∆ఔଵ(ߩ,ߦ) with respect to the last ݊ −  with respect to the (ߩ,ߦ)columns, ∆ఔଶ ݌
݊ − +݌ 1 columns ݌,ߥ + 1, . . . ,݊ and using Proposition (3.1.10). 
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By Cramer's rule we obtain 

௧(ߩ,ݔ)ଵ஽ܨ                 = ௡ି௣ߩ ൭෍ܲݕఔ(ߩ,ݔ)
1

(ߩ)∆ , detܯఔ௞(ߩ)
௡

ఔୀଵ

൱
௞ୀଵ

௡

, 

௧(ߩ,ݔ)ଶ஽ܨ                 = ௡ି௣ቌߩ ෍ ,ݔ)ఔݕܲ (ߩ
1

(ߩ)∆ , detܯఔ௞(ߩ)
௡

ఔୀ௣ାଵ

ቍ

௞ୀଵ

௡

, 

where 
(ߩ)ఔ௞ܯ = , ∙)௜ݕ(ߩ)ோܮ) (ߩ … ݁௞

஝ି୲୦ ୡ୭୪୳୫୬
 , ((ߩ, ∙)௡ݕ(ߩ)ோܮ …

arises from the characteristic matrix ܯ by replacing the ߥ-th column by the ݇-th unit vector ݁௞ 
of ℂ௡ . Inserting the asymptotic representations for ܲ ݕఔ(ݔ,  given above and expanding (ߩ
detܯఔ௞(ߩ) with respect to the last ݊ − ݒ columns for ݌ =  1, 2, . . . ,  and with respect to the ݌
݊ − −݌ 1columns ݌ + 1, . . . , ߥ − 1, ߥ + 1, . . . ,݊ for ߥ = ݌ + 1, . . . ,݊ , we see   

               
det (ߩ)ఔ௞ܯ 

(ߩ)∆
= [∙]ܴఔ௞(ߩ),                                 ߥ = 1,2, … ,  ݌

               
det (ߩ)ఔ௞ܯ 

(ߩ)∆
= ߥ       ,(ߩ)఑೛శభ݁ఘటഌ(଴)[∙]ܴఔ௞ିߩ = 1,2, … ,݊, 

for ݇ = 1, 2 , . . . ,݊. This completes the proof of part i). 
    ii) Let again ߩ ∈  ܵ଴ be sufficiently large. Then we have 

ଵ௝ோܩ ,ߦ) (ߩ = ௝ܸ൫ܩ(⋅, ,ߦ ,൯(ߩ ଶ௝ோܩ (ߩ)  =  
1

௡ି௣ߩ
 ෍ܨ௜௝ோ(ߩ),
ଶ

௜ୀଵ

 

for ݆ = 1,2, . . . ,݊ where 
ଵ௝ோܨ ௧(ߩ) ≔ ௡ି௣ߩ ቀ ௝ܸ൫ݕଵ(⋅,ߩ)൯⋯ ௝ܸ ቀݕ௣(⋅, ቁ(ߩ      0      ⋯     0 ቁ(ߩ)ܯିଵ 
ଶ௝ோܨ ௧(ߩ) ≔ ⋯     ௡ି௣൫0ߩ      0     ௝ܸ(ݕ௣ାଵ(⋅,ߩ))⋯ ௝ܸ(ݕ௡(⋅,  ଵି(ߩ)ܯ൯ ((ߩ

Since ܩ(⋅, ,ߦ ܸ fulfills the boundary conditions (2) and(ߩ ௝ ≡  0 for ݆ ∈  Λ, we know 
ଵ௝ோܩ   (ߩ,ߦ)  =  0,                                   ݆ ∈ Λ                        

ଵ௝ோܩ ,ߦ) (ߩ  =  
1

௡ି௣ߩ ௝ܷ൫ ܩ(⋅, ,ߦ ൯(ߩ    ݆ ∈ {1,2, . . . ,݊} \ Λ
 

Let ݆ ∈ {1,2, . . . ,݊} \ Λ. According to (25) we have 

ଵ௝ோܩ ,ߦ) (ߩ  =  
1

௡ି௣ߩ
 ෍ܪ௜௝ோ(ߦ, (ߩ
ସ

௜ୀ଴

 

for ߦ ∈  [0, 1] with 
଴௝ோܪ                      (ߩ,ߦ) ≔ ௝ܷ൫݃ଵ(⋅, ,ߦ (ߩ + ݃ଶ(⋅,ߦ  ,൯(ߩ,

ଵ௝ோܪ                      ,ߦ) (ߩ ≔ − ෍ ௝ܷ(ݕఔ(⋅,ߩ))
∆ఔଶ(ߦ, (ߩ
(ߩ)∆

௡

ఔୀ௣ାଵ

, 

ଶ௝ோܪ                      (ߩ,ߦ) ≔ − ෍ ௝ܷ(ݕఔ(⋅,ߩ))
∆ఔଵ(ߦ, (ߩ
(ߩ)∆

௡

௩ୀ௣ାଵ

, 
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ଷ௝ோܪ                      (ߩ,ߦ) ≔ −෍ ௝ܷ(ݕఔ(⋅, ((ߩ
∆ఔଶ(ߦ, (ߩ
(ߩ)∆

௣

ఔୀଵ

, 

ସ௝ோܪ                      (ߩ,ߦ) ≔ −෍ ௝ܷ(ݕఔ(⋅, ((ߩ
∆ఔଵ(ߦ, (ߩ
(ߩ)∆

௣

ఔୀଵ

. 

From Theorem (3.1.9), it follows 
                            ௝ܷ(ݕఔ(⋅,ߩ)) = ߥ                                 ,[∙] = 1,2, …  ݌,
                            ௝ܷ൫ݕఔ(⋅,ߩ)൯ = ߥ            ,[∙]௟ೕ݁ିఘటഌ(଴)ߩ = ݌ + 1, … , ݊, 
Together with the asymptotic expansions of ∆ఔ௜ (ߩ,ߦ) ⁄(ߩ)∆  derived in the proof of part i), this 
proves the asserted asymptotic representations of ܪ௜௝ோ(ߩ,ߦ) for ݅ = 1, 2, 3, 4. 
The asymptotic expansions of ܨ௜௝ோ(ߩ)௧ for ݅ = 1, 2 are obtained from ௝ܸ  ≡ 0 for ݆ ∈ Λ and from 
                            ௝ܸ(ݕఔ(⋅,ߩ)) = ߥ                                 ,[∙] = 1,2, … ,  ݌
                            ௝ܸ൫ݕఔ(⋅, ൯(ߩ = ߥ            ,[∙]௛ೕ݁ିఘటഌ(଴)ߩ = ݌ + 1, … , ݊, 
for ݆ ∈ {1,2, . . . , ݊}\Λ following the same lines as in the end of the proof of part i). 
This completes the proof of Theorem (3.1.12). 
For the proof of the completeness theorem we need an estimate for the adjoint of the modified 
resolvent which can be deduced from the preceding theorem if the problem (1), (2) is regular in 
some sense. 
Theorem(3.1.13)[117]:   Suppose the problem (1), (2) to be Stone-regular of order ݈. 
Let {ߩ௠}௠ୀଵஶ  be the set of zeros of the characteristic determinant ∆(ߩ), and let ߜ > 0. 
Then we have 

௡ି௣(ℍ(ॶߩ + ∗(௡ି௣തതതതതതℍ )ିଵߩ ቀ
݃ଵ
݃ଶቁ = o(ߩ௡ି௣ାଵା௟ + ௡ି఑೛శభା௟),   ቀߩ

݃ଵ
݃ଶቁ  ∈ ଶ(0,1)ܮ  × ℂ௡ , 

with respect to the norm in ܮଶ(0,1) × ℂ௡  for ߩ ∈ ℂ, ߩ| − |௠ߩ > ,ߜ ݇ = 1,2, …  If the problem 
is normal of order l, then there exists at least one ray Γ in each sector ܵ఑ such that the above 
estimate holds for ߩ ∈  Γ. 
Proof: The adjoint of the modified resolvent is given by 

        〈൬ ଵ݂

ଶ݂
൰ (ℍ(ॶ− ∗(ℍ )ିଵߣ ቀ

݃ଵ
݃ଶቁ〉 = 〈ℍ(ॶ− ℍ )ିଵߣ ൬ ଵ݂

ଶ݂
൰ , ቀ

݃ଵ
݃ଶቁ〉 

                             = න න ,ݔ)ଵ஽ܩ ,ߦ (ߣ
ଵ

଴
ଵ݂(ߦ)݀݃ߦଵ(ݔ)തതതതതതത݀ݔ

ଵ

଴
+ න ,ݔ)ଶ஽ܩ) ௧(ߣ ଶ݂)݃ଵ(ݔ)തതതതതതത݀ݔ

ଵ

଴
 

                               +ቆන ଵ௝ோܩ ,ߦ) (ߣ
ଵ

଴
ଵ݂(ߦ)݀ߦቇ

௝ୀଵ

௡  ௧

݃ଶതതത + ቀ൫ܩଶ௝ோ ௧൯(ߣ)
௝ୀଵ

௡
ଶ݂ቁ

௧
݃ଶതതത 

                    = න ଵ݂(ߦ)න ,ݔ)ଵ஽ܩ ,ߦ തതതതതതതതതതതതതത(ߣ
ଵ

଴
݃ଵ(ݔ)݀ݔ

തതതതതതതതതതതതതതതതതതതതതതതതതതതതଵ

଴
ߦ݀ + ଶ݂

௧ ቆන ݁ప௧ܩଶ஽(ݔ, ݔ݀(ݔ)തതതതതതതതതതത݃ଵ(ߣ
ଵ

଴
ቇ
పୀଵ

௡തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
 

                               +න ଵ݂(ߦ)
ଵ

଴
൫ܩଵఫோ ,ߦ) തതതതതതതതതതത൯(ߣ

ఫୀଵ

௡  ௧
݃ଶ

തതതതതതതതതതതതതതതതതതതതത
ߦ݀ + ଶ݂

௧൫ܩଶఫோ ௧തതതതതതതതത൯(ߣ)
ఫୀଵ

௡  ௧
݃ଶ

തതതതതതതതതതതതതതതതതതത
 

for ൬ ଵ݂

ଶ݂
൰ , ቀ

݃ଵ
݃ଶቁ ∈ ଶ(0,1)ܮ  × ℂ௡ and hence 
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ቀℍ൫ॶ − ℍ ൯ߣ
ିଵ
ቁ
∗
ቀ
݃ଵ
݃ଶቁ =

⎝

⎜
⎛

න ,ݔଵ஽൫ܩ ,ߦ ൯തതതതതതതതതതതതതതߣ̅
ଵ

଴
݃ଵ(ݔ)݀ݔ + ቀܩଵఫோ ൫ߦ, ൯തതതതതതതതതതതቁߣ̅

௝ୀଵ

௡  ௧
݃ଶ

ቆන ݁௜௧ܩଶ஽൫ݔ, ൯തതതതതതതതതതതߣ̅
ଵ

଴
݃ଵ(ݔ)݀ݔቇ

௜ୀଵ

௡

+ ቀܩଶఫோ ൫̅ߣ൯
௧തതതതതതതതതതቁ
௝ୀଵ

௡  ௧
݃ଶ
⎠

⎟
⎞

. 

First we consider the sector ܵ଴. Since the problem is Stone-regular of order ݈ , we have 
ܴఔఓ(ߩ) = Ο(ߩ௟),   ܴఔ௞(ߩ) = Ο(ߩ௟),   ܴఔఓ௝(ߩ) = Ο(ߩ௟),   ܴఔ௞௝(ߩ) = Ο(ߩ௟), 

for ߩ ∈ ܵ଴, ߩ| − |௠ߩ > ,ߜ ݉ = 1,2, …,(see [133] or [145]). 
Moreover, we have ℜ(߰ఔ(ݔ) ≤ 0, ߥ = ݌ + 1, . . . ,݊,  according to the definition of the function 
߰ఔ  in (24) and hence 

න ݁ఘటഌ(௫)݂(ݔ)݀ݔ
ଵ

଴
 =  o(1), ݂ ∈ ,ଶ(0ܮ  1), 

for ߩ ∈ ܵ଴. Observing 0 ≤ ௝݈ ≤ ݊ − 1, ℎ௝ = −(݊ − if  ௝ܸ  (݌ ≡ 0, 0 ≤ ℎ௝ ≤ ݌ − 1 if ௝ܸ ≢ 0 and, 
consequently, 0 ≤ ௝ߢ = max{ ௝݈,݊ − ݌ + ℎ௜} ≤ ݊ − 1, we obtain the asserted estimate in ܵ଴ by 
Theorem (3.1.12) In the same way the estimates in the sectors ܵ఑  follow. 
If the problem is normal of order ݈, then the asserted estimate holds on the ray Γ given by 
Γ ∶= ߩ} ∈ ܵ఑ ∶  ℜ(߱ߩ௞) = 0}. This completes the proof of the theorem. 
    We are going to show that under certain regularity assumptions, the system of eigenfunctions 
and associated functions of problem (1), (2) is complete in the spaces ࣱ࣯,௥

௞  introduced in this 
section, where the number ݎ is determined by the order of normality.  
To this end we follow the lines of the so-called method of Keldysh [131] which is based on the 
representation of the principal parts of the Laurent expansion of the resolvent given in this 
section and on the estimates of the growth of the resolvent provided also in this section.  
Proposition(3.1.14)[117]:Suppose the problem (1),(2) to be normal of order ݈, and let ݎ(݈) ∈ ℕ 
be defined by 

(݈)ݎ ∶= ቈ
݊ − ݌ + ݈ + max൛0,݌ − 1 − ௣ାଵൟߢ

݊ − ݌
቉  

Then we have   
Ker (८∗)௦  = Ker (८∗)௥(௟)ାଵ, ݏ ≥ (݈)ݎ  + 1. 

Proof:It is sufficient to prove Ker (८∗)௥(௟)ାଶ ⊂ Ker (८∗)௥(௟)ାଵ. Assume there exists an element 
݂ ∈ Ker (८∗)௥(௟)ାଶ such that  (८∗)௥(௟)ାଵ݂ ≠ 0. If we let 

߶଴ ∶=  ݂, ߶௜ ∶=  ८∗߶௜ିଵ, ݅ = 1, 2, . , (݈)ݎ + 1, 
then we have ߶௥(௟)ାଵ = (८∗)௥(௟)ାଵ݂ ≠ 0 and 

݂ = – ܫ)  ८∗)൫߶଴ߣ  +  ߶ଵߣ +. . . + ߶௥(௟)ߣ௥(௟) +߶௥(௟)ାଵߣ௥(௟)ାଵ൯. 
Substituting ߣ = ߩ ௡ି௣ we obtain forߩ− ∈ ℂ, ߩ| − |௠ߩ > ߜ for some ߜ > 0, 
ܫ)               + ௡ି௣८∗)ିଵ݂ߩ =  ߶଴ + ߶ଵߣ +. . . + ߶௥(௟)ߣ௥(௟) + ߶௥(௟)ାଵߣ௥(௟)ାଵ  

= ο൫ߩ௡ି௣ ା௟ା୫ୟ୶൛଴,௣ିଵି఑೛శభൟାଵ൯ + ߶௥(௟)ାଵߣ௥(௟)ାଵ          (26) 
by definition of ݎ(݈). Here {ߩ௠}௠ୀଵ

ஶ  are the zeros of ∆(ߩ). On the other hand, 
since the problem is normal of order ݈, Theorem (3.1.13) shows 

ܫ) + ௡ି௣८∗)ିଵ݂ߩ =  ο൫ߩ௡ି௣ ା௟ା୫ୟ୶൛଴,௣ିଵି఑೛శభൟାଵ൯               (27) 
As (ݎ(݈) + 1)(݊ − (݌ > ݊ − ݌ + ݈ + max  ൛0,݌ − 1−  ௣ାଵൟ, it ensues from (26) and (27) thatߢ
߶௥(௟)ାଵ = 0 in contradiction with ݂ ∉ Ker (८∗)௥(௟)ାଵ. 
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This completes the proof of the proposition. 
Corollary(3.1.15)[117]: Let ݎ଴ be the maximal length of the Jordan chains of  ८∗ correspond-
ing to the eigenvalue 0. Then  ݎ଴ ≤ (݈)ݎ + 1. 
     The preceding proposition and its corollary show that the length of the Jordan chains of ८∗ 
corresponding to the eigenvalue 0 is ≤ (݈)ݎ + 1 where ݎ(݈) is determined by the order ݈ of 
normality. 
In this way, the spaces ࣱ࣯,௥(௟)ାଵ

௞  are associated with the spectral problem (1), (2). 
Theorem(3.1.16)[117]: Suppose the problem (1), (2) to be normal of order l, and let ݎ(݈) ∈ ℕ  
be defined by 

(݈)ݎ ∶= ቈ
݊ − ݌ + ݈ + max൛0,݌ − 1 − ௣ାଵൟߢ

݊ − ݌
቉ . 

Then the system {ݕఔ௦} of eigenfunctions and associated functions is complete in the spaces 
ࣱ࣯,௥(௟)ାଵ

௞   for ݇ = 0, 1 . . . . ,݊. 
Proof: By Lemma (3.1.5) we have  {ݕఔ௦} ⊂ ࣱ࣯,௥(௟)ାଵ

௞  for ݇ = 0,1, . . . , ݊.  
As ࣱ࣯,௥(௟)ାଵ

௡  is dense in ࣱ࣯,௥(௟)ାଵ
௞  for ݇ < ݊ (see [145]), it is sufficient to prove completeness 

in ࣱ࣯,௥(௟)ାଵ
௡ . 

      By definition of ८, an element ݕఔ௦ is an eigenfunction or an associated function of ॷ or, 
equivalently, of (1), (2) if and only if ݖఔ௦ = ॶݕఔ௦ is an eigenfunction or an associated function, 
respectively, of ܫ – ८. The operator ॶߣ ∶ ଶܹ

௡(0,1) → ଶ(0,1)ܮ × ℂ௡ is bounded and invertible 
and hence ॶିଵ is also bounded.  According to the definition of the space ࣱ࣯,௥(௟)ାଵ

௞  and we 

have ࣱ࣯,௥(௟)ାଵ
௞ = ॶିଵ ቀ൫Ker(८∗)௥(௧)ାଵ൯ୄቁ Consequently, 

ॶ ∶ ࣱ࣯,௥(௟)ାଵ
௡ → Im ८௥(௟)ାଵതതതതതതതതതതതതത 

is a bijection. Thus the system {ݕఔ௦} is complete in ࣱ࣯,௥(௟)ାଵ
௡  if and only if the system {ݖఔ௦} is 

complete in Im ८௥(௟)ାଵതതതതതതതതതതതതത ⊂ ଶ(0,1)ܮ × ℂ௡. 
In order to prove the completeness of {ݖఔ௦}, let  ݂ ∈ Im ८௥(௟)ାଵതതതതതതതതതതതതത  such that ݂ ⊥  with respect {ఔ௦ݖ}
to the scalar product in ܮଶ(0,1) × ℂ௡. Then the function 

(ߣ)߮ ∶= – ܫ) ,८∗)ିଵ݂ߣ ߣ ∈  ℂ, 
is holomorphic in the whole complex plane by Lemma (3.1.2). Using (14) we see 

ܫ) − ८∗)ିଵߣ = ቀ൫ܫ − ८൯ିଵቁ̅ߣ
∗

= ቀܫ − −ℍ൫ॶ̅ߣ ℍ൯ିଵቁߣ̅
∗
 

                                                                                           = ܫ  + ߣ ቀℍ൫ॶ − ℍ൯ߣ̅
ିଵ
ቁ
∗
. 

Thus we obtain for ߯(ߩ) ∶=  ,(௡ି௣ߩ)߮
(ߩ)߯ = ܫ)  + ݂ ௡ି௣८∗)ିଵߩ = ݂ − +௡ି௣(ℍ (ॶߩ  .݂∗(௡ି௣തതതതതത ℍ)ିଵߩ

Since the given problem is normal of order ݈, Theorem (3.1.13) implies 
(ߩ)߯ = ο൫ ߩ௡ା௟ି୫୧୬൛௣ିଵ,఑೛శభൟ ൯                                         (28) 

on a ray belonging to the sector ܵ଴ if ݊ − ݌ > 2 and for ߩ ∈ ℂ, ߩ| − |௠ߩ > ݊ if ,ߜ − ≥ ݌ 2, 
where {ߩ௠}௠ୀଵஶ  are the zeros of ∆(ߩ). Since ߯ is an entire function of order 1 in ߩ, the estimate 
(28) holds for all ߩ ∈ ℂ according to the Theorem of PhragmenLindelof (see [136]). Thus ߮ is 
a polynomial of degree 

ቈ
݊ + ݈ − min൛݌ − 1, ௣ାଵൟߢ − 1

݊ − ݌
቉ =  (݈)ݎ 
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in ߣ, that is, 
ܫ) − = ८∗)ିଵ݂ߣ  ߶଴  +  ߶ଵߣ +. . . + ߶௥(௟)ߣ௥(௟). 

Comparing coefficients, we see 
݂ =  ߶଴,  ߶௜ = ८∗߶௜ିଵ,    ݅ = 1,2, . . . , ८∗߶௥(௟)   ,(݈)ݎ = 0. 

Consequently, ݂ ∈ Ker (८∗)௥(௟)ାଵ = ൫Im८௥(௟)ାଵ ൯ୄand hence ݂ = 0. This completes the proof 
of the theorem. 
       For ߣ-independent boundary conditions, a completeness theorem was proved for normal 
problems of order ݈ under the additional restrictions ݈ ≤ ݊ − ݌ − 1 and 2݌ − ݊ −݈௣ାଵ ≤ 0. 
Under these assumptions we have ݎ(݈) = 1, ࣱ࣯,ଶ

௞ = ࣯ܹ
௞  according to Proposition (3.1. 8).  

Corollary(3.1.17)[117]: Suppose the boundary conditions (2) to be independent of ߣ, and ass-
ume the problem (1), (2) to be normal of order ݈ with ݈ ≤ ݊ − ݌ − 1 and  2݌ − ݊ − ݈௣ାଵ ≤ 0. 
Then the system {ݕఔ௦} of eigenfunctions and associated functions is complete in ࣱ࣯,ଶ

௞ =  ࣯ܹ
௞   

for  ݇ = 0, 1 , . . . , ݊ . 
      Nevertheless, even in the case of ߣ-independent  boundary conditions, the completeness 
theorem of the present section is an extension of the completeness result in [147] since we do 
not require ݈ ≤ ݊ − ݌ − 1 and 2݌ − ݊ − ݈௣ାଵ ≤ 0 here. 
      We consider four examples of boundary eigenvalue problems (1), (2). The first example is 
the simplest problem of this form with ݌ > 0, its boundary conditions are independent of λ. 
The same differential equation but with ߣ −linear boundary conditions is Studied as a second 
example. These examples have been considered before by Everitt [125], and recently in [134] 
in a self−adjoint setting. The third example concerns the non−selfadjoint case with ߣ −linear 
boundary conditions. It is the adjoint problem of a boundary eigenvalue problem with ߣ − 
independent boundary conditions which was studied in [147], [148].  
Finally, we consider an example arising in the theory of elasticity: the eigenvalue problem for 
the buckling loads of a clamped-free elastic bar subjected to a certain load at its free end, the 
so-called Petterson-König′s rod. 
Example(3.1.18)[117]: We consider the boundary eigenvalue problem 

= "ݕ−                              ,′ݕ݅ߣ
(0)ݕ  = 0, (1)ݕ  =  0. 

The eigenvalues and eigenfunctions of this problem are 
ఔߣ  = ,ߥߨ2  = ߥ  ±1, ±2 , . . . , 

(ݔ)ఔݕ =
1

ߥߨ2
(݁ଶగ୧ఔ௫  − 1), ݔ ∈  [0, 1], ߥ = ±1, ±2 , . . . 

Here the operators ॶ,ℍ ∶ ,ଶ(0ܮ 1) → ,ଶ(0ܮ 1) × ℂଶ are given by ܦ(ॶ) = ଶܹ
ଶ(0, (ℍ)ܦ  ,(1 =

ଶܹ
ଵ(0,1) and 

ॶݕ = ቌ
"ݕ
(0)ݕ
(1)ݕ

ቍ ,    ℍݕ = ൭
′ݕ
0
0
൱, 

so that the given eigenvalue problem can be written equivalently as (ॶ+ iߣℍ)ݕ = 0. It is not 
difficult to see that this problem is normal of order 0 with (0)ݎ = 1. For we have 

ଵߢ =  ݈ଵ =  0, ଶߢ = ݈ଶ =  0, ߢ = ଵߢ  + ଶߢ  = 0, 
and, with iߣ = and ߱ଵ ߩ = −1, 

(ߩ)∆ = ቚ1 1
1 ݁ିఘቚ = −1 + ݁ିఘ. 



81 
 

In order to determine the spaces ࣱ࣯,ଶ
௞ , we have to calculate the adjoint of the operator ८ =

ℍॶିଵ.   
Note that ॶ is invertible, its inverse ॶିଵ ∶ ଶ(0,1)ܮ × ℂଶ →  ଶ(0,1) being given byܮ

  (ॶିଵ݂)(ݔ) = න න ଵ݂(߬)݀߬݀ݐ
௧

଴

௫

଴
+ ቆ−න න ଵ݂(߬)݀߬݀ݐ + ଷ݂ − ଶ݂

௧

଴

ଵ

଴
ቇ ݔ + ଶ݂, 

ݔ                                                        ∈ [0,1], ݂ ∈ ଶ(0,1)ܮ × ℂଶ,   
where ݂ = ( ଵ݂ ଶ݂ ଷ݂)௧. Consequently, ८ ∶ ଶ(0,1)ܮ × ℂଶ → ଶ(0,1)ܮ × ℂଶ is determined by 

(८݂)(ݔ) = ൮
න ଵ݂(߬)݀ݎ
௫

଴
−න න ଵ݂(߬)݀߬݀ݐ + ଷ݂ − ଶ݂

௧

଴

ଵ

଴
0
0

൲ ݔ   , ∈ [0,1],   ݂ ∈ ଶ(0,1)ܮ × ℂଶ 

with ݂ = ( ଵ݂ ଶ݂ ଷ݂)௧. An easy calculation shows that ८∗ ∶ ଶ(0,1)ܮ × ℂଶ → ଶ(0,1)ܮ × ℂଶ is given 
by 

(८∗݃)(ݔ) =

⎝

⎜
⎜
⎜
⎛
න ݃ଵ(߬)݀߬
௫

଴
− ቆන ݃ଵ(߬)݀߬

ଵ

଴
ቇݔ

න ݃ଵ(߬)݀߬
ଵ

଴

න ݃ଵ(߬)݀߬
ଵ

଴ ⎠

⎟
⎟
⎟
⎞

, 

ݔ  ∈ [0,1], ݃ = ൭
݃ଵ
݃ଶ
݃ଷ
൱ ∈ ଶ(0,1)ܮ × ℂଶ 

Hence a basis of Ker(८∗)ଶ is {߮ଵ଴,߮ଶ଴,߮ଵଵ} where 

߮ଵ଴ = ൭
0
1
0
൱ , ߮ଶ଴ = ൭

0
0
1
൱ ,  ߮ଵଵ = ൭

1
0
0
൱ 

According to Definition (3.1.4), we obtain  
                   ࣯ଵ(ݕ) = ܷଵ଴(ݕ) = 〈ॶy,߮ଵ଴ 〉௅మ(଴,ଵ)×ℂమ =  ,(0)ݕ
                   ࣯ଶ(ݕ) = ܷଶ଴(ݕ) = 〈ॶy,߮ଶ଴ 〉௅మ(଴,ଵ)×ℂమ =  ,(1)ݕ

                   ࣯ଷ(ݕ) = ܷଵଵ(ݕ) = 〈ॶy,߮ଵଵ 〉௅మ(଴,ଵ)×ℂమ = න ݔ݀(ݔ)"ݕ = −(1)′ݕ
ଵ

଴
 ,(0)′ݕ

and 
                  ࣱ࣯,ଶ

଴  =  ,ଶ(0,1)ܮ
                  ࣱ࣯,ଶ

ଵ  = ݕ} ∈ ଶܹ
ଵ(0, (0)ݕ :(1 = (1)ݕ,0 =  0}. 

                  ࣱ࣯,ଶ
ଶ  = ݕ} ∈ ଶܹ

ଶ(0, (0)ݕ :(1 = 0, (1)ݕ  = −(1)′ݕ,0  (0)′ݕ   =  0}. 
By Theorem (3.1.16), the system {ݕఔ}ఔ∈ℤ,ఔஷ଴ is complete in ܮଶ(0, 1),ࣱ ,࣯ଶ

ଵ  and ࣱ࣯,ଶ
ଶ . 

       Since the boundary conditions of the preceding example are independent of ߣ, the theory 
developed in [147], [148] can also be applied here to show that {ݕఔ}ఔ∈ℤ,ఔஷ଴ is complete and 
even a Riesz basis in the spaces  ࣯ܹ

௞ = ࣱ࣯,ଶ
௞ for ݇ = 0, 1, 2. 

Moreover, this example shows that the additional defect of completeness due to the boundary 
condition (1)′ݕ− (0)′ݕ = 0 is not a consequence of a lack of selfadjointness. For in [134], a 
selfadjoint operator ܣ is associated with Example (3.1.18), given by 
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(ܣ)ܦ = ݕ}  ∈ ݕ :ܪ  ∈ ଶܹ
ଶ(0, 1), (1)′ݕ − (0)′ݕ = 0}, 

(ݔ)(ݕܣ)                              =  iݕᇱ(ݔ)− iݕᇱ(0), ݕ ∈  .(ܣ)ܦ 

Here the space ܪ is defined as 
= ܪ  {݂ ∈ ଶܹ

ଵ(0, 1): ݂(0) = 0,݂(1) = 0},  

                                      (݂,݃)ு = න ݂′
ଵ

଴
, ݔ݀′݃  ݂,݃ ∈  .ܪ

In [134] it is proved that {ݕఔ}ఔ∈ℤ,ఔஷ଴ is an orthonormal basis in (ܪ, (⋅,⋅)ு) and hence a Riesz 
basis in ࣱ ,࣯ଶ

ଵ  since ܪ = ࣱ ,࣯ଶ
ଵ  and the norm on ܪ is equivalent to the usual Sobolev norm on 

ଶܹ
ଵ(0, 1). It should be noted that here the additional boundary condition ݕᇱ(1)− (0)′ݕ = 0 

arises as a restriction on the domain of ܣ, that is, (ܣ)ܦ = ࣱ࣯,ଶ
ଶ , which guarantees ܪܣ ⊂  .ܪ

Example(3.1.19)[117]: The next example we study is 
= "ݕ−                            ,′ݕ݅ߣ

(0)ݕ                = ᇱ(1)ݕ   ,0  + ߣ
1
2
(1)ݕ =  0. 

Here the eigenvalues and eigenfunctions are 
ఔߣ  = ߥ2) − ,ߨ(1 ߥ ∈ ℤ, 

(ݔ)ఔݕ =
1

ߥ2) − ߨ(1
൫݁ଶ(ఔିଵ)గ୧௫  − 1൯,   ݔ ∈  [0, ߥ   ,[1 ∈ ℤ, 

The operators ॶ,ℍ ∶ ଶ(0,1)ܮ → ଶ(0,1)ܮ × ℂଶ with ܦ(ॶ)  = ଶܹ
ଶ(0,1),ܦ(ℍ) = ଶܹ

ଵ(0,1) are 
now given by 

ॶݕ = ቌ
"ݕ
(0)ݕ
(1)′ݕ

ቍ ,    ℍݕ = ൮

′ݕ
0

1
2
(1)ݕ

൲, 

The problem is normal of order 0 with (0)ݎ = 1 since 
ଵߢ =  ݈ଵ = ଶߢ    ,0  = max{݈ଶ,݊ − ݌ + ℎଶ} = ߢ    ,1 =  1, 

and, with iߣ =   ,ߩ

(ߩ)∆ = อ
1 1

1
2
ߩ ݁ିఘ ൬

1
2
ߩ − 1൰อ =

1
2
ߩ ൬−1 + ൬1 −

2
ߩ
൰ ݁ିఘ൰ . 

The inverse of ॶ  is given by 

  (ॶିଵ݂)(ݔ) = න න ଵ݂(߬)݀߬݀ݐ
௧

଴

௫

଴
+ ቆ−න ଵ݂(߬)݀߬ + ଷ݂

ଵ

଴
ቇ ݔ + ଶ݂, 

ݔ ∈ [0,1], ݂ ∈ ଶ(0,1)ܮ × ℂଶ, 
where ݂ = ( ଵ݂ ଶ݂ ଷ݂)௧. Hence we obtain 

(८݂)(ݔ) =

⎝

⎜⎜
⎛

න ଵ݂(߬)݀߬
௫

଴
−න ଵ݂(߬)݀߬

ଵ

଴
+ ଷ݂

0
1
2
ቆන න ଵ݂(߬)݀߬݀ݐ

௧

଴  

ଵ

଴
−න ଵ݂(߬)݀߬

ଵ

଴
+ ଷ݂ + ଶ݂ቇ

⎠

⎟⎟
⎞

, 

ݔ                                                           ∈ [0,1],   ݂ ∈ ଶ(0,1)ܮ × ℂଶ 
with ݂ = ( ଵ݂ ଶ݂ ଷ݂)௧. The adjoint ८∗ is given by 
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(८∗݃)(ݔ) =

⎝

⎜
⎜
⎜
⎛
−න ݃ଵ(߬)݀߬

௫

଴
−

1
2
݃ଷݔ

1
2
݃ଷ

න ݃ଵ(߬)݀߬
ଵ

଴
+

1
2
݃ଷ ⎠

⎟
⎟
⎟
⎞

ݔ   , ∈ [0,1],   ݃ = ൭
݃ଵ
݃ଶ
݃ଷ
൱ ∈ ଶ(0,1)ܮ × ℂଶ 

Thus a basis {߮ଵ଴,߮ଵଵ} of Ker (८∗)ଶ  is determined by 

߮ଵ଴ = ൭
0
1
0
൱ ,    ߮ଵଵ = ൭

−1
0
2
൱. 

Then the boundary conditions ௝࣯ introduced in Definition (3.1.4) read 
               ࣯ଵ(ݕ) = ܷଵ଴(ݕ) = 〈ॶy,߮ଵ଴ 〉௅మ(଴,ଵ)×ℂమ =  ,(0)ݕ 

          ࣯ଶ(ݕ) = ܷଵଵ(ݕ) = 〈ॶy,߮ଵଵ 〉௅మ(଴,ଵ)×ℂమ = −න ݔ݀(ݔ)ᇱᇱݕ + ᇱ(1)ݕ2
ଵ

଴
= ᇱ(1)ݕ +    ,ᇱ(0)ݕ

According to Theorem (3.1.16), the system {ݕఔ}ఔ∈ℤ is complete in the spaces 
    ࣱ࣯,ଶ

଴  =  ,ଶ(0,1)ܮ
    ࣱ࣯,ଶ

ଵ  = ݕ} ∈ ଶܹ
ଵ(0, (0)ݕ :(1 = (1)ݕ,0 = 0}, 

    ࣱ࣯,ଶ
ଶ  = ݕ} ∈ ଶܹ

ଶ(0, (0)ݕ :(1 = (1)ݕ,0 = ᇱ(1)ݕ,0 + (0)′ݕ = 0}. 
       This example is still selfadjoint in the sense of [134], and it has been proved there that 
 ఔ∈ℤ is an orthonormal basis in{ఔݕ}

ܪ = {݂ ∈ ଶܹ
ଵ(0, 1) ∶  ݂(0) = 0}, (݂,݃)ு = න ݂′ 

ଵ

଴
݃,݂,ݔ݀ ′݃  ∈  .ܪ

Here the corresponding selfadjoint operator ܣ in ܪ is given by 
(ܣ)ܦ = ݕ}  ∈ ܪ ∶ ݕ  ∈ ଶܹ

ଶ(0, ᇱ(1)ݕ,(1 + ᇱ(0)ݕ =  0} = ࣱ࣯,ଶ
ଶ , 

(ݔ)(ݕܣ) =  iݕᇱ(ݔ) − iݕᇱ(0), ݕ ∈  .(ܣ)ܦ 
It follows that {ݕఔ}ఔ∈ℤ is a Riesz basis in ࣱ࣯,ଶ

ଵ . 
       A completeness or basis result in the Sobolev space ଶܹ

ଶ(0, 1) cannot be deduced, neither 
from the selfadjoint approach in [134] since ܣ is selfadjoint only in ܪ, nor from the nonself-
adjoint theory in [147], [148] which does not apply here at all because the boundary conditions 
depend on the eigenvalue parameter. 
 
Example(3.1.20)[117]: The boundary eigenvalue problem 
= ′′′ݕ                                                          ,′ݕߣ

(1)ݕ =  0, (1)″ݕ = 0, ᇱᇱ(0)ݕ + −ᇱ(0)ݕ (0)ݕߣ =  0. 
is the adjoint problem of Example 1.1 in [147], [148]. The eigenvalues and eigenfunctions of 
this problem are given by 

ఔߣ  = ߥ2)− − 1)ଶ
ଶߨ

4
 , ߥ = 1,2, … , 

(ݔ)ఔݕ                          = ସ
(ଶఔିଵ)మగమ

cos ቀ(2ߥ − 1) గ
 

ଶ
ቁݔ , ߥ = 1,2, … , 

The operators ॶ,ℍ ∶ ଶ(0,1)ܮ → ଶ(0,1)ܮ × ℂଷ are defined by ܦ(ॶ) = ଶܹ
ଷ(0,1), (ℍ)ܦ =

ଶܹ
ଵ(0,1)   and  
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ॶݕ =

⎝

⎛

′′′ݕ
(1)ݕ
ᇱᇱ(1)ݕ

ᇱᇱ(0)ݕ + ⎠ᇱ(0)ݕ

⎞ ,    ℍݕ = ൮

′ݕ
0
0

(0)ݕ

൲, 

We have 
ଵߢ =  ݈ଵ = ଶߢ,  0 = ݈ଶ = 2  , ଷߢ = max{݈ଷ, ݊ − ݌ + ℎଷ} = ߢ,  2  =  4, 

and, with  ߣ =  ଶߩ−
(ߩ)∆  = ଷ(݁୧ఘߩ2  + ݁ି୧ఘ). 

Hence the problem is normal of order 1 and (1)ݎ = 1. The operator ८ = ℍॶିଵ turns out to be 
given by 

(८݂)(ݔ) =

⎝

⎜
⎜
⎜
⎛
න න ଵ݂(߬)݀߬݀ݐ + ቆ ଷ݂ − 2න ଵ݂(߬)݀߬

ଵ

଴
ቇݔ + ସ݂ − ଷ݂ + 2න ଵ݂(߬)݀߬

ଵ

଴

௧

଴

௫

଴
0
0

ଶ݂ +
1
2 ଷ݂ − ସ݂ −න ଵ݂(߬)݀߬

ଵ

଴
− න න න ଵ݂(߬)݀߬

௧

଴

௫

଴

ଵ

଴
ݔ݀ݐ݀

⎠

⎟
⎟
⎟
⎞

, 

where ݔ ∈  [0, 1],݂ =  ( ଵ݂ ଶ݂ ଷ݂ ସ݂)௧ ∈ ,ଶ(0ܮ  1) × ℂଷ.A short calculation shows 

(८∗݃)(ݔ)   =   

⎝

⎜
⎜
⎜
⎜
⎛
න න ଵ݂(߬)݀߬݀ݐ + (1− න(ݔ ݃ଵ(߬)݀߬

ଵ

଴
+න න ݃ଵ(߬)݀߬

௧

଴

ଵ

଴
ݐ݀ −

1
2
݃ସ(1 − (ଶݔ

௧

଴

௫

଴
݃ସ

න ݃ଵ(߬)݀߬ +
1
2
݃ସ

ଵ

଴

න ݃ଵ(߬)݀߬ − ݃ସ
ଵ

଴ ⎠

⎟
⎟
⎟
⎟
⎞

 

for ݔ ∈ [0,1],݃ = (݃ଵ݃ଶ ݃ଷ ݃ସ)௧ ∈ ,ଶ(0ܮ  1) × ℂଷ . As (1)ݎ = 1, the maximal length of a 
Jordan chain of ८∗ corresponding to the eigenvalue 0 is less or equal 2. A basis of Ker (८∗)ଶ is 
given by {߮ଵ଴,߮ଶ଴,߮ଵଵ } where 

߮ଵ଴ = ൮

 0 
1
0
0

൲ , ߮ଶ଴ = ൮

 0 
0
1
0

൲ ,  ߮ଵଵ = ൮

 1 
0
0
1

൲. 

The boundary conditions ܷଵ଴, ܷଶ଴ and ܷଵଵ read in this case 
                           ଵܷ

଴(ݕ) =  〈ॶy,߮ଵ଴ 〉௅మ(଴,ଵ)×ℂయ =  ,(1)ݕ
                           ܷଶ଴(ݕ) = 〈ॶy,߮ଶ଴ 〉௅మ(଴,ଵ)×ℂయ =  ,(1)′′ݕ
                           ଵܷ

ଵ(ݕ) = 〈ॶy,߮ଵଵ 〉௅మ(଴,ଵ)×ℂయ 

                                       = න ݔ݀(ݔ)ᇱᇱᇱݕ + ᇱᇱ(0)ݕ + ᇱ(0)ݕ =
ଵ

଴
ᇱᇱ(1)ݕ +  ,ᇱ(0)ݕ

An equivalent normalized system {࣯ଵ,࣯ଶ,࣯ଷ} of boundary conditions is 
࣯ଵ(ݕ)  = ,(1)ݕ  ࣯ଶ(ݕ)  = ,(1)"ݕ  ࣯ଷ(ݕ)  =  .(݋)′ݕ 

Hence the system {ݕఔ}ఔ∈ℕ is complete in the spaces 



85 
 

    ࣱ࣯,ଶ
଴  =  ,ଶ(0,1)ܮ

    ࣱ࣯,ଶ
ଵ  = ݕ} ∈ ଶܹ

ଵ(0, (1)ݕ  :(1 =  0}. 
    ࣱ࣯,ଶ

ଶ  = ݕ} ∈ ଶܹ
ଶ(0, (1)ݕ :(1 = 0, (0)′ݕ  =  0}. 

    ࣱ࣯,ଶ
ଷ  = ݕ} ∈ ଶܹ

ଷ(0, (1)ݕ :(1 = 0, ᇱ(0)ݕ =  0, ᇱᇱ(1)ݕ = 0}. 
      Although this example is adjoint to an example considered in [147], [148], it could not be 
studied within the theory therein since its boundary conditions depend on ߣ. Of course, it can-
not be viewed within any self-adjoint approach because of the different structure of Example 
(3.1.20) and its adjoint problem. 
Example(3.1.21)[117]: The critical loads for divergence of a clamped-free elastic bar of length 
݈ and constant flexural rigidity ߙ exposed to an end load ܳ are determined by the boundary 
eigenvalue problem 

(ସ)ݕ  =  ,(ଶ)ݕߣ
(0)ݕ =  0 , ᇱ(0)ݕ   =  0 , ᇱᇱ(1)ݕ   =  0 , 1)ߣ– (1)(ଷ)ݕ   − (1)′ݕ(ߛ = 0. 

Here ߣ = − ொ௟మ

ఈ
 , and ߮ߛ௟, ߛ ∈ [0,1], is the angle between the end load ܳ and the ݔ-axis where 

߮௟ denotes the angle between the tangent at the free end of the bar and the ݔ-axis (see Figure 1). 

  
Figure 1 

This system is called Petterson-König′s rod (see [132], [135], [129],[141] and [123]), or, if ܳ is 
tangential, that is, ߛ = 1, Pϐlüger′s rod. The case  ߛ = 0 leads to the well-known Euler-loads. 
The operators ॶ,ℍ ∶ ଶ(0,1)ܮ → ଶ(0,1)ܮ × ℂସ  are given by 
(ॶ)ܦ = ଶܹ

ସ(0,1),   ܦ(ℍ) = ଶܹ
ଶ(0,1)  and 

ॶݕ =

⎝

⎜⎜
⎛

(ସ)ݕ

(0)ݕ
(0)′ݕ
(1)′′ݕ
⎠(1)(ଷ)ݕ

⎟⎟
⎞

, ℍݕ =

⎝

⎜
⎛

(ଶ)ݕ

0
0
0

(1− ⎠ᇱ(1)ݕ(ߛ

⎟
⎞

 

The characteristic determinant is easily seen to be  
(ߩ)∆ = ߛହ(−2݅ߩ  − ݅(1− ௜ఘ݁(ߛ  −  ݅(1 −  (௜ఘି݁(ߛ

where ߣ =  ଶ. Sinceߩ−
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ଵߢ = ଶߢ   ,0  = ଷߢ   ,1 = ସߢ   ,2 = ߢ   ,3 = 6,   
the problem is normal of order 1 and (1)ݎ = 1. The operator ८ = ℍॶିଵis given by 

(८݂)(ݔ)

=

⎝

⎜
⎜
⎜
⎜
⎛
න න ଵ݂(߬)݀߬݀ݐ + ቆ−න ଵ݂(߬)݀߬ + ହ݂

ଵ

଴
ቇ ݔ − න න ଵ݂(߬)݀߬݀ݐ +

௧

଴

ଵ

଴
න ଵ݂(߬)݀߬ + ସ݂ − ହ݂

ଵ

଴

௧

଴

௫

଴
0
0
0

ቆන න න ଵ݂(߬)݀߬
௧

଴

௫

଴

ଵ

଴
ݔ݀ݐ݀ − න න ଵ݂(߬)݀߬݀ݐ −

௧

଴

ଵ

଴

1
2
න ଵ݂(߬)݀߬
ଵ

଴
+ ଷ݂ + ସ݂ −

1
2 ହ݂ቇ (1− (ߛ

⎠

⎟
⎟
⎟
⎟
⎞

 

for ݔ ∈ [0, 1],݂ = ( ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂)௧ ∈ ,ଶ(0ܮ 1) × ℂସ.After some calculation we find 
(८∗݃)(ݔ)  

=  

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
−න න ଵ݂(߬)݀߬݀ݐ +

ଶݔ

2
݃ହ(1 − (ߛ + (1 − න(ݔ ݃ଵ(߬)݀߬

ଵ

଴
+න (1− ߬)݃ଵ(߬)݀߬

ଵ

଴

௧

଴

ଵ

௫
0

݃ହ(1 − (ߛ

න ݃ଵ(߬)݀߬ + ݃ହ(1 − (ߛ
ଵ

଴

−න ݃ହ(1− ߬)݃ଵ(߬)݀߬ −
1
2
݃ହ(1− (ߛ

ଵ

଴ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

For ݔ ∈  [0,1], ݃ = (݃ଵ݃ଶ ݃ଷ ݃ସ݃ହ)௧ ∈ ,ଶ(0ܮ  1) × ℂସ. Again, as (1)ݎ = 1, the maximal length 
of a Jordan chain of ८∗ corresponding to the eigenvalue 0 is less or equal 2. A basis of  
Ker (८∗)ଶ  according to Definition (3.1.4) is given by {߮ଵ଴,߮ଶ଴,߮ଷ଴,߮ଵଵ} where 

߮ଵ଴ =

⎝

⎜
⎛

 0 
1
0
0
0 ⎠

⎟
⎞

, ߮ଶ଴ =

⎝

⎜
⎛

 0 
0
1
0
0 ⎠

⎟
⎞

,߮ଷ଴ =

⎝

⎜
⎛

 0 
0
0
1
0 ⎠

⎟
⎞

,  ߮ଵଵ =

⎝

⎜
⎛

 1−  ߛ
0
0
0
−1 ⎠

⎟
⎞

. 

Thus we obtain the boundary conditions 
 
       ࣯ଵ(ݕ) = ଵܷ

଴(ݕ) =  〈ॶy,߮ଵ଴ 〉௅మ(଴,ଵ)×ℂయ =  ,(0)ݕ
       ࣯ଶ(ݕ) = ܷଶ଴(ݕ) = 〈ॶy,߮ଶ଴ 〉௅మ(଴,ଵ)×ℂయ =  ,(0)′ݕ
       ࣯ଷ(ݕ) = ܷଷ଴(ݕ) = 〈ॶy,߮ଷ଴ 〉௅మ(଴,ଵ)×ℂయ =  ,(1)′′ݕ
       ࣯ସ(ݕ) =  ܷଵଵ(ݕ) = 〈ॶy,߮ଵଵ 〉௅మ(଴,ଵ)×ℂయ 

                    = (1 − න(ߛ ݔ݀(ݔ)(ସ)ݕ − (1)(ଷ)ݕ = (1)(ଷ)ݕߛ−
ଵ

଴
− (1 −  ,(0)(ଷ)ݕ(ߛ

      According to Theorem (3.1.16), the system  {ݕఔ௦} of eigenfunctions and associated functions 
of the boundary eigenvalue problem for the critical divergence loads of the Petterson-König′s 
rod is complete in the spaces 
    ࣱ࣯,ଶ

଴  =  ,ଶ(0,1)ܮ
    ࣱ࣯,ଶ

ଵ  = ݕ} ∈ ଶܹ
ଵ(0, (0)ݕ :(1 = 0}, 

    ࣱ࣯,ଶ
ଶ  = ݕ} ∈ ଶܹ

ଶ(0, (0)ݕ :(1 = ᇱ(0)ݕ,0 =  0}, 
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    ࣱ࣯,ଶ
ଷ  = ݕ} ∈ ଶܹ

ଷ(0, (0)ݕ :(1 = ᇱ(0)ݕ,0 =  0, ᇱᇱ(1)ݕ = 0}. 
    ࣱ࣯,ଶ

ସ  = ݕ} ∈ ଶܹ
ସ(0, (0)ݕ :(1 = ᇱ(0)ݕ,0 = 0, ᇱᇱ(1)ݕ = (1)(ଷ)ݕߛ,0 + (1− (0)(ଷ)ݕ(ߛ = 0}. 

Since the eigenvalues and eigenfunctions of Example (3.1.21) can be computed exactly, it 
would be interesting to see if the convergence of Ritz-Galerkin methods, which are used for 
these problems (see[135],[129]), is improved by choosing starting functions in the space ࣱ࣯,ଶ

ସ , 
which satisfy the additional boundary condition  ݕߛ(ଷ)(1) + (1 − (0)(ଷ)ݕ(ߛ = 0. 
Sec(3.2): Some Non-Selfadjont Block Operator Matrices 
      In the reference [160] selfadjoint operators ܣሚ in a Hilbert space  ℋ෩ = ℋ × ℋ෡        , given by a 
block operator matrix 

ሚܣ = ቀ ܣ ܤ
∗ܤ ቁܦ ,                                                                      (29) 

Were considered under the assumption that the spectra of ܣ and ܦ are separated and  ܦ,ܤ, are 
bounded  operators. In [161] and in [164] these investigations were extended  to the case that 
all entries  are unbounded. 
     In this section the results of [161] are generalized to a non-selfadjoint situation. We consider 
an operator ܣሚ given by a block operator matrix (29) such that ܣ and –ܦ are ݉-sectorial (see 
[162]) and their numerical ranges have a positive distance from the imaginary axis, and ܤ is 
bounded.  We show that the imaginary axis belongs to the resolvent set ߩ(ܣሚ).  If the spaces 
ℋ, ℋ෡   are not trivial, then the spectrum ߪ(ܣሚ) consists of some part ିߪ(ܣሚ) in the left half plane 
and another part ߪା(ܣሚ) in the right half plane (if ܣ or ܦ are unbounded, then ߪା(ܣሚ) or ିߪ(ܣሚ) 
may be empty, which implies that ∞ belongs to the extended spectrum of ܣሚ). 
     It is shown below that, if the operator ܦ is bounded, then the spectral subspaces ℒା and ℒି 
corresponding to ߪା(ܣሚ) and ିߪ(ܣሚ) are supported on ℋ and  ℋ෡ ,  respectively; that is, e.g.,  ℒା 
admits a representation 

ℒା =   ൜൬
ݔ
ݔାܭ

൰  ∶ ∋ ݔ   ℋൠ 

with some bounded linear operator ܭା from ℋ into ℋ෡ . The invariance of ℒା and ℒି under ܣሚ 
implies that ܭା and the corresponding operator ିܭ for ℒି satisfy certain Riccati  equations. 
     As in [160],  this result is used in order to show a half range completeness statement : If 
 is discrete, under certain assumptions, the first components of a system of root vectors (ሚܣ)ାߪ
of ܣሚ corresponding to ߪା(ܣሚ) (“ half ”of the spectrum of ܣሚ) form a complete system in ℋ. An 
example of an eigenvalues  problem of Sturm-Liouville type where this  result can be applied is 
given at the end of this section. 
     In order to locate the spectrum ߪ(ܣሚ) of the block operator matrix ܣሚ, we introduce the notion 
of the quadratic numerical range of a general block operator matrix 

ሚܣ  = ቀܣ ܤ
ܥ  ,  ቁܦ

with closed operators ܦ,ܣ and bounded operators ܥ,ܤ . This quadratic numerical range is the 
set of all eigenvalues of the matrices 

⎝

⎜
⎛

(ݔ,ݔܣ)
ଶ‖ݔ‖

,ොݔܤ) (ݔ
‖ݔ‖‖ොݔ‖

(ොݔ,ݔܥ)
‖ොݔ‖‖ݔ‖

,ොݔܦ) (ොݔ
ො‖ଶݔ‖ ⎠

⎟
⎞

, 
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where  ݔ ∈ ,(ܣ)ࣞ  ොݔ  ∈ ,(ܦ)ࣞ  ,ݔ ොݔ  ≠  0. It has some properties analogous to those of the 
numerical range. We mention that the quadratic numerical range of a block operator matrix ܣሚ 
turns out to be especially useful in the particular case of a selfadjoint operator ܣሚ. This question 
will be considered elsewhere. 
Let ℋ and ℋ෡  be Hilbert spaces. We consider an operator ܣሚ in the Hilbert space  ℋ෩ = ℋ ×  ℋ෡   
given by a block operator matrix 

ሚܣ  = ቀܣ ܤ
ܥ  ቁ ,                                                              (30)ܦ

where ܣ and ܦ are densely defined closed operators in ℋ and ℋ෡ , respectively, and the opera-
tors ܤ ∈ ℋ෡)ܮ ,ℋ), ܥ ∈ ℋ,ℋ෡)ܮ )  are bounded. 
       For the operator ܣሚ we call the set 

                      ஺ܹ෨
ଶ ∶=

⎩
⎪
⎨

⎪
⎧

ߣ ∈ ℂ ∶ det 

⎝

⎜
⎛

,ݔܣ) (ݔ
ଶ‖ݔ‖

− ߣ
(ݔ,ොݔܤ)
‖ݔ‖‖ොݔ‖

,ݔܥ) (ොݔ
‖ොݔ‖‖ݔ‖

(ොݔ,ොݔܦ)
ො‖ଶݔ‖

− ߣ
⎠

⎟
⎞

= 0,  

ݔ ∈ ොݔ   ,(ܣ)ࣞ ∈ ,ݔ   ,(ܦ)ࣞ ොݔ  ≠  0}     (31) 
the quadratic numerical range (with respect to the block operator representation (30)). 
Thus, for each element  ݔ෤ = ,ݔ) ො)௧ݔ ∈ ℋ෩  such that ݔ ∈ ොݔ,(ܣ)ࣞ ∈ ,ݔ,(ܦ)ࣞ ොݔ ≠ 0, two complex 
numbers  ߣଵ ,  ଶ  are defined as the solutions  of the quadratic equation in (31), which are theߣ
eigenvalues of the matrix 

⎝

⎜
⎛

,ݔܣ) (ݔ
ଶ‖ݔ‖

(ݔ,ොݔܤ)
‖ݔ‖‖ොݔ‖

(ොݔ,ݔܥ)
‖ොݔ‖‖ݔ‖

,ොݔܦ) (ොݔ
ො‖ଶݔ‖ ⎠

⎟
⎞

, 

and ஺ܹ෨
ଶ  is the set of all these solutions  or of all these eigenvalues. 

      It is easy to see that , for a bounded operator ܣሚ  , the quadratic numerical range is a bounded 
subset of ℂ. It is also not difficult to see that the quadratic numerical range  consists of at most 
two connected sets. If ܤ = 0 or ܥ = 0, then ஺ܹ෨

ଶ = ஺ܹ ∪ ஽ܹ, where for a closed operator ܶ in 
a Hilbert space, ்ܹ  denotes its numerical range,  

  ்ܹ  ∶= ቊ
(ݔ,ݔ ܶ)
ଶ‖ݔ‖

: ∋ ݔ  ࣞ(ܶ ), ≠ ݔ  0  ቋ   . 

       Let ݎ(ܣሚ) be the set of points of regular  type of ܣሚ, that is, ߣ ∈  is equivalent to (ሚܣ)ݎ
ฮ(ܣሚ − ෤ฮݔ(ߣ  ≥ ෤ݔ    ,‖෤ݔ‖ ఒߛ   ∈  ,(ሚܣ)ࣞ

for some ߛఒ  >  0. 
Theorem(3.2.1)[159]: For the quadratic numerical range ஺ܹ෨

ଶ the following inclusions hold: 
(ሚܣ) ௣ߪ   ⊂ ஺ܹ෨

ଶ ,    ℂ \ ݎ(ܣሚ)  ⊂  ஺ܹ෨
ଶ . 

Proof. Let ߣ ∈ ௧(ොݔ,ݔ) Then there exists a nontrivial vector .(ሚܣ) ௣ߪ ∈ ℋ෩ , ݔ ∈ ොݔ,(ܣ)ࣞ ∈  ,(ܦ)ࣞ
such that 

ܣ)  − + ݔ(ߣ ෝ ݔܤ  =  0,  
ݔܥ + ܦ) − ොݔ(ߣ   =  0.                                                         (32) 
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Suppose first that ݔ,ݔො ≠ 0. Taking the inner product of the first (second, respectively) equation 
in (32) with ݔ (ݔො, respectively), we find that the system 

൬
,ݔܣ) (ݔ − ଶ‖ݔ‖ߣ (ݔ,ොݔܤ)

(ොݔ,ݔܥ) ,ොݔܦ) (ොݔ − ො‖ଶݔ‖ߣ
൰ ൬
ଵߦ
ଶߦ
൰ = 0 

has the solution ߦଵ = 1, ଶߦ = 1, hence 

det ൬
,ݔܣ) (ݔ − ଶ‖ݔ‖ߣ (ݔ,ොݔܤ)

,ݔܥ) (ොݔ (ොݔ,ොݔܦ) − ො‖ଶݔ‖ߣ
൰ = 0. 

But this equation is equivalent to the equation in the definition  (31) of ஺ܹ෨
ଶ, and hence ߣ ∈ ஺ܹ෨

ଶ 
. Now let ݔො = 0. Then (ܣ − ݔ(ߣ = ݔܥ,0 = 0, and hence 

det

⎝

⎜
⎛

(ݔ,ݔܣ)
ଶ‖ݔ‖

− ߣ
,ොᇱݔܤ) (ݔ
‖ݔ‖‖ොᇱݔ‖

(ොᇱݔ,ݔܥ)
‖ොᇱݔ‖‖ݔ‖

,ොᇱݔܦ) (ොᇱݔ
ොᇱ‖ଶݔ‖

− ߣ
⎠

⎟
⎞

= det

⎝

⎜
⎛0

(ݔ,ොᇱݔܤ)
‖ݔ‖‖ොᇱݔ‖

0
,ොᇱݔܦ) (ොᇱݔ
ොᇱ‖ଶݔ‖

− ߣ
⎠

⎟
⎞

= 0 

for all ݔොᇱ ∈ ොᇱݔ,(ܦ)ࣞ ≠  0, which implies ߣ ∈ ஺ܹ෨
ଶ . The case ݔ = 0 is analogous. 

     More generally, if ߣ଴  ∉ ଵஶ(  ෤௡ݔ)then there exists a sequence ,(ሚܣ)ݎ   ⊂  ℋ෩ , ෤௡ݔ = ,௡ݔ)    ,ො௡)௧ݔ
௡ݔ ∈ ,(ܣ)ࣞ ො௡ݔ ∈ ,(ܦ)ࣞ ‖෤௡ݔ‖ = 1, such that ฮ(ܣሚ − ෤௡ฮݔ( ଴ߣ → 0 for ݊ → ∞, that is, 

௡ݔ( ଴ߣ – ܣ)  + ො௡ݔܤ   =  ௡݂ ,  
௡ݔ ܥ + ܦ) − ො௡ݔ( ଴ߣ   =  ݂ ෡௡, 

where  ( ௡݂ )ଵஶ  ⊂  ℋ, ( መ݂௡ )ଵஶ  ⊂  ℋ෡ , ‖ ௡݂‖ → 0, ฮ መ݂௡ฮ →  0 for ݊ → ∞. 
Suppose first that lim௡→ஶ inf ‖ݔ௡‖ > 0,  lim௡→ஶ inf ‖ݔො௡‖ > 0. Without loss of generality we 
can assume ‖ݔ௡‖ >  0, ‖ො௡ݔ‖ > 0 for ݊ = 1, 2, . . . . Then 

(௡ݔ,௡ݔܣ)
௡‖ଶݔ‖

− ଴ߣ +
(௡ݔ,ො௡ݔܤ)
௡‖ଶݔ‖

 =  
( ௡݂,ݔ௡)
௡‖ଶݔ‖

, 

(ො௡ݔ,௡ݔܥ)
ො௡‖ଶݔ‖

+
(ො௡ݔ,ො௡ݔܦ)
ො௡‖ଶݔ‖

− ଴ߣ  =  
൫ መ݂௡ ො௡൯ݔ,
ො௡‖ଶݔ‖

, 

We introduce the polynomials 

݀௡(ߣ)  ∶=  det

⎝

⎜
⎛

(௡ݔ,௡ݔܣ)
௡‖ଶݔ‖

−  ߣ
(௡ݔ,ො௡ݔܤ)
௡‖ଶݔ‖

(ො௡ݔ,௡ݔܥ)
ො௡‖ଶݔ‖

,ො௡ݔܦ) (ො௡ݔ
ො௡‖ଶݔ‖

−  ߣ
⎠

⎟
⎞

 

               =  det

⎝

⎜
⎛

,௡ݔܣ) (௡ݔ
௡‖ଶݔ‖

−  ߣ
,ො௡ݔܤ) (௡ݔ
 ‖௡ݔ‖‖ො௡ݔ‖

(ො௡ݔ,௡ݔܥ)
 ‖ො௡ݔ‖‖௡ݔ‖

(ො௡ݔ,ො௡ݔܦ)
ො௡‖ଶݔ‖

−  ߣ
⎠

⎟
⎞

. 

Then  ௡݂ , መ݂௡ →  0 for ݊ → ∞ implies 

݀௡(ߣ଴)  ∶=  det

⎝

⎜
⎛

( ௡݂,ݔ௡)
௡‖ଶݔ‖

ො௡ݔܤ) (௡ݔ,
௡‖ଶݔ‖

൫ መ݂௡,ݔො௡൯
ො௡‖ଶݔ‖

(ො௡ݔ,ො௡ݔܦ)
ො௡‖ଶݔ‖

− ଴ߣ  ⎠

⎟
⎞
→  0,݊ → ∞. 
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For each ݊, ݀௡ is a monic quadratic polynomial in ߣ. If  ߣ௡ଵ  , ௡ߣ
ଶ  are the zeros of ݀௡, then ߣ௡ଵ  , 

௡ଶߣ ∈ ஺ܹ෨
ଶ and ݀௡(ߣ) = ߣ) − ௡ଵߣ ߣ)( − ௡ଶߣ ). As ݀௡ (ߣ଴) → 0 for ݊ → ∞, we have ߣ௡ଵ →  ଴ orߣ

௡ଶߣ  → ݊ ଴ forߣ → ∞ and thus ߣ଴ ∈ ஺ܹ෨
ଶ . 

       Let lim௡→ஶ inf ‖ො௡ݔ‖  = 0, without loss of generality ݔො௡ ⟶ 0 for ݊ → ‖௡ݔ‖ ,∞ > 0 for 
݊ = 1, 2, . .. . If we define ߣ௡ ∶=  (஺௫೙  ,௫೙)

‖௫೙‖మ
  and choose ݔොᇱ௡ ∈ ℋ෡ , ොᇱ௡ݔ ≠  0, such that (ݔ ܥ௡ ,

( ොᇱ௡ݔ =  0 for ݊ = 1, 2, . .. , then  

det

⎝

⎜
⎛

,௡ݔܣ) (௡ݔ
௡‖ଶݔ‖

− ௡ߣ
ො௡ᇱݔܤ) (௡ݔ,
ො௡ᇱݔ‖ ‖௡ݔ‖‖

ො௡ᇱݔ,௡ݔܥ) )
ො௡ᇱݔ‖‖௡ݔ‖ ‖

ො௡ᇱݔܦ) , ො௡ᇱݔ )
ො௡ᇱݔ‖ ‖ଶ

− ௡ߣ
⎠

⎟
⎞

 =  det

⎝

⎜
⎛0

ො௡ᇱݔܤ) , (௡ݔ
ො௡ᇱݔ‖ ‖௡ݔ‖‖

0
ො௡ᇱݔܦ) ො௡ᇱݔ, )
ො௡ᇱݔ‖ ‖ଶ

− ௡ߣ
⎠

⎟
⎞

= 0, 

that is, ߣ௡ ∈ ஺ܹ෨
ଶ . As ݔො௡ → 0 and ௡݂ → 0 for ݊ → ∞, the relation 

ܣ))  − ௡ݔ, ௡ݔ( ଴ߣ  ) − ௡ݔ, ො௡ݔܤ)  )  =  ( ௡݂ ,ݔ௡ ) 
implies ߣ௡ → ‖௡ݔ‖ ଴ .The case lim௡→ஶ infߣ = 0 is analogous. This proves the theorem. 
       Later we will need the following well-known result connected with the numerical range of 
a closed operator. Here we assume that arg ݖ ∈ ݖ  for complex numbers [ߨ,ߨ−) ∈ ℂ. 
Lemma(3.2.2)[159]: Let ܶ be a closed operator in a Hilbert space. Assume that its numerical 
range ்ܹ is contained in a sector ∆் = ݖ} ∈ ℂ ∶ | arg ݖ | ≤ 0 , ்ߠ for some {்ߠ < ்ߠ <  గ

ଶ
 . 

Then there exists a constant ܥ > 0 such that 

‖(ܶ − ‖ଵି(ݖ ≤   
ܥ

|ݖ|
 ,    ℜ(ݖ)  ≤ ≠ ݖ   ,0   0. 

Proof. Let ݖ ∈  ℂ with  ℜ(ݖ)  ≤  0, ≠ ݖ  0. If  గ
ଶ

 ≤  arg ݖ ≤  గ
ଶ

 +  then ,ߠ

‖(ܶ − ‖ଵି(ݖ ≤
1

dist(ݖ, ்ܹ )
≤

1

cos |ݖ| ቀ 2ߨ ்ߠ +  − arg ݖ ቁ
≤

1
|ݖ| cos்ߠ

. 

The case −  గ
ଶ
− ்ߠ ≤  arg ݖ ≤ −  గ

ଶ
  is analogous.  If | arg ݖ|  ≥  గ

ଶ
 +  then ,்ߠ

‖(ܶ − ‖ଵି(ݖ ≤
1

dist(ݖ, ்ܹ )
≤

1
|ݖ|

. 

In the sequel we consider a block operator matrix (30) of the particular form 
ሚܣ = ቀ ܣ ܤ

∗ܤ ቁܦ ,                                                                    (33) 
that is, we assume ܥ =  :Additionally to the pervious assumptions , we suppose .∗ܤ
    (I) The operator ܣ is boundedly invertible and its numerical range ஺ܹ is contained  in the set 

∋ ݖ} ℂ ∶  | arg ݖ|  ≤ (ݖ)஺ ,   ℜߠ   ≥  {ߙ 
for some ߠ஺ , 0 < ஺ߠ   <  గ

ଶ
 , and ߙ > 0. 

   (II) The operator ܦ is boundedly invertible and its numerical range ஽ܹ is contained in the set 
∋ ݖ}  ℂ ∶  |arg ݖ|  ≥ – ߨ  (ݖ)஽ ,   ℜߠ  ≤  {ߜ− 

for some ߠ஽ , 0 < ஽ߠ  <  గ
ଶ
 , and ߜ > 0. 

       This means that the operators ܣ and –ܦ are ݉-sectorial (see[162]) and that their numerical 
ranges have a positive distance from the imaginary axis. We mention that the role of the 
imaginary axis can be taken over by any other vertical line in the complex plane. 



91 
 

Lemma(3.2.3)[159]: Let ܽ, ܾ, ܿ and ݀ be complex numbers such that ℜ(ܽ) > 0,ℜ(݀) < 0 and 
ܾܿ ≥ 0. Then the matrix  

ࣛ = ቀܽ ܾ
ܿ ݀ቁ, 

has eigenvalues ߣଵ ,  :ଶ such thatߣ
       (i) ℜ(ߣଵ) ≥ ℜ(ܽ), ℜ(ߣଶ ) ≤ ℜ(݀); 
      (ii) min{ℑ(ܽ),ℑ(݀)} ≤  ℑ(ߣଵ ),ℑ(ߣଶ ) ≤  max{ℑ(ܽ),ℑ(݀)}; 
     (iii) ߣଵ ,−ߣଶ  ∈ ݖ}  ∈ ℂ ∶  |arg ݖ| ≤ max{|arg ܽ|, ߨ − |arg ݀|}. 
Proof. We can suppose that ℑ(ܽ) ≥ 0 (otherwise we consider the matrix ࣛ∗)  and that 

arg ܽ ≥ ߨ − |arg ݀|                                                                   (34)                                               
(otherwise in the following considerations we start from ݀ instead of ܽ). The assumption (34) 
implies 

ฬ
ℑ(ܽ − ݀)
ℜ(ܽ − ݀)

ฬ  ≤  tan(argܽ).                                                    (35) 

The eigenvalues ߣଵ ,  ଶ satisfy the equationߣ
(ܽ − ݀)(ߣ − (ߣ − = ݐ ݐ    ,0  = ܾܿ ≥ 0. 

We consider them as functions  of ݐ: 

(ݐ) ଵ,ଶߣ =
ܽ + ݀

2
± ቆ

(ܽ − ݀)ଶ

4
+ ቇݐ

ଵ
ଶ
. 

If we decompose ߣଵ,ଶ (ݐ) and  ௔ାௗ
ଶ

  in real and imaginary parts, ߣଵ,ଶ(ݐ) =   and  (ݐ)ݕi+  (ݐ)ݔ
௔ାௗ
ଶ

= ߚ +  then we find ,ߛ݅

−(ݐ)ݔ) ଶ(ߚ  − (ݐ)ݕ)  − ଶ(ߛ  =  
1
4
ℜ(ܽ − ݀)ଶ  +  (36)                            ,ݐ

(ݐ)ݔ) − (ݐ)ݕ)(ߚ − (ߛ =  
1
8

 ℑ(ܽ − ݀)ଶ  .                                              (37) 
The last relation shows that the eigenvalues ߣଵ(ݐ), ߚ  lie on a hyperbola with centre (ݐ)ଶߣ + iߛ 
=  ௔ାௗ

ଶ
 ,  and with the asymptotes  ℑ(ݖ)  = (ݖ)and ℜ ߛ   =  parallel to the real and imaginary ߚ 

axis, the right hand branch passing through ܽ and the left hand branch through ݀. From the 
identity (36) it follows that for 0 ≤ ݐ ≤ ∞ the eigenvalues ߣଵ(ݐ) fill the part of the right hand 
branch which extends from ܽ to +∞ +  iߛ, and the eigenvalues ߣଶ(ݐ) fill the part of the left 
hand branch from ݀ to −∞ +  iߛ. This implies (i) and (ii). In order to prove (iii), it is sufficient 
to show that the derivatives of the hyperbola at ݀ and at ܽ are in modulus less than tan(arg ܽ). 
E.g. for the derivative at ݀ it follows from (100) 

(0)ݕ̇
(0)ݔ̇ = −

−(0)ݕ ߛ
(0)ݔ − ߚ = −

ℑ(݀)− 1
2ℑ(ܽ + ݀)

ℜ(݀)− 1
2ℜ(ܽ + ݀)

= −
ℑ(݀ − ܽ)
ℜ(݀ − ܽ), 

which is in modulus less than tan(arg ܽ) by (35). The lemma is proved. 
Theorem(3.2.4)[159]: Suppose the assumptions (I)  and (II) are satisfied and define 

∆∶= ݖ}  ∈  ℂ ∶ | arg ݖ| ≤ max{ߠ஺ ,ߠ஽ }}. 
Then 

(ሚܣ)ߪ ⊂ ݖ} ∈ (−∆) ∶  ℜ(ݖ) ≤ {ߜ−  ∪ ∋ ݖ}  ∆∶  ℜ(ݖ) ≥ {ߙ  = : ∆෨  . 
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Proof. First we show that ஺ܹ෨
ଶ  ⊂  ∆෨  . To this end consider for ݔ ∈ ,(ܣ)ࣞ  ොݔ ∈ ,ݔ  ,(ܦ)ࣞ ොݔ ≠ 0, 

the matrix 

⎝

⎜
⎛

,ݔܣ) (ݔ
ଶ‖ݔ‖

(ݔ,ොݔܤ)
‖ݔ‖‖ොݔ‖

,ݔ∗ܤ) (ොݔ
‖ොݔ‖‖ݔ‖

(ොݔ,ොݔܦ)
ො‖ଶݔ‖ ⎠

⎟
⎞

. 

According to the assumptions (I) and (II), it has all the properties of the matrix ࣛ in Lemma 
(3.2.3). Hence its eigenvalues are in ∆෨  which implies ஺ܹ෨

ଶ  ⊂  ∆෨  and hence ஺ܹ෨
ଶ  ⊂ ∆෨  . According 

to Theorem (3.2.1) we have ℂ\ݎ൫ܣሚ൯  ⊂ ஺ܹ෨
ଶ and consequently ℂ\∆෨   ⊂  ,On the other hand .(ሚܣ)ݎ

ℂ\∆෨  consists of only one component, hence the theorem will be proved if  we show that at least 
one point  ߣ଴ of this component belongs to ߩ(ܣሚ). To this end we choose ߣ଴ on the imaginary 
axis sufficiently large in modulus. According to Lemma (3.2.2) we can choose ߣ଴ such that  

ቛܤ൫ߣ –ܦ଴൯
ିଵ

଴൯ߣ– ܣ൫∗ܤ 
ିଵ
ቛ <  1. 

Then ߣ଴ ∈  as  (ሚܣ)ߩ
ܣ) − ଴ߣ − ܦ)ܤ − ଵି(∗ܤ଴)ିଵߣ = ܣ) − ܫ) ଴)ିଵߣ − –ܦ)ܤ ܣ)∗ܤ ଴)ିଵߣ −  ଴)ିଵ )ିଵߣ

exists and is a bounded everywhere defined operator. The theorem is proved. 
   In the sequel we consider a block operator matrix ܣሚ as in (33) which satisfies the assumptions 
(I), (II) and for which ܦ is bounded. Note that in this case the assumption (II) is fulfilled if 
there exists a ߜ >  0 such that 

ℜ(ܦ) ≤  .ߜ− 
       From Theorem (3.2.4) it follows that ߪ(ܣሚ) splits into the two disjoint subsets 

ሚ൯ܣ൫ିߪ           ≔ ሚ൯ܣ൫ߪ ∩ ݖ} ∈ (−∆) ∶  ℜ(ݖ) ≤   ,{ ߜ−
(ሚܣ)ାߪ ∶= (ሚܣ)ߪ  ∩ ݖ} ∈ ∆ ∶ ℜ(ݖ)  ≥  .{ߙ 

Here, as ܣ and hence also ܣሚ can be unbounded, ߪା(ܣሚ) can be empty. Since ܦ is a bounded 
operator, ିߪ(ܣሚ) is bounded. Let 

ܲି (ሚܣ) ∶=  −  
1

݅ߨ2
 න൫ܣሚ − ൯ିଵݖ

 

௰ష

 ݖ݀   

be the corresponding Riesz projection. Here ି߁  is a positively oriented Jordan contour in 
ݖ} ∈ ℂ ∶ ℜ(ݖ) < 0} surrounding ିߪ൫ܣሚ൯. If we define the projection 

 ାܲ(ܣሚ)  ∶= ܫ  − ܲି  ,(ሚܣ)
then we have a decomposition  ℋ෩  =  ℒି+̇ ℒା into the spectral subspaces 

ℒି  ∶=  ܲି ℋ෩(ሚܣ) ,       ℒା ∶=  ାܲ(ܣሚ)ℋ෩ , 
and 

(ሚ|ℒିܣ)ߪ  = ( ሚ|ℒାܣ)ߪ     ,(ሚܣ)ିߪ   =  .(ሚܣ)ାߪ 
Here ܣሚ|ℒା is, in fact, the restriction of  ܣሚ to ࣞ(ܣሚ)∩ ℒା and has its values in ℒା. If  ℋ ≠  {0}, 
then ℒା ≠  {0}, even if ߪା(ܣሚ)  = ∅. 
Lemma(3.2.5)[159]: We have 

−  
1

݅ߨ2
 න ൫ܣሚ − ൯ିଵݖ

௜ஶ

ି௜ஶ

ݖ݀   =
1
2
൫ܲି ൫ܣሚ൯ − ାܲ(ܣሚ)൯. 
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Proof. Let ݎ଴ > 0 be such that ିߪ(ܣሚ) ⊂ ݖ} ∈ ℂ ∶ ℜ(ݖ) < 0, |ݖ| <  ଴}. Then we haveݎ

−
1

݅ߨ2
 න൫ܣሚ − ൯ିଵݖ

௜௥

ି௜௥

ݖ݀  = ܲି ൫ܣሚ൯+
1

݅ߨ2
 න ൫ܣሚ − ௜௧൯ିଵ݁ݎ

ଷగ
ଶ

గ
ଶ

௜௧݁ݎ݅ ,ݐ݀  ݎ ≥  .଴ݎ

The lemma is proved if we show that 

1
݅ߨ2

 න ൫ܣሚ − ݁ݎ ௜௧൯ିଵ

ଷగ
ଶ

గ
ଶ

݁ݎ݅ ௜௧ ݐ݀  ⟶ −
1
2
,ܫ ݎ ⟶ ∞,                         (38) 

strongly in ℋ෩  as ܫ =  ܲି ൫ܣሚ൯ + ାܲ(ܣሚ). From 

ሚܣ   − = ݖ  ቀܫ ܦ)ܤ − ଵି(ݖ
0 ܫ

ቁ ቀܣ − ݖ − ܦ)ܤ − ∗ܤଵି(ݖ 0
0 ܦ − ݖ

ቁ ൬ ܫ 0
ܦ) − ∗ܤଵି(ݖ ൰ܫ ,      (39) 

it follows 

൫ܣሚ − ൯ିଵݖ  =  ൬ (ݖ)ܯ ܦ)ܤ(ݖ)ܯ− − ଵି(ݖ

ܦ)− − (ݖ)ܯ∗ܤଵି(ݖ ܦ)  − ଵି(ݖ + ܦ) − ܦ)ܤ(ݖ)ܯ∗ܤଵି(ݖ −  ଵ൰     (40)ି(ݖ

for ݖ ∈  where (ሚܣ)ߩ
(ݖ) ܯ ∶= ܣ)  − − ݖ ܦ)ܤ  −  . ଵି(∗ܤ ଵି(ݖ

For the proof of (38) we first consider the left upper corner of the matrix ൫ܣሚ − ݁ݎ ௜௧൯ିଵ ݁ݎ௜௧ +  ܫ
and show that 

 ฮ (ܯ(݁ݎ௜௧ )݁ݎ௜௧  + ฮ ݔ (ܫ → → ݎ    ,0  ∞,                                              (41) 
uniformly in ݐ ∈  ቄగ

ଶ
 , ଷగ

ଶ
ቅ   for ݔ ∈ ℋ. Using Lemma (3.2.2) and 

ܦ)‖ − ‖ଵି(ݖ ≤
2

|ݖ| |ݖ|         , >  (42)                                                     ,‖ܦ‖2

we find 
௜௧݁ݎ( ௜௧݁ݎ)ܯ     + =  ܫ ܣ) − ௜௧݁ݎ − ܦ)ܤ − ݁ݎ ௜௧  )ିଵ ܤ∗)ିଵ݁ݎ௜௧ +   ܫ
                                     = ܫ) − ܣ) − ܦ)ܤ௜௧ )ିଵ݁ݎ − ܣ)ଵି(∗ܤ௜௧)ିଵ݁ݎ − ௜௧݁ݎ௜௧ )ିଵ݁ݎ +  ܫ

                                     = ܣ)  − ௜௧݁ݎ ௜௧ )ିଵ݁ݎ  + ܫ + ܱ ൬
1
ݎ
൰ . 

uniformly in ݐ ∈ ቄగ
ଶ

 , ଷగ
ଶ
ቅ . Hence there exists a ܥሚ >  0 such that 

           ฮ(ܯ(݁ݎ௜௧ )݁ݎ ௜௧ + ฮݔ(ܫ  ≤  ฮ((ܣ – ݁ݎ௜௧)ିଵ݁ݎ ௜௧ + ฮݔ(ܫ +
ሚܥ

ݎ
 ‖ݔ‖

                                 = ฮ(ܣ− ௜௧݁ݎ  )ିଵݔܣฮ +
ሚܥ

ݎ
‖ݔ‖  ≤   

ܥ
ݎ
‖ݔܣ‖ +

ሚܥ

ݎ
 ‖ݔ‖

uniformly in ݐ ∈ ቄగ
ଶ

, ଷగ
ଶ
ቅ by Lemma(3.2.2) which proves (41).From (41) it follows 

  ฮ݁ݎ)ܯ௜௧ ݁ݎ(  ௜௧ ฮݔ   ≤  (43)                                                                   .ܭ 
with some constant ܭ > 0 uniformly in ݐ ∈ ቄగ

ଶ
 , ଷగ

ଶ
ቅ for ݔ ∈ ℋ. For the off-diagonal elements 

of ൫ܣሚ – ௜௧൯݁ݎ
ିଵ
௜௧݁ݎ +  we have ܫ

ฮܯ(݁ݎ௜௧ )ܦ)ܤ − ݁ݎ௜௧ )ିଵ݁ݎ ௜௧ݔොฮ
≤ ฮ(ܯ(݁ݎ௜௧ )݁ݎ ௜௧ + ܦ)ܤ(ܫ − +ොฮݔ௜௧ )ିଵ݁ݎ ฮܦ)ܤ − ොฮݔ௜௧ )ିଵ݁ݎ ⟶ 0, ݎ ⟶ ∞ 
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uniformly in ݐ ∈ ቄగ
ଶ

 , ଷగ
ଶ
ቅ   for ݔො ∈ ℋ෡  by (41) and (42). Furthermore, 

ฮ(ܦ − ௜௧݁ݎ)ܯ∗ܤ ௜௧ )ିଵ݁ݎ ௜௧݁ݎ (  ฮݔ  → → ݎ    ,0   ∞, 
uniformly in ݐ ∈  ቄగ

ଶ
 , ଷగ

ଶ
ቅ for ݔ ∈ ℋ by (42) and (43). For the  right lower corner of  

൫ܣሚ − ௜௧݁ݎ ௜௧ ൯ିଵ݁ݎ +  we have ܫ

              ฮ((ܦ − ௜௧݁ݎ௜௧ )ିଵ݁ݎ + ܦ) − ܦ)ܤ( ௜௧݁ݎ)ܯ∗ܤ ௜௧ )ିଵ݁ݎ − ݁ݎ௜௧ )ିଵ݁ݎ ௜௧ +  ,ොฮݔ(ܫ

                               ≤  
1
ݎ

+‖ොݔ‖‖ܦ‖2
1
ݎ
௜௧݁ݎ)ܯฮ‖∗ܤ‖ ܦ)ܤ௜௧݁ݎ(  − ௜௧݁ݎ  )ିଵݔොฮ → 0, ݎ → ∞, 

uniformly in ݐ ∈  ቄగ
ଶ

, ଷగ
ଶ
ቅ for ݔො ∈  ℋ෡ . Summarizing, we obtain that all the components in the 

matrix representation of ൫ܣሚ − ௜௧݁ݎ௜௧ ൯ିଵ݁ݎ + ݐ tend strongly to 0 uniformly for ܫ ∈ ቄగ
ଶ

, ଷగ
ଶ
ቅ and 

hence 

⎝

⎜
⎛ 1

݅ߨ2
 න ൫ܣሚ − ௜௧൯ିଵ݁ݎ

ଷగ
ଶ

గ
ଶ

ݐ௜௧݀݁ݎ݅ +
1
2
ܫ

⎠

⎟
⎞
෤ݔ  =  

1
ߨ2

 න ቀ൫ܣሚ − ݁ݎ௜௧൯ିଵ݁ݎ ௜௧ݔ෤ + ෤ቁݔ

ଷగ
ଶ

గ
ଶ

݀ ⟶ 0, 

ݎ →  ∞, for ݔ෤ ∈ ℋ෩ .The lemma is proved. 
       As ܣሚ is not supposed to be selfadjoint, the spectral subspaces ℒି and ℒା need not be 
orthogonal. However, the block operator matrix  ܣሚ∗ adjoint to ܣሚ given by 

∗ሚܣ = ቀܣ
∗ ܤ

∗ܤ  ቁ∗ܦ
fulfills the assumptions of the present part as well. Hence ܲି  are defined, and (∗ሚܣ) and ାܲ (∗ሚܣ)
 ሚ∗  has the spectral subspacesܣ

ℒି∗ ∶= ܲି (∗ሚܣ) ℋ෩ , ℒା∗ ∶= ାܲ(ܣሚ∗)ℋ෩ . 
Lemma(3.2.6)[159]:  ℒିୄ  =  ℒା∗  , ℒାୄ  =  ℒି∗  . 
Proof. We have 

        ℒିୄ = ܴ ቀܲି ൫ܣሚ൯ቁ
ୄ

= ker൫ܲି ൫ܣሚ൯∗൯ = ker ቀܲି ൫ܣሚ∗൯ቁ 
 = ker൫ܫ − ାܲ(ܣሚ∗)൯ = ܴ൫ ାܲ(ܣሚ∗)൯ = ℒା∗  

as ିߪ(ܣሚ∗) = ିܲ and hence (ሚܣ)ିߪ ൫ܣሚ൯∗ = ܲି  The proof of the second statement.(see [162]) (∗ሚܣ)
is similar. 
     Now we are ready to show that the spectral subspaces ℒିand ℒା of  ܣሚ can be represented by 
means of angular operators. For 1 ≤ ݌ ≤ ∞, we denote by ࣭௣ the von Neumann−Schatten 
classes of linear operators in ℋ (see [154]); in particular, ࣭ஶ is the class of all compact  
operators and ଵ࣭ is the class of all nuclear or trace class operators. 
Theorem(3.2.7)[159]: There exist bounded linear operators ିܭ ∈ ℋ෡)ܮ ,ℋ) and ܭା ∈ ℋ,ℋ෡)ܮ ) 
such that: 
   (i) The spectral subspaces ℒି and ℒା have the representations 

ℒି  =  ൜൬
ොݔିܭ
ොݔ
൰ ොݔ: ∈ ℋ෡ൠ ,      ℒା =  ൜൬

ݔ
ݔାܭ

൰ : ݔ ∈ ℋൠ. 

   (ii) The operator ିܭ has the property ܴ(ିܭ) ⊂  ା satisfy the Riccati equationsܭ,ିܭ and (ܣ)ࣞ 
ିܭ∗ܤିܭ − ܤ − ିܭܣ + = ܦିܭ  0   on   ℋ෡ , 
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ାܭ ܤାܭ − ∗ܤ ାܭܦ− + = ܣାܭ  0   on   ࣞ(ܣ), 
     (iii) The restriction ܣሚ|ℒି is unitarily equivalent to the operator ܦ +   in the Hilbert ିܭ∗ܤ
             space  ൫ℋ෡ , [ · ,· ]∧൯ where 

∧[ොݕ,ොݔ] ∶= ܫ))  + ොݕ,ොݔ   ,(ොݕ,ොݔ(ିܭ ∗ ିܭ  ∈  ℋ෡ . 
There  is a ߛො >  0 such that 

ℜ[(ܦ + ∧[ොݔ,ොݔ(ିܭ∗ܤ   ≤ ොݔ   ,∧[ොݔ,ොݔ]ොߛ−  ∈  ℋ෡ . 
    (iv) The restriction ܣሚ|ℒା is unitarily equivalent to the operator ܣ +   ା in the Hilbert spaceܭܤ
           (ℋ, [ · ,· ] ) where 

[ݕ,ݔ]   ∶= ܫ))   ∗ାܭ+ ,ݔ( ାܭ   ∋ ݕ,ݔ    , (ݕ  ℋ. 
There  is a ߛ > 0 such that 

ℜ[(ܣ + ,ݔ( ାܭܤ [ݔ  > ∋ ݔ     ,[ݔ,ݔ]ߛ   .(ܣ)ࣞ 
If for one (and hence for all) ݖ ∈ ܣ) the resolvent (ܣ)ߩ −  belongs to some class ܣ ଵ ofି(ݖ
࣭௣  , 1 ≤ ݌ ≤ ∞, then the operators ିܭ and ܭା belong to the same class ࣭௣. 
Proof. From the representation (40) and Lemma (3.2.5) it follows that 

                  ℜቀ ାܲ൫ܣሚ൯ − ܲି ൫ܣሚ൯ቁ
ଵଵ

=  ℜቌ
1
݅ߨ

න −ܣ) ݖ − ܦ)ܤ − ݖଵ݀ି(∗ܤଵି(ݖ
௜ஶ

ି௜ஶ

ቍ 

                                         =  ℜ൭
1
ߨ
න(ܣ − ߟ݅ − ܦ)ܤ − ߟଵ݀ି(∗ܤଵି(ߟ݅
ஶ

ିஶ

൱ ≫ 0 

since for −ߜ < (ݖ)ܴ <  ,ߙ
 ℜ൫(ܣ − ݖ − ܦ)ܤ − ൯ݔ,ݔ(∗ܤ ଵି(ݖ ≥ ,ݔ)෤ߙ  ∋ ݔ     ,(ݔ  (44)                   ,(ܣ)ࣞ 

with some ߙ෤ > 0 by the assumptions(I) and (II). Here and in the following we use the notation 
(ܺ௜௝  )௜,௝ୀଵଶ ∶= ܺ for the components of a block operator matrix ܺ in  ℋ෩ = ℋ ×  ℋ෡ . On the 
other hand, ℜቀ ାܲ൫ܣሚ൯+ ܲି ൫ܣሚ൯ቁ

ଵଵ
=  and hence ܫ

ℜ൫ ାܲ(ܣሚ)൯
ଵଵ
≫ ଵ

ଶ
.                                                               (45)   

           (i)  Let ݔ ∈ ℋ be such  that ൫௫଴൯ ∈ ℒି. Then ାܲ൫ܣሚ൯൫௫଴൯ = ቀܫ − ܲି ൫ܣሚ൯ቁ ൫௫଴൯ = 0 and thus   

               ቀℜ൫ ାܲ(ܣሚ)൯
ଵଵ

ቁݔ,ݔ  =  0. By (45) this implies ݔ = 0. 

        Now consider a sequence൬ቀ௫೙௫ො೙ቁ൰ଵ

ஶ
⊂ ℒି with ݔ௡ ∈ ℋ,   ݔො௡ ∈  ℋ෡ , ‖௡ݔ‖ = 1, ݊ = 1, 2, . . ., 

and  ‖ݔො௡‖ → 0 for ݊ → ∞. By Lemma (3.2.6), 

0 = ൭ ାܲ (ܣሚ∗) ቀ
௡ݔ
0
ቁ , ൬

௡ݔ
ො௡ݔ
൰൱ = ቀ൫ ାܲ(ܣሚ∗)൯

ଵଵ
௡ቁݔ,௡ݔ  + ቀ൫ ାܲ(ܣሚ∗)൯

ଶଵ
 .ො௡ቁݔ,௡ݔ 

The last term  tends to 0 for ݊ → ∞ and hence 
 ቀ൫ ାܲ(ܣሚ∗)൯

ଵଵ
௡ቁݔ, ௡ݔ   → 0,    ݊ → ∞. 

By means of the inequality (45) for ܣሚ∗, we find ‖ݔ௡‖ → 0 for ݊ → ∞. This proves that ℒି can 
be represented as 

ℒି  =  ൜൬
ොݔିܭ
ොݔ
൰ ∶ ොݔ  ∈ ℋ෡ ᇱൠ, 
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where ିܭ is a bounded linear operator from some closed subspace ℋ෡ ᇱ of ℋ෡  into ℋ.  It remains 
to be proved that ℋ෡ ᇱ = ℋ෡ . To this end let ̂ݖ ∈  ℋ෡ ᇱ఼  . Then ̂ݖ =  0 as 

൬
0
̂ݖ
൰ ∈ ℒିୄ  =  ቊቆ

ݔ
∗ିܭ− ݔ 

ቇ ∶ ݔ  ∈  .ቋ(∗ିܭ)ࣞ

The proof of the assertion  for ℒା is analogous.  Here we have to use that 
ℜ(ܦ − ݖ − ܣ)∗ܤ − (ܤ ଵି(ݖ   ≪  0 

for −ߜ < (ݖ)ܴ <  instead  of (44) and the representation ߙ

ሚܣ  − = ݖ  ൬ ܫ 0
−ܣ)∗ܤ ଵି(ݖ ൰ܫ ൬

ܣ − ݖ 0
0 ܦ − ݖ − ܣ)∗ܤ − ൰ܤଵି(ݖ ቀ

ܫ ܣ) − ܤଵି(ݖ
0 ܫ

ቁ 
for ݖ ∈  instead of (39) in order to obtain (ܣ)ߩ

 ℜ൫ܲି ൯(ሚܣ)
ଶଶ

 ≫   
1
2

 .                                                                    (46) 
       (ii)  Since ܲି is a Riesz projection, ℒି (ሚܣ) = ܴ(ܲି ((ሚܣ) ⊂  ,On  the other hand    .(ሚܣ)ࣞ

ࣞ൫ܣሚ൯  =  ቄቀ
ݔ
ොݔ
ቁ ∶ ݔ  ∈ ∋ ොݔ,(ܣ)ࣞ  ℋ෡ቅ, 

and hence the representation of ℒି according to (i) yields ܴ(ିܭ) ⊂  .(ܣ)ࣞ
      The Riccati equations for ିܭ and ܭା follow from the invariance of the subspaces  ℒି and 
ℒା under ܣሚ and the representations of ℒି and ℒା in (i). 
       (iii) The operator ܷ ି ∈ ,ℒି)ܮ (ℋ෡ , [ · ,· ]∧)) defined by 

ܷି ൬
ොݔିܭ
ොݔ
൰  ∶= ,ොݔ  ොݔ ∈ ℋ෡ , 

is isometric  and bijective.  Using the Riccati  equation  for ିܭ,  we find 
ሚ|ℒିܣ  =  ܷିିଵ(ܦ  ିܷ(ିܭ∗ܤ +

and 
                    ℜ[(ܦ + ∧[ොݔ,ොݔ(ିܭ∗ܤ  =  ℜ൫(ܫ + ܦ)(ିܭ∗ିܭ  ො൯ݔ,ොݔ(ିܭ∗ܤ +

                                        =  ℜቀ൫ܦ + ିܭ∗ܤ  + ܦିܭ)∗ିܭ +  ොቁݔ,ොݔ൯(ିܭ∗ܤିܭ
                           =  ℜ((ܦ ିܭܣ∗ିܭ + + ିܭ∗ܤ  (ොݔ,ොݔ(ܤ∗ିܭ−

                              =  ℜ(ݔܦො,ݔො) −ℜ(ݔିܭܣො,ݔିܭො) ≤  (ොݔ,ොݔ)ොߛ− 
for ݔො ∈  ℋ෡   with some ߛො >  0 by the assumptions (I)  and (II). 
       (iv) The operator ܷା ∈ , ℒା)ܮ (ℋ, [ · ,· ])) defined by 

ܷା ൬
ݔ
ݔାܭ

൰  ∶= ,ݔ  ݔ ∈ ℋ, 

is isometric and bijective. The Riccati equation for ܭା yields 
ሚ|ℒାܣ = ܷାିଵ(ܣ +  ା)ܷାܭܤ

and,  similar as in the proof of (iii), 
ℜ[(ܣ+ [ݔ,ݔ( ାܭܤ  =  ℜ(ݔܣ, (ݔ  −  ℜ(ܭܦା ܭ,ݔା ݔ)  ≥  (ݔ,ݔ)ߛ 

for ݔ ∈ ߛ with some (ܣ)ࣞ > 0 by the assumptions (I)  and (II). 
       Finally,  the Riccati equations for ିܭ  and ܭା can be written in the form 

ିܭ∗ܤିܭ − ܤ − ܣ) − μ)ିܭ  + ܦ)ିܭ  − μ) =  0,  
ାܭܤ ାܭ ∗ܤ− − ܦ) − μ)ܭା ܣ) ାܭ + − μ)  =  0, 

where μ ∈ ℂ is arbitrary. If we choose μ ∈  and multiply the first relation from the left (ܣ)ߩ
hand side and the second equation from the right hand side by (ܣ− μ)ିଵ, it follows that ିܭ 
and ܭା are in ࣭௣ if (ܣ − μ)ିଵ is in ࣭௣ for some 1 ,݌ ≤ ݌ ≤  ∞. The theorem is proved. 
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If in Theorem(3.2.7) the operators ܣ and ܦ are selfadjoint, then ܭା = ∗ିܭ− , which is immediate 
from the relation ℒା = ℒିୄ . Thus, in the selfa-djoint case the assertions of Theorem (3.2.7) coin-
cide with the respective statements established in [160], which were proved  by a different method. 
Additionally, it was shown therein that in this case ିܭ and ܭା are strict contractions. To show a 
generalization of this property, we use the following two results. 
Lemma(3.2.8)[159]: The operators ܫ − ܫ and  ିܭ ାܭ −  .ା  are  bijectiveܭିܭ
Proof. Let ݔො  ∈  ker(ܫ − ොݔ  Then  .(ିܭ ାܭ =    ,ˆݔିܭ ାܭ 

 ൬
ොݔିܭ
ොݔ
൰  =  ൬

ොݔିܭ
ොݔିܭ ାܭ

൰   ∈  ℒି ∩  ℒା  =  {0} 

and consequently ݔො  =  0. Now let ̂ݖ  ∈  ℋ෡ .  As  ℋ =  ℒି+̇ ℒା , there  exist ݔ ∈  ℋ and ݔො  ∈  ℋ෡   
such that 

൬
0
ݖ̂
൰  =  ൬

ොݔିܭ + ݔ
ොݔ ݔାܭ+

൰. 

This implies  ̂ݖ  = ොݔ   – ොݔିܭ ାܭ   ∈ ℜ(ܭ – ܫା ିܭ).    The proof for ܫ –  .ା is analogousܭିܭ 
Proposition(3.2.9)[159]: The projections ܲି  have the matrix representations (ሚܣ)and ାܲ (ሚܣ)

ܲି ൫ܣሚ൯  =  ൬−ିܭ
ܫ) − ାܭଵି(ିܭ ାܭ ܫ)ିܭ − ଵି(ିܭ ାܭ

ܫ)− − ାܭଵି(ିܭ ାܭ ܫ) − ଵି(ିܭ ାܭ ൰ , 

ାܲ൫ܣሚ൯  =  ቆ
ܫ) − ା )ିଵܭିܭ ܫ)− − ିܭା )ିଵܭିܭ
ܫ)ାܭ − ା )ିଵܭିܭ ܫ)ାܭ – − ିܭା )ିଵܭିܭ

ቇ. 

Proof.   As  ܲି ൫ܣሚ൯ is the projection  onto ℒି along ℒା , we have 

ܲି ൫ܣሚ൯ = ቀܺିܭ ܻିܭ
ܺ ܻ ቁ 

with operators ܺ ∈ ∋ ܻ and  (ℋ,ℋ෡)ܮ ℋ෡)ܮ ). From  ܲି ൫ܣሚ൯|ℒା =  0, it follows that 

0 =  ቀܺିܭ ܻିܭ
ܺ ܻ ቁ ൬

ݔ
ݔାܭ

൰  =  ቆ
ܺ)ିܭ + ݔ(ାܭܻ

(ܺ + ݔ(ାܭܻ ቇ ݔ, ∈ ℋ, 

and hence ܺ = ିܲ  ା . Thenܭ ܻ− ൫ܣሚ൯|ℒି  =  reads ܫ 

൬
ොݔିܭ
ොݔ
൰  =  ൬−ܭܻିܭା ܻିܭ

ାܭܻ− ܻ ൰൬
ොݔିܭ
ොݔ
൰  =  ቆ

ିܭାܭ−)ܻିܭ + ොݔ(ܫ
ିܭାܭ−)ܻ + ොݔ(ܫ ቇ , ොݔ ∈ ℋ෡ . 

By Lemma  (3.2.8), ܭ – ܫା ିܭ  is invertible  and hence 
ܻ = ,ଵି(ିܭ ାܭ – ܫ)  ܺ = – ܫ)−   .ାܭଵି(ିܭ ାܭ 

This shows the representation of ܲି ൫ܣሚ൯. The proof for ାܲ൫ܣሚ൯  is analogous. 
Theorem(3.2.10)[159]: The operators ܭିܭା and ܭା ିܭ are strict contractions in ℋ and ℋ෡ ,  
respectively, that  is, 

‖ାܭିܭ‖   < ‖ିܭାܭ‖     ,1   <  1. 
Proof. From (45) and the preceding  proposition it follows that 

ℜ((ܫ − (ା )ିଵܭିܭ ≫
1
2

. 
Consequently, 
ܫ                      ≪ ܫ) − ା )ିଵܭିܭ + ܫ) −  ଵି(∗(ାܭିܭ)

                   = ܫ) − ܫା )ିଵ(2ܭିܭ − ାܭିܭ − ܫ)(∗(ାܭିܭ) −  .ଵି(∗(ାܭିܭ)
This implies 

ܫ) − ܫ)( ାܭିܭ − (∗( ାܭିܭ) ≪ ܫ2  − ାܭିܭ −  ∗( ାܭିܭ)
and hence 

∗( ାܭିܭ)( ାܭିܭ)  ≪  , ܫ 
which shows ‖ܭିܭା‖  <  1. The proof of ‖ܭାିܭ‖  <  1 is analogous. 
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       If ܣ and ܦ are selfadjoint, then it follows from Theorem (3.2.10) and from the relation 
ାܭ =  that ∗ ିܭ−

‖ିܭ‖  = ‖ାܭ‖  < 1. 
    Additionally to the assumptions (I) and (II) we suppose now that ܣ has a compact resolvent. 
Then  ߪା(ܣሚ)  is discrete  and ∞ is the only accumulation point as 

ሚ൯ܣା൫ߪ  = ሚหℒା ൯ܣ൫ߪ   = ܣ)ߪ  +  ( ାܭܤ
by Theorem (3.2.7) where ܭା is compact. 
      In the following we denote by ଵܲ the projection  from ℋ෩  onto ℋ. If ߣ ∈   (ሚܣ)then  ℒఒ ,(ሚܣ) ߪ
denotes  the root subspace  of ܣሚ at ߣ. 
Theorem(3.2.11)[159]: Suppose additionally to the assumptions (I) and (II) that the resolvent 
ܣ) − ݖ belongs to the class ଵ࣭ for some ܣ ଵ ofି(ݖ ∈  Then .(ሚܣ)ߩ

ራ ଵܲ ℒఒ (ܣሚ)
ఒ∈ఙశ (஺෨)

  =  ℋ, 

that is, the first components of the root vectors of ܣሚ corresponding to the eigenvalues in the right 
half plane form a complete system in ℋ. 
Proof.  Let  ߣ଴ ∈ , ෤ଵݔ, ෤଴ݔ} and assume that (ሚܣ)ାߪ . . . ෤௛ݔ,   } ⊂ ℋ෩   is a Jordan chain  of ܣሚ at ߣ଴. Then 
෤௝ݔ  ∈  ℒା and hence ݔ෤௝  =  ቀ ௫ೕ

௄శ௫ೕ
ቁ with ݔ௝  ∈  ℋ for ݆ =  0, 1, . . . , ℎ by Theorem (3.2.7). Then  the 

relation 

൬ܣ − ଴ߣ ܤ
∗ܤ ܦ − ଴ߣ

൰ቆ
௝ݔ
௝ݔାܭ

ቇ  =  ቆ
௝ିଵݔ
௝ିଵݔାܭ

ቇ ,     ݆ = 0,1, … ,ℎ, 

implies that {ݔ଴ , , ଵݔ . . . , {௛ݔ = { ଵܲݔ෤଴  , ଵܲݔ෤ଵ  , . . . , ଵܲ ݔ෤௛ } is a Jordan chain of the operator ܣ +   ାܭܤ
at  ߣ଴ . Hence 

ራ ଵܲ ℒఒ (ሚܣ) 
ఒ∈ఙశ  (஺෨)

 = ራ  ℒఒ ܣ)  + (ାܭܤ
ఒ∈ఙ (஺ା஻௄శ)

. 

For sufficiently large  ߦ > 0,  the operator ܣ + ାܭܤ + ܣ))is accretive, that is, ℜ  ߦ + ାܭܤ + ,ݔ( ߦ
(ݔ ≥ 0 for ݔ ∈ ݖ If .(ܣ)ࣞ ∈ ܣ)ߩ + ାܭܤ + (ݖ)ℜ,( ߦ < 0, the resolvent 

ܣ) + ାܭܤ + ߦ − ଵି(ݖ  = ܣ)  − + ܫ) ଵି(ݖ ାܭܤ)  + −ܣ)( ߦ  ଵ )ିଵି(ݖ
belongs to ଵ࣭ as (ܣ − ଵି(ݖ ∈ ଵ࣭  according to the assumption. Then the statement follows from 
[154], applied to the dissipative operator −݅(ܣ+ ାܭܤ + ߣ  ଵ asି( ߦ ∈ ܣ)ߪ +  ା ) if and only ifܭܤ
 − ௜

ఒାక
  ∈ ܣ)݅−)ߪ + ାܭܤ +  ଵ ) andି( ߦ

ℒఒ (ܣ + ( ାܭܤ  =  ℒ
ି ௜
ఒାక

ܣ)݅−)   + ାܭܤ + ଵି( ߦ  ∋ ߣ    ,(  ܣ)ߪ +  .(ାܭܤ

Example(3.2.12)[159]: We consider the ߣ-rational boundary eigenvalue problem 
ᇳݕ +  + ݕߣ 

  ݍ
ݑ − ߣ

= ݕ    0, 
                                                                                                                               (47) 

(0)ݕ − (0)′ݕߚ  = (1)ݕ    ,0   =  0, 
in ܮଶ(0, 1) where ݍ, ݑ ∈ ,0] ܥ 1], ݍ > 0, ℜ(ݑ) <  0, and ߚ ∈ ℂ, ℜ(ߚ) > 0. 
      Problems of this type with real-valued ݑ and Dirichlet boundary conditions, that is, ߚ = 0, 

were studied in [163] and[160]. If we define ݕො ∶= −  ௤
భ మ⁄

௨ିఒ
 then the problem (47) is equivalent on ,ݕ 

  linear-ߣ to the ,ݑ  which is the complement of the set of all values of the continuous function ,(ݑ)ߩ
problem 

ሚܣ) − ෤ݕ(ߣ  = ෤ݕ    ,0   ∈  ,(ሚܣ)ࣞ 
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in ܮଶ(0,1) ×  ሚ is a block operator matrix  of the  form (33) given byܣ ଶ(0,1) whereܮ

ሚܣ = ቌ−
݀ଶ

ଶݔ݀
ଵݍ ଶ⁄

ଵݍ ଶ⁄ ݑ
ቍ 

and 
(ሚܣ)ࣞ ∶= ෤ݕ} = ௧(ොݕ,ݕ) ∈ ଶܹ

ଶ(0,1) × ଶ(0,1)ܮ ∶ (0)ݕ (0) ′ݕߚ− = (1)ݕ   ,0 = 0}. 
       In the following we show that the operator ܣሚ fulfills the assumptions of  Theorem (3.2.11). As  
ℜ(ݑ) < 0, the assumption (II) is fulfilled with  ߠ஽ ∶= ߨ −Min௫∈[଴,ଵ]|arg (ݔ)ݑ| <  గ

ଶ
  and ߜ ∶=

− max௫∈[଴,ଵ] ℜ((ݔ)ݑ). The operator ܣ in  ܮଶ(0,1) given by 
ݕܣ ∶= (ܣ)ࣞ     ,ᇳݕ−  ∶= ݕ} ∈ ଶܹ

ଶ(0,1) ∶ (0)ݕ − (0) ′ݕߚ = (1)ݕ   ,0  = 0} 
is densely defined, closed, and it satisfies the assumption (I). Indeed, ܣ is boundedly invertible, 
and 

(ݕ,ݕܣ) = ଶ|(0)′ݕ|ߚ + න|(ݔ)′ݕ|ଶ݀ݔ
ଵ

଴

, ݕ ∈  (48)                             .(ܣ)ࣞ

First we show that ℜ(ݕܣ, (ݕ ≥ ݕ for ߙ ∈ ‖ݕ‖,(ܣ)ࣞ = 1, for some ߙ > 0. From (48) and the 
assumption ℜ(ߚ) >  0 it follows that 

ℜ(ݕܣ, (ݕ = ℜ(ߚ)|(0)′ݕ|ଶ +න|(ݔ)′ݕ|ଶ݀ݔ ≥ 0
ଵ

଴

ݕ       , ∈  (49)           .(ܣ)ࣞ

Now suppose that there exists a sequence (ݕ௡)ଵஶ ⊂ ,(ܣ)ࣞ ‖௡ݕ‖ = 1, with  ℜ(ݕܣ௡, → (௡ݕ 0 for 
݊ → ∞.  Then ݕ′௡(0) → 0 and  ‖ݕ′௡‖ → 0 for ݊ → ∞ by  (49) and hence 

(ݔ)௡ݕ| − |௡(0)ݕ  ≤  නหݕᇱ௡(ݐ)ห ݀ݐ
௫

଴

 ≤ ݐหଶ݀(ݐ)ᇱ௡ݕቌනหݔ√ 
௫

଴

ቍ

ଵ
ଶ

≤  ฮݕᇱ௡ฮ → 0, ݊ → ∞, 

uniformly for ݔ ∈ [0, 1], and hence ‖ݕ௡‖ → 0 as ݕ௡(0)  = (0)′ݕߚ → 0 for ݊ → ∞, a contradiction. 
Furthermore, (49) implies 

|ℑ(ݕ,ݕܣ)|
ℜ(ݕ,ݕܣ) =

|ℑ(ߚ)||(0)′ݕ|ଶ

ℜ(ߚ)|(0)′ݕ|ଶ + ଶ‖′ݕ‖
≤

|ℑ(ߚ)|
ℜ(ߚ)  

which proves that the numerical range ஺ܹ of ܣ is contained in a set {ݖ ∈ ℂ ∶ arg ݖ ≤  (ݖ)஺ ,ℜߠ
≥ ஺ߠ with {ߙ = |arg ߚ| <  గ

ଶ
 . 

It remains to be shown that ିܣଵ ∈ ଵ࣭. In order to see this, we introduce the selfadjoint operator ܣ଴ 
in ܮଶ (0, 1), 

ݕ଴ܣ ∶= (଴ܣ)ࣞ     ,″ݕ− ∶= ∋ ݕ}   ଶܹ
 ଶ(0, 1) ∶ (0)ݕ = (1)ݕ   ,0   =  0}. 

Its eigenvalues are the numbers  μ௡ ∶= , ଶ ݊ଶߨ ݊ = 1, 2, . . ., hence ܣ଴ିଵ ∈ ଵ࣭. As the difference 
ଵିܣ − ଵିܣ ଴ିଵ  is a one-dimensional operator, it follows thatܣ ∈ ࣭ଵ.   
       Thus  Theorem (3.2.11) can be applied to the operator ܣሚ and we get: 
Theorem(3.2.13)[159]: The spectrum ߪା of the eigenvalue problem (47) in the right half plane is 
discrete,  ∞ is its only accumulation point,  and ߪା is contained  in the sector 

ቄݖ ∈  ℂ ∶ | arg ݖ|  ≤  max ൛ ߨ –  min௫∈[଴,ଵ]  | arg (ݔ)ݑ|, | arg ߚ|ൟቅ  . 
The root vectors corresponding to the eigenvalues in ߪା form a complete system in ܮଶ(0,1). 
 


