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Chapter 2 
The Extension Property and Boundary Regularity 

    In this chapter we compare different ways of measuring the “distance” between two suffi-
ciently close Reifenberg flat domains. These results are pivotal to the quantitative stability 
analysis of the spectrum of the Neumann Laplacian. We show that given an exponent α ∈ 
(0,1), there exists an ε > 0 such that the solution of the system is locally Hölder  continuous 
provided that Ω is (ߝ,  ଴)-Reifenberg flat. The proof is based on Alt-Caffarelli-Friedman’sݎ
monotonicity formula and Morrey-Campanato theorem. 
Sec(2.1): Reifenberg-Flat Domains 
       We establishing extension and geometric properties for a class of domains whose 
boundaries satisfy a fairly weak regularity requirement introduced by Reifenberg [64]. We 
show that any domain that is sufficiently flat in the sense of Reifenberg enjoys the so-called 
extension property and we discuss applications that are relevant for the analysis of PDEs 
defined in these domains. We also compare different ways of measuring the “distance” 
between two sufficiently close Reifenberg-flat domains ܺ and ܻ, in particular we discuss the 
relations between the Hausdorff distances ݀ு(ܺ,ܻ), ݀ு(ℝே\ܺ,ℝே\ܻ) and ݀ு(߲ܺ,߲ܻ) and 
the measure of the symmetric difference |ܺΔܻ|. 
       Although we are confident the results can find different applications, the original 
motivation was the quantitative stability analysis of the spectrum of the Laplace operator 
with Neumann boundary conditions defined in Reifenberg-flat domains, see [65]. 
       We mention that Reifenberg-flat domains are in particular NTA domains in the sense of 
Jerison and Kenig [83]. 
     We denote by ݀ு the classical Hausdorff distance between two sets ܺ and ܻ , 

݀ு(ܺ,ܻ) ∶= max ቊsup
௫∈௑

,ݔ)݀ ܻ) , sup
௬∈௒

ቋ(ܺ,ݕ)݀                                     (1). 

Definition(2.1.1)[63]: Let ߝ, ଴ be two real numbers satisfying 0ݎ < ߝ < 1/2 and ݎ଴ > 0. An 
,ߝ) ଴)-Reifenberg flat domain Ωݎ ⊆ ℝே is a nonempty open set satisfying the following two 
conditions: 

(i) for every ݔ ∈ ߲Ω and for every ݎ ≤ ,ݔ)ܲ ଴, there is a hyperplaneݎ   ݔ containing (ݎ
 which satisfies  

1
ݎ
݀ு(߲Ω ∩ ,ݔ)ܤ ,ݔ)ܲ,(ݎ (ݎ ∩ ,ݔ)ܤ ((ݎ ≤  (2)                         .ߝ 

(ii) For every ݔ ∈ ߲Ω, one of the connected component of 
,ݔ)ܤ  (଴ݎ ∩ ൛ݔ ∶  dist൫ݔ)ܲ,ݔ, ଴)൯ݎ ≥   ଴ൟݎ ߝ2

     is contained in Ω and the other one is contained in ℝே\ Ω. 
Condition (i) states that the boundary of Ω is an (ߝ,  ଴)-Reifenberg flat set. A Reifenberg flatݎ
set enjoys local separability properties (see[84]), however we observe that condition (ii) in 
the definition is not in general implied by condition (i), as the example of  Ω = ℝே\߲(0,1)ܤ 
shows (here ߲(0,1)ܤ denotes the boundary of the unit ball). However, a consequence of the 
analysis in David [85] is that (i) implies (ii) under some further topological assumption, for 
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instance the implication holds if Ω and ߲Ω are both connected. Note furthermore that a 
straightforward consequence of the definition is that, if ߝଵ < ,ଵߝ) ଶ, then anyߝ  -଴)-Reifenݎ
berg flat domain is also an (ߝଶ,  .଴)-Reifenberg flat domainݎ
     Note that we only impose the separability requirement (ii) at scale ݎ଴but it simply follows 
from the definition that it also holds at any scale ݎ ≤  .଴  (see [20] or Lemma (2.1.5) below)ݎ
     We providing a complete and detailed proof of the fact that Reifenberg flat domains are 
extension domains. This fact is relevant for the study of elliptic problems and (see e.g. [76]). 
However, to the best of our knowledge, an explicit proof was so far missing. We recall that 
the so called extension problem can be formulated as follows: given an open set Ω, we 
denote by ܹଵ,௣ the classical Sobolev space and we wonder whether or not one can define a 
bounded linear operator (the so-called extension operator) 

ܧ ∶ ܹଵ,௣(Ω) →  ܹଵ,௣(ℝே)  
such that (ݑ)ܧ ≡  on Ω. If ߲Ω is Lipschitz, Calderon [86] established the existence of an ݑ
extension operator in the case when 1 < ݌ < ∞, while Stein [87] considered the cases ݌ = 
1,∞. Jones [88] proved the existence of extension operators for a new class of domains, the 
so-called (ߝ,  Jones flat domains. We show that sufficiently flat Reifenberg domains are-(ߜ
indeed Jones flat domains. The main result concerning the extension problem is as follows. 

Theorem(2.1.2)[63]: Any ( ଵ
଺଴଴

, ଴)-Reifenberg flat domain is a ቀݎ ଵ
ସହ଴

, ௥బ
଻
ቁ-Jones flat domain. 

Proof: We assume ߝ ≤ 1/600, we fix an (ߝ, ଴)-Reifenberg flat domain Ωݎ ⊆ ℝே and we 
proceed according to the following steps. 
⋄ Step 1. We first introduce some notations (see Figure 1 for a representation). For any 
଴ݔ ∈ ߲Ω and ߩ ≤  the hyperplane provided by the (ߩ,଴ݔ)ܲ ଴, we denote as usual byݎ
definition of Reifenberg flatness, and by ⃗ߥఘ its normal. By Lemma (2.1.5), we can choose 
the orientation of ⃗ߥఘ in such a way that 

(ߩ,଴ݔ)ାܤ ∶= ݖ} + ఘߥ⃗ݐ ∶ ݖ  ∈ ,(ߩ, ଴ݔ)ܲ ݐ ≥ {ߩߝ2 ∩ (ߩ,଴ݔ)ܤ ⊆  Ω 
and 

(ߩ,଴ݔ)ିܤ     ∶= ݖ} − ఘߥ⃗ݐ ∶ ݖ  ∈ ,଴ݔ)ܲ ,(ߩ ݐ ≥ {ߩߝ2 ∩ (ߩ,଴ݔ)ܤ  ⊆  Ω௖. 
Also, we define the hyperplanes ܲା(ݔ଴,ߩ) and ܲି(ݔ଴,  by setting (ߩ

ܲା(ݔ଴,ߩ) ∶= ݖ} + ఘߥ⃗ߩߝ2 ∶ ݖ  ∈ ,଴ݔ)ܲ  {(ߩ
and 

(ߩ,଴ݔ)ିܲ ∶= ݖ}  − ఘߥ⃗ߩߝ2 ∶ ݖ  ∈  {(ߩ,଴ݔ)ܲ
and we denote by ܻ(ݔ଴,ߩ) the point 

(ߩ,଴ݔ)ܻ ∶= ଴ݔ  +  .ఘߥ⃗ߩ
       Finally, for any ݔ ∈ Ω, we denote by ݔ଴ ∈ ߲Ω the point such that ݀(ݔ,Ω௖) = ,ݔ)݀  (଴ݔ
(if there is more than one such ݔ଴, we arbitrarily fix one). 
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⋄ Step 2. We provide a preliminary construction: more precisely, given 
(i)  ݔ ∈ Ω such that ݀(ݔ,Ω௖) ≤   ଴ /7 andݎ2
(ii)  ݎ satisfying ݀(ݔ,Ω௖)/2 ≤ ݎ ≤  ,଴/7ݎ

the curve ߛ௫,௥ is defined as follows. 
(I) If ݀(ݔ,Ω௖)/2 ≤ ݎ ≤ ,଴ݔ)ܻ,ݔ] ௫,௥ is simply the segmentߛ then ,(Ω௖,ݔ)2݀  .[(ݎ
(II) If 2݀(ݔ,Ω௖) < ݎ ≤ ଴/7, we denote by ݇଴ݎ ≥ 1 the biggest natural number ݇ 

satisfying  2ି௞ݎ ≥  and we set (Ω௖,ݔ)݀

௫,௥ߛ  ∶= ,଴ݔ)ܻ,ݔ]  2ି௞బݎ)] ⋃ራ ,଴ݔ) ܻ] 2ି௞ݔ) ܻ,(ݎ଴, 2ି(௞ାଵ) ݎ)]
௞బିଵ

௞ୀ଴

. 

⋄ Step 3. We show that in both cases (I) and (II) we have  
ℋଵ൫ߛ௫,௥ ൯ ≤  (3)                                                           .ݎ4

To handle case (I) we just observe that, since by assumption ݀(ݔ,Ω௖) = ,ݔ)݀ (଴ݔ ≤  ,ݎ2
then, by recalling ݀(ݔ଴,ܻ (ݔ଴, ((ݎ =  .property (3) follows  ,ݎ
To handle case (II), we first observe that, since ݀(ݔ, (଴ݔ ≤ 2ି௞బݎ, then both ݔ and  ܻ(ݔ଴,
2ି௞బݎ) belong to the closure of ݔ)ܤ଴, 2ି௞బݎ). Also, by construction both ܻ(ݔ଴, 2ି௞ݎ) and 
ܻ ൫ݔ଴, 2ି(௞ାଵ)ݎ൯ belong to the closure of ݔ)ܤ଴, 2ି௞ݎ) and by combining these observations 
we conclude that 

    ℋଵ൫ߛ௫,௥൯  ≤  ݀൫ݔ) ܻ,ݔ଴, 2ି௞బݎ)൯  + ෍ ,଴ݔ) ܻ)݀ 2ି௞ݔ) ܻ,(ݎ଴, 2ି(௞ାଵ)ݎ))
௞బିଵ

௞ୀ଴

 

≤  2 ∙ 2ି௞బݎ +  ෍ 2 ∙ 2ି௞ݎ
௞బିଵ

௞ୀ଴

≤ ෍ ݎ2 2ି௞
௞∈ℕ

=  (4)                                .ݎ4 

Step 4. We show that for every ݖ ∈  ௫,௥ߛ

,ݖ)݀ Ωୡ) ≥
29

240
,ݖ)݀  (5)                                                    .(ݔ

We start by handling case (I): we work in the ball ݔ)ܤ଴,  and we recall the definition of (ݎ4
,଴ݔ)ାܤ ,଴ݔ)ିܤ and of (ݎ4 ߝ given at Step 1. Since by assumption ,(ݎ4 ≤ 1/32, we have 

≥ ݎߝ 16
ݎ
2
≤ ,ݔ)݀  Ω௖) ≤ ,଴ݔ)ିܤ,ݔ)݀  ((ݎ4

and hence ݔ ∈ ,଴ݔ)ାܤ  ସ௥, then by Lemmaߥ ௥ andߥ denotes the angle between ߚ Let .(ݎ4
(2.1.4) applied with ܯ = 4 we get that provided ߝ ≤ 1/9, then 4ݎߝ ≤ ݎ cosߚ, so that 
,଴ݔ)ܻ (ݎ ∈ ,଴ݔ)ାܤ ݔ By recalling that .(ݎ4 ∈ ,଴ݔ)ାܤ ,଴ݔ)ܻ,ݔ] we conclude that ,(ݎ4 [(ݎ ⊆
,଴ݔ)ାܤ  .(ݎ4
   We are now ready to establish (5), so we fix ݖ ∈ ,଴ݔ) ܻ,ݔ]  To provide a bound from .[(ݎ
above on ݀(ݖ, ,଴ݔ)ܻ and ݔ we simply observe that, since both ,(ݔ  belong to the closure of (ݎ
,଴ݔ)ܤ   and hence ݖ then so does ,(ݎ2

,ݖ)݀ (ݔ ≤  (6)                                                                     .ݎ4 
Next, we provide a bound from below on ݀(ݖ, Ω௖):  since ݖ ∈ ,଴ݔ)ାܤ (ݎ4 ⊆ Ω, then 
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,ݖ)݀                        Ω௖)  ≥  ݀൫ݖ, ,଴ݔ)ାܤ߲  ൯(ݎ4
= min{݀(ݖ,ܲା(ݔ଴, ,଴ݔ)ܤ߲,ݖ)݀,((ݎ4  (7)                                         .{((ݎ4

First, we recall that ݖ ∈ ,଴ݔ)ܤ  to the ݖ and we provide a bound on the distance from (ݎ2
spherical part of ߲ܤା(ݔ଴,  :(ݎ4

,଴ݔ)ܤ߲,ݖ)݀ ((ݎ4 = ݎ4 − ,ݖ)݀ (଴ݔ ≥ ݎ4 − ݎ2 =  .ݎ2
Next, we observe that 

,଴ݔ)ାܲ,ݖ)݀ ((ݎ4 = ,଴ݔ)ܲ,ݖ)݀ ((ݎ4 −  ݎߝ8
and, since ݖ ∈ ,଴ݔ)ܻ,ݔ]  then ,[(ݎ

݀൫ݔ)ܲ,ݖ଴, ൯(ݎ4 ≥ min{݀(ݔ)ܲ,ݔ଴, ,଴ݔ)ܻ)݀,(ݎ4 ,଴ݔ)ܲ,(ݎ {((ݎ4 . 
Note that ݀൫ܻ (ݔ଴, ,଴ݔ)ܲ,(ݎ ൯(ݎ4 = ݎ cosߚ  and, using Lemma (2.1.4), we conclude that 

,଴ݔ) ܻ)݀ ,଴ݔ)ܲ,(ݎ ((ݎ4 ≥  2/ݎ
because ߝ ≤ 1/10. Also, since ݔ)ିܤ଴, (ݎ4 ⊆ Ω௖, then 

2/ݎ ≤ ,ݔ)݀ Ω௖) ≤ ,଴ݔ)ିܤ,ݔ)݀  ((ݎ4 = ,଴ݔ)ܲ,ݔ)݀ ((ݎ4 +  ݎߝ2
By recalling (7) and the inequality ߝ ≤ 1/600 and by combining all the previous  
observations we conclude that 
(Ω௖,ݖ)݀          ≥ ݀൫ܤ߲,ݖା(ݔ଴, ൯(ݎ4 ≥ min{݀(ݖ,ܲା(ݔ଴, ,(ݎ4  {ݎ2
                         = min{݀(ݔ)ܲ,ݖ଴, (ݎ4 − ,ݎߝ8   {ݎ2
                         ≥ min൛min൛݀൫ݔ)ܲ,ݔ଴, ,଴ݔ) ܻ)݀,൯(ݎ4 ,଴ݔ)ܲ,(ݎ ൟ((ݎ4 − ,ݎߝ8  ൟݎ2

        ≥ min ቄmin ቄ
ݎ
2
− ,ݎߝ2

ݎ
2
ቅ − ,ݎߝ8 ቅݎ2  =

ݎ
2
− ݎߝ10 ≥

29
60

 (8)                               .ݎ

Finally, by comparing (8) and (6) we obtain (5). 
* Step 5. We now establish (5) in case (II). 
If ݖ ∈ ,଴ݔ)ܻ,ݔ] 2ି௞బݎ], then we can repeat the argument we used in Step 4 by replacing ݎ 
with 2ି௞బݎ, which satisfies 

(Ω௖,ݔ)݀ ≤ 2ି௞బݎ ≤  .(Ω௖,ݔ)2݀
Hence, we are left to consider the case when ݖ ∈ ,଴ݔ) ܻ] 2ି௞ݔ)ܻ,(ݎ଴, 2ି(௞ାଵ)ݎ)] for some 
natural number ݇ ≤ ݇଴ − 1. We set ߩ ∶=  2ି௞ݎ  and we work in the ball ݔ)ܤ଴,  We .(ߩ2
denote by ߙ the angle between ݒଶఘ and ߥఘ, and by ߚ the angle between ݒଶఘ and ߥఘ/ଶ. Due to 

Lemma (2.1.4) applied with ܯ = 2 and ܯ = 4, we know that, if ߝ ≤ ଵ
ଵଷ

, then 

ߩ cosߙ ≥                 ߩߝ4
1
2
ߩ cosߚ ≥  ,ߩߝ4

so that both ܻ(ݔ଴,ߩ) and ܻ(ݔ଴,2/ߩ) belong to ܤା(ݔ଴,  Hence, given .(ߩ2
ݖ ∈ [(2/ߩ,଴ݔ)ܻ,(ߩ,଴ݔ) ܻ] ⊆ ,଴ݔ)ାܤ (ߩ2 ⊆ Ω, 

we have ݀(ݖ,Ω௖)  ≥ ,଴ݔ)ାܤ߲,ݖ)݀   to the spherical part of ݖ The distance from .((ߩ2
,଴ݔ)ାܤ߲ ,଴ݔ)to ܲା ݖ while the distance from ,ߩ is bounded from below by (ߩ2  is (ߩ2
bounded from below by ଵ

ଶ
ߩ − ߩߝ4 ≥ ଵ

ସ
ߝ provided that ߩ ≤ ଵ

ଵ଺
. Hence, ݀(ݖ,Ω௖) ≥ ఘ

ସ
. To 

provide an upper bound on ݀(ݖ, ,ݔ)݀ we observe that, since (ݔ (଴ݔ = (Ω௖,ݔ)݀ ≤ 2ି௞ݎ, then 
both ݖ and ݔ belong to the closure of ܤ(ݔ଴,ߩ). Hence, ݀(ݔ, (ݖ ≤  .and (5) holds ߩ2
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* Step 6. We are finally ready to show that Ω is a Jones flat domain. Given ݕ,ݔ ∈ Ω  satis-
fying ݀(ݕ,ݔ) ≤  :଴/7, there are two possible casesݎ

(i) if either ݀(ݔ,Ω௖) ≥ (Ω௖,ݕ)݀ or (ݕ,ݔ)2݀ ≥ ߛ then we set ,(ݕ,ݔ)2݀ ∶=  .[ݕ,ݔ]
To see that ߛ satisfies (17), let us assume that ݀(ݔ,Ω௖)  ≥  the other) (ݕ,ݔ)2݀ 
case is completely analogous), then ݕ ∈ ,ݔ)ܤ ((ݕ,ݔ)݀ ⊆ Ω and [ݕ,ݔ] ⊆ Ω. Also, 
since 

sup
௭∈[௫,௬]

,ݖ)݀ (ݕ,ݖ)݀(ݔ
,ݔ)݀ (ݕ  =

1
4

 (9)                                            ,(ݕ,ݔ)݀ 

then for any ݖ ∈  , ߛ
(Ω௖,ݖ)݀ ≥ (Ω௖,ݔ)݀ − ,ݖ)݀ (ݔ ≥ (ݕ,ݔ)݀ ≥ ,ݖ)4݀  .(ݕ,ݔ)݀/(ݕ,ݖ)݀(ݔ

Hence, ߛ satisfies (17) provided that ߜ = 4. 
(ii) we are left to consider the case when both ݀(ݔ,Ω௖) < (Ω௖,ݕ)and d (ݕ,ݔ)2݀ <

଴ݔ Denote by .(ݕ,ݔ)2݀ ∈ ߲Ω a point such that ݀(ݔ,Ω௖) = ,ݔ)݀ ଴ݕ ଴) andݔ ∈ ߲Ω 
a point such that d(ݕ,ݕ଴) = ݎ and set (Ω௖,ݕ)݀ ∶= (ݕ,ݔ)݀ ≤   ଴/7. We defineݎ

ߛ ∶= ௫,௥ߛ ∪ ௬,௥ߛ ∪ ,଴ݔ) ܻ] ,଴ݕ) ܻ,( ݎ  (10)                                   .[( ݎ
Step 7 is devoted to showing that ߛ satisfies (16) and (17). 
* Step 7. First, we establish (16): we observe that 
                 ݀൫ܻ(ݔ଴, ,(ݎ ,଴ݕ)ܻ  ൯(ݎ
                                ≤ ,଴ݔ)ܻ)݀ ,(ݎ (଴ݔ + ,଴ݔ)݀ (ݔ + (ݕ,ݔ)݀ + ,ݕ)݀ (଴ݕ + ,଴ݕ)݀ ,଴ݕ)ܻ (ݎ ≤   ݎ7
and hence by using (13) 

ℋଵ(ߛ ) ≤ ℋଵ൫ߛ௫,௥ ൯ + ݀൫ܻ(ݔ଴, ,଴ݕ)ܻ,( ݎ ൯( ݎ + ℋଵ൫ߛ௬,௥൯  ≤  ݎ15
which proves (16). 
       Next, we establish (17): we denote by ݀ఊ the geodesic distance on the curve ߛ and we 
observe that 

(ݕ,ݖ)݀
(ݕ,ݔ)15݀

 ≤  
݀ఊ(ݕ,ݖ)
݀ఊ(ݕ,ݔ)

≤  1.                                                  (11) 

Hence, if ݖ ∈  ௫,௥, then by using (5) we obtainߛ

(Ω௖,ݖ)݀ ≥
29

240
,ݖ)݀  (ݔ ≥

29
240 · 15

 ቆ
,ݖ)݀ (ݕ,ݖ)݀(ݔ

(ݕ,ݔ)݀
ቇ 

and we next observe 29/240 · 15 ≥ 5/60 · 15 = 1/180. Since the same argument works 
in the case when ݖ ∈  ௬,௥, then we are left to establish (17) in the case when z lies on theߛ
segment [ܻ(ݔ଴, ,଴ݕ)ܻ,(ݎ  .[( ݎ

We first observe that 
݀൫ݔ଴,ܻ(ݕ଴, ൯(ݎ ≤ ,଴ݔ)݀ (ݔ + ,ݔ)݀ (ݕ + (଴ݕ,ݕ)݀ + ݀൫ݕ଴,ܻ(ݕ଴, ൯( ݎ ≤  (12)      ݎ6

and hence [ܻ(ݔ଴, ,଴ݕ) ܻ,(ݎ [(ݎ ⊆ ,଴ݔ)ܤ ݎNext, we note that 7 .(ݎ7 ≤  ଴ and we use (8) toݎ
get 

29
60

ݎ  ≤ ,଴ݔ)ܻ)݀ (Ω௖,( ݎ ≤ ,଴ݔ)ܻ)݀ ,଴ݔ)ିܲ,( ݎ  (13)                   ,((ݎ7
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hence since ߝ is so small that 28ݎߝ ≤ ,଴ݔ)ܻ)݀ then we have ,60/ݎ29  ,( ݎ ,଴ݔ)ିܲ   ((ݎ7
≥ ,଴ݔ)ܻ which means that ,ݎߝ28 (ݎ ∈ ,଴ݔ)ାܤ  By repeating the same argument we get .(ݎ7
,଴ݔ)ܻ ( ݎ ∈ ,଴ݔ)ାܤ ,଴ݔ)ܻ] and hence (ݎ7 ,଴ݕ)ܻ,( ݎ [( ݎ ⊆ ,଴ݔ)ାܤ ݖ We fix .(ݎ7 ∈ ,଴ݔ)ܻ] ,( ݎ
,଴ݕ)ܻ  and we observe that [( ݎ
,ݖ)݀                    (ݔ ≤ ,଴ݔ)ܻ,ݖ)݀ ((ݎ + ,଴ݔ) ܻ)݀ ,( ݎ ( ଴ݔ + ,଴ݔ)݀  (ݔ

≤ ݀൫ܻ (ݕ଴, ,଴ݔ) ܻ,( ݎ ൯(ݎ + ,଴ݔ) ܻ)݀ ,( ݎ (଴ݔ + ,଴ݔ)݀  (ݔ
≤ ݎ7 + ݎ + ݎ2 =  (14)                                                                                    .ݎ10

Also, 
(Ω௖,ݖ)݀       ≥ ݀൫ܤ߲,ݖା(ݔ଴, ൯(ݎ7 ≥ min{݀(ݔ) ܤ߲,ݖ଴, ;((ݎ7 ,଴ݔ)ାܲ,ݖ)݀   (15)       {((ݎ7

and by using (12) we get 
,଴ݔ) ܤ߲,ݖ)݀ ((ݎ7 ≥  .ݎ

Also, we have 
,଴ݔ)ାܲ,ݖ)݀          ((ݎ7 ≥ min{݀(ܻ(ݔ଴, ,଴ݔ)ାܲ,( ݎ ,଴ݕ)ܻ)݀,((ݎ7 ,଴ݔ)ାܲ,( ݎ  {((ݎ7

and by recalling (13) we get that 

݀൫ܻ(ݔ଴, ,଴ݔ)ାܲ,( ݎ ൯(ݎ7 = ݀൫ܻ(ݔ଴, ,଴ݔ)ିܲ,( ݎ ൯(ݎ7 − ≤ ݎߝ28  
29
60

ݎ − ≤ ݎߝ28  
ݎ
3

. 

Since ܻ(ݕ଴,  satisfies the same estimate, then by recalling (11), (14) and (15) we get (ݎ

(Ω௖,ݖ)݀ ≥  
ݎ
3

 ≥  
1

3 · 10
,ݖ)݀  (ݔ ≥  

1
3 · 10 · 15

 
,ݖ)݀ (ݕ,ݖ)݀(ݔ

(ݕ,ݔ)݀
, 

which concludes the proof because 3 · 10 · 15 =  450. 
     As direct consequence of Theorem (2.1.2) we get that one can define extension operators 
for (1/600,   .଴)-Reifenberg flat domainsݎ
Some relevant features of this result are the following: first, we provide an explicit and 
universal threshold on the coefficient ߝ for the extension property to hold (namely, ߝ ≤
1/600). Second, 1/600 is fairly big compared to the usual threshold needed to apply 
Reifenberg’s topological disk theorem (for e.g. the threshold is 10ିଵହ in [68], see also [89] 
for an interesting alternative proof ). 
   As a consequence of the extension extension property, we obtain that the classical Rellich-
Kondrachov Theorem applies to Reifenberg flat domains, that the Neumann Laplacian has a 
discrete spectrum and that the eigenfunctions are bounded. Also, by combining Theorem 
(2.1.2) with the works by Chua [90, 91,92] and Christ [93] we get that one can define 
extension operators for weighted Sobolev spaces and Sobolev spaces of fractional order.  
    We conclude the section by establishing results unrelated to the extension problem, 
namely we study the relation between different ways of measuring the “distance” between 
sets of ℝே. In particular, for two general open sets ܺ and ܻ , neither the Hausdorff distance 
݀ு(ܺ,ܻ) nor the Hausdorff distance between the complements ݀ு(ℝே\ܺ,ℝே\ܻ) is, in 
general, controlled by the Lebesgue measure of the symmetric difference | ܺΔܻ |. However, 
we show that they are indeed controlled provided that ܺ,ܻ are Reifenberg flat and close 
enough, in a suitable sense.This result will be as well applied in [65] to the stability analysis 
of the spectrum of the Laplace operator with Neumann boundary conditions. 
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     We denote by ܥ(ܽଵ, . . . ,ܽ௛) a constant only depending on the variables ܽଵ, . . . ,ܽ௛. Its 
precise value can vary from line to line.  
     Now, we show that any sufficiently flat Reifenberg domain is Jones flat, in the sense of 
[88]. The extension property follows then as a corollary of the analysis in [88]. 
      First, we provide the precise definition of Jones-flatness. 
Definition(2.1.3)[63]: An open and bounded set Ω is a (ߜ,ܴ଴)-Jones flat domain if for any 
,ݔ ݕ ∈ Ω such that ݀(ݕ,ݔ) ≤ ܴ଴ there is a rectifiable curve ߛ which connects x and ݕ and 
satisfies 

ℋଵ(ߛ) ≤  (16)                                                            (ݕ,ݔ)ଵ݀ିߜ
and 

(Ω௖,ݖ)݀  ≥ ߜ 
,ݖ)݀ (ݕ,ݖ)݀(ݔ

(ݕ,ݔ)݀
,   for all ݖ ∈  (17)                                     .ߛ

       To investigate the relation between Jones flatness and Reifenberg flatness we need two 
preliminary lemmas. 
Lemma(2.1.4)[63]: Let Ω ⊆ ℝே be an (ߝ, ݔ ଴)−Reifenberg flat domain. Givenݎ ∈ ߲Ω and 
ݎ ≤ ,ݔ)ܲ ௥ the unit normal vector to the hyperplaneߥ ଴, we termݎ -provided by the defini (ݎ
tion of Reifenberg-flatness. Given ܯ ≥ 1, for every ݎ ≤   we have ܯ/଴ݎ

,௥ߥ〉| |〈ெ௥ߥ ≥ 1 − ܯ) +  (18)                                                   .ߝ(1
Proof: We assume with no loss of generality that ݔ is the origin. For simplicity, in the proof 
we denote by ܤ௥ the ball 0)ܤ, ,and by ௥ܲ the hyperplane ܲ(0 (ݎ  From the definition of .(ݎ
Reifenberg flatness we infer that 

݀ு( ெܲ௥ ∩ ௥ܤ  , ௥ܲ ∩ (௥ܤ ≤ ݀ு( ெܲ௥ ∩ ௥ܤ , ߲Ω ∩ (௥ܤ + ݀ு(߲Ω ∩ ௥ܤ , ௥ܲ ∩  (௥ܤ
  ≤ ߝݎܯ  + ߝݎ ≤ ܯ) +  .ߝݎ(1

Since ெܲ௥ and ௥ܲ are linear spaces we deduce that 
݀ு( ெܲ௥ ∩ ,ଵܤ ௥ܲ ∩ (ଵܤ ≤ ܯ) +  (19)                                         .ߝ(1

We term ߨ௥ and ߨெ௥ the orthogonal projections onto ௥ܲ and ெܲ௥, respectively, and we fix an 
arbitrary point ݕ ∈ ௥ܲ ∩ ݖ ଵ. Inequality (19) states that there isܤ ∈ തܲெ௥ ∩   തଵ satisfyingܤ

(ݕ,ݖ)݀ ≤ ܯ) +  .ߝ(1
In particular, since 1 = |ெ௥ߥ| = inf௭∈௉ಾೝ ெ௥ߥ)݀ ,  we get , ( ݖ

,ெ௥ߥ)݀ (ݕ ≥ ,ெ௥ߥ)݀ ( ݖ − (ݕ,ݖ)݀ ≥ 1 − ܯ) +  .ߝ(1
By taking the infimum for ݕ ∈ ௥ܲ ∩  ଵwe obtainܤ

ெ௥ߥ|  − |(ெ௥ߥ)௥ߨ ≥ 1 − ܯ) +  ,ߝ(1
and the proof is concluded by recalling that |〈ݒ௠௥, |〈௥ݒ = ெ௥ߥ)݀   .((ெ௥ߥ)௥ߨ,
    The following lemma discusses an observation due to Kenig and Toro [20]. Note that the 
difference between Lemma (2.1.5) and part (ii) in the definition of Reifenberg flatness is 
that in (ii) we only require the separation property at scale ݎ଴. 
Lemma(2.1.5)[63]: Let Ω ⊆  ℝே be an (ߝ, (଴ݎ −Reifenberg flat domain. For every ݔ ∈ ߲Ω 
and ݎ ∈]0,  ଴], one of the connected components ofݎ

,ݔ)ܤ (ݎ ∩ ݔ} ∶ dist(ݔ)ܲ,ݔ, ((ݎ ≥  {ݎߝ2
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is contained in Ω and the other one is contained in ℝே \Ω. Here ܲ(ݔ, -is the same hyper (ݎ
plane as in part (i) of the definition of Reifenberg-flatness. 
Proof: We fix ߩ ∈ ]0,   ,ߩ ଴] and we assume that the separation property holds at scaleݎ
namely that one of the connected components of  

(ߩ,ݔ)ܤ ∩ ݔ} ∶ dist((ߩ,ݔ)ܲ,ݔ) ≥  {ߩߝ2
is contained in Ω and the other one is contained in ℝே \Ω. We now show that the same 
separation property holds at scale ݎ for every ݎ ,ܯ/ߩ[ ∋ ܯ provided that [ߩ ≤ (1 −  .ߝ3/(ߝ
By iteration this implies that the separation property holds at any scale ݎ ∈]0,  .[଴ݎ
       Let us fix ݎ ∈ ] ఘ

ெ
 , ,ݔ)ାܤ and denote by [ߩ   one of the connected components of (ݎ

,ݔ)ܤ (ݎ ∩ ݔ} ∶ dist(ݔ)ܲ,ݔ, ((ݎ ≥  { ݎߝ2
and by ݔ)ିܤ,  the other one. Also, we term  ܻା and ܻି  the points of intersection of the (ݎ
line passing through ݔ and perpendicular to ܲ(ݔ, ,ݔ)ܤ with the boundary of the ball (ݎ  .(ݎ
       By recalling (18) and the inequality ݎ ≥  we get that the distance of  ܻ±  from the , ܯ/ߩ
hyperpane ܲ(ߩ,ݔ) satisfies the following inequality: 

((ߩ,ݔ)ܲ,±ܻ)݀ ≥ ,ఘߥ〉|ݎ ఘݒ ெ⁄ 〉| ≥ 1]ݎ − ܯ) + [ߝ(1 ≥ ߩ
1 − ܯ) + ߝ(1

ܯ
. 

Since by assumption ܯ ≤ (1 − ((ߩ,ݔ)ܲ,±ܻ)݀ this implies that ,ߝ3/(ߝ ≥  and hence ߩߝ2
that one among ܻା and ܻି  belongs to ܤା(ߩ,ݔ) and the other one to (ߩ,ݔ)ିܤ. Since by 
assumption the separation property holds at scale ߩ, this implies that one of them belongs to 
Ω and the other one to Ω௖ . 

 
Figure 1. notations for the proof of Theorem (2.1.2) 

To conclude, note that part (i) in the definition of Reifenberg flatness implies that 
,ݔ)±ܤ (ݎ ∩ ߲Ω = ∅ 

and hence both ܤା(ݔ, ,ݔ)ିܤ and (ݎ  are entirely contained in either Ω or Ω௖. By recalling (ݎ
that one among ܻା and ܻି belongs to Ω and the other one to Ω௖, we conclude the proof of 
the lemma.  
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      We combine the analysis in [88] with Theorem (2.1.2) to show that domains that are 
sufficiently flat in the sense of Reifenberg satisfy the extension property. We also discuss 
some direct consequences. Note that we always assume that Ω is connected, as Jones did in 
[88]. We show that the connectedness assumption can be actually removed in the case of 
Reifenberg flat domains. Note also that, before providing the precise extension result, we 
have to introduce a preliminary lemma comparing different notions of “radius” of a given 
domain Ω. 
We term outer radius of a nonempty set Ω ⊆  ℝே  the quantity 

Rad(Ω) ∶= inf
௫∈Ω

sup
௬∈Ω

 (20)                                                          ,(ݕ,ݔ)݀

and we term inner radius the quantity 
rad(Ω) ∶= sup

௫∈Ω
sup{ݎ > 0 ∶ ,ݔ)ܤ (ݎ ⊂ Ω}.                               (21) 

The inner radius is the radius of the biggest ball that could fit inside Ω, whereas the outer 
radius, as seen below, is the radius of the smallest ball, centered in Ωഥ, that contains Ω. Also,  
we recall that Diam(Ω) denotes the diameter of Ω, namely 

Diam(Ω) ∶= sup
௫,௬∈Ω

(ݕ,ݔ)݀ . 

We collect some consequences of the definition in the following lemma. 
Lemma(2.1.6)[63]:Let Ω be a nonempty subset of ℝே, then the following properties hold: 

(i) We have the formula 
Rad(Ω) = inf

௫∈Ω
inf ݎ}  > 0 ∶ Ω ⊂ ,ݔ)ܤ  (22)                          .{(ݎ

Also, if Rad(Ω) < +∞, then there is a point ݔ ∈ Ωഥ such that Ω ⊆ ,ݔ)ܤ Rad(Ω)). 
(ii) rad(Ω) ≤ Rad(Ω) ≤ Diam(Ω). 
(iii) If  Ω is an (ߝ, ଴ݎ ଴)-Reifenberg flat domain for someݎ > 0 and some ߝ satisfying 
   0 < ߝ < 1/2, then ݎ଴/4 ≤ rad(Ω) ≤ Rad(Ω) ≤ Diam(Ω). 

Proof. To establish property (i), we first observe that, if Ω is not bounded, then Rad(Ω) =
+∞ and formula (22) is trivially satisfied.  Also, the assumption Rad(Ω) < +∞ implies that 
the closure Ωഥ is compact. Hence, if Rad(Ω) < +∞, then 

Rad(Ω) = min
௫∈Ω

sup
௬∈Ω

 (23)                                                       (ݕ,ݔ)݀

and if we term ݔ଴ ∈ Ωഥ any point that realizes the minimum in (23) we have Ω ⊂ ,଴ݔ)തܤ
Rad(Ω)). This establishes the inequality 

Rad(Ω) ≥ inf
௫∈Ω

inf ݎ}  > 0 ∶  Ω ⊂ ,ݔ)ܤ  {(ݎ . 

       To establish the reverse inequality we observe that if ݔ ∈ Ω is any arbitrary point and 
ݎ > 0 is such that Ω ⊂ ,ݔ)ܤ then sup௬∈Ω ,(ݎ (ݕ,ݔ)݀ ≤  ݎ and ݔ By taking the infimum in .ݎ
we conclude. This ends the proof of property (i). 
        To establish (ii), we focus on the case when Rad(Ω) < +∞, because otherwise Ω is 
unbounded and (ii) trivially holds. Hence, by relying on (i) we infer that Ω ⊆ ܤ ∶= ,଴ݔ)ܤ
Rad(Ω)) for some point ݔ଴ ∈ Ω. Given ݔ ∈ Ω and ݎ > 0 satisfying ݔ)ܤ, (ݎ ⊂ Ω, we have 
,ݔ)ܤ (ݎ ⊂ ,଴ݔ)ܤ Rad(Ω)). Hence, ݀(ݔ, (଴ݔ + ≥ ݎ  Rad(Ω) and hence ݎ ≤  Rad(Ω). By 
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taking the supremum in ݎ and ݔ we get finally rad(Ω) ≤ Rad(Ω). The inequality Rad(Ω) ≤
Diam(Ω) directly follows from the two definitions. 

Given (ii), establishing property (iii) amounts to show that 
rad(Ω) ≥  ଴/4.                                                                 (24)ݎ

      We can assume with no loss of generality that ߲Ω ≠  ∅, otherwise Ω =  ℝே and (24) 
trivially holds in this case (we recall that the case Ω =  ∅ is ruled out by the definition of 
Reifenberg flat domain). 

 Hence, we fix ݕ ∈ ߲Ω, denote by ܲ(ݕ,  be ߥ⃗ ଴) the hyperplane in the definition and letݎ
its normal vector. We choose the orientation of ⃗ߥ in such a way that 

ݖ} + ߥݐ ∶ ݖ ∈ ,ݕ)ܲ ,(଴ݎ ݐ ≥ {ݎߝ2 ∩ ,ݕ)ܤ (଴ݎ ⊆  Ω.                           (25) 
Since ݀ு(ܲ(ݕ, (଴ݎ ∩ ,ݕ)ܤ ଴),߲Ωݎ ∩ ,ݕ)ܤ ((଴ݎ ≤  then from (25) we infer that  actually ,ݎߝ

ݖ} + ߥݐ ∶ ݖ  ∈ ,ݕ)ܲ ,(଴ݎ ݐ ≥ {ݎߝ ∩ ,ݕ)ܤ (଴ݎ  ⊆  Ω. 
By recalling ߝ < 1/2, we infer that there is ݔ ∈ Ω such that ݔ)ܤ, (଴/4ݎ ⊂ Ω and this  
establishes (24). 
     The following extension property of Reifenberg flat domains is established by combining 
Theorem (2.1.2) above with Jones’analysis ( [88]). 
Corollary(2.1.7)[63]: Let Ω ⊆ ℝே be a connected, (ߝ, ߝ ଴)-Reifenberg flat domain. Ifݎ ≤  
ଵ
଺଴଴

 , then, for every ݌ ∈ [1, +∞], there is an extension operator  ܧ ∶ ܹଵ,௣(Ω) → ܹଵ,௣(ℝே) 

satisfying 
ௐభ,೛(ℝಿ)‖(ݑ)ܧ‖  ≤  ,ௐభ,೛(Ω)‖ݑ‖ ܥ 

where the constant ܥ only depends on ܰ ,  .଴ݎ and ,݌
      The results of both Christ [93] and Chua [90,91,92]  apply to Jones flat domains,  hence 
by relying on Theorem (2.1.2) we infer that they apply to ( ଵ

଺଴଴
,  ଴)-Reifenberg flat domainsݎ

as well. 
     As a consequence of Corollary (2.1.7) we get that the classical Rellich-Kondrachov 
Theorem holds in Reifenberg flat domains. 
Proposition(2.1.8)[63]: Let Ω ⊆  ℝே be a bounded, connected (ߝ,   ଴)-Reifenberg flatݎ
domain and assume 0 < ߝ ≤ 1/600.  
If  1 ≤ ݌ < ܰ , set  ݌∗ ∶= ே௣

ேି௣
 . Then the Sobolev space ܹଵ,௣(Ω) is continuously embedded 

in the space ܮ௣∗(Ω) and is compactly embedded in ܮ௤(Ω) for every1 ≤ > ݍ  .∗݌
If  ݌ ≥ ܰ , then the Sobolev space ܹଵ,ே(Ω) is continuously embedded in the space  ܮஶ(Ω) 
and is compactly embedded ܮ௤(Ω) for every ݍ ∈ [1, +∞[. 
Also, the norm of the above embedding operators only depends on ܰ, ,଴ݎ  .and Rad(Ω) ݌,ݍ
     As an example of application of Proposition (2.1.8), we establish a uniform bound on the 
 ஶ norm of Neumann eigenfunctions defined in Reifenberg flat domains. We use this boundܮ
in the companion reference [65]. We recall that we term “Neumann eigenfunction” an eigen-
function for the Laplace operator subject to homogeneous Neumann conditions on the 
boundary of the domain. 
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Proposition(2.1.9)[63]: Let Ω ⊆ ℝே be a bounded, connected, (ߝ,  ଴)-Reifenberg flatݎ

domain and let ݑ be a Neumann eigenfunction associated to the eigenvalue μ. If  ߝ ≤ ଵ
଺଴଴

, 

then ݑ is bounded and 

௅ಮ(Ω)‖ݑ‖ ≤ ൫1 ܥ  + ඥμ൯
ఊ(ே)

 ௅మ(Ω),                                         (26)‖ݑ‖

where ߛ(ܰ ) = max ቄே
ଶ

, ଶ
ேିଵ

ቅ  and  ܥ = ,ܰ) ܥ ,଴ݎ Rad(Ω)). 

Proof.By using classical techniques coming from the regularity theory for elliptic operators, 
Ross [94] established (26) in the case of Lipschitz domains. However, in [94] the only 
reason why one needs the regularity assumption on the domain Ω is to use the Sobolev 
inequality 

௅మ∗(Ω)‖ݑ‖ ≤ ௅మ(Ω)‖ݑ‖൫ ܥ  + ,௅మ(Ω)൯‖ݑ∇‖ ܥ = ,൫ܰ ܥ ,଴ݎ Rad(Ω)൯           (27) 
as the starting point for a bootstrap argument. Since Proposition (2.1.8) states that (27) holds 
if Ω is a bounded Reifenberg-flat domain, then the proof in [94] can be extended to the case 
of Reifenberg flat domains.  
     We have always assumed that the domain Ω is connected. We now show that the results 
we have established can be extended to general (i.e., not necessarily connected) Reifenberg-
flat domains. Although extension of the result of Jones [88] to non-connected domains were 
already widely known, we decided to provide here a self-contained proof. In this way, we 
obtain results on the structure of Reifenberg flat domains that may be of independent 
interest. 
      We first show that any sufficiently flat Reifenberg flat domain is finitely connected and 
we establish a quantitative bound on the Hausdorff distance between two connected  
components. 
Proposition(2.1.10)[63]: Let Ω ⊆ ℝே be a bounded, (ߝ,  ଴)-Reifenberg flat domain and weݎ
assume ߝ ≤ 20ିே. Then Ω has a finite number of nonempty, open and disjoint connected 
components ଵܷ, . . . ,ܷ௡ , where 

݊ ≤  
20ே|Ω|
߱ேݎ଴ே

 .                                                                          (28) 

Moreover, if  ݅ ≠ ݆ , then for every ݖ ∈ ߲ ௜ܷ we have 
,ݖ)݀ ௝ܷ)  >  ଴/70.                                                               (29)ݎ 

Proof. We proceed according to the following steps. 
* Step 1 We recall that any nonempty open set Ω ⊆  ℝே can be decomposed as 

Ω ∶= ራ ௜ܷ
௜∈ூ

,                                                           (30) 

where the connected components ௜ܷ satisfy 
(i)  for every ݅ ∈     ௜ܷ is a nonempty, open, arcwise connected set which is also  closed ,ܫ
in Ω. Hence, in particular, ߲ ௜ܷ  ⊆  ߲Ω. 
(ii)  ௜ܷ ∩ ௝ܷ = ∅  if  ݅ ≠ ݆ .  
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Indeed, for any ݔ ∈ Ω we can define ܷ௫ ∶= ݕ } ∈ Ω ∶ there is a continuous curve  ߛ: [0, 1] →
Ω  such that (0)ߛ = (1)ߛ and ݔ =  and observe that any ܷ௫ is a nonempty, open, arcwise { ݕ
connected set which is also closed in Ω. Also, given two points ݕ,ݔ ∈ ℝே, we have either 
ܷ௫ = ܷ௬ or ܷ௫ ∩ ܷ௬ = ∅. 
⋄ Step 2 Let Ω as in the statement of the proposition, and let the family { ௜ܷ}௜∈ூ be as in (30). 
We fix ݅ ∈ | and we prove that ܫ ௜ܷ| ≥ ܫ♯This straightforwardly implies that .(ܰ,଴ݎ) ܥ ≤
,|Ω|) ܥ ߲ ଴,ܰ ).  Since ௜ܷ is bounded, thenݎ ௜ܷ ≠ ∅ : hence, we can fix a point  ݔ෤ ∈ ߲ ௜ܷ, and 
a sequence {ݔ௡}௡∈ℕ  such that ݔ௡ ∈ ௜ܷ  and ݔ௡ → ݊ ෤  asݔ → +∞. We recall that ߲ ௜ܷ ⊆ ߲Ω 
and we infer that, for any ݊ ∈ ℕ, the following chain of inequalities holds: 

௡ݔ)݀ ,߲ ௜ܷ) = ௡ݔ)݀ , ௜ܷ
௖) ≤ ௡ݔ)݀ ,Ω௖) = ௡ݔ)݀ ,߲Ω) ≤ ௡ݔ)݀ ,߲ ௜ܷ), 

which implies ݀(ݔ௡ ,Ω௖) = ௡ݔ)݀ ,߲ ௜ܷ). We fix ݊ sufficiently large such that ݀(ݔ௡ , (෤ݔ ≤  ௥బ
଻

, 

so that 
௡ݔ)݀ ,Ω௖) = ௡ݔ)݀ ,߲ ௜ܷ) ≤  .଴/7ݎ

We term Γ ∶=  ௫೙,௥బ/଻ the polygonal curve constructed as in Step 2 of the proof of Theoremߛ 
(2.1.2) and we observe that, if ߝ ≤ 1/32, then (5) holds and Γ ⊆ Ω and hence, by definition 
of ௜ܷ, Γ ⊆ ௜ܷ. We use the same notation as in Step 1 of the proof of Theorem (2.1.2) and we 
recall that Γ connects ݔ௡ to some point ܻ(ݔ଴, ଴ݔ ଴/7), defined with someݎ ∈ ߲Ω. Hence, in 
particular,ܻ(ݔ଴, (଴/7ݎ ∈ ௜ܷ and this implies that ܤା(ݔ଴, (଴/7ݎ ⊆ ௜ܷ because ܤା(ݔ଴,  ଴/7) isݎ
connected. This finally yields 

| ௜ܷ| ≥ ቚܤା ቀݔ଴,
଴ݎ
7
ቁቚ ≥ ߱ே ቆ

଴ݎ
14

(1 − ቇ(ߝ2
ே

≥ ߱ே ൬
଴ݎ9
140

൰
ே

≥ ߱ே ቀ
଴ݎ
20
ቁ
ே

, 

because ߝ ≤ 1/20. We deduce that 

≥ ܫ♯  
20ே|Ω|
߱ேݎ଴ே

. 

⋄ Step 3 We establish the separation property (29). 
We set ݎଵ ∶= ݖ ଴/70 and we argue by contradiction, assuming that there areݎ ∈ ߲ ௜ܷ ,   
ݕ ∈ ߲ ௝ܷ such that 

,ݖ)݀ ௝ܷ  ) = ߲,ݖ)݀ ௝ܷ) = (ݕ,ݖ)݀ ≤  .ଵݎ
Let {ݖ௡}௡∈ℕ and {ݕ௡}௡∈ℕ be sequences in ௜ܷ and ௝ܷ  converging to ݖ and ݕ, respectively. We 
fix ݊ sufficiently large such that 

௡ݖ)݀ ,߲ ௜ܷ) ≤ ௡ݖ)݀ , ( ݖ ≤ ଵݎ ≤  ଴/14ݎ
and we term  ݖ ̅be a point in ߲ ௜ܷ satisfying ݀(ݖ௡ , ̅(ݖ = ௡ݖ)݀ ,߲ ௜ܷ) (if there is more than one 

such ݖ,̅ we arbitrarily fix one). By arguing as in Step 2, we infer that ܤା ቀݖ,̅ ௥బ
ଵସ
ቁ ⊆ ௜ܷ . Next, 

we do the same for ௝ܷ , namely we fix ݉ sufficiently large that 
௠ݕ)݀ ,߲ ௝ܷ) ≤ ௠ݕ)݀ ( ݕ, ≤ ଵݎ ≤  ,଴/7ݎ

we let ݕത be a point in ߲ ௝ܷ  satisfying ݀(ݕ௠ (തݕ, = ௠ݕ)݀ ,߲ ௝ܷ) and, by arguing as in Step 2, we 
get that ܤା(ݕത, (଴/7ݎ ⊆ ௝ܷ. Also, we note that 

(തݕ̅,ݖ)݀  ≤ ̅,ݖ)݀ (௡ݖ + ௡ݖ)݀ , ( ݖ + (ݕ,ݖ)݀ + ,ݕ)݀ (௠ݕ + ௠ݕ)݀ (തݕ, ≤  .ଵݎ5 
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Since ݎଵ = ̅,ݖ )ାܤ ଴/70, thenݎ (଴/14ݎ  ⊆ ̅,ݖ)ܤ  (଴/14ݎ  ⊆ ,തݕ)ܤ   ଴/7). We observe thatݎ
̅,ݖ)ାܤ (଴/14ݎ ∩ ,തݕ)ିܤ (଴/7ݎ = ∅                                             (31) 

since by construction ܤା(ݖ,̅ (଴/14ݎ ⊆ Ω and ݕ)ିܤത, (଴/7ݎ  ⊆  Ω௖. Also, by recalling that 
,̅ݖ)ାܤ (଴/14ݎ  ⊆  ௜ܷ ,തݕ)ାܤ,  (଴/7ݎ  ⊆ ௝ܷ  and  ௜ܷ ∩ ௝ܷ = ∅  , 

we have that 
̅,ݖ)ାܤ (଴/14ݎ ∩ ,തݕ)ାܤ (଴/7ݎ = ∅                                            (32) 

By combining (31) and (32) we get 
̅,ݖ)ାܤ (଴/14ݎ ⊆ ,തݕ)ܤ ,തݕ)ାܤ\(଴/7ݎ (଴/7ݎ ∪ ,തݕ)ିܤ  ଴/7).           (33)ݎ

We now use the inequality 

߱ே ≥ ߱ேିଵ
1

2ேିଵ
,                                                              (34) 

which will be proven later. By relying on (34) and by recalling that ߝ ≤ 20ିே ≤ 1/20 we 
obtain 

̅,ݖ)ାܤ| |(଴/14ݎ ≥ ߱ே ቆ
଴ݎ
28

(1 − ቇ(ߝ2
ே

≥ 2߱ேିଵ ൬
଴ݎ9
560

൰
ே

 

and 

,തݕ)ܤ|     ,തݕ)ାܤ\(଴/7ݎ (଴/7ݎ ∪ ,തݕ)ିܤ |(଴/7ݎ ≤ ேିଵ߱ߝ4  ቀ
଴ݎ
7
ቁ
ே

 ≤  2߱ேିଵ ൬
଴ݎ2
140

൰
ே

, 

which contradicts (33) since 2/140 < 9/560. 
To finish the proof we are thus left to establish (34). To do this, we use the relation 

߱ே = ߱ேିଵ  න ቀඥ1 − ଶቁݔ
ேିଵ

ݔ݀
ଵ

ିଵ
. 

This implies that, for any ߣ ∈ (0, 1), we have 

߱ே  ≥  ߱ேିଵ2 න ቀඥ1 − ଶቁݔ
ேିଵ

ݔ݀
ఒ

଴
  ≥  ߱ேିଵ2ߣ ቀඥ1 − ଶቁߣ

ேିଵ
 

By choosing ߣ = ඥ3/2 we obtain the inequality 

߱ே ≥ ߱ேିଵ
√3

2ேିଵ
≥ ߱ேିଵ

1
2ேିଵ

, 

and this concludes the proof.  
Corollary(2.1.11)[63]:Let ܰ ≥ 2 and Ω ⊆ ℝே be a bounded, (ߝ,  ଴)-Reifenberg flat domainݎ
with ߝ ≤ min(20ିே, 1/600). Then for every ݌ ∈ [1, +∞] there is an extension operator  

ܧ ∶  ܹଵ,௣(Ω) → ܹଵ,௣(ℝே)                                                       (35) 
whose norm is bounded by a constant which only depends on ܰ,  .଴ݎ and ,݌
Proof.  We employ the same notation as in the statement of Proposition (2.1.10) and we fix 
a connected component ௜ܷ. By recalling that ߲ ௜ܷ ⊆ ߲Ω and the separation property (29),  
we infer that ௜ܷ is itself a (ߝ,  ଴/140)-Reifenberg flat domain. Since by definition ௜ܷ isݎ
connected, we can apply Proposition (2.1.7) which says that, for every ݌ ∈ [1, +∞], there is 
an extension operator  

)௜: ܹଵ,௣ܧ ௜ܷ) →  ܹଵ,௣(ℝே) 
whose norm is bounded by a constant which only depends on ܰ,   .଴ݎ and ݌
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In order to “glue together” the extension operators ܧଵ, …  ௡ we proceed as follows. Givenܧ,
݅ = 1, . . . ,݊, we set ߜ: =  ଴/280 and we introduce the notationݎ

௜ܷ
ఋ ∶= ݔ} ∈  ℝே ∶ ,ݔ)݀  ௜ܷ  ) <  . {ߜ 

Note that the separation property (29) implies that ௜ܷ
ଶఋ ∩ ௝ܷ

ଶఋ = ∅  if ݅ ≠ ݆. 
We now construct suitable cut-off functions ߮௜, ݅ = 1, … ,݊. Let ℓ ∶ [0, +∞[→ [0,1] be the 
auxiliary function defined by setting 

ℓ(ݐ) ∶= (ݔ)݂ = ൞

1               

1 +
– ߜ ݐ
ߜ

0             

    
if   ݐ ≤            ߜ
if  ߜ ≤ ݐ ≤ ߜ2
if  ݐ ≥          ߜ2

 

We set  
߮௜(ݔ) ∶=  ℓ(݀(ݔ, ௜ܷ)) and we recall that the function ݔ ↦ ,ݔ)݀ ௜ܷ) is 1-Lipschitz and that 
ߜ =  :଴/280. Hence, the function ߮௜ satisfies the following propertiesݎ

0 ≤ ߮௜ (ݔ) ≤ 1, |∇߮௜ (ݔ)| ≤ ݔ∀ (଴ݎ) ܥ ∈ ℝே,߮௜ ≡ 1 on ௜ܷ , ߮௜ ≡ 0 on ℝே \ ௜ܷ
ଶఋ    (36) 

We then define ܧ ∶ ܹଵ,௣(Ω) → ܹଵ,௣(ℝே) by setting 

(ݑ)ܧ ∶= ෍ܧ௜(ݑ)(ݔ)߮௜(ݔ)
௡

௜ୀଵ

. 

We recall that the sets ଵܷ, . . . ,ܷ௡ are all pairwise disjoint, we focus on the case ݌ < +∞ and 
we get 

௅೛൫ℝಿ൯‖(ݑ)ܧ‖        = ቌන อ෍ܧ௜(ݑ)(ݔ)߮௜(ݔ)
௡

௜ୀଵ

อݔ݀
 

ℝಿ

௣

ቍ

ଵ
௣

≤  ෍ቆන ௣|(ݔ)௜߮(ݔ)(ݑ)௜ܧ|
 

௎೔
మഃ

ቇݔ݀
ଵ/௣௡

௜ୀଵ

 

≤  ෍‖ܧ௜(ݑ)‖௅೛(ℝಿ)

௡

௜ୀଵ

≤෍݌,ܰ)ܥ, ௐభ,೛(௎೔)‖(ݑ)‖(଴ݎ

௡

௜ୀଵ

≤ ,݌,ܰ)ܥ   (Ω)݌,1ܹ‖(ݑ)‖(0ݎ

Also, by using the bound on |∇߮௜| provided by (36), we get 

௅೛൫ℝಿ൯‖(ݑ)ܧ∇‖             = ቌන อ෍൫∇ܧ௜(ݑ)(ݔ)∇߮௜(ݔ) + ൯(ݔ)௜߮∇(ݔ)(ݑ)௜ܧ
௡

௜ୀଵ

อݔ݀
 

ℝಿ

௣

ቍ

ଵ
௣

 

                      ≤෍ቆන ௣|(ݔ)௜߮(ݔ)(ݑ)௜ܧ∇|
 

௎೔
మഃ

ቇݔ݀

ଵ
௣

௡

௜ୀଵ

+ ෍ቆන ௣|(ݔ)௜߮∇(ݔ)(ݑ)௜ܧ|
 

௎೔
మഃ

ቇݔ݀
ଵ/௣௡

௜ୀଵ

 

≤෍‖∇ܧ௜(ݑ)‖௅೛(ℝಿ)

௡

௜ୀଵ

+ ௅೛൫ℝಿ൯‖(ݑ)௜ܧ‖෍(଴ݎ)ܥ

௡

௜ୀଵ

 ≤ ,݌,ܰ)ܥ   ௐభ,೛(ஐ)‖(ݑ)‖(଴ݎ

The proof in the case ݌ = ∞ is a direct consequence of the bounds on the norm of ܧ௜ and on 
the uniform norms of ߮௜ and ∇߮௜ . This concludes the proof of the corollary.  

We end this section by comparing different ways of measuring the “distance” between 
Reifenberg-flat domains. 
      Comparing the Hausdorff distances ݀ு(ܺ,ܻ), ݀ு(ܺ௖, ܻ௖) and ݀ு(߲ܺ,߲ܻ ), where ܺ and 
ܻ are subsets of ℝே. 
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      First, we exhibit two examples showing that, in general, neither ݀ு(ܺ, ܻ) controls 
݀ு (ܺ௖ ,ܻ௖) nor ݀ு (ܺ௖, ܻ௖) controls ݀ு(ܺ, ܻ). We term ܤ ∶= ,1)ܤ 0ሬ⃗ ) the unit ball and we 
consider the two perturbations ܣ and ܥ as represented in Figure 2. 
      Next, we exhibit an example showing that, in general, ݀ு(߲ܺ, ߲ܻ) controls neither 
݀ு(ܺ,ܻ) nor ݀ு (ܺ௖ ,ܻ௖). Let ܺ ∶= ,ܴ)ܤ 0ሬ⃗ )  and ܻ ∶= ܴ)ܤ + ,ߝ 0ሬ⃗ ,ܴ)ܤ\( 0ሬ⃗ ), then 

ߝ = ݀ு(߲ܺ,߲ܻ ) <<  ݀ு(ܺ,ܻ ) = ݀ு(ܺ௖ ,ܻ௖) = ܴ. 

 
ߝ ≃ ݀ு(ܣ௖,ܤ௖) << ݀ு(ܤ,ܣ) ≃ ߝ     1 ≃ ݀ு (ܤ,ܥ) << ݀ு(ܥ௖ (௖ܤ, ≃ 1 

Figure 2. 
Also, note that the examples represented in Figure 2 show that, in general, neither ݀ு(ܺ,ܻ ) 
nor ݀ு(ܺ௖ ,ܻ௖) controls ݀ு(߲ܺ,߲ܻ). Indeed, ݀ு(߲ܤ߲,ܣ) ≃ 1  and ݀ு(߲ܤ߲,ܥ) ≃ 1. 
       However, if ܺ and ܻ are two sufficiently close Reifenberg flat domains, then we have 
the following result. 
Lemma(2.1.12)[63]: Let ܺ and ܻ be two (ߝ,  ଴)-Reifenberg flat domains satisfyingݎ
݀ு(߲ܺ,߲ܻ) ≤  ଴. Thenݎ2

݀ு(߲ܺ, ߲ܻ)  ≤  
4

1 − ߝ2
min{݀ு(ܺ, ܻ ),݀ு(ܺ௖ ,ܻ௖)}  .                    (37) 

Proof. Just to fix the ideas, assume that ݀ு(߲ܺ,߲ܻ) = sup௫∈డ௑ ,ݔ)݀ ߲ܻ). 
Since by assumption ݀ு(߲ܺ,߲ܻ) < +∞, then for every ℎ > 0 there is ݔ௛ ∈ ߲ܺ such that 

݀ு(߲ܺ,߲ܻ) − ℎ ≤ ݀௛ ∶= ௛ݔ)݀ ,߲ܻ ) ≤ ݀ு(߲ܺ, ߲ܻ ). 

Note that ߲ܻ ∩ ܤ ቀݔ௛ , ௗ೓
ଶ
ቁ = ∅ and hence either (i) ܤ ቀݔ௛ , ௗ೓

ଶ
ቁ ⊆ ܻ or (ii) ܤ ቀݔ௛ , ௗ೓

ଶ
ቁ ⊆ ܻ௖. 

      First, consider case (i): let ܲ(ݔ௛ , ௗ೓
ଶ

) be the hyper plane prescribed by the definition of 

Reifenberg flatness, then by Lemma (2.1.5) we can choose the orientation of the normal 
vector ߥ in such a way that 

௛ݔ)ିܤ ,݀௛/2) ∶= ݖ} + ߥݐ ∶ ݖ ∈ ௛ݔ)ܲ ,݀௛/2), ݐ ≥ {௛݀ߝ ∩ ௛ݔ)ܤ ,݀௛/2)  ⊆ ܺ௖   
and 

௛ݔ)ାܤ ,݀௛/2) ∶= ݖ} − ߥݐ ∶ ݖ ∈ ௛ݔ)ܲ ,݀௛/2), ݐ ≥ {௛݀ߝ ∩ ௛ݔ)ܤ ,݀௛/2)  ⊆ ܺ. 
Fix the point 

̅ݖ ∶= ௛ݔ  +
(1 + ௛݀(ߝ2

4
 ,ߥ 

then we have 

̅,ݖቆ ܤ
(1 − ௛݀(ߝ2

4
ቇ ⊆ ௛ݔ)ିܤ  ,݀௛/2)  ⊆  ܺ௖ ∩ ܻ 

and hence 

݀ு(ܺ௖ ,ܻ௖)  ≥  sup
௭∈௑೎

(௖ܻ,ݖ)݀ ≥ (௖ܻ̅,ݖ)݀  ≥  
(1 − ௛݀(ߝ2

4
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and 

݀ு(ܺ,ܻ)  ≥  sup
௭∈௒

(ܺ,ݖ)݀  ≥ (ܺ̅,ݖ)݀   ≥  
(1 − ௛݀(ߝ2

4
. 

Since case (ii) can be tackled in an entirely similar way, by the arbitrariness of ℎ we deduce 
that 

݀ு(߲ܺ,߲ܻ) ≤   
4

1 − ߝ2
 ݀ு(ܺ,ܻ ).                                               (38) 

The proof of (37) is concluded by making the following observations: 
(i) if ܺ is an (ߝ, ,ߝ) ଴)-Reifenberg flat domain, then ܺ௖ is also anݎ  ଴)-Reifenberg flatݎ
domain. 
(ii) ߲ܺ = ߲ܺ௖ and ߲ܻ = ߲ܻ௖. 

Hence, by replacing in (38) ܺ with ܺ௖ and ܻ with ܻ௖ we obtain (37).  
     Comparing the Hausdorff distances ݀ு(ܺ, ܻ) and ݀ு(ܺ௖ ,ܻ௖) with the Lebesgue measure 
of the symmetric difference, |ܺΔܻ|. As usual, ܺ and ܻ are subsets of ℝே. The results we 
state are applied in [65] to the stability analysis of the spectrum of the Laplace operator with 
Neumann boundary conditions. 
      First, we observe that the examples illustrated in Figure 2 show that, in general, |ܺΔܻ| 
controls neither ݀ு(ܺ,ܻ) nor ݀ு(ܺ௖ ,ܻ௖). Indeed, |ܣΔܤ| ≃ |ܤΔܥ| and ߝ ≃   However, if .ߝ
ܺ and ܻ are two sufficiently close Reifenberg-flat domains, then the following result hold. 
Lemma(2.1.13)[63]: Let ܺ and ܻ be two (ߝ,  ଴)-Reifenberg flat domains in ℝே.Then theݎ
following implications hold: 

(I) if  ݀ு(ܺ,ܻ) ≤  ଴, thenݎ4

݀ு(ܺ,ܻ) ≤  
8

(1 − ቆ(ߝ2
|ܺΔܻ|
߱ே

ቇ
ଵ/ே

 .                                             (39) 

(II) If ݀ு(ܺ௖ ,ܻ௖) ≤  ଴, thenݎ4

݀ு(ܺ௖ ,ܻ௖)  ≤
8

(1 − ቆ(ߝ2
|ܺΔܻ|
߱ே

ቇ
ଵ/ே

                                          (40) 

In both the previous expressions, ߱ே denotes the measure of the unit ball in ℝே . 
Proof. The argument relies on ideas similar to those used in the proof of Lemma (2.1.12). 
     We first establish (39). Just to fix the ideas, assume that ݀ு(ܺ,ܻ) = sup௫∈௑  and (ܻ,ݔ)݀
note that by assumption ݀ு(ܺ,ܻ) < +∞. Hence, for every ℎ > 0 there is ݔ௛ ∈ ܺ such that 

݀ு(ܺ,ܻ) − ℎ ≤ ݀௛ ∶= ௛ݔ)݀  ,ܻ ) ≤ ݀ு(ܺ,ܻ) 
Note that, by the very definition of ݀(ݔ௛ ,ܻ), we have ݔ)ܤ௛ ,݀௛) ⊆ ܻ௖. We now separately 
consider two cases: if ݔ)ܤ௛ ,݀௛/2) ⊆ ܺ, then 

௛ݔ)ܤ ,݀௛/2)  ⊆  ܺ ∩ ܻ௖ ⊆  |ܺΔܻ| 
and hence 

߱ே ൬
݀௛
2
൰
ே

≤  |ܺΔܻ|, 

and by the arbitrariness of ℎ this implies (39). 
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Hence, we are left to consider the case when there is ݔ଴ ∈ ௛ݔ)ܤ ,݀௛/2) ∩ ߲ܺ. We make the 
following observations: first, 

(଴,݀௛/4ݔ)ܤ  ⊆ ௛ݔ)ܤ  ,݀௛) ⊆  ܻ௖.                                               (41) 
Second, since ௗ೓

ସ
≤ ݀ு(ܺ,ܻ )/4 ≤ -଴, then we can apply the definition of Reifenberg flatݎ

ness in the ball ܤ(ݔ଴,݀௛/4). Let ܲ(ݔ଴,݀௛/4) be the hyperplane provided by property (i) in 
the definition, and let ߥ଴ denote the normal vector. By relying on Lemma (2.1.5) we infer 
that we can choose the orientation of ߥ଴ in such a way that 

ܤ ቆݔ଴ +
(1 + ௛݀(ߝ2

8
,଴ߥ 

(1 − ௛݀(ߝ2
8

ቇ ⊆  ܺ ∩ ܤ ൬ݔ଴,
݀௛
4
൰                     (42)  

By combining (41) and (42) we infer that 

߱ே ቆ
(1 − ௛݀(ߝ2

8
ቇ
ே

≤  |ܺ ∩ ܻ௖| ≤ |ܺΔܻ| 

and by the arbitrariness of ℎ this completes the proof of (39). 
    Estimate (40) follows from (39) by relying on the following two observations: 

(i)   ܺΔܻ = (ܺ௖ ∩ ܻ ) ∪ (ܺ ∩ ܻ௖) = ܺ௖Δܻ௖ . 
(ii)  if ܺ is an (ߝ, ,ߝ) ଴)-Reifenberg flat domain, then ܺ௖ is also anݎ  ଴)-Reifenberg flatݎ
domain. 

Hence, by replacing in (39) ܺ with ܺ௖ and ܻ with ܻ௖ we get (40).  
Sec(2.2): The Poisson Equation In Reifenberg-Flat Domains 
      The goal of the present section is to show a boundary regularity result for the Poisson 
equation with homogeneous Dirichlet boundary conditions in non smooth domains.  
       We consider the case of Reifenberg flat domains as given by the following definition. 
Definition(2.2.1)[96]: Let ߝ, ଴ be two real numbers satisfying 0ݎ < ߝ < 1/2 and ݎ଴ > 0. An 
,ߝ) ଴)-Reifenberg-flat domain Ωݎ ∈ ℝே is an open, bounded, and connected set satisfying 
the two following conditions: 
(i) for every x   and for any 0r r , there exists a hyperplane P( , )x r containing x 
which satisfies 

1 ( ( , ), ( , ) ( , )) .Hd B x r P x r B x r
r

    

(ii) for every x  , one of the connected component of  

  0 0 0( , ) ; ,  ( , ) 2B x r x d x P x r r   

is contained in Ω and the other one is contained in C . 

     We consider the following problem in the 0( , )x r -Reifenberg flat domain N �  for 

some ( )qf L  , 

  in
P1

0 on 
u f
u

  
   Ω

 

Reifenberg flat domains are less smooth than Lipschitz domains and it is well known that 
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we cannot expect more regularity than Hölder for boundary regularity of the Poisson 
equation in Lipschitz domains (see [97], [65] or [100]). 
       Historically, Reifenberg flat domains came into consideration because of their relation-
ship with the regularity of the Poisson kernel and the harmonic measure, as shown in a 
series of famous and deep references by Kenig and Toro (see [20, 70, 71, 73]). In particular, 
they are Non Tangentially Accessible (in short NTA) domains as described in [83]. 
Notice that the Poisson kernel is defined as related to the solution of the equation 0u   
in Ω with ݑ = ݂ on ߲Ω . In this section we  consider the equation (P1) which is of different 
nature. However, the regularity result is again based on the monotonicity formula of Alt, 
Caffarelli and Friedman [106], which is known to be one of the key estimate in the study 
harmonic measure as well. 
       More recently, regularity of elliptic PDEs in Reifenberg flat domains has been studied 
by Byun and Wang in [107, 108, 76, 77, 78]. One of their main result regarding to equation 
of the type of (P1) is the existence of a global 1, ( )pW   bound on the solution. This fact will 
be used in Corollary (2.2.4) below. 
       The case of domains of ℝ௡ has been investigated by Caffarelli and Peral [112]. See also 
[100] for the case of Lipschitz domains. Some other type of elliptic problems in Reifenberg-
flat domains can be found in [80, 81, 74, 16, 65]. 
       The present section is the first step towards a general boundary regularity theory for 
elliptic PDEs in divergence form on Reifenberg flat domains, that might be pursued in some 
future work. We have the following. 
Theorem(2.2.2)[96]: Let ݌, ଴݌,ݍ ≥ 1 be some exponents satisfying 1 ⁄݌ + 1 ⁄ݍ = 1 ⁄଴݌  and  
଴݌ > ܰ 2⁄ . Let ߙ > 0 be any given exponent such that 

ߙ <  
଴݌ −ܰ 2⁄

଴݌
 

Then one can find an ߝ = such that the following holds. Let  Ω (ߙ,ܰ)ߝ ∈ ℝே  be an (ߝ, -(଴ݎ
Reifenberg flat domain for some ݎ଴ > 0, and let ݑ be a solution for the problem (P1) in Ω 
with ( )pu L   and  ( )qf L  . Then 

0,
0( ( , 12) ) .u C B x r x     

Moreover 0,
0

0 0( ( , 12) )
( , , , , , ).

C B x r p q
u C N r p u f 


  

Proof. Considering ݑ as a function of  ܹ
ଵ,ଶ(ℝே) by setting 0 outside Ω, and applying 

Proposition (2.2.11) with ߚ =  we obtain that ,ߙ2

න ≥ ݔଶ݀|ݑ∇| ேିଶାఉݎܥ 
 

஻(௫,௥)
∋ ݔ∀   ௣‖݂‖௤‖ݑ‖  Ωഥ ݎ ∀, ∈ (0,  ଴/6),    (43)ݎ

with ܥ = ,ܰ)ܥ  ,ݔ)ܤ ଴). Recalling now the classical Poincaré inequality in a ball݌,ߚ,଴ݎ  (ݎ

න ݑ| −  ݔ݀|௫,௥ݑ
 

஻(௫,௥)
≤ ଵାݎ(ܰ)ܥ 

ே
ଶ ቆන ݔଶ݀|ݑ∇|

 

஻(௫,௥)
ቇ

ଵ
ଶ

, 
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we get 

න ݑ| −  ݔ݀|௫,௥ݑ
 

஻(௫,௥)
≤ ேାݎܥ 

ఉ
ଶ ݔ∀    ∈ Ωഥ ݎ ∀, ∈  (0,  ଴/6),                  (44)ݎ

with ܥ = ,൫ܰܥ ,଴݌,ߚ,଴ݎ  ௣‖݂‖௤ ൯. But this implies that‖ݑ‖

ݑ ∈  ℒଵ,ே ାఉଶ ,ݔ)ܤ)  (଴/12ݎ ∩ Ωഥ)    ∀ݔ ∈  Ωഥ . 

Moreover  ఉ
ଶ

<
௣బି

ಿ
మ

௣బ
≤ 1 and hence Theorem (2.2.12) says that 

∋ ݑ ,ݔ)ܤ)଴,ఈܥ  (଴/12ݎ ∩ Ωഥ) 

with ߙ = ఉ
ଶ
,  and the norm is controlled by  ܥ = ,൫ܰܥ  ,଴݌,ߚ,଴ݎ  .௣‖݂‖௤ ൯‖ݑ‖

Observe that in the statement of Theorem (2.2.2), some a priori pL  integrability on ݑ is 
needed to get some Hölder regularity. In what follows we shall see at least two situations 

where we know that pu L  for some ݌ > 2, and consequently state two Corollaries where 
the integrability hypothesis is given on f only, without any a priori requirement on ݑ. 
     First, notice that when ( )qf L  for 2 ≤ ݍ ≤ +∞, then the application  v vf dx

 is a 

bounded linear form on 1,2
0 ( )W  , endowed with  the scalar product .u v dx


  Therefore, 

using Riesz representation theorem we deduce the existence of a unique weak solution 
1,2

0 ( )u W   for the problem (P1). Moreover, the Sobolev inequality says that 2*( )u L  , 

with 22
2

N
N

 


. Some simple computations shows that in this situation, u and f verify the 

statement of Theorem (2.2.2) provided that 2 ≤ ܰ ≤ 5, which leads to the following 
corollary. 
Corollary (2.2.3)[96]: Assume that 2 ≤ ܰ ≤ 5 and let Nq I  be given where 

 
 2

6

2,            2

 ,        3  5.N N
N

if N
I

for N

   
  

 

Then for any 0   verifying  
2 11 ,

2 2
N N

N q


 
   

 
 

we can find an  ,N    such that the following holds. Let N  �  be an (ߝ, -(଴ݎ

Reifenberg flat domain for some ݎ଴ > 0, let ( )qf L    and let 1,2
0 ( )u W   be the unique 

solution for the problem (P1) in   . Then 
0,

0( ( , 12) ) .u C B x r x     

Moreover 0 ,
0

0( ( , 12) ) 2
( , , , , , ).

C B x r q
u C N r q u f 

 
   

Proof. Since 1,2
0 ( )u W  , the Sobolev embedding says that ( )pu L  , with 22 2

Np N
  . 

And by assumption qf L  for some Nq I (notice that ݍ ≥ 2, which guarantees  existence 
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and uniqueness of the weak solution). We now try to apply Theorem (2.2.2) with those ݌ 
and ݍ. Let 0p be defined by 

1 ⁄݌ + 1 ⁄ݍ = 1 ⁄଴݌  . 
Then a simple computation yields that ݌଴ > ܰ 2⁄ , provided that 

< ݍ  
2ܰ

6 − ܰ
 . 

This fixes the range of dimension ܰ ≤ 5 and notice that in this case ଶே
଺ିே

≥ 2 except for 

ܰ = 2, which justifies the definition of ܫே.  We then conclude by applying Theorem (2.2.2). 
In the proof of Corollary (2.2.3) we brutally used the Sobolev embedding on ଴ܹ

ଵ,ଶ(Ω) to 
obtain an ܮ௣  integrability on ݑ. But under some natural hypothesis we can get more using a 
theorem by Byun and Wang [76]. Precisely, if  ݂ = divܨ  for some ܨ ∈ ଶ,then fܮ lies in the 
dual space of ܪ଴ଵ(Ω) which guarantees the existence and uniqueness of a weak solution ݑ 
for (P1), again by the Reisz representation theorem. The theorem of Byun and Wang [76] 
implies moreover that if ܨ ∈ ∋ ݑ∇ ௥(Ω) thenܮ   ௥(Ω) as well. But then the Sobolevܮ 
inequality says that ݑ ∈  ௥∗which allows us to apply Theorem (2.2.2) for a larger range ofܮ
dimensions and exponents. Of course this analysis is interesting only for ݎ ≤ ܰ because if 
ݎ > ܰ we directly get some Hölder estimates by the classical Sobolev embedding. This 
leads to the second corollary. 
Corollary(2.2.4)[96]: Let ே

ଷ
< ݎ ≤  ܰ and ݍ >  ௥ே

ଷ௥ିே
 be given, so that moreover ݎ ≥ 2. 

Then for any ߙ > 0 satisfying  

ߙ < 1 −
ܰ
2
൬

1
∗ݎ

+
1
ݍ
൰ ,    with   ݎ∗ ∶=

ܰݎ
ܰ − ݎ

 , 

we can find an ߝ = ,ߙ,ܰ)ߝ |Ω|, such that the following holds. Let Ω (ݎ ⊆ ℝே  be an (ߝ, 0r )-
Reifenberg flat domain for some ݎ଴ > 0, let ݂ ∈ ݂ ௤(Ω) and assume thatܮ = −divܨ for 
some ܨ ∈ ݑ ௥(Ω).  Letܮ ∈ ଴ܹ

ଵ,ଶ(Ω) be the unique weak solution for the problem (P1) in Ω. 
Then 

ݑ ∈ ,ݔ)ܤ)଴,ఈܥ (଴/12ݎ ∩Ωഥ) ∀ݔ ∈  Ωഥ . 
Moreover ‖ݑ‖஼బ,ഀ(஻(௫,௥బ ଵଶ⁄ )∩Ωഥ) ≤ ,ܰ)ܥ  ,ߙ,଴ݎ ,ݎ ,ݍ |Ω|, ‖݂‖௤  ,‖ܨ‖௥). 
Proof. First we apply [76] which provides the existence of a threshold ߝ଴ = ,ܰ)ߝ |Ω|,  (ݎ
such that for any solution ݑ ∈ ଴ܹ

ଵ,ଶ(Ω)  of (P1) with ݂ = −divܨ and ܨ ∈  ௥(Ω)., we haveܮ
that ∇ݑ ∈ ,଴ߝ) ௥(Ω), provided that Ω isܮ  ଴)-Reifenberg flat. But then the Sobolev inequalityݎ
implies that ݑ ∈  ௥∗ withܮ 

∗ݎ  ∶=
ܰݎ
ܰ − ݎ

    if   ݎ < ܰ, 

and ݎ∗ =  +∞ otherwise. 
In order to apply Theorem (2.2.2) we define ݌଴ such that 

1 ⁄∗ݎ + 1 ⁄ݍ = 1 ⁄଴݌  , 
and we only need to check that ݌଴ > ܰ 2⁄ . This implies the following condition on ݎ and ݍ: 
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ݎ > ܰ 3⁄   and   ݍ >
ܰݎ

ݎ3 − ܰ
, 

as required in the statement of the Corollary. We finally conclude by applying Theorem 
(2.2.2). 
Lemma(2.2.5)[96]: Let ݑ be a solution for the problem (P1). Then for every ݔ଴ ∈ ߲Ω and 
a.e. ݎ > 0 we have 

          න ≥ ݔଶିே݀|ݔ|ଶ|ݑ∇| ଶିேݎ 
 

஻(௫బ,௥)∩Ω
න ݑ

ݑ߲
ߥ߲

݀ܵ
 

ப஻(௫బ,௥)∩Ω
    

+
ܰ − 2

2
ଵିே නݎ ଶ݀ܵݑ

 

ப஻(௫బ,௥)∩Ω
+ න .ݔଶିே݀|ݔ|݂ݑ

 

஻(௫బ,௥)∩Ω
    (45) 

Proof. Although (56) below can be formally obtained through an integration by parts, the 
rigorous proof is a bit technical. In the sequel we use the notation Ω௥

ା ∶= ,଴ݔ)ܤ (ݎ ∩Ω  and 
ܵ௥ା ∶= ,଴ݔ)ܤ߲ (ݎ ∩Ω. We find it convenient to define, for a given ߝ > 0, the regularized 
norm 

ఌ|ݔ|  ∶= ටݔଵଶ ଶଶݔ + + ⋯+ ேଶݔ  +  ,ߝ 

so that  |ݔ|ఌ is a ܥ∞ function. A direct computation shows that 

(ఌଶିே|ݔ|)∆  = (2 − ܰ )ܰ 
ߝ

ఌேାଶ|ݔ|
≤  0, 

in other words |ݔ|ఌଶିே is superharmonic, and hopefully enough this goes in the right 
direction regarding to the next inequalities. 
We use one more regularization thus we let ݑ௡ ∈  ௖∞(Ω) be a sequence of functionsܥ
converging in  ܹ

ଵ,ଶ(ℝே) to ݑ. We now proceed as in the proof of Alt, Caffarelli and 
Friedman monotonicity formula [106]: by using the equality 

(௡ଶݑ)∆ = ௡|ଶݑ∇|2  +  ௡                                              (46)ݑ∆௡ݑ2 
we deduce that 

2න ఌଶ –ே|ݔ|௡|ଶݑ∇|
 

Ωೝ
శ

= න ఌଶ –ே|ݔ|(௡ଶݑ)∇
 

Ωೝ
శ

− 2න ఌଶ –ே|ݔ|(௡ݑ∇௡ݑ)
 

Ωೝ
శ

.              (47) 

Since ∆(|ݔ|ఌଶିே) ≤ 0, the Gauss-Green Formula yields 

න ఌଶ –ே|ݔ|(௡ଶݑ)∇
 

Ωೝ
శ

= ݔ݀ න ఌଶ –ே|ݔ|)∇௡ଶݑ
 

Ωೝ
శ

(ݎ)௡,ఌܫ + ݔ݀( ≤  (48)        , (ݎ)௡,ఌܫ 

where 

(ݎ)௡,ఌܫ = ଶݎ) + (ߝ
ଶିே
ଶ  න ௡ݑ2

௡ݑ߲
ߥ߲

݀ܵ
 

డΩೝ
శ

+ (ܰ − 2)
ݎ

ଶݎ) + (ߝ
ே
ଶ  
න ௡ଶ݀ܵݑ

 

డΩೝ
శ

. 

In other words, (47) reads 

2න ≥ ݔଶିே݀|ݔ|௡|ଶݑߘ| (ݎ)௡,ఌܫ  − 2න ఌଶ –ே|ݔ|(௡ݑߘ௡ݑ)
 

Ωೝ
శ

ݔ݀
 

Ωೝ
శ

.           (49) 

We now want to pass to the limit, first as ݊ → +∞, and then as ߝ → 0ା. To tackle some 
technical problems, we first integrate over ݎ ∈ ,ݎ] ݎ +  thus obtaining ,ߜ and divide by [ߜ



42 
 

2
ߜ
න ൭න ݔఌଶିே݀|ݔ|௡|ଶݑ∇|

 

Ωഐ
శ

൱
௥ାఋ

௥
≥ ߩ݀ ௡ܣ  − ܴ௡ ,                        (50) 

where 

௡ܣ  =
1
ߜ
න ߩ݀(ߩ)௡,ఌܫ
௥ାఋ

௥
 

and 

ܴ௡  = 2
1
ߜ
න ൭න ݔఌଶିே݀|ݔ|(௡ݑ∆௡ݑ)

 

Ωഐ
శ

൱݀ߩ.
௥ାఋ

௥
 

First, we investigate the limit of ܣ௡ as ݊ → +∞: by applying the coarea formula, we rewrite 
 ௡ asܣ

௡ܣ  =
1
ߜ
൭2න ଶ|ݔ|) + (ߝ

ଶିே
ଶ ௡ݑ∇௡ݑ  · ݔ݀ ݔ

 

Ωೝశഃ
శ \ Ωೝశ

+ (ܰ − 2)න
|ݔ|

ଶ|ݔ|) + (ߝ
ே
ଶ
ݔ௡ଶ݀ݑ

 

Ωೝశഃ
శ \ Ωೝశ

൱ . 

 
Since ݑ௡ converges to ݑ in  ܹ

ଵ,ଶ(ℝே) when ݊ → +∞, then by using again the coarea 
formula we get that  

௡ܣ  →
1
ߜ
න ߩ݀(ߩ)ఌܫ
௥ାఋ

௥
          ݊ → +∞ 

where 

(ߩ)ఌܫ = ଶߩ) + (ߝ
ଶିே
ଶ  න ݑ2

ݑ߲
ߥ߲

݀ܵ
 

డΩഐశ
+ (ܰ − 2)

ߩ

ଶߩ) + (ߝ
ே
ଶ  
න ଶ݀ܵݑ

 

డΩഐశ
. 

Next, we investigate the limit of ܴ௡ as ݊ → +∞. By using Fubini’s Theorem, we can rewrite 
ܴ௡ as 

ܴ௡  = න ݔ݀(ݔ)ܩ(௡ݑ∆௡ݑ)
 

Ω
, 

where 

(ݔ)ܩ  = ఌଶିே|ݔ| 
1
ߜ
න ૚Ωഐశ(ݔ)݀ߩ.
௥ାఋ

௥
 

Since 

1
ߜ
න ૚Ωഐశ(ݔ)݀ߩ
௥ାఋ

௥
=

⎩
⎨

⎧
1                         if  ݔ ∈  Ω௥ା                   
ݎ + ߜ − |ݔ|

ߜ
      if  ݔ ∈  Ω௥ାఋା \ Ω௥ା ,    

0                         if  ݔ ∉ Ω௥ାఋା                

 

then ܩ is Lipschitz continuous and hence by recalling ݑ௡ ∈   ௖ஶ(Ω) we getܥ 

    ቤන ௡ݑ∆௡ݑ) − (ݑ∆ݑ
 

Ω
ቤݔ݀ ܩ ≤  ቤන ௡ݑ∆) − (ݑ∆

 

Ω
ቤݔ݀ ܩ௡ݑ + ቤන ௡ݑ) − (ݑ

 

Ω
  ቤݔ݀ ܩݑ∆

= ቤන ௡ݑ∇) − ܩ∇௡ݑ)(ݑ∇ + ݔ݀ (ܩ௡ݑ∇
 

Ω
 ቤ + ቤන∇ݑ൫(∇ݑ௡ − ܩ(ݑ∇ + ௡ݑ) − ݔ݀ ൯ܩ∇ (ݑ

 

Ω
 ቤ 

            ≤ ௡ݑ∇‖   − ௅ಮ(Ω)‖ܩ∇‖௡ ‖௅మ(Ω)ݑ‖௅మ(Ω)൫‖ݑ∇   +  ௅ಮ(Ω)൯‖ܩ‖௡ ‖௅మ(Ω)ݑ∇‖
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௡ݑ∇‖௅మ(Ω)൫‖ݑ∇ ‖+             − ௅ಮ(Ω)‖ܩ‖௅మ(Ω)‖ݑ∇  + ௡ݑ‖ −  ௅ಮ(Ω)൯‖ܩ∇‖௅మ(Ω)‖ݑ
and hence the expression at the first line converges to 0 as ݊ →  +∞. 
       By combining the previous observations and by recalling that ݑ satisfies the equation in 
the problem (P1) we infer that by passing to the limit ݊ → ∞ in (50) we get 

2
ߜ
න ൭න ݔఌଶିே݀|ݔ|ଶ|ݑ∇|

 

Ωഐశ
൱݀ݎ ≤

1
ߜ
න ߩ݀(ߩ)ఌܫ +

2
ߜ

௥ାఋ

௥
න ൭න ݔఌଶିே݀|ݔ|݂ݑ

 

Ωഐశ
൱

௥ାఋ

௥
.ߩ݀

௥ାఋ

௥
 

Finally, dividing by 2, by passing to the limit ߜ → 0ା, and then ߝ → 0ା we obtain (56) 
below. 
       Next, we will need the following Lemma of Gronwall type. 
Lemma(2.2.6)[96]: Let ߛ > 0, ଴ݎ > 0, ߰ ∶ (0, (଴ݎ → ℝ be a continuous function and 
߮: (0, (଴ݎ → ℝ  be an absolutely continuous function that satisfies the following inequality 
for a.e. ݎ ∈ (0,  ,(଴ݎ

(ݎ)߮  ≤ (ݎ)ᇱ߮ݎߛ  +  (51)                                                  .(ݎ)߰ 
Then 

↦ ݎ   
(ݎ)߮
ଵݎ ఊ⁄ +

1
ߛ
න

(ݏ)߰
ଵାଵݏ ఊ⁄

௥

଴
 ݏ݀

is a nondecreasing function on (0,  .(଴ݎ
Proof. We can assume that  

න
(ݏ)߰
ଵାଵݏ ఊ⁄

௥బ

଴
> ݏ݀  +∞, 

otherwise the Lemma is trivial. Under the hypothesis, the function 

(ݎ) ܨ ∶=  
(ݎ)߮
ଵݎ ఊ⁄ +

1
ߛ
න

(ݏ)߰
ଵାଵݏ ఊ⁄

௥

଴
 ݏ݀

is differentiable a.e. and absolutely continuous. A computation gives 

(ݎ)ᇱܨ =
߮ᇱ(ݎ)ݎଵ ఊ⁄ − (ݎ)߮  1 ⁄ߛ ଵݎ  ఊ⁄  ିଵ 

ଶݎ ఊ⁄  
+ 1 ⁄ߛ  

(ݎ)߰
ଵାଵݎ ఊ⁄  

 

=
߮ᇱ(ݎ) − (ݎ)߮  1 ⁄ߛ  ଵିݎ 

ଵݎ ఊ⁄  
+ 1 ⁄ߛ  

(ݎ)߰
ଵାଵݎ ఊ⁄  

 

thus (51) yields 

(ݎ)′ܨߛݎ  =
(ݎ)ᇱ߮ߛݎ − (ݎ)߮  + (ݎ)߰ 

ଵݎ ఊ⁄ ≥  0, 

which implies that ܨ is nondecresing.  
       We now show the monotonicity Lemma, which is inspired by Alt, Caffarelli and 
Friedman [106]. The following statement and its proof, is an easy variant of [65], where the 
same estimate is performed on Dirichlet eigenfunctions of the Laplace operator. We decided 
to write the full details in order to enlighten the role of the second member ݂ in the 
inequalities. 
Lemma(2.2.7)[96]: Let Ω ⊆ ℝே be a bounded domain and let ݑ be a solution for the 
problem (P1). Given ݔ଴ ∈ Ωഥ and a radius ݎ > 0, we denote by Ω௥ା ∶= ,଴ݔ)ܤ (ݎ ∩ Ω, by 
ܵ௥ା ∶= ,଴ݔ)ܤ߲  (ݎ ∩ Ω and by (ݎ)ߪ the first Dirichlet eigenvalue of the Laplace operator on 
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the  spherical domain ܵ௥ା. If there are constants ݎ଴ > 0 and ߪ∗ ∈]0,ܰ − 1[ such that 
inf

଴ழ௥ழ௥బ
((ݎ)ߪଶݎ)  ≥ ∗ߪ  ,                                                (52) 

then the function 

⟼ ݎ) ቆ
1
ఉݎ
න

ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ
 

Ωೝశ
ቇݔ݀ + නߚ 

(ݏ)߰
ଵାఉݏ

ݏ݀
௥

଴
                        (53) 

is non decreasing on ]0, ߚ ଴[, whereݎ ∈ ]0, 2[ is given by 

= ߚ ඥ(ܰ − 2)ଶ + ∗ߪ4  −  (ܰ − 2) 
and 

(ݏ)߰ ∶= න ݔ||݂ݑ| − ݔ଴|ଶିே݀ݔ
 

Ωೞశ
. 

We also have the bound 

න
ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ
 

Ωೝబ/మ
శ

ݔ݀ ≤ ,ܰ)ܥ  ௅మ(Ω)‖ݑ∇‖( ߚ,଴ݎ
ଶ +  (54)        .(଴ݎ)߰ 

Note that: Of course the Lemma is interesting only when 

න
(ݏ)߰
ଵାఉݏ

ݏ݀
௥

଴
<  +∞.                                                             (55) 

This will be satisfied if ݑ and ݂ are in some ܮ௣  spaces with suitable exponents, as will be 
shown in Lemma (2.2.8). 
Proof. We assume without lose of generality that ݔ଴ = 0 and to simplify notation we denote 
by ܤ௥ the ball ݔ)ܤ,  .(ݎ
By Lemma (2.2.5) we know that for a.e. ݎ > 0, 

න ݔଶିே݀|ݔ|ଶ|ݑ∇|
 

Ωೝశ
 ≤ ଶିேනݎ  ݑ2

ݑ߲
ߥ߲

݀ܵ
 

ௌೝశ
+

(ܰ − 2)
2

ଵିேනݎ  ݑ
ଶ݀ܵ

 

ௌೝశ
 

+න .ݔଶିே݀|ݔ|݂ݑ
 

Ωೝశ
                                                                 (56) 

Let us define 

(ݎ)߰ ∶= න .ݔଶିே݀|ݔ||݂ݑ|
 

Ωೝశ
                                                (57) 

and assume that (55) holds (otherwise there is nothing to prove). 
       Next, we point out that the definition of ߪ∗ implies that 

න  ݑ
ଶ݀ܵ 

 

ௌೝశ
≤

1
∗ߪ
ଶනݎ  ଶ݀ܵ|ݑ࣮∇|

 

ௌೝశ
,0[ ∋ ݎ    ଴[,                   (58)ݎ

where ∇࣮ denotes the tangential gradient on the sphere. Also, let ߙ > 0 be a parameter that 
will be fixed later, then by combining Cauchy-Schwarz inequality, (58) and the inequality 
ܾܽ ≤ ఈ

ଶ
ܽଶ + ଵ

ଶఈ
ܾଶ, we get 
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                ቤන ݑ
ݑ߲
ߥ߲

݀ܵ
 

ௌೝశ
ቤ  ≤  ቆන ଶ݀ܵݑ

 

ௌೝశ
ቇ

ଵ
ଶ
ቆන ฬ

ݑ߲
ߥ߲
ฬ
ଶ

݀ܵ
 

ௌೝశ
ቇ

ଵ
ଶ
 

                                            ≤ ݎ  ⁄∗ߪ√ ቆන ଶ݀ܵ|ݑ࣮∇|
 

ௌೝశ
ቇ

ଵ
ଶ
ቆන ฬ

ݑ߲
ߥ߲
ฬ
ଶ

݀ܵ
 

ௌೝశ
ቇ

ଵ
ଶ

 

≤ ݎ  ⁄∗ߪ√ ቆ
ߙ
2
න ଶ݀ܵ|ݑ࣮∇|

 

ௌೝశ
+

1
ߙ2

න ฬ
ݑ߲
ߥ߲
ฬ
ଶ

݀ܵ
 

ௌೝశ
ቇ                              (59) 

Hence, 

ଶିேනݎ    ݑ2
ݑ߲
ߥ߲

݀ܵ + (ܰ − ଵିேݎ(2
 

ௌೝశ
න ଶ݀ܵݑ

 

ௌೝశ
 

 ≤ ଶିேݎ
ݎ2
∗ߪ√

ቈ
ߙ
2
න ଶ݀ܵ|ݑ࣮∇|

 

ௌೝశ
+

1
ߙ2

න ฬ
ݑ߲
ߥ߲
ฬ
ଶ

݀ܵ
 

ௌೝశ
቉ + (ܰ − ଵିேݎ(2

1
∗ߪ
ଶනݎ  ଶ݀ܵ|ݑ࣮∇|

 

ௌೝశ
 

≤ ଵିேݎ ቈ൬
α
∗ߪ√

+
ܰ − 2
∗ߪ

൰න ଶ݀ܵ|ݑ࣮∇|
 

ௌೝశ
+

1
α√ߪ∗

න ฬ
ݑ߲
ߥ߲
ฬ
ଶ

݀ܵ
 

ௌೝశ
቉ .                                (60) 

Next, we choose ߙ > 0 in such a way that 
α
∗ߪ√

+
ܰ − 2
∗ߪ

=
1

α√ߪ∗
. 

namely 

= ߙ
1

∗ߪ√2
ቂඥ(ܰ − 2)ଶ + ∗ߪ4   − (ܰ − 2)ቃ . 

Hence, by combining (56), (58) and (60) we finally get 

න  ݔଶିே݀|ݔ|ଶ|ݑ∇|
 

Ωೝశ
≤ න(∗ߪ,ܰ) ߛଷିேݎ ଶ݀ܵ|ݑ∇|

 

ௌೝశ
 + ,(ݎ)߰  (61) 

where 

(∗ߪ,ܰ) ߛ = ቂඥ(ܰ –  2)ଶ + ∗ߪ4   − (ܰ –  2)ቃ
ିଵ

. 

Let us set 

(ݎ)߮ ∶= න  ݔଶିே݀|ݔ|ଶ|ݑ∇|
 

Ωೝశ
 

and observe that 

(ݎ)′߮  = ଶିேනݎ  ଶ|ݑ∇|
 

ௌೝశ
      ܽ. ݁. ,0[ ∋ ݎ  , ]଴ݎ

hence (61) implies that 
(ݎ)߮  ≤ (ݎ)′߮ݎߛ   +  (62)                                                   ,(ݎ)߰ 

with ߛ =  .(∗ߪ,ܰ) ߛ
But now Lemma (2.2.6) exactly says that the function  

ݎ ⟼
1
ఉݎ
න

ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ
 

Ωೝశ
+ ݔ݀ නߚ 

(ݏ)߰
ଵାఉݏ

 ݏ݀
௥

଴
                           (63) 

is non decreasing on (0, ߚ ଴), whereݎ ∈ (0, 2) is given by 
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= ߚ
1
ߛ

= ඥ(ܰ − 2)ଶ + ∗ߪ4   − (ܰ − 2), 

which proves the monotonicity result. 
To finish the proof of the Lemma it remains to establish (54). For this purpose, we start by 
finding a radius ݎଵ ∈ ,଴/2ݎ) ∫ ଴) such thatݎ  ଶ|ݑ∇|

ௌೝభ
శ  is less than average, which means  ݏ݀

න ଶ|ݑ∇|
 

ௌೝభ
శ

ݏ݀ ≤
2
଴ݎ
න ≥ ݔଶ݀|ݑ∇|

2
଴ݎ
௅మ(Ω)‖ݑ∇‖

ଶ
 
.

 

Ωೝబ
శ

 

By combining (61) with the fact that ݎ଴/2 ≤ ଵݎ   ≤  ଴ we infer thatݎ 

                              න ଶିே|ݔ|ଶ|ݑ∇|
 

Ωೝభ
శ

≥ ݔ݀ ,ܰ)ܥ  ௅మ(Ω)‖ݑ∇‖( ߚ,଴ݎ
ଶ +  (ଵݎ)߰ 

≤ ,ܰ)ܥ  ௅మ(Ω)‖ݑ∇‖( ߚ,଴ݎ
ଶ +  (64)                            .(଴ݎ)߰ 

It follows that 

          න
ଶ|ݑ∇|

ேିଶ|ݔ|
 

Ωೝబ/మ
శ

≥ ݔ݀  න
ଶ|ݑ∇|

ேିଶ|ݔ|
 

Ωೝభ
శ

≤ ,ܰ)ܥ ௅మ(Ω)‖ݑ∇‖( ߚ,଴ݎ
ଶ +  ,(଴ݎ)߰ 

and (54) is proved.  
       In order to apply Lemma (2.2.7), the first thing to check is that (55) holds. The purpose 
of the following Lemma is to show that it is the case when ݑ and ݂ are in suitable ܮ௣ spaces. 
Lemma(2.2.8)[96]: Let Ω ⊂ ℝே be an arbitrary domain and let ݌଴ > ே

ଶ
. Then or any 

݃ ∈  ௣బ(Ω), denotingܮ

(ݎ)߰ ∶= න ݔଶିே݀|ݔ| |݃|
 

஻(଴,௥)
, 

we have 

|(ݎ)߰|  ≤ ݎ௣బ‖݃‖(଴݌,ܰ)ܥ 
ଶ௣బିே
௣బ  .                                  (65) 

As a consequence 

  න
(ݏ)߰
ଵାఉݏ

ݏ݀
௥బ

଴
< +∞ 

for any ߚ > 0 satisfying 

> ߚ
଴݌2 − ܰ

଴݌
.                                                             (66) 

Proof. First, we observe that |ݔ|ଶିே ∈  ௠ for any ݉ that satisfiesܮ 

 (ܰ − 2)݉ < ܰ ⇒  ݉ <
ܰ

ܰ –  2
. 

Moreover a computation gives that under this condition, 

ଶିே‖௅೘(஻(଴,௥))|ݔ|‖ 
௠ = න ௠(ଶିே)|ݔ|

 

஻(଴,௥)
=  ேି௠(ேିଶ).           (67)ݎ(݉,ܰ)ܥ

Let us define ݉ as being the conjugate exponent of ݌଴, namely 
1
݉
∶= 1 −

1
଴݌

. 
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Then the hypothesis ݌଴  > ே
ଶ
 implies that ݉ < ே

ேିଶ
, and by use of Hölder inequality and by 

(67) we can estimate 

|(ݎ)߰|  ≤  ‖݃‖௣బ‖|ݔ|ଶିே‖௅೘൫஻(଴,௥)൯  ≤ ݎ௣బ‖݃‖(݉,ܰ)ܥ 
ேି௠(ேିଶ)

௠  , 
or equivalently in terms of ݌଴, 

|(ݎ)߰| ≤ ݎ௣బ‖݃‖(଴݌,ܰ)ܥ
ଶ௣బିே
௣బ  .                                          (68) 

The conclusion of the Lemma follows directly from (68).  
We come now to the first application of Lemma (2.2.7), which is a decay estimate for the 
energy at interior points, for arbitrary domains. 
Proposition(2.2.9)[96]: Let ݌, ଴݌,ݍ > 1 be some exponents satisfying ଵ

௣
+ ଵ

௤
= ଵ

௣బ
  and 

଴݌ > ே
ଶ
. Let ߚ > 0 be any given exponent such that 

ߚ <
଴݌2 − ܰ

଴݌
.                                                      (69) 

Let Ω ⊆ ℝே be any domain, ݔ଴ ∈ Ω, and let ݑ be a solution for the problem (P1) in Ω with 
ݑ ∈ ݂ ௣(Ω) andܮ ∈  ௤(Ω). Thenܮ

න ݔଶ݀|ݑ∇|
 

஻(௫బ,௥)∩Ω
≤ ∋ ݎ ∀   ௣‖݂‖௤‖ݑ‖ேିଶାఉݎܥ (0, dist(ݔ଴,߲Ω)/2) ,         (70) 

with ܥ = ,଴݌,ߚ,ܰ)ܥ dist(ݔ଴,߲ Ω)). 
Proof. We assume that ݔ଴ = 0 and we define ݎଵ ∶= dist(ݔ଴,߲ Ω) in such a way that ݔ)ܤ,  (ݎ
is totally contained inside Ω for ݎ ≤ ଵ and under the notation of Lemma (2.2.7), Ω௥ାݎ =
,0)ܤ and by ܵ௥ା (ݎ = ,0)ܤ߲ ݎ for any (ݎ ≤  ଵ. Under the hypothesis and in virtue of Lemmaݎ
(2.2.8) that we apply with ݃ = ߚ we know that (55) holds for any , ݂ݑ > 0 that satisfies 

ߚ <
଴݌2 − ܰ

଴݌
.                                                            (71) 

Notice that  ଶ௣బ ି ே
௣బ

> 0, because ݌଴ > ܰ/2. 

       In the sequel we chose any exponent ߚ > 0 satisfying (70), so that (55) holds and 
moreover Lemma (2.2.8) says that 

    න
(ݏ)߰
ଵାఉݏ

ݏ݀ 
௥భ

଴
≤ ,ܰ)ܥ ௣‖݂‖௤න‖ݑ‖(଴݌ ݏ

ଶ௣బିே
௣బ

ିଵିఉ ݀ݏ
௥భ

଴
 

≤  ௣‖݂‖௤ .                                                   (72)‖ݑ‖(ߚ,଴݌,ܰ)ܥ
       We are now ready to show (70), ߚ still being a fixed exponent satisfying (71). 
We recall that the first eigenvalue of the spherical Dirichlet Laplacian on the unit sphere is 
equal to ܰ − 1 ,  thus hypothesis (52) in the present context reads 

inf
଴ழ௥ழ௥భ

൫ݎଶ(ݎ)ߪ൯ = ܰ − 1,                                                (73) 

so that (52) holds for any ߪ∗ < ܰ − 1. Let us choose ߪ∗  exactly equal to the one that 
satisfies 

= ߚ ඥ(ܰ − 2)ଶ + ∗ߪ4   − (ܰ − 2). 
one easily verifies that ߪ∗ < ܰ − 1.  because of (71). 
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As a consequence, we are in position to apply Lemma (2.2.7) which ensures that, if ݑ is a 
solution for the problem (P1), then the function in (63) is non decreasing. In particular, by 
monotonicity we know that for every ݎ ≤  ,ଵݎ 

         
1

ேିଶାఉݎ
 න ݔ݀ ଶ|ݑ∇|

 

Ωೝశ
  ≤  ቆ

1
ఉݎ
න

ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝశ
ቇ + නߚ 

(ݏ)߰
ଵାఉݏ

ݏ݀ 
௥

଴
  

                                        ≤  ൮
1

ቀݎଵ2ቁ
ఉන

ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝభ
మ

శ
൲ + නߚ 

(ݏ)߰
ଵାఉݏ

.ݏ݀ 
௥భ/ଶ

଴
         (74) 

and we conclude that for every ݎ ≤  ,ଵ/2ݎ 

න ݔଶ݀|ݑ∇|
 

Ωೝశ
≤  ,ேିଶାఉݎܭ 

with 

ܭ = ൭
1

ఉන(ଵ/2ݎ)
ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀
 

Ωೝభ/మ
శ

൱ + නߚ 
(ݏ)߰
ଵାఉݏ

,ݏ݀
௥భ/ଶ

଴
 

Let us now provide an estimate on ܭ. To estimate the first term in ܭ we use (54) to write 

න
ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀
 

Ωೝభ/మ
శ

≤ ,ܰ)ܥ  ௅మ(Ω)‖ݑ∇‖( ߚ,ଵݎ
ଶ +  (75)            (ଵݎ)߰ 

Then we use (65) to estimate  
(ଵݎ)߰  ≤ ,଴݌,ܰ)ܥ   , ௣‖݂‖௤‖ݑ‖(ଵݎ

and from the equation satisfied by ݑ we get 

௅మ(Ω)‖ݑ∇‖
ଶ = නݔ݂݀ݑ

 

Ω
≤  ௣‖݂‖௤‖ݑ‖

so that in total we have 

න
ଶ|ݑ∇|

ݔ| −|ேିଶ ݔ݀
 

Ωೝభ/మ
శ

≤ ,ܰ)ܥ   .௣‖݂‖௤‖ݑ‖(଴݌,ߚ,଴ݎ

Finally, the last estimate together with (72) yields 
≥ ܭ ,ܰ)ܥ  ,௣‖݂‖௤‖ݑ‖(଴݌,ߚ,ଵݎ

and this ends the proof of the Proposition.  
We now use Lemma (2.2.7) again to provide an estimate on the energy at boundary points, 
this time for Reifenberg flat domains. 
Proposition(2.2.10)[96]: Let ݌, ଴݌,ݍ > 1 be some exponents satisfying ଵ

௣
+ ଵ

௤
= ଵ

௣బ
  and 

଴݌ > ே
ଶ
 . Let ߚ > 0 be any given exponent such that 

ߚ <
଴݌2 −ܰ

଴݌
.                                                                 (76) 

Then one can find an ߝ = such that the following holds. Let Ω (ߚ,ܰ)ߝ ⊆ ℝே be any (ߝ, -(଴ݎ
Reifenberg flat domain for some ݎ଴ > 0, let ݔ଴ ∈ ߲Ω and let ݑ be a solution for the problem 
(P1) in Ω with ݑ ∈ ݂ ௣(Ω) andܮ  ∈  ௤(Ω). Thenܮ



49 
 

න ≥ ݔଶ݀|ݑ∇| ேିଶାఉݎܥ 
 

஻(௫బ,௥)∩Ω
ݎ ∀௣‖݂‖௤‖ݑ‖ ∈ ቀ0,

଴ݎ
2
ቁ ,           (77) 

with ܥ = ,ܰ)ܥ  .(଴݌,ߚ,଴ݎ
Proof. As before we assume that ݔ଴ = 0 and we denote by Ω௥ା ∶= ,0)ܤ (ݎ ∩ Ω and by 
ܵ௥ା ∶= ,0)ܤ߲ (ݎ ∩ Ω. To obtain the decay estimate on ∫  ݔଶ݀|ݑ∇|

Ωೝశ
 we will follow the proof 

of Proposition (2.2.9) the main difference is that for boundary points, (73) does not hold. 
This is where Reifenberg flatness will play a role. 
Let ߚ > 0, be an exponent satisfying (76), so that invoquing Lemma (2.2.8) we have 

න
(ݏ)߰
ଵାఉݏ

ݏ݀
௥బ

଴
≤ ,ܰ)ܥ ௣‖݂‖௤‖ݑ‖( ߚ,଴݌ < +∞.                             (78) 

     Next, we recall that the first eigenvalue of the spherical Dirichlet Laplacian on a half 
sphere is equal to ܰ − 1 (as for the total sphere). For ݐ ∈ (−1,1), let ܵ௧ be the spherical cap 
ܵ௧ ∶= ,0)ܤ߲ 1) ∩ ேݔ} > ݐ so that {ݐ = 0 corresponds to a half sphere. Let ߣଵ(ܵ௧) be the first 
Dirichlet eigenvalue in ܵ௧ . In particular, ݐ ⟼  .ݐ ଵ(ܵ௧) is continuous and monotone inߣ
Therefore, since and ߣଵ(ܵ௧) →  0 as ݐ ↓ −1, there is (ߚ)∗ݐ < 0 such that 

= ߚ ඥ(ܰ − 2)ଶ + (∗ݐ)ଵߣ4  − (ܰ − 2) 
     By applying the definition of Reifenerg flat domain, we infer that, if ߝ <  then ,2/(ߟ)∗ݐ
,଴ݔ)ܤ߲ (ݎ ∩ Ω is contained in a spherical cap homothetic to ܵ௧∗ for every ݎ ≤  ଴. Since theݎ
eigenvalues scale of by factor ݎଶ when the domain expands of a factor 1/ݎ, by the 
monotonicity property of the eigenvalues with respect to domains inclusion, we have 

inf
௥ழ௥బ

,଴ݔ)ܤ߲)ଵߣଶݎ (ݎ ∩  Ω) ≥ ∗ଵ(ܵ௧ߣ  ) =
ߚ
2
൬
ߚ
2

+ ܰ − 2൰ .             (79) 

As a consequence, we are in position to apply the monotonicity Lemma (Lemma 2.2.7) 
which ensures that, if ݑ is a solution for the problem (P1) and ݔ଴ ∈ ߲Ω, then the function in 
(63) is non decreasing.  
We then conclude as in the proof of Proposition (2.2.9), i.e. by monotonicity we know that 
for every ݎ ≤ ଴ݎ < 1, 

            
1

ேିଶାఉݎ
 න ݔ݀ ଶ|ݑ∇|

 

Ωೝశ
 ≤  ቆ

1
ఉݎ
න

ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝశ
ቇ + නߚ 

(ݏ)߰
ଵାఉݏ

ݏ݀ 
௥

଴
  

               ≤  ൮
1

ቀݎ଴2ቁ
ఉන

ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝబ
మ

శ
൲ + නߚ 

(ݏ)߰
ଵାఉݏ

.ݏ݀ 
௥బ/ଶ

଴
        (80) 

hence for every ݎ ≤  ,଴/2ݎ

න ݔଶ݀|ݑ∇|
 

Ωೝశ
≤  ,ேିଶାఉݎܭ 

with 

ܭ = ൭
1

ఉන(଴/2ݎ)
ଶ|ݑ∇|

ݔ| − ଴|ேିଶݔ ݔ݀
 

Ωೝబ/మ
శ

൱ + නߚ 
(ݏ)߰
ଵାఉݏ

,ݏ݀
௥బ/ଶ

଴
 

Then we estimate ܭ exactly as in the end of the proof of Proposition (2.2.9), using (54), (65) 
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and (78) to bound 
≥ ܭ  ,ܰ)ܥ   , ௣‖݂‖௤‖ݑ‖(଴݌,ߚ,଴ݎ

and this ends the proof of the Proposition. Gathering together Proposition (2.2.9) and 
Proposition (2.2.10) we deduce the following global result. 
Proposition(2.2.11)[96]: Let ݌, ଴݌,ݍ > 1 be some exponents satisfying ଵ

௣
+ ଵ

௤
= ଵ

௣బ
 and 

଴݌ > ே
ଶ

 . Let ߚ > 0 be any given exponent such that 

> ߚ
଴݌2 −ܰ

଴݌
.                                                              (81) 

Then one can find an ߝ = such that the following holds. Let Ω (ߚ,ܰ)ߝ ⊆ ℝே be any (ߝ, -(଴ݎ
Reifenberg flat domain for some ݎ଴ > 0, and let ݑ be a solution for the problem (P1) in Ω 
with ݑ ∈ ݂ ௣(Ω) andܮ ∈  ௤(Ω). Thenܮ 

න ≥ ݔଶ݀|ݑ∇| ேିଶାఉݎܥ 
 

஻(௫,௥)∩Ω
ݔ ∀௣‖݂‖௤‖ݑ‖ ∈ Ωഥ ݎ ∀, ∈ ቀ0,

଴ݎ
6
ቁ ,           (82) 

with ܥ = ,ܰ)ܥ  .(଴݌,ߚ,଴ݎ
Proof. By Proposition (2.2.9) and Proposition (2.2.10), we already know that (82) holds true 
for every ݔ ∈ ߲Ω, or for points ݔ such that dist(ݔ, ߲Ω) ≥  ଴/3. It remains to consider ballsݎ
centered at points ݔ ∈ Ω verifying 

dist(ݔ,߲Ω) ≤  .଴/3ݎ
Let ݔ be such a point. Then Proposition (2.2.9) directly says that (82) holds for every radius 
such that 0 ݎ < ݎ ≤ dist(ݔ,߲Ω)/2, and it remains to extend this for the radii ݎ in the range 

dist(ݔ,߲Ω)/2 ≤ ݎ ≤  ଴/6.                                                     (83)ݎ
For this purpose, let ݕ ∈ ߲Ω be such that  

dist(ݔ,߲Ω) = ݔ‖ − ‖ݕ ≤  .଴/3ݎ 
Denoting ݀(ݔ) ∶= dist(ݔ, ߲Ω) we observe that for the ݎ that satisfies (83) we have 

,ݔ)ܤ (ݎ  ⊆ ,ݕ)ܤ  ݎ + ((ݔ)݀  ⊆ ,ݕ)ܤ   (84)                            .(ݎ3
Then since ݕ ∈ ߲Ω, Proposition (2.2.10) says that 

න ≥ ݔଶ݀|ݑ∇| ேିଶାఉݎܥ 
 

஻(௫,௥)∩Ω
ݎ ∀   ௣‖݂‖௤‖ݑ‖ ∈ (0,  ଴/2),          (85)ݎ

so that (82) follows, up to change ܥ with 3ேିଶାఉܥ.  
     The classical results on Campanato Spaces can be found for instance in [116]. We define 
the space  

ℒ௣,ఒ(Ω) ∶= ቊݑ ∈ ௣(Ω) ; supܮ 
௫,ఘ

ቆିߩఒන หݑ − ௫,௥หݑ
௣݀ݔ

 

஻(௫,௥)∩Ω
ቇ < +∞)ቋ 

where the supremum is taken over all ݔ ∈ Ω and all ߩ ≤ diam(Ω), and where ݑ௫,௥ means 
the average of ݑ on the ball ݔ)ܤ,  .A proof of the next result can be found in [116] .(ݎ
Theorem(2.2.12)[96]: (Campanato). If  ܰ < ߣ ≤ ܰ +  then ݌

ℒ௣,ఒ(Ω) ≃ = ߙ  ଴,ఈ(Ωഥ),     withܥ 
ߣ − ܰ
݌

. 
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Corollary(2.2.13)[206]: Let ݌, (ଵାఌ)௣
௣ି(ఌାଵ)

, ߝ ≥ 0 be some exponents. Let ߝ < 1 be any given 

exponent such that 
ଶߝ2

(1 − (ߝ  >  ܰ                                                                            (86) 

Then one can find an ߝ = ߗ  such that the following holds. Let (ܰ)ߝ ∈ ℝே be an (ߝ, ݎ + -(ߝ
Reifenberg flat domain for some ݎ + ߝ > 0, and let the sequence ݑ௜ be solutions  for the 

problem (P1) in Ω  with ( )p
iu L   and 

 
 

1
1 ( )
p

pf L




   . Then 

 0,1 ( ( , 12) ) .i ru C B x x      

Moreover    
 

0,1 1
1

( ( , 12) )
( , , , , ).p

r
p

i iC B x p
u C u frN 




 


 


  

Proof . Considering the sequence ݑ௜ as  functions of  ܹ
ଵ,ଶ(ℝே) by setting 0 outside Ω, and 

applying Corollary(2.2.22) below with ߝ = 0, we obtain that 

න ≥ ݔ௜|ଶ݀ݑߘ| ேିఌݎܥ 
 

஻(௫,௥)
‖݂‖௜‖௣ݑ‖ (ଵାఌ)௣

௣ି(ఌାଵ)
∋ ݔ∀     Ωഥ ݎ ∀       , ∈ (0, ݎ) + ,(6/(ߝ (87) 

with ܥ = ,ܰ)ܥ  ,ݎ ,ݔ)ܤ Recalling now the classical Poincaré inequality in a ball .(ߝ  (ݎ

න ௜ݑ| −  ݔ݀|௫,௥(௜ݑ)
 

஻(௫,௥)
≤ ଵାݎ(ܰ)ܥ 

ே
ଶ ቆන ݔ௜|ଶ݀ݑߘ|

 

஻(௫,௥)
ቇ

ଵ
ଶ

, 

we get 

න ௜ݑ| −  ݔ݀|௫,௥(௜ݑ)
 

஻(௫,௥)
≤ ݔ∀      ே ାଵିఌଶݎܥ  ∈ Ωഥ ݎ ∀, ∈  (0, ݎ) +  (88)                   ,(6/(ߝ

with ܥ = ܥ ቆܰ, ,ݎ ,ߝ ‖݂‖௜‖௣ݑ‖ (భశഄ)೛
೛ష(ഄశభ)

 ቇ. But this implies that 

௜ݑ ∈  ℒଵ,ே ାଵିఌଶ (ݔ)ܤ, ݎ) + (12/(ߝ ∩ Ωഥ)    ∀ݔ ∈  Ωഥ . 
Moreover  0 ≤ ଶே

ఌேାଶఌమ
< 1 and hence Theorem (2.2.12) says that 

௜ݑ  ∈ ,ݔ)ܤ)଴,ଵିఌܥ  ݎ) + (12/(ߝ ∩ Ωഥ) 

with ߝ = 0,  and the norm is controlled by  ܥ = ܥ ቆܰ, ,ݎ ,ߝ ‖݂‖௜‖௣ݑ‖ (భశഄ)೛
೛ష(ഄశభ)

 ቇ. 

Corollary(2.2.14)[206]: Assume that 2 ≤ ܰ ≤ 5 and let  
 

1
1 N

p
p

I

 





 be given where 

 
 2

6

2,            2

 ,        3  5.N N
N

if N
I

for N

   
  

 

Then for any 1   verifying  

= ߝ   
݌6)− − ݌ܰ + 2ܰ) ± ඥ(6݌ − ݌ܰ + 2ܰ)ଶ − ݌2)݌16 + 2ܰ − (݌3ܰ

݌8
 

we can find an  ,N p  such that the following holds. Let ߗ ∈ ℝே be an (ߝ, ݎ + -(ߝ
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Reifenberg-flat domain for some ݎ + ߝ >  0, let 
 
 

1
1 ( )
p

pf L




    and let 1,2

0 ( )iu W  be the 
unique solution for the problem (P1) in   . Then 

 0,1 ( ( , 12) ) .i ru C B x x      

Moreover    
 

0,1 ( ( , 12
1

) ) 2
1( , , , , , ).p

r
p

i iC B x
u C N fr p u 




 








   

Proof. Since 1,2
0 ( )iu W  , the Sobolev embedding says that ( )p

iu L  , with 22 2
Np N

  . 

And by assumption 
 
 

1
1
p

pf L




   for some  

 
1

1 N

p
p

I

 





(notice that ߝ ≥ ௣ିଶ
௣ାଶ

, which 

guarantees existence and uniqueness of the weak solution). We now try to apply Corollary 

(2.2.13) with those p and (ଵାఌ)௣
௣ି(ఌାଵ)

.  Let 1   be defined . 

Then a simple computation yields that ߝ > 0, provided that 

< ߝ  
݌3ܰ − ݌6 − 2ܰ
݌ܰ− + ݌6 − 2ܰ

 

This fixes the range of dimension ܰ ≤  5 and notice that in this case ܰ ≥ 3 except for 
ܰ = 2, which justifies the definition of ܫே. We then conclude by applying Corollary 
(2.2.13). 

Corollary(2.2.15)[206]: 

Let  ேି଺
ଷ

< ߝ ≤  ܰ − 2, and ߝ = ି(ିଶே௣ାଽ௣ାଷே )±ඥ(ିଶே௣ାଽ௣ାଷே )మିସ(ଷ௣ାே)(ିଷே௣ା଺௣ାଶே )
଺௣ାଶே

  be 

given, so that moreover ε ≥ 0. Then for any ε < 1 satisfying  

ߝ =
݌∗ݎ 2)− − ݌ܰ + (∗ݎ ܰ ± ඥ(2 ݌∗ݎ − ݌ܰ + ଶ(∗ݎ ܰ − ݌ܰ−)(݌∗ݎ)8 − ݌∗ݎܰ + (∗ݎ ܰ

݌∗ݎ 4
,   

  with   ݎ∗ ∶=
(2 + ܰ(ߝ
ܰ − (2 +  , (ߝ

we can find an ߝ = ,ܰ)ߝ  |Ω|, ,݌ such that the following holds. Let Ω (∗ݎ ⊆ ℝே  be an 

(ε, r  )-Reifenberg-flat domain for some ݎ + ߝ > 0, let ݂ ∈ ܮ
(భశഄ)೛
೛ష(ഄశభ)(Ω) and assume that 

݂ = −divܨ for some ܨ ∈ ௜ݑ ଶାఌ(Ω). Letܮ ∈ ଴ܹ
ଵ,ଶ(Ω) be the unique weak solution for the 

problem (P1) in Ω. Then 
௜ݑ ∈ ,ݔ)ܤ)଴,ଵିఌܥ  r  /12) ∩Ωഥ) ∀ݔ ∈  Ωഥ . 

Moreover ‖ݑ௜‖஼బ,భషഄ(஻(௫,(௥ାఌ) ଵଶ⁄ )∩Ωഥ) ≤ ,ܰ)ܥ  ,ݎ ,݌,ߝ |Ω|, ‖݂‖ (భశഄ)೛
೛ష(ഄశభ)

  ,  .(ଶାఌ‖ܨ‖

Proof. First we apply [76] which provides the existence of a threshold ߝ଴ = ,ܰ)ߝ |Ω|) such 
that for any solution ݑ௜ ∈ ଴ܹ

ଵ,ଶ(Ω)  of (P1) with ݂ = −divܨ and ܨ ∈  ଶାఌ(Ω), we have thatܮ
௜ݑߘ  ∈ ,଴ߝ) ଶାఌ(Ω), provided that Ω isܮ  ݎ +  Reifenberg flat. But then the Sobolev-(ߝ
inequality implies that ݑ௜ ∈  ௥∗ withܮ 

∗ݎ  ∶=
(2 + ܰ(ߝ
ܰ − (2 + (ߝ     if   ߝ < ܰ − 2, 
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and ݎ∗ =  +∞ otherwise. 
         In order to apply Corollary(2.2.13) we define 1 +  such that ߝ

ߝ =
݌− + ∗ݎ

݌ − ∗ݎ
 , 

and we only need to check that ߝ > 0. This implies the following condition on 2 +  and ߝ
(ଵାఌ)௣
௣ି(ఌାଵ)

: 

ε >
N− 6

3
  

  and   ߝ =
݌9)− − ݌2ܰ + 3ܰ) ± ඥ(9݌ − ݌2ܰ + 3ܰ)ଶ − ݌3)4 + ݌3ܰ−)(ܰ + ݌6 + 2ܰ)

݌6 + 2ܰ
, 

as required in the statement of the Corollary. We finally conclude by applying Corollary 
(2.2.13). 
Corollary(2.2.16)[206]: Let ݑ௜ be a solution for the problem (P1). Then for every ݔ଴ ∈ ߲Ω 
and a.e. ݎ > 0 we have 

න ≥ ݔଶିே݀|ݔ|௜|ଶݑߘ| ଶିேݎ 
 

஻(௫బ,௥)∩Ω
න ௜ݑ

௜ݑ߲
௜ߥ߲

݀ܵ
 

డ஻(௫బ,௥)∩Ω
 

+
ܰ − 2

2
ଵିே නݎ ௜ଶ݀ܵݑ

 

డ஻(௫బ,௥)∩Ω
+ න .ݔଶିே݀|ݔ|௜݂ݑ

 

஻(௫బ,௥)∩Ω
    (89) 

Proof. Although see (100) below can be formally obtained through an integration by parts, 
the rigorous proof is a bit technical. In the sequel we use the notation Ω௥

ା ∶= ,଴ݔ)ܤ (ݎ ∩Ω, 
and ܵ௥ା ∶= ,଴ݔ)ܤ߲ (ݎ ∩Ω.We find it convenient to define, for a given ߝ > 0, the regularized 
norm 

ఌ|ݔ|  ∶= ටݔଵଶ ଶଶݔ + + ⋯+ ேଶݔ  +  ,ߝ 

so that  |ݔ|ఌ is a C∞ function. A direct computation shows that 

(ఌଶିே|ݔ|)∆  = (2 − ܰ )ܰ 
ߝ

ఌேାଶ|ݔ|
≤  0, 

in other words |ݔ|ఌଶିே is superharmonic, and hopefully enough this goes in the right 
direction regarding to the next inequalities. 
       We use one more regularization thus we let (ݑ௜)௡ ∈  ௖∞(Ω) be a sequence of functionsܥ
converging in  ܹ

ଵ,ଶ(ℝே) to ݑ௜. We now proceed as in the proof of Alt , Caffarelli and 
Friedman monotonicity formula [106]: by using the equality 

(௡ଶ(௜ݑ))∆ = ௡|ଶ(௜ݑ)ߘ|2  +  ௡                                                 (90)(௜ݑ)∆ ௡(௜ݑ)2 
we deduce that 

2න ఌଶ –ே|ݔ|௡|ଶ(௜ݑ)ߘ|
 

Ωೝ
శ

= න ఌଶ –ே|ݔ|(௡ଶ(௜ݑ))ߘ
 

Ωೝ
శ

− 2න ఌଶ –ே|ݔ|(௡(௜ݑ)ߘ௡(௜ݑ))
 

Ωೝ
శ

.           (91) 

Since ∆(|ݔ|ఌଶିே)  ≤  0, the Gauss-Green Formula yields 

න ఌଶ –ே|ݔ|(௡ଶ(௜ݑ))ߘ
 

Ωೝ
శ

= ݔ݀ න ௡ଶ(௜ݑ) ఌଶ –ே|ݔ|)ߘ 
 

Ωೝ
శ

+ ݔ݀( (ݎ)௡,ఌܫ   ≤  (92)              , (ݎ)௡,ఌܫ 
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where 

(ݎ)௡,ఌܫ = ଶݎ) + (ߝ
ଶିே
ଶ  න ௡(௜ݑ)2  

௡(௜ݑ)߲
௜ߥ߲

݀ܵ
 

డΩೝ
శ

+ (ܰ − 2)
ݎ

ଶݎ) + (ߝ
ே
ଶ  
න ௡ଶ(௜ݑ)  ݀ܵ

 

డΩೝ
శ

. 

In other words, (91) reads 

2න ≥ ݔଶିே݀|ݔ|௡|ଶ(௜ݑ)ߘ| (ݎ)௡,ఌܫ  − 2න ఌଶ –ே|ݔ|(௡(௜ݑ)ߘ௡(௜ݑ))
 

Ωೝ
శ

ݔ݀
 

Ωೝ
శ

.                       (93) 

We now want to pass to the limit, first as ݊ → +∞, and then as ߝ → 0ା. To tackle some 
technical problems, we first integrate over ݎ ∈ ,ݎ] ݎ +  thus obtaining ,ߜ and divide by [ߜ

2
ߜ
න ൭න ݔఌଶିே݀|ݔ|௡|ଶ(௜ݑ)ߘ|

 

Ωഐ
శ

൱
௥ାఋ

௥
≥ ߩ݀ ௡ܣ  − ܴ௡ ,                                                (94) 

where 

௡ܣ  =
1
ߜ
න ߩ݀(ߩ)௡,ఌܫ
௥ାఋ

௥
 

and 

ܴ௡  = 2
1
ߜ
න ൭න ݔఌଶିே݀|ݔ|(௡(௜ݑ)∆ ௡(௜ݑ))

 

Ωഐ
శ

൱݀ߩ.
௥ାఋ

௥
 

First, we investigate the limit of ܣ௡ as ݊ → +∞: by applying the coarea formula, we rewrite 
 ௡ asܣ

௡ܣ  =
1
ߜ
൭2න ଶ|ݔ|) + (ߝ

ଶିே
ଶ ௡(௜ݑ)ߘ ௡(௜ݑ) · ݔ݀ ݔ

 

Ωೝశഃ
శ \ Ωೝశ

+ (ܰ − 2)න
|ݔ|

ଶ|ݔ|) + (ߝ
ே
ଶ

௡ଶ(௜ݑ) ݔ݀ 
 

Ωೝశഃ
శ \ Ωೝశ

ቇ . 

Since (ݑ௜)௡ converges to ݑ௜ in  ܹ
ଵ,ଶ(ℝே) when ݊ → +∞, then by using again the coarea 

formula we get that  

௡ܣ  →
1
ߜ
න ߩ݀(ߩ)ఌܫ
௥ାఋ

௥
          ݊ → +∞ 

where 

(ߩ)ఌܫ = ଶߩ) + (ߝ
ଶିே
ଶ  න ௜ݑ2

௜ݑ߲
௜ߥ߲

݀ܵ
 

డΩഐశ
+ (ܰ − 2)

ߩ

ଶߩ) + (ߝ
ே
ଶ  
න ܵ݀ ௜ଶݑ

 

డΩഐశ
. 

Next, we investigate the limit of ܴ௡ as ݊ → +∞. By using Fubini’s Theorem, we can rewrite 
ܴ௡ as 

ܴ௡  = න ݔ݀(ݔ)ܩ(௡(௜ݑ)∆ ௡(௜ݑ))
 

Ω
, 

where 

(ݔ)ܩ  = ఌଶିே|ݔ| 
1
ߜ
න ૚Ωഐశ(ݔ)݀ߩ.
௥ାఋ

௥
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Since 

1
ߜ
න ૚Ωഐశ(ݔ)݀ߩ
௥ାఋ

௥
=

⎩
⎨

⎧
1                         if ݔ ∈  Ω௥ା                   
ݎ + ߜ − |ݔ|

ߜ
      if ݔ ∈  Ω௥ାఋା \ Ω௥ା ,    

0                         if ݔ ∉ Ω௥ାఋା                

 

then ܩ is Lipschitz continuous and hence by recalling (ݑ௜)௡ ∈   ௖ஶ(Ω) we getܥ 

    ቤන ௡(௜ݑ)∆ ௡(௜ݑ)) − (௜ݑ∆௜ݑ
 

Ω
ቤݔ݀ ܩ ≤  ቤන ௡(௜ݑ)∆) − (௜ݑ∆

 

Ω
 ቤݔ݀ ܩ ௡(௜ݑ)

+ ቤන ௡(௜ݑ)) − (௜ݑ
 

Ω
௜ݑ∆ ቤݔ݀ ܩ  = ቤන – ௡(௜ݑ)ߘ) + ܩߘ ௡(௜ݑ))(௜ݑߘ  ݔ݀ (ܩ ௡(௜ݑ)ߘ 

 

Ω
 ቤ 

                     + ቤනݑߘ௜൫(ߘ(ݑ௜)௡ – ܩ(௜ݑߘ  + ௡(௜ݑ)) − ݔ݀ ൯ܩߘ (௜ݑ
 

Ω
 ቤ 

                     ≤ ௡(௜ݑ)ߘ‖   − ௅ಮ(Ω)‖ܩ‖௡ ‖௅మ(Ω)(௜ݑ)‖௜‖௅మ(Ω)൫ݑߘ   +  ௅ಮ(Ω)൯‖ܩ‖௡ ‖௅మ(Ω)(௜ݑ)ߘ‖
௡(௜ݑ)ߘ‖௜‖௅మ(Ω)൫ݑ ‖+                      − ௅ಮ(Ω)‖ܩ‖௜‖௅మ(Ω)ݑߘ  + ௡(௜ݑ)‖ −  ௅ಮ(Ω)൯‖ܩߘ‖௜‖௅మ(Ω)ݑ
and hence the expression at the first line converges to 0 as ݊ →  +∞. 
         By combining the previous observations and by recalling that ݑ௜ satisfies the equation 
in the problem (P1) we infer that by passing to the limit ݊ → ∞ in (94) we get (see [21]) 

2
ߜ
න ൭න ݔఌଶିே݀|ݔ|௜|ଶݑߘ|

 

Ωഐశ
൱݀ݎ ≤

1
ߜ
න ߩ݀(ߩ)ఌܫ +

2
ߜ

௥ାఋ

௥
න ൭න ௜ݑ ݔఌଶିே݀|ݔ| ݂ 

 

Ωഐశ
൱

௥ାఋ

௥
.ߩ݀

௥ାఋ

௥
 

Finally, dividing by 2, by passing to the limit ߜ → 0ା, and then ߝ →  0ା we obtain (100) 
below. 
Corollary(2.2.17)[206]:Let ߛ > 0, ݎ + ߝ > 0, ߰ ∶ (0, ݎ + (ߝ → ℝ be a continuous function 
and ߮ ∶ (0, ݎ + (ߝ → ℝ  be an absolutely continuous function that satisfies the following 
inequality for a.e. ݎ ∈ (0, ݎ +  ,(ߝ

(ݎ)߮ ≤ (ݎ)ᇱ߮ ݎ ߛ  +  (95)                                                    .(ݎ)߰ 
Then 

↦ ݎ
(ݎ)߮

ݎ
ଵ
ఊ

+
1
ߛ
න

(ݏ)߰

ଵାݏ
ଵ
ఊ

௥

଴
 ݏ݀

is a nondecreasing function on (0, ݎ +  .(ߝ
Proof. We can assume that  

න
(ݏ)߰

ଵାݏ
ଵ
ఊ

௥ାఌ

଴
ݏ݀  < +∞, 

otherwise the Lemma is trivial. Under the hypothesis, the function 

(ݎ) ܨ ∶=
(ݎ)߮

ݎ
ଵ
ఊ

+
1
ߛ
න

(ݏ)߰

ଵାݏ
ଵ
ఊ

௥

଴
 ݏ݀

is differentiable a.e. and absolutely continuous. A computation gives 
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(ݎ)ᇱܨ  =  
߮ᇱ(ݎ)ݎ

ଵ
ఊ − (ݎ)߮  1

ߛ ݎ 
ଵ
ఊ ିଵ 

ݎ
ଶ
ఊ 

+
1
ߛ

 
(ݎ)߰

ଵାݎ
ଵ
ఊ 

 

     =  
߮ᇱ(ݎ) − (ݎ)߮  1

ߛ  ଵିݎ 

ݎ
ଵ
ఊ 

+
1
ߛ

 
(ݎ)߰

ଵାݎ
ଵ
ఊ 

 

thus (95) yields 

(ݎ)′ܨߛ ݎ  =
(ݎ)ᇱ߮ ߛ ݎ − (ݎ)߮  + (ݎ)߰ 

ݎ
ଵ
ఊ

≥  0, 

which implies that F is nondecresing.  
Corollary(2.2.18)[206]: Let Ω ⊆ ℝே be a bounded domain and let u୧ be a sequence of 
solutions for the problem (P1). Given ݔ଴  ∈  Ωഥ and a radius ݎ >  0, we denote by Ω௥ା

∶= ,଴ݔ)ܤ (ݎ ∩ Ω, by ܵ௥ା ∶= ,଴ݔ)ܤ߲  (ݎ ∩ Ω and by (ݎ)ߪ the first Dirichlet eigenvalue of the 
Laplace operator on the spherical domain ܵ௥ା. If there are constants ݎ + ߝ > 0 and ߪ∗ ∈
(0,ܰ − 1) such that 

inf
଴ழ௥ழ௥ାఌ

((ݎ)ߪଶݎ)  ≥ ∗ߪ  ,                                                                      (96) 

then the function 

⟼ ݎ) ቆ
1

න(ଶିఌ)ݎ
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ
 

Ωೝశ
ቇݔ݀ + (2 − න(ߝ

(ݏ)߰
ଷିఌݏ

ݏ݀
௥

଴
                    (97) 

is non decreasing on (0, ݎ + where 0 ,(ߝ < ߝ < 2 is given by 

= ߝ −ඥ(ܰ − 2)ଶ + ∗ߪ4  +  ܰ 
and 

(ݏ)߰ ∶= න ௜ݑ| ݔ||݂  − ݔ଴|ଶିே݀ݔ
 

Ωೞశ
. 

We also have the bound 

න
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ
 

Ωೝశഄ/మ
శ

ݔ݀ ≤ ,ܰ)ܥ  ,ݎ ௜‖௅మ(Ω)ݑߘ‖( ߝ
ଶ + ݎ)߰  +  (98)            .(ߝ

Notice that.  Of course the Lemma is interesting only when 

න
(ݏ)߰
ଷିఌݏ

ݏ݀
௥

଴
<  +∞.                                                                         (99) 

This will be satisfied if ݑ௜ and f are in some ܮ௣ spaces with suitable exponents, as will be 
shown in Corollary(2.2.19). 
Note that it is not known in general whether ݑߘ௜ ∈ ߝ ଶାఌ(Ω) for someܮ > 0 and therefore it 
is not obvious to find  a bound for the left hand side of (98). 
Proof. We assume without lose of generality that ݔ଴ = 0 and to simplify notation we denote 
by ܤ௥ the ball ݔ)ܤ,  .(ݎ
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        By Corollary(2.2.16) we know that for a.e. ݎ > 0, 

න ݔଶିே݀|ݔ|௜|ଶݑߘ|
 

Ωೝశ
 ≤ ଶିேනݎ  ௜ݑ2

௜ݑ߲
௜ߥ߲

݀ܵ
 

ௌೝశ
+

(ܰ − 2)
2

ଵିேනݎ ܵ݀ ௜ଶݑ
 

ௌೝశ
 

+න ௜ݑ .ݔଶିே݀|ݔ| ݂ 
 

Ωೝశ
                                                            (100) 

Let us define 

(ݎ)߰ ∶= න ௜ݑ| .ݔଶିே݀|ݔ||݂ 
 

Ωೝశ
                                                         (101) 

and assume that (99) holds (otherwise there is nothing to prove). 
        Next, we point out that the definition of ߪ∗ mimplies that 

න  ܵ݀ ௜ଶݑ
 

ௌೝశ
≤  

1
∗ߪ
ଶනݎ ߘ࣮|  ௜|ଶ݀ܵݑ 

 

ௌೝశ
∋ ݎ   (0, ݎ +  (102)                                   ,(ߝ

where ∇࣮ denotes the tangential gradient on the sphere. Also, let ߝ < 1 be a parameter that 
will be fixed later, then by combining Cauchy-Schwarz inequality, (102) and the inequality 

ܾܽ ≤ (ଵିఌ)
ଶ

ܽଶ + ଵ
ଶ(ଵିఌ)

ܾଶ, we get 

                ቤන ௜ݑ
௜ݑ߲
௜ߥ߲

݀ܵ
 

ௌೝశ
ቤ   ≤   ቆන ܵ݀ ௜ଶݑ

 

ௌೝశ
ቇ

ଵ
ଶ
ቆන ฬ

௜ݑ߲
௜ߥ߲

ฬ
ଶ

݀ܵ
 

ௌೝశ
ቇ

ଵ
ଶ
 

                                              ≤ ݎ ⁄∗ߪ√ ቆන ߘ࣮| ௜|ଶ݀ܵݑ
 

ௌೝశ
ቇ

ଵ
ଶ
ቆන ฬ

௜ݑ߲
௜ߥ߲

ฬ
ଶ

݀ܵ
 

ௌೝశ
ቇ

ଵ
ଶ

 

≤ ݎ ⁄∗ߪ√ ቆ
1 − ߝ

2
න ߘ࣮| ௜|ଶ݀ܵݑ 

 

ௌೝశ
+

1
2(1 − න(ߝ ฬ

௜ݑ߲
௜ߥ߲

ฬ
ଶ

݀ܵ
 

ௌೝశ
ቇ    (103) 

Hence, 

ଶିேනݎ           ௜ݑ2
௜ݑ߲
௜ߥ߲

݀ܵ + (ܰ − ଵିேݎ(2
 

ௌೝశ
න ܵ݀ ௜ଶݑ

 

ௌೝశ
 

                           ≤ ଶିேݎ
ݎ2
∗ߪ√

ቈ
1 − ߝ

2
න ߘ࣮| ௜|ଶ݀ܵݑ

 

ௌೝశ
+

1
2(1 − න(ߝ ฬ

௜ݑ߲
௜ߥ߲

ฬ
ଶ

݀ܵ
 

ௌೝశ
቉ 

                           + (ܰ − ଵିேݎ(2
1
∗ߪ
ଶනݎ ߘ࣮|  ௜|ଶ݀ܵݑ

 

ௌೝశ
  

≤ ଵିேݎ ቈ൬
1− ߝ
∗ߪ√

+
ܰ − 2
∗ߪ

൰න ߘ࣮| ௜|ଶ݀ܵݑ
 

ௌೝశ
+

1
(1 − ∗ߪ√(ߝ

න ฬ
௜ݑ߲
௜ߥ߲

ฬ
ଶ

݀ܵ
 

ௌೝశ
቉ .  (104) 

Next, we choose ߝ < 1 in such a way that 
1 − ߝ
∗ߪ√

+
ܰ − 2
∗ߪ

=
1

(1 − ∗ߪ√(ߝ
. 

namely 

= ߝ −
1

∗ߪ√2
ቂඥ(ܰ − 2)ଶ + ∗ߪ4   − (ܰ − 2)ቃ + 1. 

Hence, by combining (100), (102) and (104) we finally get 
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න  ݔଶିே݀|ݔ|௜|ଶݑߘ|
 

Ωೝశ
≤ න(∗ߪ,ܰ) ߛଷିேݎ ௜|ଶ݀ܵݑߘ|

 

ௌೝశ
 +  (105)            ,(ݎ)߰ 

where 

(∗ߪ,ܰ) ߛ = ቂඥ(ܰ –  2)ଶ + ∗ߪ4   − (ܰ –  2)ቃ
ିଵ

. 

Let us set 

(ݎ)߮ ∶= න  ݔଶିே݀|ݔ|௜|ଶݑߘ|
 

Ωೝశ
 

and observe that 

߮ᇱ(ݎ) = ଶିேනݎ  ௜|ଶݑߘ|
 

ௌೝశ
      ܽ. ݁. ∋ ݎ (0, ݎ +  , (ߝ

hence (105) implies that 
(ݎ)߮  ≤ (ݎ)′߮ݎߛ   +  (106)                                                               ,(ݎ)߰ 

with ߛ =  .(∗ߪ,ܰ) ߛ
         But now Corollary(2.2.17) exactly says that the function  

ݎ ⟼
1

න(ଶିఌ)ݎ
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ
 

Ωೝశ
2) + ݔ݀ − න(ߝ

(ݏ)߰
ଷିఌݏ

 ݏ݀
௥

଴
                                 (107) 

is non decreasing on (0, ݎ + where 0 ,(ߝ < ߝ < 2 is given by 

= ߝ 2 −
1
ߛ

= −ඥ(ܰ − 2)ଶ + ∗ߪ4   + ܰ, 

which proves the monotonicity result. 
       To finish the proof of the Lemma it remains to establish (98). For this purpose, we start 
by finding a radius ݎଵ ∈ (௥ାఌ

ଶ
, ݎ + ∫  such that (ߝ ௜|ଶݑߘ|

 
ௌೝభ
శ  is less than average, which  ݏ݀

means 

න ௜|ଶݑߘ|
 

ௌೝభ
శ

ݏ݀ ≤
2

ݎ + ߝ
න ≥ ݔ௜|ଶ݀ݑߘ|

2
ݎ + ߝ

௜‖௅మ(Ω)ݑߘ‖
ଶ

 
.

 

Ωഄశ
 

By combining (105) with the fact that ௥ାఌ
ଶ
≤ ଵݎ   ≤ ݎ  +  we infer that ߝ

                                න ଶିே|ݔ|௜|ଶݑߘ|
 

Ωೝభ
శ

≥ ݔ݀ ,ܰ)ܥ  , ݎ ௜‖௅మ(Ω)ݑߘ‖( ߝ
ଶ +  (ଵݎ)߰ 

≤ ,ܰ)ܥ  ,ݎ ௜‖௅మ(Ω)ݑߘ‖( ߝ
ଶ + ݎ)߰  +  (108)                   .(ߝ

It follows that 

          න
௜|ଶݑߘ|

ேିଶ|ݔ|
 

Ωೝశഄ
మ

శ
≥ ݔ݀  න

௜|ଶݑߘ|

ேିଶ|ݔ|
 

Ωೝభ
శ

≤ ,ܰ)ܥ ,ݎ ௜‖௅మ(Ω)ݑߘ‖( ߝ
ଶ + ݎ)߰  +  ,(ߝ

and (98) is proved.  
Corollary(2.2.19)[206]: Let Ω ⊂ ℝே  be an arbitrary domain and let ߝ > 0. Then for any 

݃ ∈ ܮ
ಿ
మାఌ(Ω), denoting 

(ݎ)߰ ∶= න ݔଶିே݀|ݔ||݃|
 

஻(଴,௥)
, 
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we have 

|(ݎ)߰| ≤ ,ܰ)ܥ  ே‖݃‖(ߝ
ଶାఌ

ଶିݎ    
ே
ଵାఌ .                                             (109) 

As a consequence 

  න
(ݏ)߰
ଷିఌݏ

ݏ݀
௥ାఌ

଴
  <  +∞ 

for any ߝ < 2 satisfying 
1) ߝ + (ߝ  >  ܰ.                                                                                (110) 

Proof. First, we observe that |ݔ|ଶିே ∈  ௠ for any m that satisfiesܮ 

 (ܰ − 2)݉ < ܰ ⇒  ݉ <
ܰ

ܰ –  2
. 

Moreover a computation gives that under this condition, 

ଶିே‖௅೘(஻(଴,௥))|ݔ|‖ 
௠ = න ௠(ଶିே)|ݔ|

 

஻(଴,௥)
=  ேି௠(ேିଶ).                   (111)ݎ(݉,ܰ)ܥ

         Let us define m as being the conjugate exponent of  ே
ଶ

+  namely ,ߝ

݉ ∶=
ܰ + ߝ2

ܰ + ߝ)2 − 1) . 

Then the hypothesis ߝ > 0, and by use of Hölder inequality and by (111) we can estimate 

|(ݎ)߰| ≤  ‖݃‖ே
ଶାఌ

ଶିே‖௅೘൫஻(଴,௥)൯|ݔ|‖  ≤ ே‖݃‖(݉,ܰ)ܥ 
ଶାఌ

ݎ   
ேି௠(ேିଶ)

௠  , 

or equivalently in terms of  ே
ଶ

+  ,ߝ

|(ݎ)߰| ≤ ,ܰ)ܥ ே‖݃‖(ߝ
ଶାఌ

ݎ   
ସఌ

ேାଶఌ .                                                    (112) 

The conclusion of the Lemma follows directly from (112).  

Corollary(2.2.20)[206]: Let ݌, (ଵାఌ)௣
௣ି(ఌାଵ)

, ߝ > 0 be some exponents . Let ߝ < 2 be any given 

exponent such that 
ଶߝ2 

2 − ߝ
 >  ܰ.                                                                              (113) 

Let Ω ⊆  ℝே be any domain, ݔ଴ ∈ Ω, and let ݑ௜ be a sequence of  solutions  for the problem 

(P1) in Ω with ݑ௜  ∈ ∋ ݂ ௣(Ω) andܮ  ܮ 
(భశഄ)೛
೛ష(ഄశభ)(Ω). Then 

න ݔ௜|ଶ݀ݑߘ|
 

஻(௫బ,௥)∩Ω
≤ ‖݂‖௜‖௣ݑ‖ேିఌݎܥ (ଵାఌ)௣

௣ି(ఌାଵ)
∋ ݎ ∀     (114)            , (2/(଴,߲Ωݔ)ݐݏ݅݀,0)

with ܥ = ,ܰ)ܥ ,ߝ dist(ݔ଴,߲Ω)). 
Proof. We assume that ݔ଴ = 0 and we define ݎ + ߝ ∶=  dist(ݔ଴,߲ Ω) in such a way that 
,ݔ)ܤ ߝ is totally contained inside Ω for (ݎ ≥  0 and under the notation of Corollary (2.2.18), 
Ω௥ା = ,0)ܤ and by ܵ௥ା (ݎ = ,0)ܤ߲ ߝ for any (ݎ ≥  0. Under our hypothesis and in virtue of 
Corollary (2.2.19) that we apply with ݃ = ௜ݑ  ݂ , we know that (99) holds for any ߝ < 2 that 
satisfies 

ଶߝ2 

2 − ߝ
 >  ܰ.                                                                         (115) 
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Notice that  ߝ > 0. 
         In the sequel we chose any exponent ε < 2 satisfying (115), so that (99) holds and 
moreover Corollary (2.2.19) says that 

  න
(ݏ)߰
ଷିఌݏ

ݏ݀ 
௥ାఌ

଴
 ≤ ,ܰ)ܥ ‖݂‖௜‖௣ݑ‖(ߝ (ଵାఌ)௣

௣ି(ఌାଵ)
න ݏ

ସఌ
ேାଶఌିଷାఌ ݀ݏ

௥ାఌ

଴
 

≤ ,ܰ)ܥ ‖݂‖௜‖௣ݑ‖(ߝ (ଵାఌ)௣
௣ି(ఌାଵ)

 .                                                 (116) 

         We are now ready to prove (114), ε still being a fixed exponent satisfying (115). 
We recall that the first eigenvalue of the spherical Dirichlet Laplacian on the unit sphere is 
equal to ܰ − 1 , thus  hypothesis (96) in the present context reads 

inf
଴ழ௥ழ௥ାఌ

൫ݎଶ(ݎ)ߪ൯ = ܰ − 1,                                                         (117) 

so that (96) holds for any σ∗ < ܰ − 1. Let us choose σ∗ exactly equal to the one that  
satisfies 

= ߝ −ඥ(ܰ − 2)ଶ + ∗ߪ4  + ܰ. 
 one easily verifies that σ∗ < ܰ − 1.  because of (115). 
       As a consequence, we are in position to apply Corollary (2.2.18) which ensures that, if 
 ௜ are solutions for the problem (P1), then the function in (107) is non decreasing. Inݑ
particular, by monotonicity we know that for every ߝ ≥  0, 

                        
1

ேିఌݎ
 න ݔ݀ ௜|ଶݑߘ|

 

Ωೝశ
  ≤   ቆ

1
ଶିఌݎ

න
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝశ
ቇ+ (2 − න(ߝ

(ݏ)߰
ଷିఌݏ

ݏ݀ 
௥

଴
  

                                                              ≤  ൮
1

ቀݎ + ߝ
2 ቁ

ଶିఌන
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝశഄ
మ

శ
൲ 

+ (2 − න(ߝ
(ݏ)߰
ଷିఌݏ

.ݏ݀ 
௥ାఌ
ଶ

଴
                                                 (118) 

and we conclude that for every ε ≥  0, 

න ݔ௜|ଶ݀ݑߘ|
 

Ωೝశ
≤  ,ேିఌݎܭ 

with 

ܭ = ቆ
1

ݎ) + ଶିఌන(ߝ
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀
 

Ωೝశഄ
శ

ቇ + (2 − න(ߝ
(ݏ)߰
ଷିఌݏ

,ݏ݀
௥ାఌ

଴
 

Let us now provide an estimate on ܭ. To estimate the first term in ܭ we use (98) to write 

න
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀
 

Ωೝశഄ
శ

≤ ,ܰ)ܥ  ,ݎ ௜‖௅మ(Ω)ݑߘ‖( ߝ
ଶ + ݎ)2)߰  +  (119)                ((ߝ

Then we use (109) to estimate  
ݎ)2)߰ + ((ߝ  ≤ ,ܰ)ܥ  ,ߝ ‖݂‖௜‖௣ݑ‖(ݎ (ଵାఌ)௣

௣ି(ఌାଵ)
 , 

and from the equation satisfied by ݑ௜ we get 
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௜‖௅మ(Ω)ݑߘ‖
ଶ = නݑ௜ ݔ݂݀ 

 

Ω
≤ ‖݂‖௜‖௣ݑ‖ (ଵାఌ)௣

௣ି(ఌାଵ)
 

so that in total we have 

න
௜|ଶݑߘ|

ݔ| −|ேିଶ ݔ݀
 

Ωೝశഄ
శ

≤ ,ܰ)ܥ  ,ݎ ‖݂‖௜‖௣ݑ‖(ߝ (ଵାఌ)௣
௣ି(ఌାଵ)

. 

Finally, the last estimate together with (116) yields 
≥ ܭ ,ܰ)ܥ ,ݎ ‖݂‖௜‖௣ݑ‖(ߝ (ଵାఌ)௣

௣ି(ఌାଵ)
, 

and this ends the proof of the Proposition.  

Corollary(2.2.21)[206]: Let ݌, (ଵାఌ)௣
௣ି(ఌାଵ)

, ߝ > 0 be some exponents.  Let ߝ < 2 be any given 
exponent such that 

ଶߝ2 

2 − ߝ
 >  ܰ.                                                                          (120) 

Then one can find an ߝ = such that the following holds. Let Ω (ܰ)ߝ ⊆ ℝே be any (ߝ, ݎ +  (ߝ
Reifenberg flat domain for some ݎ + ߝ >  0,  let ݔ଴  ∈  ߲Ω and let ݑ௜ be a sequence of  

solutions for the problem (P1) in Ω with ݑ௜ ∈ ݂ ௣(Ω) andܮ  ∈ ܮ
(భశഄ)೛
೛ష(ഄశభ)(Ω). Then 

න ≥ ݔ௜|ଶ݀ݑߘ| ேିఌݎܥ 
 

஻(௫బ,௥)∩Ω
‖݂‖௜‖௣ݑ‖ (ଵାఌ)௣

௣ି(ఌାଵ)
ݎ ∀       ∈ ൬0,

ݎ + ߝ
2

൰ ,                 (121) 

with ܥ = ,ܰ)ܥ ,ݎ  .(ߝ
Proof. As before we assume that x଴ = 0 and we denote by Ω௥ା ∶= ,0)ܤ (ݎ ∩ Ω and by ܵ௥ା ∶= 
,0)ܤ߲ (ݎ ∩ Ω. To obtain the decay estimate on ∫ ݔ௜|ଶ݀ݑߘ|

 
Ωೝశ

 we will follow the proof of 

Corollary (2.2.20): the main difference is that for boundary points, (117) does not hold. This 
is where Reifenberg-flatness will play a role. 
      Let ߝ < 2, be an exponent satisfying (120), so that invoquing Corollary (2.2.19) we have 

න
(ݏ)߰
ଷିఌݏ

ݏ݀
௥ାఌ

଴
≤ ,ܰ)ܥ ‖݂‖௜‖௣ݑ‖(ߝ (ଵାఌ)௣

௣ି(ఌାଵ)
< +∞.                                  (122) 

      Next, we recall that the first eigenvalue of the spherical Dirichlet Laplacian on a half 
sphere is equal to ܰ − 1 (as for the total sphere). For ݐ ∈ (−1,1), let ܵ௧ be the spherical cap 
ܵ௧ ∶= ,0)ܤ߲ 1) ∩ ேݔ} > ݐ so that {ݐ = 0 corresponds to a half sphere. Let ߣଵ(ܵ௧) be the first 
Dirichlet eigenvalue in ܵ௧ . In particular, ݐ ⟼  .ݐ ଵ(ܵ௧) is continuous and monotone inߣ
Therefore, since and ߣଵ(ܵ௧) →  0 as ݐ ↓ −1, there is 2)∗ݐ − (ߝ < 0 such that 

= ߝ −ඥ(ܰ − 2)ଶ + (∗ݐ)ଵߣ4  + ܰ 
      By applying the definition of Reifenerg flat domain, we infer that, if ߝ <  then ,2/(ߟ)∗ݐ
,଴ݔ)ܤ߲ (ݎ ∩ Ω is contained in a spherical cap homothetic to ܵ௧∗ for every ε ≥ 0. Since the 
eigen-values scale of by factor ݎଶ when the domain expands of a factor 1/ݎ, by the 
monotonicity property of the eigenvalues with respect to domains inclusion, we have 

inf
௥ழ௥ାఌ

,଴ݔ)ܤ߲)ଵߣଶݎ (ݎ ∩  Ω) ≥ ∗ଵ(ܵ௧ߣ  ) = (2 − ൬(ߝ
2ܰ − ߝ − 2

4
൰ .                 (123) 

As a consequence, we are in position to apply the monotonicity Corollary (Corollary (2.2. 
18)) which ensures that, if ݑ௜ is a sequence of  solutions for the problem (P1) and ݔ଴ ∈ ߲Ω, 
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then the function in (107) is non decreasing.  We then conclude as in the proof of Corollary 
(2.2.20), i.e. by monotonicity we know that for every 0 ≤ ε < 1 −  ,ݎ

       
1

ேିఌݎ
 න ݔ݀ ௜|ଶݑߘ|

 

Ωೝశ
   ≤    ቆ

1
ଶିఌݎ

න
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝశ
ቇ + (2 − න(ߝ

(ݏ)߰
ଷିఌݏ

ݏ݀ 
௥

଴
  

                ≤ ൮
1

ቀݎ + ߝ
2 ቁ

ଶିఌන
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀ 
 

Ωೝశഄ
మ

శ
൲ 

+ (2 − න(ߝ
(ݏ)߰
ଷିఌݏ

.ݏ݀ 
(௥ାఌ)
ଶ

଴
                                                   (124) 

hence for every ߝ ≥  0, 

න ݔ௜|ଶ݀ݑߘ|
 

Ωೝశ
≤  ,ேିఌݎܭ 

with 

ܭ = ൭
1

ݎ) + ଶିఌන(ߝ
௜|ଶݑߘ|

ݔ| − ଴|ேିଶݔ ݔ݀
 

Ω(ೝశഄ)
శ

൱ +  (2 − න(ߝ
(ݏ)߰
ଷିఌݏ

,ݏ݀
(௥ାఌ)

଴
 

Then we estimate ܭ exactly as in the end of the proof of Corollary (2.2.20), using (98), 
(109) and (122) to bound 

≥ ܭ  ,ܰ)ܥ  ,ݎ ‖݂‖௜‖௣ݑ‖(ߝ (ଵାఌ)௣
௣ି(ఌାଵ)

 , 

and this ends the proof of the Proposition.  

Corollary(2.2.22)[206]: Let ݌, (ଵାఌ)௣
௣ି(ఌାଵ)

, ߝ > 0 be some exponents. Let ߝ < 2 be any given 

exponent such that 
ଶߝ2 

2 − ߝ
 >  ܰ.                                                                              (125) 

Then one can find an ߝ = such that the following holds. Let Ω (ܰ)ߝ ⊆ ℝே be any (ߝ, ݎ +
ݎ Reifenberg-flat domain for some-(ߝ + ߝ > 0, and let ݑ௜ be a sequence of  solutions  for 

the problem (P1) in Ω with ݑ௜ ∈ ݂ ௣(Ω) andܮ ∈ ܮ 
(భశഄ)೛
೛ష(ഄశభ)(Ω). Then 

න ≥ ݔ௜|ଶ݀ݑߘ| ேିఌݎܥ 
 

஻(௫,௥)∩Ω
‖݂‖௜‖௣ݑ‖ (ଵାఌ)௣

௣ି(ఌାଵ)
ݔ ∀   ∈ Ωഥ ݎ ∀, ∈ ൬0,

ݎ + ߝ
6

൰ ,           (126) 

with ܥ = ,ܰ)ܥ ,ݎ  .(ߝ
Proof. By Corollary (2.2.20) and Corollary (2.2.21), we already know that (126) holds true 
for every ݔ ∈ ߲Ω, or for points ݔ such that dist(ݔ, ߲Ω) ≥ ݎ) +  It remains to consider .3/(ߝ
balls centered at points ݔ ∈ Ω verifying 

dist(ݔ,߲Ω) ≤ ݎ) +  .3/(ߝ
Let ݔ be such a point. Then Corollary (2.2.20) directly says that (126) holds for every radius 
such that 0 ݎ < ݎ ≤ dist(ݔ,߲Ω)/2, and it  remains to extend this for the radii ݎ in the range 

dist(ݔ,߲Ω)/2 ≤ ݎ ≤ ݎ) +  (127)                                                   .6/(ߝ
For this purpose, let ݕ ∈ ߲Ω be such that  



63 
 

dist(ݔ,߲Ω) = ݔ‖ − ‖ݕ ≤ ݎ)  +  .3/(ߝ
Denoting ݀(ݔ) ∶= dist(ݔ, ߲Ω) we observe that for the ݎ that satisfies (127) we have 

,ݔ)ܤ (ݎ  ⊆ ,ݕ)ܤ  ݎ + ((ݔ)݀  ⊆ ,ݕ)ܤ   (128)                                             .(ݎ3
Then since y ∈ ∂Ω, Corollary (2.2.21) says that 

න ≥ ݔ௜|ଶ݀ݑߘ| ேିఌݎܥ 
 

஻(௫,௥)∩Ω
‖݂‖௜‖௣ݑ‖ (ଵାఌ)௣

௣ି(ఌାଵ)
ݎ ∀    ∈ (0, ݎ) +  (129)           ,(2/(ߝ

so that (126) follows, up to change ܥ with 3ேିఌܥ.  

Corollary(2.2.23)[206]: Let ݌, (ଵାఌ)௣
௣ି(ఌାଵ)

, ߝ ≥ 0 be some exponents. Let 0 ≤ ߝ < 1 be any 

given prescribe exponent such that 
ଶߝ2

(1 − (ߝ  >  ܰ                                                                            (130) 

Then we can find an ߝ = ߗ such that for (ܰ)ߝ ∈ ℝே and (ߝ, ଶݎ +  Reifenberg flat domain-(ߝ
for some ߝ >   ௜ be solutions for (P1) in Ω such thatݑ ଶ, and let the sequenceݎ−

( )p
i

i
u L   and  

 
 

1
1 ( )
p

pf L




   . Then 

෍ݑ௜
௜

 ∈ ሚܥ   ଴,ଵିఌ(ݔ)ܤ, ଶݎ) + (12/(ߝ ∩ Ωഥ)         ∀ݔ ∈  Ωഥ .     

Hence 

෍‖ݑ௜‖஼ሚ  బ,భషഄ(஻(௫,൫௥మାఌ൯/ଵଶ)∩Ωഥ)
௜

≤ ሚܥ    ൭ܰ, ,ଶݎ ௜‖௣ݑ‖෍,ߝ
௜

‖݂‖ (ଵାఌ)௣
௣ି(ఌାଵ)

 ൱ 

Proof. In spite of Corollary (2.2.13) we have  

න ෍|ݑߘ௜|ଶ
௜

≥ ݔ݀ ଶ(ேିఌ)ݎ ሚܥ 
 

஻(௫,௥మ)
෍‖ݑ௜‖௣
௜

‖݂‖ (ଵାఌ)௣
௣ି(ఌାଵ)

   

∋ ݔ∀   Ωഥ , ଶݎ ∈ (0, ଶݎ) +  (131)           ,(6/(ߝ
with ܥሚ  = ,ܰ) ሚܥ  ,ଶݎ ,ݔ)ܤ By the classical Poincaré inequality in a ball .(ߝ  (ଶݎ

      න ෍หݑ௜ − ௫,௥మห(௜ݑ)
௜

 ݔ݀
 

஻(௫,௥మ)
≤ ଶቀଵାݎ (ܰ)ሚܥ 

ே
ଶቁ ൭න ෍|ݑߘ௜|ଶ

௜

ݔ݀
 

஻(௫,௥మ)
൱

ଵ
ଶ

 

≤ ݔ∀      ଶቀே ାଵିఌଶቁݎ ሚܥ  ∈ Ωഥ ଶݎ   , ∈  (0, ଶݎ) +  (132)    ,(6/(ߝ

with ܥሚ = ሚܥ ቆܰ, ,ଶݎ ∑,ߝ ௜‖௣௜ݑ‖ ‖݂‖ (భశഄ)೛
೛ష(ഄశభ)

 ቇ. which implies that 

෍ݑ௜
௜

∈  ℒଵ,ே ାଵିఌଶ (ݔ)ܤ, ଶݎ) + (12/(ߝ ∩ Ωഥ)    ∀ݔ ∈  Ωഥ . 

So  0 ≤ ଶே
ఌேାଶఌమ

< 1 and hence Theorem (2.2.12) gives that 

෍ݑ௜
௜

 ∈ ሚܥ   ଴,ଵିఌ(ݔ)ܤ, ଶݎ) + (12/(ߝ ∩ Ωഥ) 

where  ܥሚ = ሚܥ ቆܰ, ,ଶݎ ∑,ߝ ௜‖௣௜ݑ‖ ‖݂‖ (భశഄ)೛
೛ష(ഄశభ)

 ቇ. 


