Chapter 3
Non-Selfadjoint Spectral Problems and Spectral Decomposition

In this chapter we establish completeness results for normal problems in certain finite co-
dimensional subspaces of W, (0,1) which are characterized by means of Jordan chains in O of
the adjoint of the compact operator A = HK™". Under an additional assumption, the spectrum
of A consists of one part in the extended right and one part in the left half plane, and the
corresponding spectral subspaces allow representations by means of angular operators. If the
part of the spectrum of A in the right half plane is discrete, a half range completeness statement
follows. As an essential tool the quadratic numerical range of a block operator matrix is
introduced.

Sec(3.1): Linear Pencils N — AP of Ordinary Differential Operators with A-Linear
Boundary Conditions

We consider boundary eigenvalue problems for pairs of ordinary differential operators of

the form

N(y)—AP(y) = 0, (1)
on the finite interval [0,1] where the boundary conditions depend linearly on the eigenvalue
parameter. Here N and P are ordinary linear differential expressions of order n and p,
respectively, with n > p > 0, and U;, V; are boundary values in 0 and 1 of order < n — 1 and
< p — 1, respectively.

The study of spectral problems which are not of the form (T—21)y = 0 with some linear
operator T is motivated by concrete examples. Both kinds of examples lead to nonself-adjoint
boundary eigenvalue problems of the form (1), (2) where the order of P is greater than 0. In the
first case the boundary conditions are independent of A, in the second example they may de-
pend on A linearly.

The present section solves the problem of the completeness of the eigenfunctions and
associated functions for non-selfadjoint problems (1), (2). The completeness results of [147]
for A-independent boundary conditions are obtained as a particular case. However, if the
boundary conditions depend on the eigenvalue parameter, a different operator approach has to
be used. The operators cannot be settled in L,(0,1), they are defined on L,(0,1) but act to the
larger space L,(0,1) x C™. A similar method of extending the space is often used in the
selfadjoint case. However, following to some extent the lines of [138], the operators we
associate with the given problem act between different spaces. Moreover, they involve the A-
dependent as well as the A-independent boundary conditions.

These operators are introduced in next part below. The spectral problem (1), (2) is written
equivalently as Ky — AHy = O where K and H act from L,(0,1) to space L,(0,1) x C",

_( NO) _( PO
= ((Uj(y)’f)>' W= ((V,-(y)'f)>

Some well-known facts about the spectral properties of (1), (2) are stated in terms of the linear
pencil L(1) = K— AH . If the resolvent set p(IL) is nonempty, then the spectrum a(IL) is
discrete and all eigenvalues have finite algebraic multiplicity.

The crucial step to show completeness of the corresponding eigenfunctions and associated
functions in the Sobolev spaces W, (0,1) for k =0,1,...,n is to define the subspaces W ,..
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In this section we establish these function spaces by means of the operator
A= HK!

which acts in the space L,(0,1) x C™. The algebraic eigenspace Ker( A*)" of the adjoint
operator A" corresponding to the eigenvalue O gives rise to a set of boundary conditions {U;}
which define the spaces W .. Here the A-independent boundary conditions (2) arise from the
geometric eigenspace Ker A*. However, even in the case that all boundary conditions are inde-
pendent of A, the length of the Jordan chains of A* in 0 may exceed 1, and some additional
boundary conditions may occur.

This section provides an estimate for the growth of the adjoint of HI(K — AH)~* in L, (0,
1) x C™ or, equivalently, of the resolvent of I — AA*. This estimate is the second important step
to show the completeness of the eigenfunctions and associated functions in the spaces W, In
this respect the theorem on the existence of an asymptotic fundamental system for the differen-
tial equation (1) is fundamental. Based on this theorem, we establish a detailed asymptotic
expansion of the modified resolvent HI(IK — AH) ~*. For Stone-regular problems (1), (2) we are
then able to estimate the growth of (H(K — AH)~1)* for large values of A.

We show the completeness of the eigenfunctions and associated functions in the spaces W,
for normal problems (1), (2) where the number r is determined by the order of normality. To
this end we write the spectral problem (IK — AH)y = 0 in the equivalent form (I — 1A)Ky = 0
and we show that the eigenfunctions and associated functions of I — 1A are complete in the
closure of the range of A"** using the so-called method of Keldysh [131].

We apply the results to some concrete examples. Starting with the simplest problem (1), (2)
with p > 0 and ending with a concrete example from the theory of elasticity, we show how to
calculate the boundary conditions {U;}, we determine the spaces W, explicitly and formulate
the respective completeness results.

We are going to consider boundary eigenvalue problems (1), (2) where N and P are linear
differential operators on [0,1] of order n and p, respectively, with n > p > 0 and sufficiently
smooth coefficients (see Theorem (3.1.12),

N)= y® + fo yO D+t fyy, 3

P()=y® + g, y®7D +-+ goy, 4
and U;,V; are two-point boundary conditions in 0 and 1 of order <n-—1 and <p—1,
respectively, with complex coefficients,

Ui(y) = Z(a]pﬂy(“)(O) +aly®(1),  j=12..n (5)
u=0
hj

KO)= ) (ByPO@ + By W), =120 ©)
u=0

Where
0< L <n—1lal|+|e}|>0 0sn<p-1if 20

|ﬁ,phj| + |ﬁj1hj| >0 and h;:=—-(m—p) if V;= 0.
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With regard to the substitution 2 = —p™~P we define the order k; of a boundary condition

U;(y)-AV;(y) = 0 by
ki=max{,n—p+h}, j=1.2,..n,
and the total order k of the boundary conditions (2) as
K:= Ky +Ky,+ -+ K,
We assume that the boundary conditions (2) are normalized, that is, x; < k, < -+ < k,, and
for each equivalent system of boundary conditions of total order %, we have k < K. For
k € N,, we denote by
Wk@©O,1):={f e L,(01): fD eL,(01), j=1,2,..,k}

the Sobolev space of order k.

With the boundary eigenvalue problem (1), (2), we associate operators acting from L,(0,1))
to L,(0,1) x C™ in the following way. We consider the linear pencil

K—AH:L,(0,1) » L,(0,1) xC*, AE€C,

where the operators IK, H are given by D(K ) := WJ*(0,1), D(H) := W/ (0,1) and

_( N _( PO
= ((Uj(y)’f)>’ W= ((V,(y)’f))'

Ly == N(y) = 2P(y),
*y = (40). - A(v0)

Moreover, we define
n
1 1
so that
LP (1)

€ C. 7
) AEC 7)
Then the boundary eigenvalue problem (1), (2) can be written in the equivalent form

Ky — AHy = O, y € W3(0,1). (8)

The spectrum of the boundary eigenvalue problem (1), (2) coincides with the spectrum of (8),
that is, with the spectrum o (IL) of the corresponding linear pencil L. Here ¢(IL) := C\ p(IL)
where

m(z)::n«-m:(

p(L) := {1 € C : L(A) is boundedly invertible}
is the resolvent set of I. (see also [137]), The problem (1), (2) is called nondegenerate if its
spectrum is not the whole complex plane, that is, if the resolvent set p(IL) is not empty. In this
case o(IL) is a discrete subset of C (see [128], [138]). For the boundary eigenvalue operator
function L is holomorphic in C, and for each A1 € C, the operator L.(1): W;*(0,1) - L,(0,1) x
C™ n is a Fredholm operator. Moreover, the spectrum of IL consists only of eigenvalues of finite
algebraic multiplicity, o(IL) = g, (IL) where
o,(L) := {2 € C: L(A) is not injective},

and the inverse ™1, given by L71(1) :=L(A1)"1, 1 € C, is a meromorphic operator function
whose poles are the eigenvalues of IL or, equivalently, of (1), (2).

In the following we will only consider nondegenerate problems. We denote the set of eigen-
values by {4,} and, correspondingly, the system of eigenfunctions and associated functions by
{y3}. Here the eigenvalues are enumerated according to their geometric multiplicities, y2 are
the eigenvectors corresponding to 4, and y,;,s = 1,2, ..., p,, are the associated vectors,

Ky; — A, Hy; =Hy™'  s=01...,py, 9
where y,; 1 := 0fors = 0.
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It is immediate from (9) that the eigenfunctions and associated functions satisfy all boundary
conditions (2) which do not depend on A . However, to show completeness of the system {y5}
in subspaces of the Sobolev spaces Wx(0,1), k = 0,1,..,n, it is not enough to impose these A-
independent boundary conditions.
Even in the case that the boundary conditions (2) do not depend on A at all, it may happen that
a certain additional finite dimensional defect occurs (see [147]). For the more general situation
of A-linear boundary conditions, this phenomenon will be describeed by introducing the spaces
wi,.
Since the problem is nondegenerate, we may assume without loss of generality that K is
invertible. Then the operator A : L,(0,1) x C* - L,(0,1) x C™ given by
A:= HK™?!
is well-defined on L,(0,1) x C™.
Lemma (3.1.1)[117]: The operator A is compact in L,(0,1) x C"
Proof. The operators
K™':L1,(01) xC" > W*0,1), H:WP(01) - L,(0,1) xC"
are bounded. Since n > p by assumption, the identity operator
w3 (0,1) » WP (0,1)
is compact by the Lemma of Sobolev. Hence A is compact.
According to the definition of A, the spectral problem (8) is equivalent to
(I-2A)z =0, z € L,(0,1) x C", (10)
in the following sense: The spectrum of (10) coincides with the spectrum of L, A, is an eigen-
value of L if and only if A4, is an eigenvalue of the linear pencil I —AA, and y; is an eigen-
function or an associated function of L at 4,, if and only if z; := Ky, is an eigenfunction or an
associated function of I — 1A corresponding to 4,,, that is,
(I-2,A)z5 =Az51 s=0,1,....,p,, (1)
where z; 1 := Ky, * = 0. The resolvent
(I-2A)tT=K(K—-AH )?
is a meromorphic operator function whose poles are the eigenvalues of L.

Lemma(3.1.2)[117]: The principal part of the Laurent representation of (I —AA)_l in a neigh-
bourhood of an eigenvalue u is of the form
14
iz’( o)z + () ()

(/1 ’u)p1+1 N

(12)

Jj=15=0

Where {z z s ]p’} is a canonical system of eigenfunctions and associated functions of A
in i, and { ] e U } is a canonical system of eigenfunctions and associated functions
j=1

Am
of A* in u uniquely determined by the system {zj", zl .. zf’} and such that
j=1

(5 v ) = =63, 6t s=01,...,p;, t=01,..,p, jik=12...,m

Analogously, the principal part of (1 —AA*)_l in a neighbourhood of an eigenvalue u of A* is
of the form
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ii (.27)vf + )y ™ + o+ (277 (13)
: (A — p)Piti=s
Jj=1s=0
Proposition(3.1.3)[117]: Let r € N. Then we have dimKer(A*)" = dimKer(A")* < oo and
Ker H* = Ker A* c Ker (A*)" .
Proof. Since H and K~ are Fredholm operators and H is densely defined, A" is Fredholm for
r € N (see [127]). Since A* is compact, we have (A*)" = (A")* and hence
dimKer(A*)" = dimKer(A")* = codim Im(A") < oo,
As ImK~* = W2'(0,1) and W,""P(0,1) is dense in L,(0,1), it follows
Ker A* = (ImA)* = (ImH )* = Ker H*.

This completes the proof of the proposition.

We are now ready to introduce the subspaces W{jr of the Sobolev spaces WX (0,1) and to
establish some of their crucial properties.
Definition(3.1.4)[117]: Let r € N. Suppose {};_o %, © L,(0,1) x C" to be a basis of
Ker (A*)" such that

i) {pf}2, is abasis of Ker A,

ii) {<,0]’-c ;":1 is a basis of Ker (A")**1 © Ker (A", k=1,2,...r—1
Then we introduce linear forms U/ by

Uf(y) == (Ky, ¢f),y e W} (0,1), k=01,...r=1, j=12,.. I,

where (-, -) denotes the canonical scalar product in L,(0,1) x C™. The linear forms U]-" are of
the form

1
Uk(y) = U¥(y) +f YW@ dek=01,...r =1, j=12, .1
0

with some two point boundary conditions ﬁj"(y) and certain functions u]k € L,(0,1). The order
of a linear form U} is defined by the order of U if UF # 0,and by —1if U =0,.

On normalizing the system {U}}_y'%,,
and we define the spaces W, by
Wi, = {y e Wf(01) : U;(y) = 0iford U; < k — 1}
fork=01,....,n.
Lemma(3.1.5)[117]: We have {y;} c W, fork =01,.. ,n, r € N.
Proof. Obviously, {y;} € W;'(0,1). By (9) and with z; = Ky, we obtain
UF) = (Kys, 0f) = L (Hys, of) + (Hys ™t 9f)

= L(Az, 0f) + (Az~1 @f) = 4,(z5, A pf) + (2571 A"pf) = 0
for k=0,1,..,r =1 j=12,..1, since A"pf € Ker (A")"~* = Ker(A""')* = (ImA"" 1)+
and z3,z5~1 € ImA"~? because, by induction,

S

z5 = A1 Z (Z : l]c-) Aﬁ_(s_rﬂ)sz

k=max{0,s—r+1}
fors = 0,1,...,p,. This completes the proof of the Lemma.

we obtain an equivalent system of linear forms {u,}i”
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Definition(3.1.6)[117]: Let n € {0,1,...,n} be the number of A-independent boundary condi-
tions (2), and let A := {m;,m,,...,m,} :={j € {1,2,...,n} : V; = 0}. Then we define

Wy :=={y e WS (0,1): Up;(y) =0, j=1,2,...,n, iford Uy, <k—1}
fork=01,...,n
Remark(3.1.7)[117]: The inclusion Wf ¢ W, c W{, holds fork =0,1,...,n,7 € N.

Proof. From Vm]. =0forj=1,2,...,n,weinfer

Ay
{(0 em].) } € (ImH)* = Ker H* = Ker A*.
j=1

by Proposition (3.1.3) where (0 ej)t € L,(0,1) x C", ¢; denoting the j-th unit vector in C™.

t
Hence we can choose ¢; = (0 em].) ,j=1.2,...,n,and we obtain

t

and hence the assertion follows.
For A-independent boundary conditions, the spaces W§ have been introduced in [147] by

Wi == {y e Wj(0,1) : U;(y) =0, iford U; <k —1}
fork =0,1,...,n where {U;}" is a system of linear forms equivalent to {U]-};1 U {0}}11
normalized in case of need, with

0= (N3¢, o
Here {(pj}ll is a basis of Ker P* where P* is the adjoint of the operator P : L,(0,1) - L,(0,1),
D(P) = W;,Py = P(y).
Proposition(3.1.8)[117]: Suppose the boundary conditions (2) to be A-independent. Then
W, =W{ fork =0,1,...,n.
Proof. Let g = (g19,)¢ € L,(0,1) x C™. Then

(A)2g =0 A'g € Kerll" & (A°g,(y)) =0, v € L,(0,1)

= (g,HK‘l,(g))ZO, v €L,(0,1)

N (g,(PNo_lv)):o, v €L,(0,1)

< (91, Pw),01 =0, @ €W,(01)
& g, € KerP*
since ImN~1 = WJ}*(0,1) where N : L,(0,1) - L,(0,1), D(N) = W}, and Ny = N(y) and
W,""?(0,1) is dense in L,(0,1).
n
1

Consequently, a basis of Ker(A*)? is given by {(0 ej)t} U {((pj O)t} = {<,o]°}111 U {<p}}l1

Yy ewWr01), j=12...,1L

l
; 1
where {<pj}1 c L,(0,1) is a basis of Ker P*. Thus we obtain

UPG) = (Ky.(0¢)) = U(»). j = L2.....m,

t ~ .

Ul y) = (Ky,(¢;0))= T,(»), j = 1,2....,L

This completes the proof of the proposition.
We have showed now that the spaces W . involve all given A-independent boundary condi-
tions and some additional boundary conditions which are, however, also fulfilled by the eigen
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functions and associated functions.

It is our aim to show that the system {y;5} of eigenfunctions and associated functions is even
complete in the spaces W, by proving completeness of the system {z5} = {Ky;s} of eigen-
functions and associated functions of the linear pencil I —AA. For this we first need to estimate
the growth of the resolvent of I —AA and hence of the modified resolvent H(IK — AH)~? since

(I-2A)"! = (K- 2AH + AH )(K — AH)?

=1+ AH(K — AH)™? (14)
The resolvent (K — AH) ™! : L,(0,1) x C* - L,(0,1) is given by (comp.[138])
- (1) = R p+RWf (M enonxer  as)
where
RiW)f = f G(.62) fi(£)de, £ € L,(0,1) 6

Ro(Dfy = (311G D) .y C))MA) Y, freC
Here {y,(-,2) ... y,(:, 1)} is a fundamental system of N(y) -AP(y) =0
M(2) := (LR y1 (. 1) .. LRy, (-, D))
is the corresponding characteristic matrix function and
(G DL 21 O/) I S O/ B T O 307
G(- &)= det( ' Y )
¢80 =50 MO RQgGED
is the Green's function of (1), (2) where
A(A) := detM (1)
denotes the characteristic determinant. The function g is given by

9x.8.2) = 5 sign(x ~ E)Zyv(x Nz, xfedl @18

where {z,(,2) ... z,,(-, 1)} is the fundamental system of the formally adjoint differential
equation of N(y) —AP(y) = 0 defined by
W, (-, 2)
z,(-, 1) = WD v=1,2,...,n
with W (1) denoting the Wronskian determinant of{y,(-, 1), ..., v,(:, 1)} and W, (1) being the
algebraic complement of ylf”_l)(-, A)in w(Q).

The basis for the asymptotic expansion of the resolvent (IK — AH )~ is a theorem on the
existence of an asymptotic fundamental system for the differential equation N(y) = AP(y).
This theorem has its roots in early works of G.D. Birkhoff [119,120]. Later contributions to a
more detailed structure of these asymptotic expansions are due to W. Eberhard and G. Freiling
[126] as well as R. Mennicken and M. Moller[138].

Using the standard substitution 21 = —p™P, we define sectors S, = el™/C®-p)g  for
k=0,12,...,4(n —p) — 1 in the complex plane where

w
So = {ze(C. 0 <argz Sz(n_p)},
We denote the (n —p)-th roots of —1 by w;, w,,..., w,_, and enumerate them in such a way
that

). ¢eloa a7

R(pw,) < - < Rlpwy) <0 < R(pwgsq) ... < R(pw,_p),p € So, (19)
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where d € {1,2,...,n — p}, and accordingly for all sectors S,.
To arrange the subsequent asymptotic expansions clearly, we introduce the following
abbreviation.
Letl € N,. Suppose g to be a function on some sector S of the complex plane with values in a
Banach space E. If g has an asymptotic expansion
f; fi

90 = F@)+ 0( =57 ) S0 = o+ L,
with £, f1 ..., f; € E for p € S with respect to the normin E, then we write

g(p) =[f (P,

omitting the index L if [l = 0.

This notation will be applied with E = C and E = C[0, 1]. Whenever precise information is
unnecessary, we will write [- (p)]; and [- (x, p)]1;, respectively, where x,
for example, indicates the independent variable if E = C[O0, 1].
Theorem(3.1.9)[117]: Letl e N,, k € {0,1,...,.4(n—p) — 1}, and let z, € C. Suppose that
for gy € WYTHS(0,1) where s := max{n — 1, 2(p — 1)}. Then there exists a fundamental
system {y,(-,2) ..., v, (-, 1)} of N(y) = AP(y) in the sector S = z, + S, such that

m(x) h9 (x) 1 B
+ .+ P O</1L+1>' v=12..,p (20)

¥y (x, p) = plePov-rr]. (x,p)]l v=p+1l..,n
for j=0,1,...,n—1,x € [0,1], where 1 = —p"~P, L := [n%p] . {hy . ... hp} is a fundamental
system of P(y) =0, and

vy (x,p) = KD (x) + 22

( 1 B B 1

| 2(¢.p) =7\ " () + =A== ot (E) AL(E) O(Am) C v=12,..,p

{ (21)
- 1

I\Zﬁ’)(s‘,p) = pn_l_,-p’e"‘”v-r’f[- &P v=p+1,.,n

forj=0,1,...,n—1,¢ €[01], where {h],..., hy} is a fundamental system of the formally
adjoint differential equation P*(z) =0
In the following we will always assume that the coefficients f,, g, of the differential equation
(1) fulfill the smoothness conditions of Theorem (3.1.9) with some [ € N,. Then, with the aid
of this theorem, the asymptotic expansion of the characteristic determinant A of the problem
(1), (2) can be established.
Proposition(3.1.10)[117]: For p € S,, we have

d A(p) = p” ePM([0o(p]; +[0:(p)];eP®¥) if n—p =2k -1,
an

A(p) = p? eP2([0,4(p)]; +[0,(p)]1ePk +[0,(p)]e2P¥x) ifn —p = 2k,

Y = Z Kj’ QO = wk+1+"'+wn—p:
j=p+1

with

and polynomials ©; in p~1,
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0, 0.
0;(p) = ®io+7” + o +p—§’, i=012,

Analogous representations hold in all other sectors S,.

Now the notions of Stone-regularity and normality can be formulated as follows.
Definition(3.1.11)[117]: A problem (1), (2) is called Stone-regular if there exists an integer

m € N, such that
m m
(ZI%I) <ZI®1SI> #0 ifn-p=2k-1
s=0 s=0

m
Z|@OS|¢0 if n—p =2k
s=0

If m is minimal, then the problem is said to be Stone-regular of order m.
The problem is called normal of order m if either n — p < 2 and (22) holds for some m € N,
orifn—p>2and

(22)

D (18651 +10,5]) # 0 (23)
s=0

where m is minimal.
For abbreviation we introduce functions y,, on [0, 1] by
Wy_pX, v=p+1,..,p+d,

P (x) = {wv_p(x ~1), v=p+d+1..n ~ clo1] (24)

where d is given by (19).

Now we are ready to establish the asymptotic expansion of K(IK — AH )1,
Theorem(3.1.12)[117]:The modified resolvent K(IK — AH )~ ! : L,(0,1) x C* - L,(0,1) x C"
is of the form

1
[ [ ercenn@de+ ey, |
K(K — AH )~ (;1) = n |,(f1) € L,(0.1) x C",

’ \(f ij(flll)ﬁ(f)df"'ng(/l)tﬁ) ’
0 j=1

where G?, Gf; are scalar functions and G2, G; are vector valued functions of size n x 1 having
the following asymptotic representations:
i) For sufficiently large p € Sy and x, & € [0, 1], we have
4

1
P ZH?(x, £.p)

=0
where HJ is a holomorphic and bounded function with respect to p,

HEp) =p Y [N O] PP erht-D R, (p)

GP(x,&,p) =

v,u=p+1

n p
HY(x,&,p) = pP~fo+ Z Z[- QL ()] e R, ,(p),

v=p+1 u=1
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4 n
HRG§p) = po 1 > 5 [ GOIL ()] ePuOR, (o),

v=1u=p+1

b
D L @I O Ryu(p).

v,u=1
For sufficiently large p € S, and x € [0, 1], we have

2
1
GP(x,p) = _sziD(x,p)
i=1

1
pmP

HP(x,¢,p) =

pn
where
n

14
FP(x,p) = (Z[ (OIT Ry (p) ) ,

k=1

n n
FPGxp) = o | D @ @I Rulp) |
v=p+1 k=1
i) For sufficiently large p € Sy and ¢ € [0,1], we have, with A = {j €{12,...n}V; = 0}
GR(&.p) = O, jEA
4

1
G p) = P Z HR(E p), je{l2...n}\A
i=0
where, for j € {1,2,...,n}\ A, ng are holomorphic and bounded functions with respect to p,
n

HEp) = pi™ 0 D LIL (D] ePt-DR,, (p),

v,u=p+1

n b
HEEp) = p" 757 5 S LIL (O] Ry o),

v=p+1u=1
14 n
HE@0) = po ™ ) S [IL (1P Ryyy(p),
v=1u=p+1
1 14
HE(Ep) =~ ) T (O] Ruyy(o)
v,u=1
For sufficiently large p € S,, we have
G5;(p) =0, jEA

2

1
GR(p) = S ZFiI}(p), jeE{12,...,.n}\A

i=1

where, for j € {1,2,...,n}\ A,
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n

p
Ffi(p) = p™? <Z['] Ry (p) ) ,

k=1

n
FE() = p" 577 [ [1 R (p)

v=p+1

n

k=1
In all cases the functions R,,, Rk, Ry,; and R, ; are asymptotically of the form
( L1+ Llem™ if 2k —1
if n—p =2k -1,
{ [00(p)]; + [0:(p)]eP @k P
I []+ []eP®k + []e2Pek
\[00(p)]; + [0:1(p)],eP*x+[0,(p)] 2P
Analogous representations hold in all other sectors S,.
Proof. Let (f;f,)t € L,(0,1) x C"and p € S,. Then we have

H(K + p™ PH )~! 1) = G(-&,p) f1(E)dE + (y1(C ), s Y P) )M (P) T £
f2) ),

For simplicity we keep the notations for the Green's function G, for the fundamental system
{», (-, p)};-, and for the characteristic matrix M also after the substitution A = —p™P.
In view of the different asymptotic structure of the fundamental system {y, (-, p)}?, for
v=12,...,pandv =p +1,...,n, we write the function g defined in (18) as

g(x.&,p) = g1(x,&,p) + g,(x,&,p)

if n—p =2k,

where
. 0, x > ¢,
14
g1(x.§,p) = _Zyv(x,p)zv (&p) x<g
S Vha
Z YV(x: p)Zv (E,P) x>,
g:(x.&p) =4 VT
- Z wx,p)z, (€ p), x<§,

\ v=p+d+1
If we expand the determinant in the numerator of the Green's function G with respect to its first
row, this implies the decomposition

2 n AL |
G(x,f,p)=gl(x,f,p)+gz(x,€,p)—ZZyv(x,p) A((Ep)p). (25)

i=1v=1

Here the functions AL (-, p) are determined by
v—th column

AL(E, p) = det(LR(p)y1 (-, p)) ... LR(p)gi (- €, p) ... LR(p)yn(-,p)),
that is, by substituting the v-th column L®(p)y, (-, p) of the characteristic determinant A(p) by

LR(p)gi(-, &, p) (seealso [130], [151]).
1) Suppose p € S, to be sufficiently large. According to the decomposition (25), we have
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4 2

1 1

= ZHP(x, §&p)  G(xp)=—5 ZFiD(x,p),
P i=0 p i=1

GP(x,&,p) =

For x,& € [0, 1] with
HE (x,&,p) = p" PP (g1(x . &, p) + go(x ., p)),

AZ(¢,
HY(x,&,p) = —p™7P Z Py, (x, p), A(é))p),
v=p+1
n All, |
H7(x,&,p) = —p™7P Z Py, (x,p), A(f )p),
v=pp+1 Az( ,0)
H2(x,&,p) = —p”‘”zpyv(x,p), VA(i)p ,
Z AL (€, p)
HP (x,&,p) = —p”‘”ZPyv(x,p), VA([;)p ,
and =
FP(x,p)t = p™P(Py,(x,p) -+ Py,(x,p) O -+ O)M(p)7Y

FP(x,p)t=p" P - 0 Pypu(x,p) Py,(x,p))M(p)~,

Firstletv € {p +1,...,n}. By Theorem (3.1.9) we have
Py, (x,p) = pPeP®v—r*[: (x),;,

AP _ P o) Z[- (OIR,,(p),
u=1

A(p) — pP

AEp) 1 0 _
A(p) = pn—l epu)v(o) Z [ (E)]epwv(l 3] Rvﬂ(p)’
p=p+1
The last two representations are obtained by expanding the determinants AL (¢, p) with respect
tothen—p—21columns p+1,....,.v—1,v+1,..,n and A2(¢ p) with respect to the last
n —p columns and using the asymptotic expansion of the characteristic determinant A(p)
given in Proposition (3.1.10).

Now letv € {1,...,p}. Then we have, again by Theorem (3.1.9),

1
Py, (x,p) = == [ (0],
AY(E,p) Pl 2
Ap) o ;[' (1 Rv o).
N(Ep)  p X -
= 2 . L©Olernti=OR, (o)

u=p+1
on expanding AL(¢,p) with respect to the last n — p columns, AZ(¢,p) with respect to the
n—p+ 1lcolumnsv,p +1,...,nand using Proposition (3.1.10).
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By Cramer's rule we obtain

FP(x,p)t = p"~ <Z Py, (x.p) 7 2 detka(p)> ,
=1 k=1

n
FP(x,p)t = pmP Z Py, (. p) ooy deti(p) |
v=p+

)

k=1
where
v—th column

My (p) = (LX(P)yiC.p) . e . LYy, p)),
arises from the characteristic matrix M by replacing the v-th column by the k-th unit vector e,

of C™ . Inserting the asymptotic representations for P y,(x,p) given above and expanding
det M, (p) with respect to the last n — p columns for v = 1,2,...,p and with respect to the
n—p-—1lcolumnsp+1,....v—-1v+1,.. . nforv=p+1,..,n,wesee

det Advk(p)__ —

—d tAA(,f)( )— [1Rv (p), v=12..p
e vk p _ _Kp+1 v . —_

S = e hOMR(), V=12,

fork =1,2,...,n. This completes the proof of part i).

ii) Let again p € S, be sufficiently large. Then we have
2

5 ) F),

i=1

1
G p)=V(GC.&p))  GFp) = =

forj=1.2,...,n where

F1,(p)t —p””(V(yl( p)) - (yp( p)) (N O)M(p)‘1

FR@)t=p"P0 - 0 Vi(¥ps1(:p)) Vi3 (. p)) )M (p) ™
Since G(-, &, p)fulfills the boundary conditions (2) and V; = 0 for j € A, we know
GF(€,p) = 0, jEA

1
G50 =~ U(6CEp)  JEL2 . mI\A

Letj € {1,2,...,n} \ A. According to (25) we have
4

1
G(§.p) = = H(&.p)

i=0

for & € [0,1] with
HEi(E, p) = U(gl( &p)+9g2(-&,p)),

HE (€, p) = — Z U; (- p)) A(f )p)
v=p+1
AL(E,
ng(flp) = Z U;(n(p)) A((fp)ﬂ)’
v=p+1
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14
A,
H?j(f:p) = _Z Uj(yv(':p)) A((Ep)p),
AL(E,
Hf(&,p) = ZU (. p)) A(fp)p )
From Theorem (3.1.9), it foIIows
Ui (.p)) =[], v=12,...p
U(n(,p)) = plie O[], v=p+1,.

Together with the asymptotic expansions of AL (¢, p)/A(p) derlved in the proof of part i), this
proves the asserted asymptotic representations of HE (E p)fori=1,23,4.
The asymptotic expansions of F}(p)* for i = 1,2 are obtained from V; = 0 for j € Aand from
Vi, (p)) =[], v=12..,p
Vj(yv(',p)) — phje—lﬂ/)v(o)[.]’ v=p+1 ..,n,
for j € {1,2,...,n}\A following the same lines as in the end of the proof of part i).
This completes the proof of Theorem (3.1.12).
For the proof of the completeness theorem we need an estimate for the adjoint of the modified
resolvent which can be deduced from the preceding theorem if the problem (1), (2) is regular in
some sense.
Theorem(3.1.13)[117]: Suppose the problem (1), (2) to be Stone-regular of order L.
Let {p,,}m=1 be the set of zeros of the characteristic determinant A(p), and let § > 0.
Then we have
pr (K + o7 PH )Y () = 0(pmPr i+ preat), (1) € L,(01) x T,
with respect to the normin L,(0,1) x C™ forp € C, |p — p,| > 8, k =12,... If the problem

is normal of order I, then there exists at least one ray I" in each sector S, such that the above
estimate holds for p € T.
Proof: The adjoint of the modified resolvent is given by

(;;)(H(K a1 )" ( ;)>=<H(K—AH)—1(2),(§;)>

- f f 6P (x,&,2) f1(§)dEgT () dx + f (G2 (x. ) £) 71 () dx
0

(f G, A)fl(f)d€> 72+ (5D 1) 72

n

- [ 1@ [ @@ s as g ([ e Do a)
0 0 0

1=1

" f £ (GEED) gudé + FGEDY g2

for (2) ( ) € L,(0,1) x C™ and hence
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(e -T)") (%) = [ [FEePocow @ER) o |
g2 \( fo etGP (x, 2) gl(x)dX> (W) /

i=1
First we consider the sector S,. Since the problem is Stone-regular of order [, we have

Ryu(p) = 0(p"), Ry(p) = 0(pH), Ryui(p) = 0(p"), Ryij(p) = 0(ph),
forp € So,lp — pm|l =6, m=12,...,(see [133] or [145]).
Moreover, we have R(y,(x) <0,v =p +1,...,n, according to the definition of the function
Y, in (24) and hence

f ePPO f(x)dx = o(1), f € L,(0,1),
0

forp € Sp. Observing0 <[, <n—-1,hj=—(n—p) if ;=00<h;<p—-1ifV; #0and,
consequently, 0 < k; = max{l;n—p+h;} <n-—1, we obtaln the asserted estlmate in S, by
Theorem (3.1.12) In the same way the estimates in the sectors S, follow.

If the problem is normal of order [, then the asserted estimate holds on the ray I" given by
[':={p€esS,: R(pw,) = 0}. This completes the proof of the theorem.

We are going to show that under certain regularity assumptions, the system of eigenfunctions
and associated functions of problem (1), (2) is complete in the spaces W, introduced in this
section, where the number r is determined by the order of normality.

To this end we follow the lines of the so-called method of Keldysh [131] which is based on the
representation of the principal parts of the Laurent expansion of the resolvent given in this
section and on the estimates of the growth of the resolvent provided also in this section.
Proposition(3.1.14)[117]:Suppose the problem (1),(2) to be normal of order [, and let r(I) € N
be defined by

n—p+l+max{0,p—1—ry}

n—p

r(l) :=

Then we have
Ker (A*)S = Ker (A*)'O+1 s> () + 1.
Proof:It is sufficient to prove Ker (A*)"®+2 < Ker (A*)"®+1, Assume there exists an element
f € Ker (A*)"®O*2 gych that (A*)™O+1f £ 0. If we let
¢o = f, ¢ = AP, i=12,.,r()+1,
then we have ¢,y41 = (A*)"O*1f = 0and
f = U=-28)(po + p1a+...+ GO + (1 7OTY),
Substituting A = —p™~P we obtain for p € C, |p — p,,| > & for some § > 0,
(I +p" PA)Tf = o+ 1A+ + P pl7 D + ¢y 7O
— 0(pn—p +l+max{0,p—1—xp+1}+1) + ¢r(l)+1/1r(l)+1 (26)
by definition of r(1). Here {p,,,.};n=, are the zeros of A(p). On the other hand,
since the problem is normal of order [, Theorem (3.1.13) shows
(I + ,Dn_pA*)_lf — 0(pn—p +l+max{0,p—1—xp+1}+1) (27)
As (r()+1)(n—p) >n—p+1+max {0,p — 1 — k,,,}, it ensues from (26) and (27) that
®r@y+1 = 0 in contradiction with f & Ker (A7)"®O+1,
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This completes the proof of the proposition.
Corollary(3.1.15)[117]: Let r, be the maximal length of the Jordan chains of A* correspond-
ing to the eigenvalue 0. Then r, < r(l) + 1.

The preceding proposition and its corollary show that the length of the Jordan chains of A*
corresponding to the eigenvalue 0 is < r(l) + 1 where r(l) is determined by the order [ of
normality.

In this way, the spaces W{jr(l) +1 are associated with the spectral problem (1), (2).
Theorem(3.1.16)[117]: Suppose the problem (1), (2) to be normal of order I, and let (1) € N
be defined by

() = n—p+Il+max{0,p—1—rKy} |

n—p
Then the system {y;} of eigenfunctions and associated functions is complete in the spaces
W, 1 fork=01....,n
Proof: By Lemma (3.1.5) we have {ys} € W, 4, fork =01,...,n.
As Wy +1 1S dense in W{f’r(l)ﬂ for k < n (see [145]), it is sufficient to prove completeness
in Wiiry+1-

By definition of A, an element y; is an eigenfunction or an associated function of 1L or,
equivalently, of (1), (2) if and only if z; = Ky is an eigenfunction or an associated function,
respectively, of I —AA. The operator K : W,*(0,1) - L,(0,1) x C" is bounded and invertible
and hence K" is also bounded. According to the definition of the space W, ., and we

have W,y = K™* ((Ker(A*)r(t)“)L) Consequently,

K : Wi )41 = ImATO+1
is a bijection. Thus the system {y;’} is complete in Wy}, ), if and only if the system {z;} is
complete in Im A"®M+1 < [,(0,1) x C™.
In order to prove the completeness of {z3}, let f € Im A7®O+1 sych that f L {z5} with respect
to the scalar product in L,(0,1) x C™. Then the function
p(1) :== U -2A*)1f, A€ C,
is holomorphic in the whole complex plane by Lemma (3.1.2). Using (14) we see
(1—2a)" = ((1-74)"") = (1-Im(K-Tn) ")

= 1+ 2 (H(K - 2H) ).
Thus we obtain for y(p) := @(p™P),
x(p) = (I +p"PA) f=f—p" P(H (K+ p™ P H)™')f.

Since the given problem is normal of order [, Theorem (3.1.13) implies

)((P) — 0( pn+l—min{p—1,xp+1}) (28)
on a ray belonging to the sector Sy if n—p>2and forp eC, |[p—p,|>6,ifn—p <2
where {p,,};.—1 are the zeros of A(p). Since y is an entire function of order 1 in p, the estimate
(28) holds for all p € C according to the Theorem of PhragmenLindelof (see [136]). Thus ¢ is
a polynomial of degree

n+l—min{p —1,k,,,}—1
n—p
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in A, that is,
(I=2A)f = ¢ + ¢1d+...+ A7,
Comparing coefficients, we see
f = ¢Ol ()bi = A*(pi—ll i =12,.. .,T(l), A*d)r(l) =0.
Consequently, f € Ker (A*)"®O+1 = (ImAr(‘)“)Land hence f = 0. This completes the proof
of the theorem.

For A-independent boundary conditions, a completeness theorem was proved for normal
problems of order [ under the additional restrictions [ <n—p—1and 2p —n —1,,; <0.
Under these assumptions we have (1) = 1, W, = W{ according to Proposition (3.1. 8).
Corollary(3.1.17)[117]: Suppose the boundary conditions (2) to be independent of A, and ass-
ume the problem (1), (2) to be normal of order [ with Il <n—p—1and 2p—n—-1,,, <0.
Then the system {y;} of eigenfunctions and associated functions is complete in W, = W{
for k=0,1,...,n.

Nevertheless, even in the case of A-independent boundary conditions, the completeness
theorem of the present section is an extension of the completeness result in [147] since we do
notrequirel <n-—p—1and2p —n—1,,; <0 here.

We consider four examples of boundary eigenvalue problems (1), (2). The first example is
the simplest problem of this form with p > 0, its boundary conditions are independent of A.
The same differential equation but with A —linear boundary conditions is Studied as a second
example. These examples have been considered before by Everitt [125], and recently in [134]
in a self—adjoint setting. The third example concerns the non—selfadjoint case with A —linear
boundary conditions. It is the adjoint problem of a boundary eigenvalue problem with A —
independent boundary conditions which was studied in [147], [148].

Finally, we consider an example arising in the theory of elasticity: the eigenvalue problem for
the buckling loads of a clamped-free elastic bar subjected to a certain load at its free end, the
so-called Petterson-Konig's rod.
Example(3.1.18)[117]: We consider the boundary eigenvalue problem

—y" = Ay,

y(0) =0, y(1) =0
The eigenvalues and eigenfunctions of this problem are

Ay, = 2mv, v = *x1,+£2,...,

1 .
y, (x) = Z—m/(ez””’x -1), x€[01], v==%1%2, ..
Here the operators K, H : L,(0,1) — L,(0,1) x C? are given by D(K) = W.2(0,1), D(H) =

W,(0,1) and
y" y'
Ky =|y(©) | Hy= <o>,

y(1) 0
so that the given eigenvalue problem can be written equivalently as (IK + iAH)y = 0. It is not
difficult to see that this problem is normal of order O with (0) = 1. For we have

kK, = l; = 0, K, =1, = 0, K= K+ Kk, =0,

and, withid = pand w; = —1,

1 1 _

Mp) = o= -1re
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In order to determine the spaces W ,, we have to calculate the adjoint of the operator A =
HK™L.
Note that KK is invertible, its inverse K= : L,(0,1) x C? - L,(0,1) being given by

(K™ f)x) = J;) J;)ﬁ(T)det + (‘L Lﬁ(T)det +f3 —f2>x + f2,
x € [01], f € L,(0,1) x C?,
where f = (fif>f3)¢. Consequently, A : L,(0,1) x C? - L,(0,1) x C? is determined by
f fl(r)dr—f ffl(T)det+f3 —fa
0 0 Y0

0

0
with f = (f; f>f3)t. An easy calculation shows that A* : L,(0,1) x C? - L,(0,1) x C? is given

by

AN) = , x € [0,1], f€L,(01)xC?

91
x € [0,1], g= <92> € L,(0,1) x C?
93
Hence a basis of Ker(A*)? is {¢?, ¢, ¢1} where

0 0 1
- - -y . 0 - 1 0
According to Definition (3.1.4), we obtain

U () = UL () = (KY, 09 )1, 0.1)xcz = ¥(0),
U (y) = U3(y) = (KY, 99 )1 0.1yxc2 = ¥(1),
1

U) = V10D = (9,01 ez = [ ¥()dx = ¥'(2) =5/ O)
0

and
wg, =L,(01),
Wy, ={y € w;(0,1):y(0) =0,y(1) = 0}.
Wi, ={y € W7(0,1):y(0) =0,y(1) = 0,y'(1) - »'(0) = O}.
By Theorem (3.1.16), the system {y, },,ez =0 is complete in L,(0,1), Wy, and W ,.

Since the boundary conditions of the preceding example are independent of A, the theory
developed in [147], [148] can also be applied here to show that {y,},ez =0 iS complete and
even a Riesz basis in the spaces Wf = W{,fork =0,1,2.

Moreover, this example shows that the additional defect of completeness due to the boundary
condition y'(1) — y'(0) = 0 is not a consequence of a lack of selfadjointness. For in [134], a
selfadjoint operator A is associated with Example (3.1.18), given by
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D(A) = {y€ H:yew;(0,1), y'(1)-y'(0)=0}
(Ay)(x) = iy'(x) —iy'(0), y € D(A).

Here the space H is defined as

H = {];E W3 (0,1): f(0) = 0,f(1) = 0},
(f,g)Hzf f g'dx,f,g € H.
0

In [134] it is proved that {y,},ez,=0 iS an orthonormal basis in (H, (-,-)y) and hence a Riesz
basis in Wy, since H = Wy, and the norm on H is equivalent to the usual Sobolev norm on
W3(0,1). It should be noted that here the additional boundary condition y’(1) — y'(0) =0
arises as a restriction on the domain of 4, that is, D(A) = Wy, which guarantees AH C H.
Example(3.1.19)[117]: The next example we study is
_yll — /‘{iy,,
1
y(0) =0, y' (1) +215y(1) = 0.
Here the eigenvalues and eigenfunctions are
A, =(@v -1, v € Z,
1
—_ = (p2(v-Dmix _ 1 € 1 €7
YV(X) (Zv_l)n_ (e )l X [Ol ]1 v !
The operators K, H : L,(0,1) - L,(0,1) x C? with D(K) = W/(0,1),D(H) = W;(0,1) are
now given by

!

y" y

0
Ky=|y(0) ], Hy=1|, ,
y'(1) 5y

The problem is normal of order O with r(0) = 1 since
K1: l1: 0, KzzmaX{lz,n_p+h2}:1, K — 1,

and, with iA = p,
1 1
1 2
=11 1 = — — +< ——> _p>.
A(p) = e"p<§p—l> 2p< 1+(1 p e

The inverse of K is given by

(K1) (x) = fo fo £.(x)dedt + (— fo £.()dr + f3>x s

x € [0,1], f € L,(0,1) x C?,
where f = (fif>f5)t. Hence we obtain

/ fxfl(r)dr — flfl(r)dr + f3
an@ =| ° 0

1 1 pt 1
Py 1 drdt — 1 d 2
([ [ —[scoue55)
x € [01], f€L,(01)xC?

\i,
)

with f = (f1f2f5)¢. The adjoint A* is given by
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x 1
/—f gl(r)dr—593X
0
|
|
|

-

91
(A*g)(x) = %g3 , x€[01], g= <g2> € L,(0,1) x C?
93

\ folgl(r)dr + %93 /

Thus a basis {@?, @1} of Ker (A*)? is determined by

0 -1
<p(1)=<1>, <pi=<o>.
0 2

Then the boundary conditions U; introduced in Definition (3.1.4) read
U (y) = U () = (Ky, 97 )1, (0.1)xc2 = y(0),

1
U (y) = UL (¥) = (KY, 01 )1, 0.1)xc? = —f y" (x)dx + 2y’ (1) = y'(1) + y'(0),
0

According to Theorem (3.1.16), the system {y, },z is complete in the spaces
W‘Lot,z = L,(0,1),
Wi, ={y € w;(0,1):y(0) = 0,y(1) = 0},
Wi, ={y € W£(0,1):y(0) = 0,y(1) = 0,y'(1) +y'(0) = 0}.
This example is still selfadjoint in the sense of [134], and it has been proved there that
{»}vez is an orthonormal basis in

H={feW!(01): f(0)=0},(f,g)H=f f g dxf.geH
0

Here the corresponding selfadjoint operator A in H is given by
D(A) = {y e H: y e W#(0,1),y'(1) +y'(0) = 0} = Wg,,
(Ay)(x) = iy'(x) —iy'(0), vy € D(A4).
It follows that {y, },z is a Riesz basis in Wy ,.

A completeness or basis result in the Sobolev space W.2(0, 1) cannot be deduced, neither
from the selfadjoint approach in [134] since A is selfadjoint only in H, nor from the nonself-
adjoint theory in [147], [148] which does not apply here at all because the boundary conditions
depend on the eigenvalue parameter.

Example(3.1.20)[117]: The boundary eigenvalue problem

y()=10, y"(1)=0 y"(0)+y'(0) - 2y(0) = 0.
is the adjoint problem of Example 1.1 in [147], [148]. The eigenvalues and eigenfunctions of

this problem are given by
2

s
b ==(v-17—, v=12..

— 4 _ L —
(@) = gocos (v 1) Tx), v=12,..,

The operators K, H : L,(0,1) - L,(0,1) x C* are defined by D(K)= W;(0,1), D(H) =
w1(0,1) and
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/ y(ln) \ y,
_ y(1 . 0
Ky‘\ y@ | o)
y"(0) + y'(0) ¥(0)
We have
ki=1, =0 ,k,=1,=2 ,kg=max{ly;n—p+hz}= 2 k= 4,
and, with 1 = —p?
A(p) = 2p3(e? +e™).
Hence the problem is normal of order 1 and (1) = 1. The operator A = HIK ™! turns out to be
given by

I/J;)x J:ﬁ(r)drdt + <f3 - 2L1f1(r)dr>x +fi—f3+ zj;lfl(r)dr\l

— 0
aNe = | 0 |

\ f2 +%f3 — fa— J:ﬁ(T)dT— J:J:J:fl(r)drdtdx /

where x € [0,1],f = (fif> f5 fo)t € L,(0,1) x C3.A short calculation shows
x pt 1 1 pt 1
f f f.(0)drdt + (1 — x)f g ()dr + f f g(Ddrdt — = g.(1 - x?)
0 Y0 0 0 Y0 2
ga

. _ 1 1
(A)x) = fo g1(Ddr + > g,

1
f g1(r)dT — g,
0

for x €[0,1],9 = (9192 93 gs)* € L,(0,1) x C® . As r(1) = 1, the maximal length of a
Jordan chain of A* corresponding to the eigenvalue O is less or equal 2. A basis of Ker (A*)? is

given by {@?, @3, @1 } where

@) = .

The boundary conditions U2, U% and U read in tﬁis case
UL (y) = (Ky, @7 >L2(0,1)><(C3 =y(1),
U3 (y) = (Ky, @3 >L2(0,1)><(C3 =y"(),
UL (») = (KY, 01 )1, 0.1)xc?

- f y"" (x)dx +y"(0) +y'(0) =y" (1) +y'(0),
0

An equivalent normalized system {U,, U,, U3} of boundary conditions is

U (y) = y(1), U (¥) =»"(D),  Us(y) = ¥'(0)
Hence the system {y, }, ey is complete in the spaces

0
1
0

R, OOoR
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Wy, = L,(01),

Wﬁ,z ={y e W;}(0,1): y(1) = 0}.

Wi, ={yew;7(0,1):y(1)=0  y'(0) = 0}

Wi, ={y e w;(0,1):y(1) =0, y'(0) = 0,y"(1) = 0}.

Although this example is adjoint to an example considered in [147], [148], it could not be
studied within the theory therein since its boundary conditions depend on A. Of course, it can-
not be viewed within any self-adjoint approach because of the different structure of Example
(3.1.20) and its adjoint problem.

Example(3.1.21)[117]: The critical loads for divergence of a clamped-free elastic bar of length
[ and constant flexural rigidity a exposed to an end load Q are determined by the boundary
eigenvalue problem
y@® = 1y®,
¥(0)= 0, y'(0)= 0, y"(1) = 0, yP(V)-AL-y)y' D) =0.
Here A = — %, and y;, v € [0,1], is the angle between the end load Q and the x-axis where
¢, denotes the angle between the tangent at the free end of the bar and the x-axis (see Figure 1).

r A

y(x)
Figure 1

This system is called Petterson-Konig's rod (see [132], [135], [129],[141] and [123]), or, if Q is
tangential, that is, y = 1, Pfliiger’s rod. The case y = 0 leads to the well-known Euler-loads.
The operators K, H : L,(0,1) - L,(0,1) x C* are given by
D(K) = W;(0,1), D(H) = W#(0,1) and
y(4) y(z)
|/ y(0) | / 0 \I

Ky =| y'(0) |, Hy =| 0
\y"(l) \ 0 /
y®(1) 1-yy'1D)

The characteristic determinant is easily seen to be

A(p) = p>(=2iy —i(1—y)e” — i(L—y)e ™)
where 2 = —p?2. Since
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kK1 =0, k=1, k3=2, Kk, =3, kK =6,
the problem is normal of order 1 and (1) = 1. The operator A = HK™1is given by
(Af)(x)

0
= 0
0

(fol foxfotﬁ(T)detdx - fol J:fl(’[)det—%Llfl(r)dr+f3 +f, _%fs> (1—7)

for x € [0,1], f = (f.f> f5 fafs)t € L,(0,1) x C* After some calculation we find
(A"g)(x)

[ [ h@are+ S g -p + -0 [ g+ [ (@ -ng@ur
x Y0 0 0

0
gs(1 =)

f g:()d7 + gs(1 —v)

1
f 951~ gy (D)d ~ 2 g5 (1~ 7)

Forx € [0,1], g = (919> 93 g4g5) € L,(0,1) x C*. Again, asr(1) = 1, the maximal length
of a Jordan chain of A* corresponding to the eigenvalue 0 is less or equal 2. A basis of

Ker (A*)? according to Definition (3.1.4) is given by {¢?, 92, 92, @1} where
(o) e[

1 o) (")

=| o0 [, - =lol.ei=l o |

HE U A AR
0 0 -1

Thus we obtain the boundary conditions

Uy (y) = UL () = (KY, 07 ), 01)xc = ¥(0),
U, () = U () = (KY, 03 )1 0 nyxc = ¥'(0),
Us(y) = US(¥) = (KY, 903 )1, 01)xc3 = ¥ (1),
Uy(y) = UL () = (KY, 071 )1, (01yxc?

=(1-7) f yO)dx -y (1) = —yy® (1) - (1 - 1)y (0),

0
According to Theorem (3.1.16), the system {y;} of eigenfunctions and associated functions
of the boundary eigenvalue problem for the critical divergence loads of the Petterson-K6nig's
rod is complete in the spaces
W‘Lot,z = L,(0,1),
Wi, ={y € W;(0,1):y(0) = 0},
Wi, ={y € w7(0,1):y(0) =0,y'(0) = 0},
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Wi, ={y € W;(0,1):y(0) = 0,y'(0) = 0,y"(1) = 0}.

Wi, ={y € W;(0,1):y(0) =0,y'(0) =0,y"(1) = 0,yy®(1) + (1 - y)y®(0) = 0}.
Since the eigenvalues and eigenfunctions of Example (3.1.21) can be computed exactly, it
would be interesting to see if the convergence of Ritz-Galerkin methods, which are used for
these problems (see[135],[129]), is improved by choosing starting functions in the space Wy,
which satisfy the additional boundary condition yy® (1) + (1 — y)y®(0) = 0.

Sec(3.2): Some Non-Selfadjont Block Operator Matrices

In the reference [160] selfadjoint operators A in a Hilbert space # = x #, given by a
block operator matrix
~ A B
i=(5 7o) (29)

B* D
Were considered under the assumption that the spectra of A and D are separated and B, D, are
bounded operators. In [161] and in [164] these investigations were extended to the case that
all entries are unbounded.

In this section the results of [161] are generalized to a non-selfadjoint situation. We consider
an operator A given by a block operator matrix (29) such that A and —D are m-sectorial (see
[162]) and their numerical ranges have a positive distance from the imaginary axis, and B is
bounded. We show that the imaginary axis belongs to the resolvent set p(A4). If the spaces
H, H are not trivial, then the spectrum o (A) consists of some part o_(A) in the left half plane
and another part o, (4) in the right half plane (if A or D are unbounded, then o, (4) or o_(4)
may be empty, which implies that c belongs to the extended spectrum of A).

It is shown below that, if the operator D is bounded, then the spectral subspaces £, and £_
corresponding to o, (4) and o_(A) are supported on H and H, respectively; that is, e.g., £,

admits a representation
X
L, = {( ) : X E 17-[}
* K.x

with some bounded linear operator K, from # into #. The invariance of £, and £_ under A
implies that K, and the corresponding operator K_ for £_ satisfy certain Riccati equations.

As in [160], this result is used in order to show a half range completeness statement : If
g, (4) is discrete, under certain assumptions, the first components of a system of root vectors
of A corresponding to o, (4) (“ half ”of the spectrum of A) form a complete system in . An
example of an eigenvalues problem of Sturm-Liouville type where this result can be applied is
given at the end of this section.

In order to locate the spectrum o (4) of the block operator matrix A, we introduce the notion
of the quadratic numerical range of a general block operator matrix

i = (A B)
cC D/'
with closed operators A, D and bounded operators B, C . This quadratic numerical range is the

set of all eigenvalues of the matrices
(Ax,x) (BX,x)

Il Nl el
(Cx,x) (Dx,%) |’
lIxIlIZl (121 /
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where x € D(4), £ € D(D), x, & # 0. It has some properties analogous to those of the
numerical range. We mention that the quadratic numerical range of a block operator matrix A
turns out to be especially useful in the particular case of a selfadjoint operator A. This question
will be considered elsewhere.
Let 7 and F be Hilbert spaces. We consider an operator A in the Hilbert space 7 = H x H
given by a block operator matrix

A= 5, (30)

C D
where A and D are densely defined closed operators in H and 7, respectively, and the opera-

tors B € L(H,H), C € L(H,H) are bounded.
For the operator A we call the set

Ir (Ax, x) (B, x) \
_ . lxll2 2Nl | _
w7 :_{IAe«:.detl Cx2) (D33 | =0,
— — -1
\ B /

x € D(A), £ € D(D), x,& # 0} (31)
the quadratic numerical range (with respect to the block operator representation (30)).
Thus, for each element % = (x, )t € H such that x € D(4),% € D(D),x, % # 0, two complex
numbers A,, A, are defined as the solutions of the quadratic equation in (31), which are the
eigenvalues of the matrix
(Ax,x) (B%,x)
|z [1%]]x]]
(Cx,x) (DX, %)
\nxnuxn 1112 /
and W7 is the set of all these solutions or of all these eigenvalues.

It is easy to see that , for a bounded operator A , the quadratic numerical range is a bounded
subset of C. It is also not difficult to see that the quadratic numerical range consists of at most
two connected sets. If B =0 or € = 0, then W7 = W, U W}, where for a closed operator T in
a Hilbert space, W, denotes its numerical range,

(T x,x)
Wr = { T 'x € D(T),x # 0 } :
Let r(A) be the set of points of regular type of 4, that is, 1 € r(4) is equivalent to
(A= = vallzll, % €D(A),

for some y,; > 0.
Theorem(3.2.1)[159]: For the quadratic numerical range Wﬁz the following inclusions hold:
o, (A) c Wi, C\r(d) c W2
Proof. Let 1 € g, (4). Then there exists a nontrivial vector (x, )t € #, x € D(4),% € D(D),
such that
(A—Dx + Bx =
Cx+ (D - A)x

0,
0. (32)
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Suppose first that x, X # 0. Taking the inner product of the first (second, respectively) equation
in (32) with x (x, respectively), we find that the system

((Ax, x) — Allx||? (B%,x) )(ﬁ) —o

has the solution §; = 1,&, = 1, hence
det((Ax,x) — Allx|I? (B2,x) ) _
(Cx, %) (Dz, %) — A||%]|?

But this equation is equivalent to the equation in the definition (31) of W#, and hence A € W7
.Now let X = 0. Then (A — A)x = 0,Cx = 0, and hence

(Ax,x) (B®', x) / (B%',x) \
T AR F=r e DY A 71 1= R
det| o2y (2.2 . | = det| NG |=0
(Bl %% / \ | %1% /
forall £’ € D(D),&’ # 0, which implies A € W7 . The case x = 0 is analogous.
More generally, if 1, & r(4), then there exists a sequence(%, )¥ < H, %, = (x,,, X,)"%,
x, € D(A), %, € D(D), |IZ,Il = 1, such that ||(4 — 2, )%,|| = O for n - oo, that i,
(A- 2y )x, + Bx, = ]f,}
Cx,+(D—=2)%, = fn
where (f,)7 © H.(f,)T © H, lIfall » 0, [|fu]| = Oforn — co.
Suppose first that lim,,_,, inf||x,|| > 0, lim,,_,, inf||%,]| > 0. Without loss of generality we

can assume ||x,|| > O, ||x,|| >0forn=1,2,....Then
(Axp, xp) +(Ba?n,xn) _ (faxn)

Il 117 Ol lxll?
(Cxn%) (D2 %n) . _ (%)
12,117 12,117 O IRall?
We introduce the polynomials
(Axn,xn)_ (Bx,,,x,) \
— 12,112 126,112
GO =0 gy 0BE) |
12,112 12,12 /
(Axn,xn)_/1 (an,xn \
— get| Ml IZallllxall |
(Cx,, %) (Dx,,%,) 3
Il 112l 12,117 /

Then f, ,f, — 0 for n — oo implies

(foxn)  (BEn xn) \

(A% lxall?
dn(4 det 0, :
n( O) | (fn, n) (Dxn,xn) /1 g n — oo
12,117 1%l 0/
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For each n, d,, is a monic quadratic polynomial in A. If A}, A2 are the zeros of d,,, then A,
22 eW? and d,(1) = (A —AL)(A—22). As d, (A) » O for n —> oo, we have A} - A, or
A2 > A, for n - oo and thus 1, € W7 .

Let lim,_ . inf ||X,|| = O, without loss of generality X, — O for n - oo, ||x,|| > O for

n=12... If we define 1, := @ and choose 2', € A, &', # 0, such that (C x,,

llxn 2
X',)=0forn=1,2,...,then

(Axp %) (Ba?,a,xn)\ /0 (B, xn)

der| TPt I | e TENIET |
et Al Al Al - et Al AT _Ol
(Cx,, %5, (D, %), (Dx;, %),
=~/ NETD _/111 0 T_An
[, 1117 ] || %7 ] ||

that is, A,, € W7 . As &, > 0and f, - 0 for n > oo, the relation
((A - /10 )xn 1 Xn ) - (B-’?n xxn) = (fn_:xn)
implies 4,, = A, .The case lim,_,, inf||x,|| = 0 is analogous. This proves the theorem.
Later we will need the following well-known result connected with the numerical range of
a closed operator. Here we assume that arg z € (—m, ] for complex numbers z € C.

Lemma(3.2.2)[159]: Let T be a closed operator in a Hilbert space. Assume that its numerical
range Wy is contained in a sector A, ={z € C: |argz| < 6;} for some 6;,0<0; < % :

Then there exists a constant C > 0 such that

C
I(T-—2)1< —, R <0, z+0.

|z’
Proof. Letz € Cwith R(z) < 0, z # O. If % < argz < §+9,then
1
I(T—2)7 <= < < .
dISt(Z, WT ) IZI cos (% + QT — arg Z) IZI COoS QT
The case — g— Or < argz < — % is analogous. If | argz| = g + 6, then
1
T—z) Y <—<—.
T =271 < Gtz wy T2
In the sequel we consider a block operator matrix (30) of the particular form
~_(A B
A=(g ) (33)

that is, we assume C = B*. Additionally to the pervious assumptions , we suppose:
() The operator A is boundedly invertible and its numerical range W, is contained in the set
{z €eC: |argz| < 6,, R(z) = a}
forsome 6,,0< 6, < % and a > 0.
(I1) The operator D is boundedly invertible and its numerical range Wy, is contained in the set
{z e C:|argz| = n-0,, R(z) < -6}
forsome 6,, 0< 6, < g,and6>0.
This means that the operators A and — D are m-sectorial (see[162]) and that their numerical

ranges have a positive distance from the imaginary axis. We mention that the role of the
imaginary axis can be taken over by any other vertical line in the complex plane.
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Lemma(3.2.3)[159]: Let a, b, ¢ and d be complex numbers such that R(a) > 0, R(d) < 0 and
has eigenvalues A, , A, such that:

bc = 0. Then the matrix
a b
A= (c d)’
(i) R(A,) = R(a), R(A;) < R(D);
(1) min{J(a),J(d)} < 3(1,),3(1,) < max{J(a),J(d)};
(i) A, ,—A, € {z € C: |arg z| < max{|arg a|, * — |arg d|}.
Proof. We can suppose that J(a) = 0 (otherwise we consider the matrix A4*) and that
arga =>m — |arg d| (34)
(otherwise in the following considerations we start from d instead of a). The assumption (34)
implies
J(a—d)
R(a —d)
The eigenvalues 4, , 1, satisfy the equation
(a—AD)(d—-A)—-t =0 t=bc=0.
We consider them as functions of t:

< tan(arga). (35)

2a () = a er d N ((a —4d)2 . t)z.

If we decompose 1, , (t) and 2% i real and imaginary parts, 4, ,(t) = x(t) +iy(t) and
, > ,

24 — B + iy, then we find

2 1
(B =B - GO - = TR +t (36)

(O~ HOO 1) = 5 3a-d)? 37)

The last relation shows that the eigenvalues 1,(t), 1,(t) lie on a hyperbola with centre g + iy

= aTer, and with the asymptotes J(z) = y and R(z) = p parallel to the real and imaginary

axis, the right hand branch passing through a and the left hand branch through d. From the
identity (36) it follows that for 0 < t < oo the eigenvalues A,(t) fill the part of the right hand
branch which extends from a to +c0 + iy, and the eigenvalues A,(t) fill the part of the left
hand branch from d to —co + iy. This implies (i) and (ii). In order to prove (iii), it is sufficient
to show that the derivatives of the hyperbola at d and at a are in modulus less than tan(arg a).
E.qg. for the derivative at d it follows from (100)

j0)_ y@-y_ 3D-33@+d) _ 3(d-a)
x(0) x(0)-p ER(d)—%ER(a+d)_ R(d —a)

which is in modulus less than tan(arg a) by (35). The lemma is proved.
Theorem(3.2.4)[159]: Suppose the assumptions (1) and (11) are satisfied and define
A:= {z € C:|argz| <max{6,,0p }}

Then
c(A)c{ze(-A): R(2) <-6}U {z €A R(@)=a} =:A.
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Proof. First we show thatW_ﬁ2 c A . To this end consider for x € D(4), £ € D(D), x,% = 0,
the matrix

(Ax,x) (BZ%,x)

| lIx1I2 UL
(B*x,z2) (Dx,%) |
lIxIHizl 1112 /

According to the assumptions (1) and (l1), it has all the properties of the matrix A4 in Lemma
(3.2.3). Hence its eigenvalues are in A which implies W7 < Aand hence W? < A . According

to Theorem (3.2.1) we have C\r(4) c W_A2 and consequently C\A < r(A). On the other hand,
C\A consists of only one component, hence the theorem will be proved if we show that at least

one point A, of this component belongs to p(A). To this end we choose 4, on the imaginary
axis sufficiently large in modulus. According to Lemma (3.2.2) we can choose A, such that

|B(D- 20) " B*(4-20) || < 1.
Then A, € p(4) as
(A=2g—BMD—-2)B)1=UA-2)"tU-BD-2)*B*(A—215) 1)
exists and is a bounded everywhere defined operator. The theorem is proved.

In the sequel we consider a block operator matrix 4 as in (33) which satisfies the assumptions
(D, (1) and for which D is bounded. Note that in this case the assumption (I1) is fulfilled if
there exists a § > 0 such that

R(D) < 6.
From Theorem (3.2.4) it follows that a(A) splits into the two disjoint subsets
0_(/1) = 0(/1) N{ze (-A): R(z)< -6},
0.(A) = c(A)n{zeA: R(Z) = a}.
Here, as A and hence also A can be unbounded, o, (4) can be empty. Since D is a bounded
operator, o_(A) is bounded. Let

s 1 N 1
P_(A):Z—Z—m_f(A—z) dz

be the corresponding Riesz projection. Here I'_ is a positively oriented Jordan contour in
{z € C: R(z) < 0} surrounding o_(A4). If we define the projection
P.(4) := 1 - P_(4),

then we have a decomposition & = L_+ L, into the spectral subspaces

L_ = P (AH, L,:= P (AH,
and

) o(AlL.) = o_(d), o(AIL,) = o,(A).

Here A|L, is, in fact, the restriction of A to D(A) n £, and has its values in £,. If H # {0},
then £, = {0}, even if o, (4) = 0.
Lemma(3.2.5)[159]: We have

1
2mi

[a-27" as= > (P-(2) - B.()).

—joco
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Proof. Let 1, > 0 be such that _(4) c {z € C: R(z) <0, |z| < 1,}. Then we have

37‘[
f(A—Z) dz—P(A)+—f(A—re‘t) irett dt,r > r,.

—ir

The lemma is proved if we show that
37‘[

Zm
z

1
> f (A- relt) iret dt — _EI r — o0, (38)
strongly in 7 as I = P_(4) + P, (A). From

A, = ((I) B(D ; z)—l) (A —z— B(é) —z)"1B* ) 2 Z) ((D B ;)_13* ?) (39)
it follows

(d-2)"

for z € p(A) where

( M(z) —M(z2)B(D —2)71

B M) (D —2)t+ (D — 2)'B*M(2)B(D —z)—1> (40)

M(@z):=(A—z - B(D—-z)1B*)1,
For the proof of (38) we first consider the left upper corner of the matrix (4 — reit)_1 rett + 1

and show that
| M(re® )re®™ +1)x|| -0, r - oo, (41)

uniformly int € {% ,—} for x € H. Using Lemma (3.2.2) and
2
(D —2)7M <~ |z| > 2]| D], (42)

||’
we find
M@re®t)ret+] = (A—ret —B(D —ret ) 1 B*)lreit + ]
= —-(A-ret) 1B(D —rett)1B*) " 1(A — reit ) lreit +]
. . 1
= (A—-ret) tret +1+0 (;)

uniformly int € {— 7} Hence there exists a ¢ > 0 such that

|(M@ret )re® + Dx|| < ||[((A-re*) ret + Dx|| + ~ ||x||
= [lCa = reit ) 1] + Z el < = llaxll + ]
uniformlyint € {232—”} by Lemma(3.2.2) which proves (41).From (41) it follows
|M@re® )re x| < K. (43)
with some constant K > O uniformly in t € {% 32—”} for x € H. For the off-diagonal elements

of (4 —reit)_lreit + ] we have
|M@re® )B(D —reit ) treitz||
< ||[((M@re®t )ret + )B(D —ret ) 12| + ||[B(D — re® ) 12| > 0,r > =

93



uniformly int € {g 37”} for £ € H by (41) and (42). Furthermore,
|(D —ret )t B*M(re®* ) ret x|| - 0, r - oo,

T 31

uniformlyint € {; ,7} for x € H by (42) and (43). For the right lower corner of
(A—rett )_1 re't + [ we have
|((D —ret ) re + (D —re )P B*M(re' )B(D —re' ) tre' + 1)z,

1 1 O .
< —2|IDIHIRN + — 1Bl |M(ret )re®B(D — reit )71 - 0,1 - oo,

uniformly in t € {%32—”} for £ € #. Summarizing, we obtain that all the components in the

matrix representation of (4 — rei* )" reit + I tend strongly to O uniformly for ¢ € {E 3_n} and

2' 2
hence

3n 3n
/1 2 1\ 1|
R A it -1, it _ o= A_ it -1 it ~ ~
l\Znil(A re ) ire dt+21 | % 277,[ ((A re ) re x+x)d—>0,
2 2

r — oo, for ¥ € H.The lemma is proved.

As A is not supposed to be selfadjoint, the spectral subspaces £_ and £, need not be
orthogonal. However, the block operator matrix A* adjoint to 4 given by

A= (A* B )
B* D* _ _
fulfills the assumptions of the present part as well. Hence P_(A*) and P, (A*) are defined, and
A* has the spectral subspaces
Lr:=P (AN H, L, :=P.(A)H.

Lemma(3.2.6)[159]: £+ = L%, L+ = L* .

Proof. We have
1 * ~
£t =R(P.(A)) =ker(P_(A)") = ker (P_(4"))
= ker(I — P,(A*)) = R(P.(4")) = L}
as o_(A*) = o_(A) and hence P_ (/T) = P_(A") (see [162]).The proof of the second statement
is similar.

Now we are ready to show that the spectral subspaces £_and £, of A can be represented by
means of angular operators. For 1 < p < oo, we denote by §,, the von Neumann—Schatten
classes of linear operators in H (see [154]); in particular, S, is the class of all compact
operators and §; is the class of all nuclear or trace class operators.

Theorem(3.2.7)[159]: There exist bounded linear operators K_ € L(H,H) and K, € L(#,H)

such that:
(i) The spectral subspaces £_ and £, have the representations

L= ((S)en) = ()]

(ii) The operator K_ has the property R(K_) ¢ D(A) and K_, K, satisfy the Riccati equations
K_B'K_—B—AK_+K_D =0 on H,
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K.BK,—B*—DK, +K,A = 0 on D(4),
(iii) The restriction A|£_ is unitarily equivalent to the operator D + B*K_ in the Hilbert
space ([, ],) where
[£,9], = (I+K*K)X,9), 2.9 € H.
There isay > 0 such that
R[(D + B*K_)%, %], < —P[x %], X€ H.
(iv) The restriction A| £, is unitarily equivalent to the operator A + BK, in the Hilbert space
(H,[-, 1) where
[x,v] := (U+K; K. )x,y), x,y € H.
There isay > 0 such that
R[(A+ BK, )x,x] > y[x,x], x € D(A).
If for one (and hence for all) z € p(4) the resolvent (4 — z)~! of A belongs to some class
S, 1 < p < oo, then the operators K_ and K, belong to the same class S,,.
Proof. From the representation (40) and Lemma (3.2.5) it follows that

% (P.(4) - P. (,ci))11 = R % f (A—z—B(D—z)'B*) dz
=R <1 f(A —in—B(D - in)‘lB*)‘ldn> > 0
7-[—oo

since for —6 < R(2) < «a,

ER((A —z—B(D —-2)"1 B*)x,x) > a(x,x), x € D(4), (44)
with some @ > 0 by the assumptions(l) and (Il). Here and in the following we use the notation
(Xij szl := X for the components of a block operator matrix X in H = H x H. On the

other hand, R (P+ (A)+ P (/T))n = [ and hence
R(P(4)),, » % (45)
(i) Letx € 7 be such that (¥) € £_. Then P, (A)(Y) = (1 — P(A)) (¥) = 0 and thus
(R(P,(A)),, x.x) = 0. By (45) this implies x = 0.
Now consider a sequence((é’l))io cL_withx, EH, £, € H, |lx,l=1,n=12..,

n

and ||x,|| = O forn — co. By Lemma (3.2.6),
. <P+ ) ()81) ' <;:>> - ((P*'(A*))n x”’x”) * ((P*'(A*))m x”’k\”)'

The last term tends to O for n —» oo and hence

((PJF(/T*))11 X, ,xn) -0, n- oo,
By means of the inequality (45) for A*, we find ||x,, || — O for n — oo. This proves that £L_ can

be represented as
K_x _
e =) rem)
X
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where K_ is a bounded linear operator from some closed subspace A’ of # into 2. It remains
to be proved that 7' = #. To thisend let 2 € A" . Then 2 = Oas

Oper () remao)

The proof of the assertion for £, is analogous. Here we have to use that
RD—-z—-B*A-2)'B) 0
for -6 < R(z) < ainstead of (44) and the representation

A-z= (B*(AI—Z)"1 ?) (A(;Z D—z- B*O(A —z)‘lB> ((I) “ _IZ)_lB)

for z € p(A) instead of (39) in order to obtain

in(P_(/I))22 > % . (46)

(ii) Since P_(A) is a Riesz projection, L_ = R(P_(4)) c D(4). On the other hand,
~ X —~
D(4) = {(2) x € D(A),% € 7}
and hence the representation of £_ according to (i) yields R(K_) < D(A4).
The Riccati equations for K_ and K, follow from the invariance of the subspaces £_ and
L, under A and the representations of £_ and £ in (i).
(iii) The operator U_ € L(L_,(H,[ - ,-1,)) defined by
K_x .
U_< ) =% Ref

A

is isometric and bijective. Using the Riccati equation for K_, we find
AlL_ = UZY(D + B*K_)U_
and
RI(D + B*K_)x,2],= R(U +K*K_)(D+ B'K_)% %
= % ((D+ B'K_+KX(K_D +K_B'K_))%.%)
= R((D + K*AK_+ B*K_ — K*B)%,%
= R(Dx,x) — R(AK_%,K_x) < —7(&,%)
for £ € H with some 7 > 0 by the assumptions (1) and (II).
(iv) The operator U, € L(L, ,(H,[ -, ])) defined by
U, (Kix) = X, x €EH,
is isometric and bijective. The Riccati equation for K yields
AL, = U (A+ BK,)U,
and, similar as in the proof of (iii),
R[(A+ BK, )x,x] = R(Ax,x) — R(DK, x,K, x) = y(x,x)
for x € D(A) with some y > 0 by the assumptions (1) and (lI).
Finally, the Riccati equations for K_ and K, can be written in the form
KBK —B—(A—-WwWK_ + K_.(D—p) =0,
K.BK,—B*—(D— WK, + K, (A—p) = 0,
where p € C is arbitrary. If we choose pu € p(A) and multiply the first relation from the left
hand side and the second equation from the right hand side by (4 — p)~1, it follows that K_
and K, arein 8, if (A —p)~'isin S, forsome p, 1 < p < oo. The theorem is proved.
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If in Theorem(3.2.7) the operators A and D are selfadjoint, then K, = —K*, which is immediate
from the relation £, = £X . Thus, in the selfa-djoint case the assertions of Theorem (3.2.7) coin-
cide with the respective statements established in [160], which were proved by a different method.
Additionally, it was shown therein that in this case K_ and K, are strict contractions. To show a
generalization of this property, we use the following two results.
Lemma(3.2.8)[159]: The operators I — K, K_ and I — K_K, are bijective.
Proof. LetX € ker(l — K, K_). Then £ = K, K_x",
K2\ [ K% 10

(%)= (ex0) €20 22 =

and consequently # = 0. Now letz2 € H. As H = L_+ L, ,there existx € Handx € H

such that
()= Grn)
7)) \&+K.x/)

Thisimplies 2 = - K, K_x € R(I- K, K_). The proof for I - K_K, is analogous.
Proposition(3.2.9)[159]: The projections P_(A4) and P,.(A) have the matrix representations
- —K_(I-K,K)'k, K.(I-K,K.)1
P_(4) = ( -1 -1 >’
—(I —KyK)7K, (I-KyK)
- I-K_ K, )1 —(I — K_K; ) K_
po(A) = (KK = 7K
K,(I1-K_K.)™' -K,(I-K_K.,)'K_
Proof. As P_(/T) is the projection onto £_ along £, , we have

P_(/T) — (K)_(X K;Y)

with operators X € L(H, %) and Y € L(). From P_(A)|£, = 0, it follows that
KX KY\/X K_(X+YK,)x
0=y Y)<K+x>:((X+YK+)x )’xe}[’

and hence X = =Y K, . Then P_(A)|£_ = I reads
K_%\ (—-K_YK, K_Y\(K_-X\ (K_Y(—K,K_+1)X
( ) - ( -YK, Y )( ) - ( Y(—=K,K_+ &
By Lemma (3.2.8), I - K, K_ is invertible and hence

Y = (I-K,K.)™}, X = —-(-K,K.)K,.
This shows the representation of P_(4). The proof for P, (A) is analogous.

Theorem(3.2.10)[159]: The operators K_K, and K, K_ are strict contractions in £ and 7,
respectively, that is,

~

X

~

),fceﬁ‘.
X

IK_K ) < 1, |IKiK_|| < 1.
Proof. From (45) and the preceding proposition it follows that
1
R -K_K ) >» >
Consequently,

< (I—-K_ K. ) '+ (- (K_K.))™?!
= —K_K,) "I = K_K, — (K_K,)*)(I = (K_K,)")™".
This implies
(I-K_K.)U—-(K_K,)) < 2 -K_K, — (K_K, )"
and hence
(K_K)(KLKL )" < T,
which shows ||[K_K, || < 1. The proof of |[K,K_|| < 1isanalogous.
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If A and D are selfadjoint, then it follows from Theorem (3.2.10) and from the relation

K, = —K* that
IK-Il = lIK:]l < 1.
Additionally to the assumptions (1) and (1) we suppose now that A has a compact resolvent.
Then o, (4) is discrete and oo is the only accumulation point as
a+(/T) = U(/T|L+) = g(A+BK,)

by Theorem (3.2.7) where K, is compact.

In the following we denote by P, the projection from F onto . If 1 € o (4), then L;(4)
denotes the root subspace of A at A.
Theorem(3.2.11)[159]: Suppose additionally to the assumptions (I) and (Il) that the resolvent
(A4 — z)71 of A belongs to the class S; for some z € p(A). Then

P1 L;{ (/‘i) = j‘[,
A€oy (A) ~
that is, the first components of the root vectors of A corresponding to the eigenvalues in the right
half plane form a complete system in .
Proof. Let A, € o, (A) and assume that {¥%, ,%; ,..., %, } € H is a Jordan chain of A at A,. Then

X; € Ly and hence X; = (Kxf ) with x; € H forj = 0,1,...,h by Theorem (3.2.7). Then the

+Xj
relation
A — AO B > x] xj—l .
* = 1 = 0111 1h1
( B D _AO (K+X] K+x]'_1 ]
implies that {x, , x; ,...,xp} = {P1X, ,P1X; ,...,P; X } 1s a Jordan chain of the operator A + BK,
at A, . Hence

U P, L, (A) = U L; (A+ BK.).
A€ay (A) A€o (A+BK,)
For sufficiently large & > 0, the operator A + BK, + & s accretive, that is, R((A + BK, + ¢ )x,
x) = 0forx € D(A). Ifz € p(A+ BK, + &),R(z) <O, the resolvent
(A+BK, +¢— 2yt =A-2)7t(U + (BK, +¢&)(A- z)~1)™!
belongs to S; as (A —z)~1 € §; according to the assumption. Then the statement follows from
[154], applied to the dissipative operator —i(A+ BK, + &) 1as 1€ (A + BK,) if and only if

—~ A%rf € o(—i(A+BK,+¢&) 1) and
Ly(A+BK.) =L ; (mi(A+BK,+ &)™1), 1 €o(4+BK,).
L
Example(3.2.12)[159]: We consider the A-rational boundary eigenvalue problem

q
"+ ly + —— y = 0,
y y u—/ly

y(0) —By'(0) = 0, y(1) =0,
in L,(0,1) where q,u € € [0,1], ¢ >0, R(u) < 0,and 8 € C, R(B) > 0.
Problems of this type with real-valued u and Dirichlet boundary conditions, that is, § = 0O,

(47)

/
were studied in [163] and[160]. If we define y := — g v, then the problem (47) is equivalent on

p(u), which is the complement of the set of all values of the continuous function u, to the A-linear
problem
(A-1y =0, ¥ € D(A),
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in L,(0,1) x L,(0,1) where A is a block operator matrix of the form (33) given by

2
. _d_ q1/2
A= dx?
q1/2 u

and
D) :={y = (y,9)" € WF(0,1) x L,(01) : y(0) — By' (0) = 0, y(1) =0}

In the following we show that the operator A fulfills the assumptions of Theorem (3.2.11). As
R(u) <0, the assumption (I1) is fulfilled with 6y := m — Min,¢po gylarg u(x)| < g and 6 :=
— MaXyepo,1] R(u(x)). The operator A in L,(0,1) given by

Ay = —y", D(4):={y € W;(01): y(0) — By’ (0) = 0, y(1) =0}
is densely defined, closed, and it satisfies the assumption (I). Indeed, A is boundedly invertible,
and

1
(4y.y) = Bly' Q)2 + f y'()l2dx, v e D). (48)

0
First we show that R(Ay,y) = a for y € D(A),||ly|| = 1, for some a > 0. From (48) and the
assumption R(B) > 0O it follows that

1
R(dy,y) = R(B)|Y ()2 + f y'()lRdx >0, yeD().  (49)

0
Now suppose that there exists a sequence (y,,)7" < D(4), |yl =1, with R(4y,,v,) — 0 for
n —oo. Theny’,(0) » O0and ||y',|l = O forn — co by (49)and hence
1
2

X X
yn(x) = ya(0)] < f ' (@®)]dt < V= f ' @Fde | < |y, ][0 n-w
0 0

uniformly for x € [0, 1], and hence [|y,|| = 0 as y,,(0) = By'(0) — 0 for n — oo, a contradiction.
Furthermore, (49) implies

I3y »I _ ISB)ly' (012 SRIG]

R(Ay,y) ~ RO +1y'lI2~ R(B)
which proves that the numerical range W, of A is contained inaset {z€ C:argz < 8,,%R(2)
> a}with 8, = |arg f| < g
It remains to be shown that A=1 € S;. In order to see this, we introduce the selfadjoint operator 4,
in L, (0,1),

Agy :==y", D(4,) := {y € W,*(0,1) : y(0) = 0, y(1) = O}
Its eigenvalues are the numbers p, :=m2n?, n=1,2,..., hence A, € S;. As the difference
A1 — A5 is a one-dimensional operator, it follows that A™* € §;.
Thus Theorem (3.2.11) can be applied to the operator 4 and we get:
Theorem(3.2.13)[159]: The spectrum o, of the eigenvalue problem (47) in the right half plane is
discrete, oo is its only accumulation point, and o, is contained in the sector

{z € C:|argz| < max{n— MiNn,epo,17 | arg u(x)|, | arg ﬁ|}} .
The root vectors corresponding to the eigenvalues in o, form a complete system in L,(0,1).
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