Chapter 2
The Extension Property and Boundary Regularity

In this chapter we compare different ways of measuring the “distance” between two suffi-
ciently close Reifenberg flat domains. These results are pivotal to the quantitative stability
analysis of the spectrum of the Neumann Laplacian. We show that given an exponent a €
(0,1), there exists an € > 0 such that the solution of the system is locally Hélder continuous
provided that Q is (&, ry)-Reifenberg flat. The proof is based on Alt-Caffarelli-Friedman’s
monotonicity formula and Morrey-Campanato theorem.
Sec(2.1): Reifenberg-Flat Domains

We establishing extension and geometric properties for a class of domains whose
boundaries satisfy a fairly weak regularity requirement introduced by Reifenberg [64]. We
show that any domain that is sufficiently flat in the sense of Reifenberg enjoys the so-called
extension property and we discuss applications that are relevant for the analysis of PDEs
defined in these domains. We also compare different ways of measuring the “distance”
between two sufficiently close Reifenberg-flat domains X and Y, in particular we discuss the
relations between the Hausdorff distances d (X,Y), dy(RM\X, RM\Y) and d,(0X,dY) and
the measure of the symmetric difference |XAY|.

Although we are confident the results can find different applications, the original
motivation was the quantitative stability analysis of the spectrum of the Laplace operator
with Neumann boundary conditions defined in Reifenberg-flat domains, see [65].

We mention that Reifenberg-flat domains are in particular NTA domains in the sense of
Jerison and Kenig [83].

We denote by d, the classical Hausdorff distance between two sets X and Y,
dy(X,Y) := max {sup d(x,Y),sup d(y,X)} D).
€

xeX yeY
Definition(2.1.1)[63]: Let &, 1, be two real numbers satisfying 0 < e < 1/2 and r, > 0. An
(g, 1p)-Reifenberg flat domain Q € R is a nonempty open set satisfying the following two
conditions:
(i) for every x € 0Q and for every r < r,, there is a hyperplane P(x,r) containing x
which satisfies

%dH(OQ N B(x,7), P(x,r) N B(x7)) < & @)

(ii) For every x € 01, one of the connected component of
B(x,1) N {x : dist(x, P(x, 7)) = 2 1}
is contained in Q and the other one is contained in R¥\ Q.
Condition (i) states that the boundary of Q is an (&, ry)-Reifenberg flat set. A Reifenberg flat
set enjoys local separability properties (see[84]), however we observe that condition (ii) in
the definition is not in general implied by condition (i), as the example of Q = R¥\dB(0,1)
shows (here dB(0,1) denotes the boundary of the unit ball). However, a consequence of the
analysis in David [85] is that (i) implies (ii) under some further topological assumption, for
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instance the implication holds if Q and dQ are both connected. Note furthermore that a
straightforward consequence of the definition is that, if ¢; < &,, then any (&, 7,)-Reifen-
berg flat domain is also an (¢,, ry)-Reifenberg flat domain.

Note that we only impose the separability requirement (ii) at scale r,but it simply follows
from the definition that it also holds at any scale r < r, (see [20] or Lemma (2.1.5) below).

We providing a complete and detailed proof of the fact that Reifenberg flat domains are
extension domains. This fact is relevant for the study of elliptic problems and (see e.g. [76]).
However, to the best of our knowledge, an explicit proof was so far missing. We recall that
the so called extension problem can be formulated as follows: given an open set Q, we
denote by WP the classical Sobolev space and we wonder whether or not one can define a
bounded linear operator (the so-called extension operator)

E:WwlP(Q) » wir(RN)

such that E(u) = u on Q. If 0Q is Lipschitz, Calderon [86] established the existence of an
extension operator in the case when 1 < p < oo, while Stein [87] considered the cases p =
1, 00. Jones [88] proved the existence of extension operators for a new class of domains, the
so-called (&, &)-Jones flat domains. We show that sufficiently flat Reifenberg domains are
indeed Jones flat domains. The main result concerning the extension problem is as follows.

Theorem(2.1.2)[63]: Any (ﬁ ,Tp)-Reifenberg flat domain is a (%50 %"
Proof: We assume ¢ < 1/600, we fix an (g,1,)-Reifenberg flat domain Q € RN and we
proceed according to the following steps.

o Step 1. We first introduce some notations (see Figure 1 for a representation). For any
Xo € 00 and p <1, we denote as usual by P(x,,p) the hyperplane provided by the
definition of Reifenberg flatness, and by v, its normal. By Lemma (2.1.5), we can choose

)-Jones flat domain.

the orientation of v, in such a way that
B*(x9,p) :=={z+tV,: z€ P(xy,p),t = 2ep} N B(x,,p) S Q
and
B~ (xo,p) :={z—tV, : z € P(xq,p),t = 2ep} N B(x,,p) S Q°.
Also, we define the hyperplanes P*(x,, p) and P~ (x,, p) by setting
P*(x0,p) == {z + 2¢p¥, : 7 € P(xo,p)}
and
P~ (x0,p) = {z = 2¢pi, : 7 € P(xo,p)}
and we denote by Y (x,, p) the point
Y(xo,p) := xo + pV,.
Finally, for any x € Q, we denote by x, € dQ the point such that d(x, Q¢) = d(x, x,)
(if there is more than one such x,, we arbitrarily fix one).
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o Step 2. We provide a preliminary construction: more precisely, given
(i) x € Q such that d(x, Q°) < 2r, /7 and
(i)  rsatisfying d(x,Q)/2 < r < /7,
the curve y, . is defined as follows.
() If d(x,Q°)/2 < r < 2d(x,0°), then y,,. is simply the segment [x, Y (x,, 7)].
(an If 2d(x, Q) <r <ry,/7, we denote by k, > 1 the biggest natural number k
satisfying 27%r > d(x, Q) and we set

ko—1

Ver = [x,Y(x,27%07)] U U[Y (%0, 27%7), Y (x4, 2" %D 1)].
k=0

o Step 3. We show that in both cases (I) and (II) we have

H (Ver ) < 4r. (3)
To handle case (I) we just observe that, since by assumption d(x,Q¢) = d(x,x,) < 2r,
then, by recalling d(x,,Y (x,7)) = r, property (3) follows.
To handle case (1), we first observe that, since d(x,x,) < 2 %or, then both x and Y (x,,
2~ko7) belong to the closure of B(x,, 27*or). Also, by construction both Y (x,, 27 %r) and
Y (x, 27 %*17) belong to the closure of B(xy, 27%r) and by combining these observations
we conclude that

ko—1
H(yer) < d(x,Y (xp,2707)) + Z d(Y (x0,27%1),Y (x4, 2~ %+ V1))
k=0
ko—1
< 2:-27kor + ZZ-Z_krSZr ZZ"‘Z 4r, (4)
k=0 keN
Step 4. We show that for every z € y,,
29
Q) >— .
d(z, Q) > 240d(z,x) (5)

We start by handling case (I): we work in the ball B(x,,4r) and we recall the definition of
B*(x,,4r) and of B~ (x,, 4r), given at Step 1. Since by assumption £ < 1/32, we have

r
16 er < 5 < d(x,Q°) < d(x, B (xg,471))

and hence x € B*(x,,4r). Let B denotes the angle between v, and v,,., then by Lemma
(2.1.4) applied with M = 4 we get that provided ¢ < 1/9, then 4er < rcosf, so that
Y (xq,7) € B*(x,,4r). By recalling that x € B*(x,,4r), we conclude that [x,Y (x,,7)] S
B*(x,, 4r).

We are now ready to establish (5), so we fix z € [x,Y (x,,7)]. To provide a bound from
above on d(z, x), we simply observe that, since both x and Y (x,, ) belong to the closure of
B(xy,2r), then so does z and hence

d(z,x) < 4r. (6)
Next, we provide a bound from below on d(z, Q°): since z € B*(x,,4r) € Q, then
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d(z,Q°) = d(z,dB*(x,,4r))
= min{d(z, P* (xq,4r)),d(z, B (x,,471))}. @)
First, we recall that z € B(x,, 2r) and we provide a bound on the distance from z to the
spherical part of dB* (x,, 4r):
d(z,0B(xq,4r)) = 4r — d(z,xy) = 4r — 2r = 2r.
Next, we observe that
d(z, P*(xq,4r)) = d(z, P(xy, 41)) — 8er
and, since z € [x,Y (xq,7)], then
d(z, P(xo,41)) = min{d(x, P(x,, 4r), d(Y (xo,7), P(x0,47))}.
Note that d(Y (x,,7), P(x,,471)) = rcos B and, using Lemma (2.1.4), we conclude that
d(Y (xo,7),P(xq,47)) = 1/2
because £ < 1/10. Also, since B~ (x,, 4r) € Q°, then
r/2 < d(x, Q) < d(x,B™(xq,4r)) = d(x, P(xy,41)) + 2¢r
By recalling (7) and the inequality ¢ < 1/600 and by combining all the previous
observations we conclude that
d(z,Q°) > d(z,0B*(xo,4r)) = min{d(z, P*(xo, 47), 21}
= min{d(z, P(x,,4r) — 8er, 2r}
> min{min{d (x, P(x,41)),d(Y (xo,7), P(xo,47))} — 8er, 27}
29

> min {min {g — 2er, Z} — 8er, Zr} = g — 10er > @r.

2
Finally, by comparing (8) and (6) we obtain (5).
* Step 5. We now establish (5) in case (II).
If z € [x,Y(x,, 2 %0r], then we can repeat the argument we used in Step 4 by replacing r
with 2~%or, which satisfies

(8)

d(x, Q°) < 27kor < 2d(x, Q°).
Hence, we are left to consider the case when z € [Y (x,, 27%7), Y (x,, 2=+ D7r)] for some
natural number k < k, — 1. We set p := 27%r and we work in the ball B(x,,2p). We
denote by « the angle between v,, and v,, and by g the angle between v,, and v,/,. Due to

Lemma (2.1.4) applied with M = 2 and M = 4, we know that, if € < %3 then

1
pcosa = 4ep E'DCOSB > 4ep,
so that both Y (x,, p) and Y (x,, p/2) belong to B* (x,, 2p). Hence, given
z €[Y (x0,p), Y (x0,p/2)] € B*(x0,2p) € Q,
we have d(z,Q°) = d(z, dB*(x, 2p)). The distance from z to the spherical part of
0B*(xy,2p) is bounded from below by p, while the distance from z to P*(x,,2p) is

bounded from below by lp —4ep > lp provided that & < L. Hence, d(z,Q°) =2 To
2 4 16 4

provide an upper bound on d(z, x) we observe that, since d(x, x,) = d(x, Q°) < 27%r, then
both z and x belong to the closure of B(x,, p). Hence, d(x, z) < 2p and (5) holds.
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* Step 6. We are finally ready to show that Q is a Jones flat domain. Given x,y € Q satis-
fying d(x,y) < ro/7, there are two possible cases:

(i) if either d(x,Q°) = 2d(x,y) or d(y,Q°) = 2d(x,y), then we set y := [x,y].
To see that y satisfies (17), let us assume that d(x, Q¢) = 2d(x,y) (the other
case is completely analogous), then y € B(x, d(x,y)) € Q and [x,y] € Q. Also,

since
d(z,x)d(z,y) 1
ety dGy) 4

d(x,y), )

then forany z € y,
d(z,Q°) = d(x,Q°) —d(z,x) = d(x,y) =4d(z,x)d(z,y)/d(x,y).
Hence, y satisfies (17) provided that § = 4.
(i)  we are left to consider the case when both d(x, Q¢) < 2d(x,y) and d(y, Q°) <
2d(x,y). Denote by x, € 0Q a point such that d(x, Q) = d(x, x,) and y, € 0Q
a point such that d(y, y,) = d(y, Q) and set r := d(x,y) < r,/7. We define
Y = Yar Uy UIY (x0,7) Y (00,7)]. (10)
Step 7 is devoted to showing that y satisfies (16) and (17).
* Step 7. First, we establish (16): we observe that
d(Y (x0,7),Y (¥, 7))
< d(Y(x,7),%0) + d(xg, x) + d(x,y) + d(y,y0) + d(¥o, Y (yo, 7) < 77
and hence by using (13)
H'Y) S H (ver ) +d(Y (o, 7)), Y(00,7)) + H (1) < 157
which proves (16).
Next, we establish (17): we denote by d, the geodesic distance on the curve y and we
observe that

d@y) _ 4@y (11)
15d(x,y) d,(x,y)
Hence, if z € y, ., then by using (5) we obtain

. 29 29 d(z,x)d(z,y)
d(z,Q)Z% d(z,x)Z240 _15< a(x.7) >

and we next observe 29/240 - 15 > 5/60 - 15 = 1/180. Since the same argument works
in the case when z € y,, ., then we are left to establish (17) in the case when z lies on the
segment [Y (xo,7), Y (v, 7)].
We first observe that
d(XOv Y(yOvr)) < d(xp,x) +d(x,y) + d(y,y,) + d()’m Y(yo, 7 )) <6r (12)
and hence [Y (xq,7),Y (¥9.7)] € B(xy, 7r). Next, we note that 7r < r, and we use (8) to
get

% r < d(Y(xy,1) Q) <dY(xg,7), P (x9,77)), (13)
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hence since ¢ is so small that 28er < 29r/60, then we have d(Y (xy,7), P~ (xq, 77))
> 28er, which means that Y (x,,7) € B*(x,, 7r). By repeating the same argument we get
Y(xo,7) € B*(xy, 7r) and hence [Y (xo,7),Y (y9,7)] E B (xq, 71). We fix z € [Y (xo,7),
Y (y,,7 )] and we observe that
d(z,x) < d(z,Y(xy,7)) +d(Y (xo,7),%0) + d(x0,%)
< d(Y (o, 7).Y (xoﬂ”)) +d(Y (xo,7),x0) + d(x,x)
<7r+r+2r=10r. (14)
Also,
d(z,Q°) = d(z,0B* (xo, 7)) = min{d(z, 0B (xo, 71)); d(z, P*(xo,77))}  (15)
and by using (12) we get
d(z,0B (x,, 7)) > 1.
Also, we have
d(z, P*(xy,77)) = min{d(Y (xo,7 ), P*(x0,77)),d(Y (yo,7 ), P (xo, 77))}
and by recalling (13) we get that
d(Y(xO,r),P+(x0, 7r)) = d(Y(xO,r),P‘(x0,7r)) — 28er > gr — 28er > %
Since Y (y,, r) satisfies the same estimate, then by recalling (11), (14) and (15) we get
1 d(z,x)d(z,y)
W)z 3237502 30505 " amy)
which concludes the proof because 31015 = 450.

As direct consequence of Theorem (2.1.2) we get that one can define extension operators

for (1/600, ry)-Reifenberg flat domains.
Some relevant features of this result are the following: first, we provide an explicit and
universal threshold on the coefficient ¢ for the extension property to hold (namely, &€ <
1/600). Second, 1/600 is fairly big compared to the usual threshold needed to apply
Reifenberg’s topological disk theorem (for e.g. the threshold is 10715 in [68], see also [89]
for an interesting alternative proof ).

As a consequence of the extension extension property, we obtain that the classical Rellich-
Kondrachov Theorem applies to Reifenberg flat domains, that the Neumann Laplacian has a
discrete spectrum and that the eigenfunctions are bounded. Also, by combining Theorem
(2.1.2) with the works by Chua [90, 91,92] and Christ [93] we get that one can define
extension operators for weighted Sobolev spaces and Sobolev spaces of fractional order.

We conclude the section by establishing results unrelated to the extension problem,
namely we study the relation between different ways of measuring the “distance” between
sets of RY. In particular, for two general open sets X and Y , neither the Hausdorff distance
dy(X,Y) nor the Hausdorff distance between the complements dy(RM\X, RV\Y) is, in
general, controlled by the Lebesgue measure of the symmetric difference | XAY |. However,
we show that they are indeed controlled provided that X,Y are Reifenberg flat and close
enough, in a suitable sense.This result will be as well applied in [65] to the stability analysis
of the spectrum of the Laplace operator with Neumann boundary conditions.

d(z,
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We denote by C(a4,...,a,) a constant only depending on the variables a,...,a;. Its
precise value can vary from line to line.

Now, we show that any sufficiently flat Reifenberg domain is Jones flat, in the sense of
[88]. The extension property follows then as a corollary of the analysis in [88].

First, we provide the precise definition of Jones-flatness.
Definition(2.1.3)[63]: An open and bounded set Q is a (8, Ry)-Jones flat domain if for any
x,y € Q such that d(x,y) < R, there is a rectifiable curve y which connects x and y and
satisfies

H(y) <67 td(x,y) (16)
and
L dGDdGE,y)
d(z,Q°) > § iy forallz € y. 17)

To investigate the relation between Jones flatness and Reifenberg flatness we need two
preliminary lemmas.
Lemma(2.1.4)[63]: Let Q < RN be an (&,1,)—Reifenberg flat domain. Given x € 9Q and
r < 1y, We term v, the unit normal vector to the hyperplane P(x,r) provided by the defini-
tion of Reifenberg-flatness. Given M > 1, for every r < r,/M we have
|V vy )l 21— (M + 1)e. (18)
Proof: We assume with no loss of generality that x is the origin. For simplicity, in the proof
we denote by B, the ball B(0,r) and by PB. the hyperplane P(0,r). From the definition of
Reifenberg flatness we infer that
dy(Py, N B, ,B-NB,) <dy(Py, NB,,00NnB,)+d,;(0QnB,,B NB,)
< Mre+re < (M+ Lre.
Since Py, and B, are linear spaces we deduce that
dy(Pyr N By, B-N B;) < (M + 1)e. (19)
We term mr,. and m,,,- the orthogonal projections onto B. and P,,,, respectively, and we fix an
arbitrary point y € P. n B;. Inequality (19) states that there is z € Py, N B, satisfying
d(z,y) < (M + 1)e.
In particular, since 1 = vy, | = inf,ep,, d(vy,, 2), we get
d(yry) 2 d(Vyr, z) —d(z,y) 21— (M + 1)e.
By taking the infimum for y € B. N B;we obtain
|VMr - T[r(VMr)l =1- (M + 1)81
and the proof is concluded by recalling that |{v,,,,-, v,;)| = d(Vpr, T (Vagr ).

The following lemma discusses an observation due to Kenig and Toro [20]. Note that the
difference between Lemma (2.1.5) and part (ii) in the definition of Reifenberg flatness is
that in (ii) we only require the separation property at scale ry,.

Lemma(2.1.5)[63]: Let Q € RY be an (&,1,) —Reifenberg flat domain. For every x € 9Q
and r €]0, r,], one of the connected components of
B(x,r) n{x : dist(x, P(x,7)) = 2er}
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is contained in Q and the other one is contained in RM \Q. Here P(x,7) is the same hyper-
plane as in part (i) of the definition of Reifenberg-flatness.
Proof: We fix p € ]0,r,] and we assume that the separation property holds at scale p,
namely that one of the connected components of
B(x,p) n{x : dist(x, P(x, p)) = 2¢ep}
is contained in Q and the other one is contained in RY \Q. We now show that the same
separation property holds at scale r for every r € ]o/M, p] provided that M < (1 — ¢)/3e.
By iteration this implies that the separation property holds at any scale r €]0, r,].
Letus fixr € ]ﬁ , p] and denote by B* (x, r) one of the connected components of
B(x,r) n{x : dist(x, P(x,7)) = 2¢er}
and by B~ (x,r) the other one. Also, we term Y*and Y~ the points of intersection of the
line passing through x and perpendicular to P(x, ) with the boundary of the ball B(x, r).
By recalling (18) and the inequality r = p/M , we get that the distance of Y* from the
hyperpane P(x, p) satisfies the following inequality:

1-(M+1)e

i .
Since by assumption M < (1 — €)/3¢, this implies that d(Y™*, P(x,p)) = 2ep and hence
that one among Y* and Y~ belongs to B*(x, p) and the other one to B~ (x,p). Since by
assumption the separation property holds at scale p, this implies that one of them belongs to
Q and the other one to Q° .

d(¥Y=,P(x,p)) = rl(vp vpyua)l 2 71— (M + 1)e] = p

Figure 1. notations for the proof of Theorem (2.1.2)
To conclude, note that part (i) in the definition of Reifenberg flatness implies that
B*(x,r)noQ =0
and hence both B*(x,r) and B~ (x,r) are entirely contained in either Q or Q¢. By recalling
that one among Y* and Y~ belongs to Q and the other one to Q¢, we conclude the proof of
the lemma.
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We combine the analysis in [88] with Theorem (2.1.2) to show that domains that are
sufficiently flat in the sense of Reifenberg satisfy the extension property. We also discuss
some direct consequences. Note that we always assume that Q is connected, as Jones did in
[88]. We show that the connectedness assumption can be actually removed in the case of
Reifenberg flat domains. Note also that, before providing the precise extension result, we
have to introduce a preliminary lemma comparing different notions of “radius” of a given
domain Q.

We term outer radius of a nonempty set @ € RN the quantity

Rad(Q) := inf supd(x,y), (20)
X€EQ yeQ

and we term inner radius the quantity
rad(Q) :=supsup{r > 0: B(x,r) c Q}. (21)
X€Q

The inner radius is the radius of the biggest ball that could fit inside Q, whereas the outer
radius, as seen below, is the radius of the smallest ball, centered in Q, that contains . Also,
we recall that Diam(Q) denotes the diameter of Q, namely

Diam(Q) := sup d(x,y).
xX,yEQ

We collect some consequences of the definition in the following lemma.
Lemma(2.1.6)[63]:Let Q be a nonempty subset of RY, then the following properties hold:
(i) We have the formula
Rad(Q) = ;Q};i”f {r>0:Q cB(x,1)} (22)

Also, if Rad(Q) < +oo, then there is a point x € Q such that Q € B(x, Rad(Q)).
(i) rad(Q2) < Rad(Q) < Diam(Q).
(i) If Q is an (&, ry)-Reifenberg flat domain for some r, > 0 and some ¢ satisfying
0<e<1/2 thenry/4 < rad(Q) < Rad(Q) < Diam(Q).
Proof. To establish property (i), we first observe that, if Q is not bounded, then Rad(Q) =
+o0o and formula (22) is trivially satisfied. Also, the assumption Rad(Q)) < +oo implies that
the closure Q is compact. Hence, if Rad(Q)) < +oo, then
Rad(Q) = minsup d(x,y) (23)
X€Q yeq

and if we term x, € Q any point that realizes the minimum in (23) we have Q c B(x,,
Rad(Q)). This establishes the inequality
Rad(Q) > iQ};i”f {r>0: Q c B(x,r)}.
X

To establish the reverse inequality we observe that if x € Q is any arbitrary point and
r > 0 is such that Q c B(x,r), then sup,cq d(x,y) < r. By taking the infimum in x and r
we conclude. This ends the proof of property (i).

To establish (ii), we focus on the case when Rad(Q) < +oo, because otherwise Q is
unbounded and (ii) trivially holds. Hence, by relying on (i) we infer that Q € B := B(x,,
Rad(Q)) for some point x, € Q. Given x € Q and r > 0 satisfying B(x,r) c , we have
B(x,r) c B(x,, Rad(Q)). Hence, d(x,x,) +r < Rad(Q) and hence r < Rad(Q). By
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taking the supremum in r and x we get finally rad(Q) < Rad(Q). The inequality Rad(Q) <
Diam(Q) directly follows from the two definitions.
Given (ii), establishing property (iii) amounts to show that
rad(Q) = ry/4. (24)
We can assume with no loss of generality that dQ # @, otherwise Q = RY and (24)
trivially holds in this case (we recall that the case O = @ is ruled out by the definition of
Reifenberg flat domain).
Hence, we fix y € 9Q, denote by P(y,r,) the hyperplane in the definition and let v be
its normal vector. We choose the orientation of v in such a way that
{z+tv:zeP(yr)t=2er}nB(y,rn) € Q. (25)
Since dy (P(y,15) N B(y,15),00 N B(y, 1)) < er, then from (25) we infer that actually
{z+tv: zeP(y,1y), t = er}nB(y,ry) S Q.
By recalling € < 1/2, we infer that there is x € Q such that B(x,r,/4) c Q and this
establishes (24).
The following extension property of Reifenberg flat domains is established by combining
Theorem (2.1.2) above with Jones’analysis ( [88]).

Corollary(2.1.7)[63]: Let O € RN be a connected, (&,1,)-Reifenberg flat domain. If ¢ <
1
% )
satisfying

then, for every p € [1, +0], there is an extension operator E : W1P(Q) » W1P(RVN)

”E(u)”WLP(RN) <C ”u”WW(Q)v
where the constant C only depends on N , p, and r,.
The results of both Christ [93] and Chua [90,91,92] apply to Jones flat domains, hence

by relying on Theorem (2.1.2) we infer that they apply to (ﬁ,ro)—Reifenberg flat domains

as well.

As a consequence of Corollary (2.1.7) we get that the classical Rellich-Kondrachov
Theorem holds in Reifenberg flat domains.
Proposition(2.1.8)[63]: Let @ < RY be a bounded, connected (&, r,)-Reifenberg flat
domain and assume 0 < ¢ < 1/600.

If 1<p<N,set p*:= NN—i’ . Then the Sobolev space W17 (Q) is continuously embedded

in the space L?"(Q) and is compactly embedded in LI(€) for everyl < q < p*.

If p > N, then the Sobolev space W1V (Q) is continuously embedded in the space L*(Q)

and is compactly embedded L9(Q) for every q € [1, +oo].

Also, the norm of the above embedding operators only depends on N, ry, g, p and Rad(Q).
As an example of application of Proposition (2.1.8), we establish a uniform bound on the

L™ norm of Neumann eigenfunctions defined in Reifenberg flat domains. We use this bound

in the companion reference [65]. We recall that we term “Neumann eigenfunction” an eigen-

function for the Laplace operator subject to homogeneous Neumann conditions on the

boundary of the domain.
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Proposition(2.1.9)[63]: Let Q& € RY be a bounded, connected, (&, 1,)-Reifenberg flat
1

domain and let u be a Neumann eigenfunction associated to the eigenvalue p. If ¢ < vy

then u is bounded and

y(N)
lullo@y < € (L +1)" " lull 2, (26)

where y(N ) = max {Z, =} and € = ¢ (N, 7, Rad(0)).
Proof.By using classical techniques coming from the regularity theory for elliptic operators,
Ross [94] established (26) in the case of Lipschitz domains. However, in [94] the only
reason why one needs the regularity assumption on the domain Q is to use the Sobolev
inequality

lull 2y < € (lullzy + IVullz), € =C(NrRad(@)  (27)
as the starting point for a bootstrap argument. Since Proposition (2.1.8) states that (27) holds
if Q is a bounded Reifenberg-flat domain, then the proof in [94] can be extended to the case
of Reifenberg flat domains.

We have always assumed that the domain Q is connected. We now show that the results
we have established can be extended to general (i.e., not necessarily connected) Reifenberg-
flat domains. Although extension of the result of Jones [88] to non-connected domains were
already widely known, we decided to provide here a self-contained proof. In this way, we
obtain results on the structure of Reifenberg flat domains that may be of independent
interest.

We first show that any sufficiently flat Reifenberg flat domain is finitely connected and
we establish a quantitative bound on the Hausdorff distance between two connected
components.

Proposition(2.1.10)[63]: Let O € RY be a bounded, (&, 7,)-Reifenberg flat domain and we
assume & < 207N, Then Q has a finite number of nonempty, open and disjoint connected
components Uy, ..., U,, where

< 20710 (28)
T ooty

Moreover, if i # j, then for every z € dU; we have
d(z,U;) > 1,/70. (29)

Proof. We proceed according to the following steps.
* Step 1 We recall that any nonempty open set O € RY can be decomposed as
Q= U U, (30)
i€l
where the connected components U; satisfy
(i) foreveryi €I, U; is a nonempty, open, arcwise connected set which is also closed
in Q. Hence, in particular, dU; < 91.
(i) UynU; =0 ifi=+j.
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Indeed, for any x € Q we can define U, :={y € Q : there is a continuous curve y:[0,1] —
Q such that y(0) = x and y(1) = y } and observe that any U, is a nonempty, open, arcwise
connected set which is also closed in Q. Also, given two points x,y € RV, we have either
U,=U,orU,nU, =09
o Step 2 Let Q as in the statement of the proposition, and let the family {U;};¢; be as in (30).
We fix i € I and we prove that |U;| = C (o, N). This straightforwardly implies that 71 <
C (JQ], 79, N ). Since U; is bounded, then dU; # @ : hence, we can fix a point ¥ € dU;, and
a sequence {x,}ney Such that x,, € U; and x,, » ¥ as n —» +oco. We recall that dU; S 9Q
and we infer that, for any n € N, the following chain of inequalities holds:
d(x,, 0U;) = d(x,, UF) < d(x,,Q°) = d(xp,, 0Q) < d(x,,0U)),
which implies d(x, , Q€) = d(x,, dU;). We fix n sufficiently large such that d (x,, X) < %0
so that
d(x,,Q°) = d(x,, dU;) < ry/7.
Weterm I := y, ./, the polygonal curve constructed as in Step 2 of the proof of Theorem
(2.1.2) and we observe that, if ¢ < 1/32, then (5) holds and I' € Q and hence, by definition
of U;,T € U;. We use the same notation as in Step 1 of the proof of Theorem (2.1.2) and we
recall that I connects x,, to some point Y (x,, r,/7), defined with some x, € dQ. Hence, in
particular,Y (x,,7,/7) € U; and this implies that B* (x,,7,/7) S U; because B*(x,,1,/7) is
connected. This finally yields
N N N

012 [5* (202)| 2 0 (30 - 29)) > 0 (535) 2 (30)

because ¢ < 1/20. We deduce that
N
#1 < 20 l%' .
Wy

o Step 3 We establish the separation property (29).
We set r; := 1,/70 and we argue by contradiction, assuming that there are z € aU;,
y € dU; such that

d(z,U;) =d(z,0U;) = d(z,y) <.
Let {z, }nen and {y,}nen be sequences in U; and U; converging to z and y, respectively. We
fix n sufficiently large such that

d(z,,0U;) <d(z,,z) <r, <1,/14
and we term Z be a point in dU; satisfying d(z,,z) = d(z,,dU;) (if there is more than one
such z, we arbitrarily fix one). By arguing as in Step 2, we infer that B* (z‘, %) C U;. Next,
we do the same for U;, namely we fix m sufficiently large that

AW, 0U;) < d(Ym,y ) <11 < 1/7,
we let ¥ be a point in dU; satisfying d(y,, ¥) = d(3,, dU;) and, by arguing as in Step 2, we
get that B* (¥, 1,/7) < U;. Also, we note that

d(z,y) <d(z,z,) + d(zp,2) + d(z,y) + d(y,ym) + Ay, ¥) < 57y
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Since r; = ry/70, then B*( 2,1,/14) < B(Z,1,/14) < B(y,7,/7). We observe that

B*(Z,1o/14) N B~ (¥, 1,/7) = @ (3D)
since by construction B*(z,1,/14) € Q and B~ (y,1,/7) S QF. Also, by recalling that

B*(z,1/14) € U; ,B*(y,15/7) € U;and U;nU; =@ ,

we have that

B*(Z,1o/14) N BT (¥, 1,/7) = @ (32)
By combining (31) and (32) we get

B*(Z,19/14) € B(¥, 1o/ T)\B*(¥,15/7) U B~ (¥, 1,/ 7). (33)
We now use the inequality
1

2N—1’
which will be proven later. By relying on (34) and by recalling that £ < 20~" < 1/20 we
obtain

Wy = Wy-1 (34)

T, N 975\"
|B*(Z,19/14)| = wy <§ Q- 28)) > 2WN-1 (—0)

and

_ _ _ To\N 21,
|B(7,70/7T)\B*(3,70/7) UB~(3,1,/7)| < dewy_, (7) < 2wy_q (—) ,

which contradicts (33) since 2/140 < 9/560.
To finish the proof we are thus left to establish (34). To do this, we use the relation

1 N—-1
Wy = Wy_q f (\/1 - x2) dx .
-1

This implies that, for any A € (0, 1), we have

Wy = Wy_q2 r(\/l—xZ)N_ldx > wy_12A (\/1—/12)N

0
By choosing 1 = /3/2 we obtain the inequality

V3 1

oN-1 = WN-1 oN-1'

-1

Wy = Wy-1

and this concludes the proof.
Corollary(2.1.11)[63]:Let N > 2 and Q € RY be a bounded, (&, r,)-Reifenberg flat domain
with £ < min(20~",1/600). Then for every p € [1, +] there is an extension operator

E: wP(Q) » wir(RN) (35)
whose norm is bounded by a constant which only depends on N, p, and r,.
Proof. We employ the same notation as in the statement of Proposition (2.1.10) and we fix
a connected component U;. By recalling that dU; < dQ and the separation property (29),
we infer that U; is itself a (&, 1,/140)-Reifenberg flat domain. Since by definition U; is
connected, we can apply Proposition (2.1.7) which says that, for every p € [1, +0], there is
an extension operator

E;: wiP(U) » W1P(RNM)
whose norm is bounded by a constant which only depends on N, p and .
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In order to “glue together” the extension operators Ej, ..., E,, we proceed as follows. Given
i=1,...,n, wesetd:=r,/280 and we introduce the notation

Ud:={x € R": d(x,U;) < 6}.
Note that the separation property (29) implies that U?% n Uj25 =0Q ifi#j.
We now construct suitable cut-off functions ¢;,i =1,...,n. Let £ : [0, +oo[— [0,1] be the
auxiliary function defined by setting

Lo, ift<s
o) = fl)=41+2"" ifs<t<26
0 if t > 26

We set
@;(x) := £(d(x, U;)) and we recall that the function x ~ d(x, U;) is 1-Lipschitz and that
& = r,/280. Hence, the function ¢; satisfies the following properties:

0<¢,(x)<1|Vp;, ()| <COy) VX ERY, @, =10nU;,p; =00on RN\ U (36)
We then define E : W1P(Q) - W1P(RN) by setting

E(u) := Z E;(w) ()i ().

We recall that the sets U;, ..., U,, are all pairwise disjoint, we focus on the case p < +oo and
we get

IEG) oy = ( |
]RN

n n
< Y IE@lpay < ) WP I@Iirwy < CH,p oI @100,
i=1 i=1

1

pP\p n 1/p
) < Z(j |Ei<u)<x)(pi<x)|pdx)
=1 \Juf?

4

Y E@ @) dx

Also, by using the bound on |V¢;| provided by (36), we get

) (VE @V + B ) )V, (1) d

pP\P
”VE(u)”LP(RN) = (j )
RN |4=
N 5 = 1/p
<> ( jU AVE0 P dx>” + Y ( jU JE TP dx)

i=1 i=1

< ;”VEi(u)”LP(]RN) + C(ro);HEi(u)Ile(RN) < CN, p, i)l @ llyiv gy

The proof in the case p = oo is a direct consequence of the bounds on the norm of E; and on
the uniform norms of ¢; and V¢, . This concludes the proof of the corollary.

We end this section by comparing different ways of measuring the “distance” between
Reifenberg-flat domains.

Comparing the Hausdorff distances dy, (X,Y), dy(X€, Y¢) and dy (90X, dY ), where X and
Y are subsets of R".
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First, we exhibit two examples showing that, in general, neither dy(X, Y) controls
dy (X€,Y€) nor dy (X€,Y°) controls dy(X,Y). We term B := B(1,0) the unit ball and we
consider the two perturbations A and C as represented in Figure 2.

Next, we exhibit an example showing that, in general, dy(dX, dY) controls neither
dy(X,Y) nor dy (X€,Y°). Let X := B(R,0) and Y := B(R + ,0)\B(R,0), then

e=dy(0X,0Y) << dy(X,Y) =dy(X¢,Y)=R.

&

E

e=dy(A°, B°)<<dy(A,B) =1 e=dy(C,B)<<dy(C¢B)=1
Figure 2.

Also, note that the examples represented in Figure 2 show that, in general, neither d,(X,Y )
nor dy (X¢,Y¢) controls dy (90X, dY). Indeed, d(0A,0B) =~ 1 and dy(dC,0B) = 1.

However, if X and Y are two sufficiently close Reifenberg flat domains, then we have
the following result.
Lemma(2.1.12)[63]: Let X and Y be two (&, ry)-Reifenberg flat domains satisfying
dy,(0X,0Y) < 2r,. Then

d(9X,0Y) < T——min{du(X,Y ), dy (X, Y)} @37)

Proof. Just to fix the ideas, assume that d (0X,dY) = sup,esx d(x, dY).
Since by assumption dy(0X,dY) < +oo, then for every h > 0O there is x;, € dX such that
dy(0X,0Y) —h < dj, :=d(x,,dY) < dy(0X,0Y).

Note that aY N B (x,, %) = @ and hence either (i) B (xy,, 22) € Y or (ii) B (x;, ) < Y.
First, consider case (i): let P(xh,%) be the hyper plane prescribed by the definition of

Reifenberg flatness, then by Lemma (2.1.5) we can choose the orientation of the normal
vector v in such a way that

B~ (x,dp/2) :={z+tv:z € P(x,,d,/2),t = edy} N B(x,d,/2) € X°
and

B*(xp, dp/2) :i={z—tv:z € P(x,dp/2),t = edy} N B(xy,,d,/2) € X.
Fix the point

(1 +2¢)d,
= xp+ T V,
then we have
_ (1 -2¢)d, -
B <Z,T> C B (xh,dh/Z) c X‘nY

and hence

1-2¢)d
dy(X©,Y°) = supd(z,Y) = d(z,Y°) = %
zeX¢
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and

1-—2¢)d
dy(X,Y) = supd(z,X) = d(z,X) = %.
ZEY

Since case (ii) can be tackled in an entirely similar way, by the arbitrariness of h we deduce
that

4
<
dy(0X,0Y) < 1 2¢

The proof of (37) is concluded by making the following observations:

(i) if X is an (¢, 1y)-Reifenberg flat domain, then X€ is also an (&, 1,)-Reifenberg flat

domain.

(ii) 0X = 0X° and oY = aY°.

Hence, by replacing in (38) X with X and Y with Y€ we obtain (37).

Comparing the Hausdorff distances dy (X,Y) and dy (X€, Y°) with the Lebesgue measure
of the symmetric difference, |[XAY|. As usual, X and Y are subsets of R, The results we
state are applied in [65] to the stability analysis of the spectrum of the Laplace operator with
Neumann boundary conditions.

First, we observe that the examples illustrated in Figure 2 show that, in general, |[XAY|
controls neither d,(X,Y) nor dy(X€,Y°). Indeed, |[AAB| = ¢ and |CAB| = . However, if
X and Y are two sufficiently close Reifenberg-flat domains, then the following result hold.
Lemma(2.1.13)[63]: Let X and Y be two (g,7,)-Reifenberg flat domains in RY.Then the
following implications hold:

(N if dy(X,Y) < 4r,, then

dy(X,Y). (38)

4 (X Y) < — <|XAY|>1/N (39)
HAMDTI = (1 -28)\ wy '
(1) 1f djy (X, Y€) < 4ry, then
o 8 [Ixay\*'"
dy(X€,Y°) < (1—23)< o > (40)

In both the previous expressions, w, denotes the measure of the unit ball in RY .
Proof. The argument relies on ideas similar to those used in the proof of Lemma (2.1.12).

We first establish (39). Just to fix the ideas, assume that d(X,Y) = sup,ex d(x,Y) and
note that by assumption d, (X,Y) < +oo. Hence, for every h > 0O there is x; € X such that

dy(X,Y)—h <d, = d(x,,YV) <dyg(X,Y)
Note that, by the very definition of d(x;,Y), we have B(x;,d,) S Y°¢. We now separately
consider two cases: if B(xy,d,/2) € X, then
B(x,,dp,/2) € XNYC S |XAY|
and hence
dn\"

and by the arbitrariness of h this implies (39).
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Hence, we are left to consider the case when there is x, € B(x;, d,/2) n dX. We make the
following observations: first,

B(xy,dp/4) < B(xp,dy) S Y°. (41)
Second, since % < dy(X,Y )/4 <y, then we can apply the definition of Reifenberg flat-

ness in the ball B(x,,d,/4). Let P(x,,d,/4) be the hyperplane provided by property (i) in
the definition, and let v, denote the normal vector. By relying on Lemma (2.1.5) we infer
that we can choose the orientation of v, in such a way that

B <x0 Lar2ed, (- 28)dh> C XNB (x01%> (42)

R 4
By combining (41) and (42) we infer that
(1 -2¢&)d,
oy (—8
and by the arbitrariness of h this completes the proof of (39).
Estimate (40) follows from (39) by relying on the following two observations:
(i) XAY =(X°nY)U (X NYC) =XCAYC,
(ii) if X is an (g, ry)-Reifenberg flat domain, then X¢ is also an (&, ry)-Reifenberg flat
domain.
Hence, by replacing in (39) X with X¢ and Y with Y€ we get (40).
Sec(2.2): The Poisson Equation In Reifenberg-Flat Domains

The goal of the present section is to show a boundary regularity result for the Poisson
equation with homogeneous Dirichlet boundary conditions in non smooth domains.

We consider the case of Reifenberg flat domains as given by the following definition.
Definition(2.2.1)[96]: Let &, 1, be two real numbers satisfying 0 < & < 1/2 and r, > 0. An
(g,1p)-Reifenberg-flat domain Q € RY is an open, bounded, and connected set satisfying
the two following conditions:

(i) for every x € dQ and for any r <r,, there exists a hyperplane P(X,I) containing x

N
> < |XNY| < |XAY]

which satisfies
%dH (QNB(x,r),P(x,r)nB(x,r))<e.
(ii) for every X € 0€2, one of the connected component of
B (x,ro)m{x;d (x, P(x ,ro))225r0}
is contained in ( and the other one is contained in Q° .
We consider the following problem in the (X ,r,)-Reifenberg flat domain Q c[! N for
some f eL*(Q),

—-Au =f in Q
)]
u=0 on oQ

Reifenberg flat domains are less smooth than Lipschitz domains and it is well known that
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we cannot expect more regularity than Hoélder for boundary regularity of the Poisson
equation in Lipschitz domains (see [97], [65] or [100]).

Historically, Reifenberg flat domains came into consideration because of their relation-

ship with the regularity of the Poisson kernel and the harmonic measure, as shown in a
series of famous and deep references by Kenig and Toro (see [20, 70, 71, 73]). In particular,
they are Non Tangentially Accessible (in short NTA) domains as described in [83].
Notice that the Poisson kernel is defined as related to the solution of the equation —Au =0
in Q with u = f on 9Q . In this section we consider the equation (P1) which is of different
nature. However, the regularity result is again based on the monotonicity formula of Alt,
Caffarelli and Friedman [106], which is known to be one of the key estimate in the study
harmonic measure as well.

More recently, regularity of elliptic PDEs in Reifenberg flat domains has been studied
by Byun and Wang in [107, 108, 76, 77, 78]. One of their main result regarding to equation
of the type of (P1) is the existence of a global W “*(Q2) bound on the solution. This fact will

be used in Corollary (2.2.4) below.

The case of domains of R™ has been investigated by Caffarelli and Peral [112]. See also
[100] for the case of Lipschitz domains. Some other type of elliptic problems in Reifenberg-
flat domains can be found in [80, 81, 74, 16, 65].

The present section is the first step towards a general boundary regularity theory for
elliptic PDEs in divergence form on Reifenberg flat domains, that might be pursued in some
future work. We have the following.

Theorem(2.2.2)[96]: Let p, q,p, = 1 be some exponents satisfying 1/p +1/q = 1/p, and
po > N/2. Let « > 0O be any given exponent such that
po—N/2

Po
Then one can find an € = (N, a) such that the following holds. Let Q € R be an (¢, 7)-
Reifenberg flat domain for some r, > 0O, and let u be a solution for the problem (P1) in Q

withu e L?(Q) and f eL9(Q2). Then
ueC®(B(x,r,/12)nQ) Vx eQ.

Moreover .. oy < C N Tt Py Jul, I 1)

a <<

Proof. Considering u as a function of W12(RM) by setting O outside Q, and applying
Proposition (2.2.11) with § = 2a, we obtain that

L( )|Vu|2dx < CrV2E|lull,lifll; vx € Q,Vr € (0,1,/6), (43)
X,r

with C = C(N,ry, ,po)- Recalling now the classical Poincare inequality in a ball B(x, )
1

N 2
f lu — uy  ldx < c(N)ri*tz <f |Vu|2dx> ,
B(x,r) B(x,r)
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we get

B —
f lu —uyldx < Cr"*z vx € Q,Vr € (0,1,/6), (44)
B(x,r)

with € = C(N, 7o, B, po. llull,|I Il ). But this implies that

1N +E 3 3
ue L 2 (B(x,1/12) N Q) Vx € Q.

N
Moreover g <272 < 1 and hence Theorem (2.2.12) says that

Po
u € CO(B(x,1,/12) N Q)
with a = g, and the norm is controlled by C = C(N,ro,ﬁ,po, el Il f Il )
Observe that in the statement of Theorem (2.2.2), some a priori L" integrability on u is
needed to get some Holder regularity. In what follows we shall see at least two situations

where we know that U € L? for some p > 2, and consequently state two Corollaries where
the integrability hypothesis is given on f only, without any a priori requirement on wu.

First, notice that when f e L?(Q) for 2 < q < +oo, then the application vn—>L}vf dx is a

bounded linear form on W ;*(Q2) , endowed with the scalar productLVu Vv dx . Therefore,

using Riesz representation theorem we deduce the existence of a unique weak solution
ueW ?(Q) for the problem (P1). Moreover, the Sobolev inequality says that u e L (Q),

.~ 2N : : e :
with 2 N2 Some simple computations shows that in this situation, uand f verify the

statement of Theorem (2.2.2) provided that 2 < N <5, which leads to the following
corollary.
Corollary (2.2.3)[96]: Assume that2 < N < 5and let g €l be given where

| _{[2,+oo) if N =2

- (& +») for 3<N < 5.

BN !
Then for any a > 0 verifying
N (N -2 1}
a<l-— +=,
2
we can find an ¢ =¢(N,a) such that the following holds. Let Q<" be an (g, 1)-
Reifenberg flat domain for some r, > 0, let f € L%(Q) and let u eW () be the unique
solution for the problem (P1) in Q . Then
ueC™B(x, r,/12)NnQ) Vx eQ.

Moreover [l -y < € (N Ty, VUl [ £ )
Proof. Since ueW ‘4(Q), the Sobolev embedding says that ueL’(©), withp-2"- 2N .
And by assumption f eL* for some q €1 (notice that ¢ > 2, which guarantees existence
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and uniqueness of the weak solution). We now try to apply Theorem (2.2.2) with those p
and q. Let p,be defined by
1/p+1/q9=1/po.

Then a simple computation yields that p, > N /2, provided that
2N
175N

This fixes the range of dimension N <5 and notice that in this case :_—NN > 2 except for
N = 2, which justifies the definition of I,. We then conclude by applying Theorem (2.2.2).
In the proof of Corollary (2.2.3) we brutally used the Sobolev embedding on W,'*(Q) to
obtain an LP integrability on u. But under some natural hypothesis we can get more using a
theorem by Byun and Wang [76]. Precisely, if f = divF for some F € L?then f lies in the
dual space of H}(Q) which guarantees the existence and uniqueness of a weak solution u
for (P1), again by the Reisz representation theorem. The theorem of Byun and Wang [76]
implies moreover that if F € L"(Q) then Vu € L"(Q) as well. But then the Sobolev
inequality says that u € L™ which allows us to apply Theorem (2.2.2) for a larger range of
dimensions and exponents. Of course this analysis is interesting only for » < N because if
r > N we directly get some Holder estimates by the classical Sobolev embedding. This
leads to the second corollary.

Corollary(2.2.4)[96]: Let %< r< N and q > ;—NN be given, so that moreover r > 2.
Then for any a > 0 satisfying

a<l —ﬂ(i+l) with r*:= N
2\r* q/’ N-—r'
we can find an ¢ = (N, a, |Q[,7) such that the following holds. Let Q € RM be an (e, r,)-
Reifenberg flat domain for some r, > 0, let f € L9(Q) and assume that f = —divF for
some F € L7(Q). Letu € W,"*(Q) be the unique weak solution for the problem (P1) in Q.
Then

u € CO%B(x,1,/12) N Q) Vx € Q.
Moreover [[ullcoa(pr,/12)na) < C(N, 1o, a7, q, QL I fllg IIFIl-)-
Proof. First we apply [76] which provides the existence of a threshold €, = (N, |Q], 1)
such that for any solution u € W,'?(Q) of (P1) with f = —divF and F € L"(Q)., we have
that Vu € L"(Q), provided that Q is (g,, ry)-Reifenberg flat. But then the Sobolev inequality
implies that u € L with

r* = if r<N,

and r* = +oo otherwise.
In order to apply Theorem (2.2.2) we define p, such that

1/r*+1/qg=1/p,,
and we only need to check that p, > N /2. This implies the following condition on r and q:
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TN
3r—N'
as required in the statement of the Corollary. We finally conclude by applying Theorem
(2.2.2).
Lemma(2.2.5)[96]: Let u be a solution for the problem (P1). Then for every x, € dQ and
a.e. r > 0 we have

r>N/3 and q >

Ju
f |[Vul?|x|>~Ndx < rZ‘Nf u—ds
B(xo,7)NQ 8B (xo,r)NQ dv
N -2
+ rl‘Nf u2d5+f uf|x|*"Ndx. (45)
0B(x,1)NQ B(xq,7)NQ

2

Proof. Although (56) below can be formally obtained through an integration by parts, the
rigorous proof is a bit technical. In the sequel we use the notation Q" := B(x,,7) N Q and
St :=dB(xy,7) N Q. We find it convenient to define, for a given £ > 0, the regularized
norm

lx|; == \/xlz + X244 xi+ g
so that |x|, is a C* function. A direct computation shows that

&
A(lx|2V) = (2 - N)N ez =0
&

in other words |[x|2~V is superharmonic, and hopefully enough this goes in the right
direction regarding to the next inequalities.
We use one more regularization thus we let u, € C°(2) be a sequence of functions
converging in W12(RM) to u. We now proceed as in the proof of Alt, Caffarelli and
Friedman monotonicity formula [106]: by using the equality

A(u3) = 2|Vu,|? + 2u,Au, (46)
we deduce that

I P B T T e I 0 S
of Qf of
Since A(]x|2™N) < 0, the Gauss-Green Formula yields

| vadax = [ vl + o) < ), @8)
Q Q

T T
where

2—-N ou r
L ()=@G*+e) 2z f 2u, —dS + (N — 2)—Nf u?ds.
GIon v (r2+¢)2 20y

In other words, (47) reads

2[ [V, |?|x[*Vdx < Le(r) — 2 (U V) |x|27N dix. (49)
ot +

Qr
We now want to pass to the limit, first as n — +oo, and then as € - 0*. To tackle some
technical problems, we first integrate over r € [r,r + §] and divide by §, thus obtaining
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r+6
f Vun2lx|2Ndx |dp < Ay — R, (50)
r Q;

SN

where

Sl

r+é
A, = f I e(p)dp
T

and

1 r+6
R, = 2—[ (upAuy)|x|2 Ndx | dp.
6J. +

Qp
First, we investigate the limit of A,, as n — +o0: by applying the coarea formula, we rewrite
A, as

1 =l |x| 2
A, ==|2 (Jx|* +¢e) 2 u,Vu, -xdx+ (N —2) ——x undx |.
O\ Jop ot 07\ (|x]2 + £)2

Since u, converges to u in W12(R") when n — +oo, then by using again the coarea
formula we get that

1 r+6
Ay = Ef I.(p)dp n— +o
r

where

2-N ou p
Ig(p):(p2+8)2f 2u—ds+(N—2)—Nf 12dS |
d an;

oy oV (p2 +¢)z
Next, we investigate the limit of R,, as n —» +oo. By using Fubini’s Theorem, we can rewrite
R, as

R, :f(unAun)G(x)dx,
Q

where
1 r+é
G() = IxIZV< | 1g5(x)dp.
5, P
Since
1 if x € O
1 r+6 r+46 — |x| .
EL 1Q;(x)dp = {T if x € Q;I.-_l_é‘\ Q;I-y
Lo if x & QF,,

then G is Lipschitz continuous and hence by recalling u,, € C2°(Q2) we get

<

+

f (u,Au,, — ulAu) G dx
Q

f (Au,, — Au) u,,G dx
Q

f (u,, — u) AuG dx
Q

+

f Vu,, — Vvu)(w,,VG + Vu,,G) dx
Q

f Vu((Vun —Vu)G + (u, —u) VG) dx
Q

< 1Vun, = Vull 2oy (Iln 2 IVG oy + 11Vtn [z 1G I (ay)
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+|| Vu”LZ(Q)(Hvun — Vull 2@l Gll oy + llu, — u||L2(Q)||VG||L°°(Q))
and hence the expression at the first line convergesto 0 asn — +co.
By combining the previous observations and by recalling that u satisfies the equation in
the problem (P1) we infer that by passing to the limit n — oo in (50) we get

2 r+8 1 r+6 2 r+6
Ef f [Vul?|x|2"Ndx | dr < Ef 1.(p)dp +§f f uf|x|2"Ndx | dp.
r Qf r r Qf

Finally, dividing by 2, by passing to the limit § -» 0%, and then & - 0* we obtain (56)
below.
Next, we will need the following Lemma of Gronwall type.

Lemma(2.2.6)[96]: Let y >0, >0, ¥ :(0,75) > R be a continuous function and
¢:(0,15) = R be an absolutely continuous function that satisfies the following inequality
fora.e. r € (0,1y),

o) < yro'(r) + P(). (51)
Then

o) 17 %)

ri/y v Jo sl+1/y ds

is a nondecreasing function on (0, ry).
Proof. We can assume that

" P(s)

ds < +oo
0 51+1/V !

otherwise the Lemma is trivial. Under the hypothesis, the function

_ o) 17 P(s)
F(r):= 1y +; o STy

ds

is differentiable a.e. and absolutely continuous. A computation gives

, @' (r)yr'’Y — () 1/y r*/7 1 P(r)
F (T‘) = r2/vy + 1/]/ ri+1/y
@'(r)— o)1)y v~} P(r)
= 7 Vv oy
thus (51) yields
ryF(r) = rye'(r) — o(r) + Y(r) S0

ri/y ’
which implies that F is nondecresing.

We now show the monotonicity Lemma, which is inspired by Alt, Caffarelli and
Friedman [106]. The following statement and its proof, is an easy variant of [65], where the
same estimate is performed on Dirichlet eigenfunctions of the Laplace operator. We decided
to write the full details in order to enlighten the role of the second member f in the
inequalities.

Lemma(2.2.7)[96]: Let Q € RY be a bounded domain and let u be a solution for the
problem (P1). Given x, € Q and a radius » > 0, we denote by Q) :=B(x,,7) N Q, by
St := 0B(x,,7) N Q and by a(r) the first Dirichlet eigenvalue of the Laplace operator on
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the spherical domain S;F. If there are constants r, > Oand o* €]0,N —

000 >

1 |Vu|? 1/}(5)
(r |_)<rﬁfﬂ+|x—x0|"’ 2 > 'Bf 1+ﬁ

is non decreasing on ]0, r,[, where § € ]0, 2[ is given by
B =J(N—2)2+ 46" — (N —2)

then the function

and
(s) = f fuf 11 — xo[2Nelx.
f

We also have the bound

Note that: Of course the Lemma is interesting only when

"P(s)

——ds < +oo,
0 Sl+,8

This will be satisfied if u and f are in some LP spaces with suitable
shown in Lemma (2.2.8).

1[ such that
(52)

(53)

vuf? :
[ ey < CWL NIVl + w00 (54)
Q+

(55)

exponents, as will be

Proof. We assume without lose of generality that x, = 0 and to simplify notation we denote

by B, the ball B(x, 7).
By Lemma (2.2.5) we know that for a.e. r > 0,

ou N -2
[Vul?|x|>?Ndx < rZ‘Nf 2u EdS u

of
+f uf|x|*>Ndx.
of
Let us define

P(r) = f fuf |||V ebx.
of

and assume that (55) holds (otherwise there is nothing to prove).
Next, we point out that the definition of o™ implies that

rl‘Nf u?ds
st

(56)

(57)

1
f u?ds S—*rzf [V;ul?2dS r €1]0,7], (58)
S+ o 57'!'

where V4 denotes the tangential gradient on the sphere. Also, let a >

0 be a parameter that

will be fixed Iater then by combining Cauchy-Schwarz inequality, (58) and the inequality

ab <2 a +— b2 we get
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1 1

ou 2 ou? 2
fu—dS < fuZdS f —| ds
5r+ av 5r+ 5r+ av
1 1
2 ou|? 2
< r/\/0*< |VTu|2dS> <f — dS>
5r+ 5r+ av
a 1 ou?
< r/vo <2 S;rlvfrul as 2 ). 1v dS> (59)

Hence,

du
rZ‘Nf 2u—dS + (N — 2)7‘1‘”f u?dS
st dv S

+
T

2r |a 1 ou |’ 1
< r2-N — 2dS+— | |=—| dS|+ (N —=2)rt-N— Zf Vrul?dS
<r \/F[Z S;rlvfrul ds 2a ), [av ] ( ) =l s;fl ul

ou|?

v

o N-2
< ri-=n (—+ ) V-ul?dS +
() o

Next, we choose @ > 0 in such a way that

1
o dS]. (60)

Vor o' a/o*
namely
1
a ZZW[\/(N—Z)2+ 40" — (N -2)|.

Hence, by combining (56), (58) and (60) we finally get
f [Vul?|x|>~Ndx < r3Ny (N,a*)f [Vul?2dS + (), (61)
aF S7

where

y o) =[VN=-27+ 40" —(v-2)]
Let us set

00) = | TPl ax
of
and observe that
p'(r) = rZ‘Nf [Vu|> a.e.r €]0,7[,
SF

hence (61) implies that

@(r) < yro'(r) + P(r), (62)
withy =y (N,ad").
But now Lemma (2.2.6) exactly says that the function

rHlf [Vul? _wlt +ﬁf ¥s) (63)

rf Q+|x—x |N-2 1+3
is non decreasing on (0, 7,), where g € (0, 2) is given by
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p :%:\/(N—Z)2+ 4o* — (N —2),

which proves the monotonicity result.
To finish the proof of the Lemma it remains to establish (54). For this purpose, we start by
finding a radius r; € (r,/2,1,) such that f5+ |[Vu|? ds is less than average, which means

r1

2 2
f [Vul?ds < — | |Vul?dx <— IIVuIIfz(Q) .
S+ TO

Tb (1+
T1 T0
By combining (61) with the fact that ry/2 < r; < r, we infer that
|| Pl < oo B)ITelE g + ¥
of,
< C(N,n, B )”VU”iZ(Q) + P (o). (64)
It follows that

|Vul? |Vul?
f U < f < OV, 70, BVl + $(r0),
QO QO

+ |x|N=2 + |x|N=2 T
T0/2 T1
and (54) is proved.

In order to apply Lemma (2.2.7), the first thing to check is that (55) holds. The purpose
of the following Lemma is to show that it is the case when u and f are in suitable LP spaces.

Lemma(2.2.8)[96]: Let Q c RN be an arbitrary domain and let p, >%. Then or any
g € LPo(Q), denoting

vo) = [ gl lxlVax,

B(0,r)
we have
2po—N
(@) < CN, podllgllp,r Po . (65)
As a consequence
P(s)
. ey ds < +oo
for any g > 0 satisfying
2p, — N
p <L (66)
Po
Proof. First, we observe that [x|>~N € L™ for any m that satisfies
N
N-2m<N = <—
( ym m <
Moreover a computation gives that under this condition,
2 1 0.y = f |x|@Mm = (N, m)r¥-mW-2 (67)
B(0,1)
Let us define m as being the conjugate exponent of p,, namely
1 1
—i=1-—.
m Po
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Then the hypothesis p, > % implies that m < % and by use of Holder inequality and by

(67) we can estimate

N-m(N-2)
W) < Mgl XN lmesory) < CNmMglpr  m

or equivalently in terms of p,,
2po=N
[ ()] < C(N, po)llgllp,r Po . (68)
The conclusion of the Lemma follows directly from (68).
We come now to the first application of Lemma (2.2.7), which is a decay estimate for the

energy at interior points, for arbitrary domains.
Proposition(2.2.9)[96]: Let p,q,p, > 1 be some exponents satisfying %+%:pi and
0

po >~ Let B > 0 be any given exponent such that
2

2p, — N
p<P_ (69)
Po

Let O € RY be any domain, x, € , and let u be a solution for the problem (P1) in Q with
u € LP(Q) and f € L9(Q2). Then

f [Vu|?dx < Cr¥=2*F||ull,lIfll, V7 € (O, dist(xy, 0Q2)/2), (70)
B(xq,7)NQ

with C = C(N, B, py, dist(x,, 0 Q)).
Proof. We assume that x, = 0 and we define r; := dist(x,, d Q) in such a way that B(x, 1)
is totally contained inside Q for r <, and under the notation of Lemma (2.2.7), Q; =
B(0,r) and by S;f = dB(0,r) for any r < r;. Under the hypothesis and in virtue of Lemma
(2.2.8) that we apply with g = uf , we know that (55) holds for any g > 0 that satisfies
2po— N
f <

Po
> 0, because p, > N/2.

(71)

-N

Notice that 22

Po

In the sequel we chose any exponent § > 0 satisfying (70), so that (55) holds and
moreover Lemma (2.2.8) says that

T 1 2po—N
0 VR s < cQvpo)lull, I fo s v s
< C(N,po, B)llullp Il f 1l - (72)
We are now ready to show (70), g still being a fixed exponent satisfying (71).
We recall that the first eigenvalue of the spherical Dirichlet Laplacian on the unit sphere is
equal to N — 1, thus hypothesis (52) in the present context reads
inf (r?ec(r))=N-1, (73)

0<r<nry
so that (52) holds for any o* < N — 1. Let us choose o* exactly equal to the one that
satisfies

B =JIN=2)2+ 45" — (N -2).
one easily verifies that ¢* < N — 1. because of (71).
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As a consequence, we are in position to apply Lemma (2.2.7) which ensures that, if u is a
solution for the problem (P1), then the function in (63) is non decreasing. In particular, by
monotonicity we know that for every r < 1y,

1 1 |Vul® ¥es)
2
rN-2+8 L;eruI dr < <rﬁ fm |x — x| V2 >+ :Bf 1+E

1f AT I frl/zlp(s)d 74
ap |G
5)

< n/2,
f |Vul|?dx < KrN—2+F,

_ 1 [Vul? 7Allzl/}(S)
K= ((73/2)3 fm |x — xo|N72 > N 'Bf 51“g

Let us now provide an estimate on K. To estimate the first term in K we use (54) to write

|Vul? 2
L.E:HEMSCWﬂﬁMWM@+WM (75)
/2

and we conclude that for every r

with

Then we use (65) to estimate

() = CIN,po, ) llullplifllg

and from the equation satisfied by u we get

Va2, gy = fww<wnwm

so that in total we have

|Vu|?
f Ix —|"- sdx < C(N, 7o, B, po)llull,llfll4.
ORI

Finally, the last estimate together with (72) yields
K < C(N,m, B, po)llull,llf g,
and this ends the proof of the Proposition.
We now use Lemma (2.2.7) again to provide an estimate on the energy at boundary points,
this time for Reifenberg flat domains.

Proposition(2.2.10)[96]: Let p,q,p, > 1 be some exponents satisfying %+%:pi and
0
po >~ . Let § > 0 be any given exponent such that
2po — N
p < Po (76)
Po

Then one can find an € = (N, 8) such that the following holds. Let O € R" be any (&, 1,)-
Reifenberg flat domain for some r, > 0, let x, € 9Q and let u be a solution for the problem
(P1) in Qwithu € LP(Q) and f € L7(Q). Then

48



_ To
[ wupar < ety re (02), an
B(x9,r)NQ

with € = C(N, 1y, B, po)-
Proof. As before we assume that x, =0 and we denote by Qf :=B(0,7r)nQ and by
=0dB(0,r) N Q. To obtain the decay estimate on fQ+|Vu|2dx we will follow the proof

of Proposition (2.2.9) the main difference is that for boundary points, (73) does not hold.
This is where Reifenberg flatness will play a role.
Let 5 > 0, be an exponent satisfying (76), so that invoquing Lemma (2.2.8) we have

To

0 ‘/’1&3 ds < C(N, po, ) lIull,lIfllq < +eo. (78)

Next, we recall that the first eigenvalue of the spherical Dirichlet Laplacian on a half
sphere is equal to N — 1 (as for the total sphere). For t € (—1,1), let S; be the spherical cap
S;:=0B(0,1) n {xy > t} so that t = O corresponds to a half sphere. Let 1,(S;) be the first
Dirichlet eigenvalue in S; . In particular, t — A,(S;) is continuous and monotone in t.
Therefore, since and 4,(S;) = Oast | —1, thereis t*(#) < 0 such that

B =V(N-2)>+ 43,(t) - (N -2)

By applying the definition of Reifenerg flat domain, we infer that, if ¢ < t*()/2, then
0B (xy,7) N Q is contained in a spherical cap homothetic to S, for every r < r,. Since the
eigenvalues scale of by factor 2 when the domain expands of a factor 1/r, by the
monotonicity property of the eigenvalues with respect to domains inclusion, we have

inf 124, (9B (xo,r) N Q) 2 A4(Sp- ) = g(g

As a consequence, we are in position to apply the monotonicity Lemma (Lemma 2.2.7)
which ensures that, if u is a solution for the problem (P1) and x, € dQ, then the function in
(63) is non decreasing.

We then conclude as in the proof of Proposition (2.2.9), i.e. by monotonicity we know that
forevery r <r, <1,

1 R )
N—248 fﬂ;rlvul dx < r_ﬁfﬂ;r lx — xo|V2 dx |+ B , SI*P s

1 [Vul? To/24(s)
fQ dx |+ ,Bfo — ds. (80)

£ |x = xo|N72 si+B

T0\P +
(3) %
|Vul?dx < KrN=2+F,

(1 |Vu|? rO’ZIP(S)
K_<—(r0/2)ﬁfg;r |x—x|N2 > :Bf 1+[3

Then we estimate K exactly as in the end of the proof of Proposition (2.2.9), using (54), (65)
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hence for every r < r,/2,

with




and (78) to bound

K < C(N, 70, B, po)llullpllfllg
and this ends the proof of the Proposition. Gathering together Proposition (2.2.9) and
Proposition (2.2.10) we deduce the following global result.

Proposition(2.2.11)[96]: Let p,q,p, > 1 be some exponents satisfying %+%:pi and
0
po >~ . Let § > 0 be any given exponent such that
2po — N
p <2 (81)
Po

Then one can find an € = (N, 8) such that the following holds. Let O € R" be any (&, 1,)-
Reifenberg flat domain for some r, > 0O, and let u be a solution for the problem (P1) in Q
withu € LP(Q) and f € L9(Q). Then

— T
[ wepar < ety reavre (02), @2
B(x,r)nQ

with € = C(N, 1y, 8, po)-
Proof. By Proposition (2.2.9) and Proposition (2.2.10), we already know that (82) holds true
for every x € 9Q, or for points x such that dist(x, 0Q) = r,/3. It remains to consider balls
centered at points x € ( verifying
dist(x,0Q) < r,/3.

Let x be such a point. Then Proposition (2.2.9) directly says that (82) holds for every radius
r such that O < r < dist(x,9Q)/2, and it remains to extend this for the radii r in the range

dist(x,0Q)/2 < r < r,/6. (83)
For this purpose, let y € 9 be such that

dist(x,0Q) = |lx — y|| < r,/3.

Denoting d(x) := dist(x, Q) we observe that for the r that satisfies (83) we have

B(x,r) € B(y,r +d(x)) € B(y,3r). (84)
Then since y € 9Q, Proposition (2.2.10) says that

[ wupax < ety vre @2, @)
B(x,r)nQ

so that (82) follows, up to change C with 3V=2*5¢.
The classical results on Campanato Spaces can be found for instance in [116]. We define
the space

LPAQ) := {u € LP(Q) ; sup <p_’1f lu — uxlr|pdx> < +oo)}
B(x,r)nQ

x,p
where the supremum is taken over all x € Q and all p < diam(Q), and where u,,,, means
the average of u on the ball B(x, ). A proof of the next result can be found in [116].
Theorem(2.2.12)[96]: (Campanato). If N <A < N + p then

A—N

LPAQ) = C°*(Q), with a :T'
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Corollary(2.2.13)[206]: Let p,p(izﬁ’l’),e > 0 be some exponents. Let £ < 1 be any given

exponent such that
22
1-29)
Then one can find an € = e(N) such that the following holds. Let 2 € R be an (&,7 + ¢)-
Reifenberg flat domain for some r + ¢ > 0, and let the sequence u; be solutions for the

(1+&)p

problem (P1) in Q with u, e L?(Q) and f eLm(Q). Then
u, eCo*(B(x,(r+e)/12)nQ) vx eQ.
<CIN.raful |f

> N (86)

Moreover |u; |

CO% (B (x, (r+¢)/12) N Q) ;1_?2’1))
Proof . Considering the sequence u; as functions of W12(R") by setting O outside Q, and
applying Corollary(2.2.22) below with € = 0, we obtain that
f [Vu?dx < CrV¥= 2 llullpllfll arep VX € Q, V7€ (0,(r +€)/6), (87)
B(x,r) p—(e+1)
with ¢ = C(N,r, ). Recalling now the classical Poincaré inequality in a ball B(x, 1)
1

2
||7ul-|2dx> ,

N
f lu; — (ui)x,rldx < C(N)TH-? <f
B(x,r) B(x,1)

we get

£ _
f lu; — (W) ldx < Cr¥" ™72 wxeQ,vre (0,(r +¢)/6), (88)
B(x,r)

withC =C <N,r,e, el If Il arerm > But this implies that
p—(e+1)
1N +1-% = =
u; € L 2(B(x,(r+&)/12)nQ) vx € Q.
< 1 and hence Theorem (2.2.12) says that

u; € COY¢(B(x,(r + £)/12) N Q)

2N

eN+2¢2

Moreover 0 <

with € = 0, and the normis controlled by C = C <N,r,e, Il LIl arerm >

p—(e+1)
(1+¢)p

Corollary(2.2.14)[206]: Assume that 2 < N < 5 and let
p-(e+1)

el, be given where

Then for any ¢ <1 verifying
_ —(6p — Np+2N) £ /(6p — Np + 2N)? — 16p(2p + 2N — 3Np)
& = 8p
we can find an ¢=¢(N,p)such that the following holds. Let 2 € RY be an (e, r + ¢)-

o1



(1+&)p
Reifenberg-flat domain for some r +¢& > 0, let f eL"“?(Q) and let u, e W *(Q)be the

unique solution for the problem (P1) in @ . Then
u € C**(B(x, (r+e)/12)nQ) vx eQ
< CNrap|vu,|f]

Moreover [u, |

Co (B (x,(r+¢)/12) n Q )

(1+&)p )

—(e+1)

Proof. Since u, W ;*(Q2), the Sobolev embedding says that u, eL”(Q), with p = 2"~ 2.

(1+e)p 1
And by assumption f e LP Y for some me I, (notice that £ > P22 \which
p-(e+1) p+2
guarantees existence and uniqueness of the weak solution). We now try to apply Corollary
(1+

(2.2.13) with those p and ¥ | 6t 1+ & be defined .
p—(e+1)

Then a simple computation yields that € > 0, provided that

3Np — 6p — 2N

—Np + 6p — 2N
This fixes the range of dimension N < 5 and notice that in this case N > 3 except for
N = 2, which justifies the definition of I,. We then conclude by applying Corollary
(2.2.13).

Corollary(2.2.15)[206]:

N-6 —(-2Np+9p+3N )i\/(—ZNp+9p+3N )2—4(Bp+N)(-3Np+6p+2N)

& >

Let —<e< N—-2, and € = be
3 6p+2N
given, so that moreover € > 0. Then for any € < 1 satisfying
_—@r'p—Np+Nr7 )+ J@rp—Np+Nr*)2—8@*p)(—Np — Nr*p + N r*)
€= 4rp ’
(2+ )N
ith r* 1= ———,
with r N—2+o
we can find an ¢ = (N, |Q|, p, r*) such that the following holds. Let Q € RM be an

(1+&)p
(g, r + ¢ )-Reifenberg-flat domain for some r + & > 0, let f € Lr—(+1(Q) and assume that

f = —divF for some F € L>*¢(Q). Let u; € W, *() be the unique weak solution for the
problem (P1) in Q. Then

u; € CO15(B(x, (r+¢)/12) n Q) Vx € Q.

Moreover ”ul‘”CO,1-€(B(xl(r+g)/12)n§_2) < C(Nyrygypy |Q|1 ”f” (1'(|-£)p) ) ”F”2+8)
p—(e+1

Proof. First we apply [76] which provides the existence of a threshold £, = (N, |Q]) such

that for any solution u; € W,"*(Q) of (P1) with f = —divF and F € L>*(Q), we have that

Vu; € L>*¢(Q), provided that Q is (g, r + £)-Reifenberg flat. But then the Sobolev

inequality implies that u; € L™ with

_ (@2+e)N

TN (2+¢)
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r* if e<N-2,



and r* = oo otherwise.
In order to apply Corollary(2.2.13) we define 1 + & such that
&= )
p—r1’
and we only need to check that € > 0. This implies the following condition on 2 + & and
(1+&)p ,

p—(e+1)
N—6
£T T3
and g = _OP —2Np +3N) + J(©Op = 2Np + 3N)Z — 4(3p + N)(—3Np + 6p + 2N)
6p + 2N '

as required in the statement of the Corollary. We finally conclude by applying Corollary
(2.2.13).
Corollary(2.2.16)[206]: Let u; be a solution for the problem (P1). Then for every x, € 0Q
and a.e. r > 0 we have

dy;

f [Vu; x> Ndx < rZ‘Nf u;—dS
B(x9,1)NQ 0B(x,1)NQ aVi

N- 27‘1‘” f u;2dS +f u;flx|* " Ndx. (89)
2 0B(xo,7)NQ B(x9,1)NQ
Proof. Although see (100) below can be formally obtained through an integration by parts,
the rigorous proof is a bit technical. In the sequel we use the notation Q := B(x,,7) N Q,
and S;f := dB(x,,7) N Q.We find it convenient to define, for a given ¢ > 0, the regularized
norm

+

|x|; :== \/xlz + xZ 4+ xi+ g
so that |x|, is a C* function. A direct computation shows that

£
A(lxIZ27") = (2 - N)N e < 0,
&

in other words |[x|2™" is superharmonic, and hopefully enough this goes in the right
direction regarding to the next inequalities.

We use one more regularization thus we let (u;),, € C2(Q) be a sequence of functions
converging in W12(RM) to u;. We now proceed as in the proof of Alt , Caffarelli and
Friedman monotonicity formula [106]: by using the equality

A7) = 2V (ual® + 2(u), Aluy, (90)
we deduce that
2 [ W@ = [ 7@ -2 [ (@@, (@)
of of ot

Since A(]x|27N) < 0, the Gauss-Green Formula yields

f+|7((ui)121)|x|g_N dx = +(ui)121 V(lxlg_N)dx + In,s(r) < In,s(r)v (92)
Q

T QT
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where

@)= (2 +e) 2 f 2y 2% g5+ (v~ 2)— [ )z as.

GIon 0v; (rz+¢)2 20y
In other words, (91) reads
2[ + |V(ui)n|2|x|2_Ndx < In,s(r) -2 +((ui)nv(ui)n)|x|g_N dx. (93)
QF Qr
We now want to pass to the limit, first as n — +oo, and then as € - 0*. To tackle some
technical problems, we first integrate over r € [r,r + §] and divide by &, thus obtaining

2 r+6
[ ([ @iz ax ) dp < 4, R, (94)
r Q,

where

1 r+é
An = Ef In,s(p)dp
T

and

r+8
Rn = Z%L ( +((ui)n A(ui)n)lxlg_Ndx> dp'

Qp
First, we investigate the limit of A4,, as n — +co: by applying the coarea formula, we rewrite
A, as

A, = l<2f (Ix]* + 8)¥(ui)n V(u)y, - x dx
ot

5 +
r+6\ Qr

|x|
+ (N —2) f —= ()3 dx>.
O\ (|x]?2 + €)2
Since (u;),, converges to u; in W12(RM) when n — +oo, then by using again the coarea
formula we get that

1 r+6
Ay = Ef I.(p)dp n— +o
r

where

ou;
2u;=—dS + (N — Z)L,\,fa w?ds.
14 Qp

(p? +¢)2
Next, we investigate the limit of R,, as n —» +oo. By using Fubini’s Theorem, we can rewrite
R, as

L) = (p2+e) 7 f

+
an

R, :f((ui)n A(u;),)G (x)dx
Q

where

1 (7o
6 = W75 [ 10,
T

o4



Since

1 ifx € Qf

1 (e r+6—|x|

Efr 193(x)dp:{T ifx € Q5 \QF,
Lo ifx & Q0F,,

then G is Lipschitz continuous and hence by recalling (u;),, € € () we get

f((u)nA(u)n wAu,) G dx| < f(A(u)n ) (uy),, G dx

+ f (), — 1) A G dx| =
Q

f 7 @udn — Tud(@un VG + V(u)y G) dx
Q

P ((V(w)n - V)G + (W), — u) VG) dx
Q

< NV @Wdn — Vuillzey (I n 2@ llGllo@) + 17 @y 2@y lGll )
+|| ui”LZ(Q)(”V(ui)n = Vull 2@l Gll o) + Il (ui)n — ui||L2(Q)||VG||L°°(Q))
and hence the expression at the first line convergesto 0 asn — +co.
By combining the previous observations and by recalling that u; satisfies the equation
in the problem (P1) we infer that by passing to the limitn — oo in (94) we get (see [21])

2 T+ 1 r+8 2 r+6
- f f PulPlelz " dx ar <5 f L(p)dp + = f f w f 1x|2Vdx | dp.
r Q; r r Q;

Finally, dividing by 2, by passing to the limit § —» 0*, and then & - 0" we obtain (100)
below.

Corollary(2.2.17)[206]:Lety >0, r+& >0, ¥ : (0,7 + &) - R be a continuous function
and ¢ : (O,r +¢) > R be an absolutely continuous function that satisfies the following
inequality for a.e. r € (0,7 + ¢),

o) < yro' () + (). (95)
Then
<p(r) 1/}(5)
rY

is a nondecreasing function on (O, r + ¢).
Proof. We can assume that

ds < +o0o,

fr+£ l/}( )
0

141
s vV

otherwise the Lemma is trivial. Under the hypothesis, the function
T
S
Py 2011V
rV y 0 Sl‘l‘?
is differentiable a.e. and absolutely continuous. A computation gives
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1 1

@' (r)ry — <P(T)% v 1 Y(r)
+ —

F'(r) = 2 1
T'? y rl‘l'?
I _ 1 -1

_ @ (T') <P(T')y Tr +1 1,[}(7‘)

- 1 1

T'? y rl‘l'?

thus (95) yields
"(r) — +

ryE () =12 () Z)(r) () >0

rY
which implies that F is nondecresing.
Corollary(2.2.18)[206]: Let O < RN be a bounded domain and let u; be a sequence of
solutions for the problem (P1). Given x, € Q and a radius » > 0, we denote by QF
:=B(xy,7) N Q, by S; := dB(x,,7) N Q and by o(r) the first Dirichlet eigenvalue of the
Laplace operator on the spherical domain S;. If there are constants r +& >0and o* €
(0, N — 1) such that

. ) _
SLNCLOEES 0)
then the function
1 [V, |? "Y(s)
+ —_
(r — <r(2—g) fﬂ;r [x — xo|V-2 dx |+ (2 e)fo pr: ds (97)
is non decreasing on (0,7 + €), where 0 < & < 2 is given by
e =—J(N—=2)2+ 40"+ N
and
w(s) = |l fllx = ol Nax.
a5
We also have the bound
||7ui|2 2
. mdx < CN,m e)IVullizq) + $(r + &) (98)
Qr+.€/2 0
Notice that. Of course the Lemma is interesting only when
"P(s)
e ds < +oo, (99)

0
This will be satisfied if u; and f are in some LP spaces with suitable exponents, as will be

shown in Corollary(2.2.19).

Note that it is not known in general whether Vu; € L?*¢(Q) for some £ > 0 and therefore it
is not obvious to find a bound for the left hand side of (98).

Proof. We assume without lose of generality that x, = 0 and to simplify notation we denote
by B, the ball B(x, 7).
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By Corollary(2.2.16) we know that for a.e. r > 0O,

ou; N -2
f [Vu; |2 |x|?>Ndx < rz‘Nf Zui—ldS+( )rl‘Nf u? dS
of st dv; 2 S
+f u; f|x[*Ndx. (100)
ar
Let us define
v = [ Tl Vax (101)
‘QT
and assume that (99) holds (otherwise there is nothing to prove).
Next, we point out that the definition of o* mimplies that
1
f u?dsS < —*rzf |Vr u;]?dS 1 € (0,1 + &), (102)
st o st

where V4 denotes the tangential gradient on the sphere. Also, let € < 1 be a parameter that

will be fixed later, then by combining Cauchy-Schwarz inequality, (102) and the inequality

ab s%az +—— b2, we get

2(1-¢)
1 1
aui 2 2 aui 2 2
ful-—dS < ful-dS f —| dS
s} dv; s} s dv;
1 1
2 aui 2 2
sm/?( IVTul-IZdS> <f — dS>
st st dv;
l—¢ 1 du; |
< | —— IVrw;|?dS + ‘| ds| (103
Hence,
aui _ 2
rz‘Nf 2u;—dS + (N — 2)r?! Nf u? ds
st dv; st
2r |[1—¢ du;|?
< 2N Vrug|?dS + ‘| ds
=T \/F[ 2 5r+| 7l 2(1 —¢€) Jg+ 10, ]
1
+ (N = 2)riN =2 f \V11,|2dS
o s
< rl-N [(1_8+N_2) |Vru;|2dS + ! ‘stl (104)
ST U; .
Vor ot Mg T (1 - e)WVo* Jsp l0v;
Next, we choose € < 1 in such a way that
1-e N-2__ 1
Vor o (1-eWo*
namely

e = VN =2y + 20" —(N-2)| +1.

1
2\o*
Hence, by combining (100), (102) and (104) we finally get
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f V2% [2Vdx < 3Ny (N, 6%) f Vi |2dS + p(),  (105)
ot st

T

where

-1
y WN,0) = [N =22+ 46" - (N - 2)|
Let us set
o) = | I7ulPlxNax
aF
and observe that
' (r)=r>N|[ [Vyl]*? aer €(Or+s¢),
S7
hence (105) implies that
p(r) < yro'(r) + P(r), (106)
withy =y (N,ad").
But now Corollary(2.2.17) exactly says that the function
1 Vu;|?
r f vl +(2—)f ) 4 (107)

r(2-9 ot lx — x| N2

is non decreasing on (0,7 + €), where 0 < & < 2 is given by

1
g =2—==—(N—=2)2+ 40" +N,
14

which proves the monotonicity result.
To finish the proof of the Lemma it remains to establish (98). For this purpose, we start

by finding a radius r; € (%'g,r + ¢) such that f5+ |Vu;|? ds is less than average, which
1
means

2
[Vu;|2dx < TTIIVu ”Lz

2
2ds <
—[5+|‘7u| ds r+e @

+
T1 ‘Q

By combining (105) with the fact that rT < r, < r+ e weinfer that
| Wvulelax < cvr )Tl + )
QO

< CIN, 7, &)Vl + P + ). (108)
It follows that

[V, |? [V, |?
——dx < 0t HT_ C(N,r, &)||Vu; IILz(Q)+ Yl +¢),

QE |x|N—2
and (98) is proved.
Corollary(2.2.19)[206]: Let O c RN be an arbitrary domain and let € > 0. Then for any
N
g € L275(Q), denoting

P(r) = f gl Vax,

B(0,1r)
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we have

N
W@l < cV.liglly,, r* 1+ (109)
2
As a consequence
r+é&
f Y(s) ds < +oo
0 53—8
for any & < 2 satisfying
e(1+¢) > N. (110)
Proof. First, we observe that |x|>~N € L™ for any m that satisfies
N
N-2m<N = <—
( ym m <
Moreover a computation gives that under this condition,
Il oy = [ JelE0m = G, e =mv=2) (111)

B(0,r)
Let us define m as being the conjugate exponent of % + &, namely
N + 2¢
MmN+ 2(-1)
Then the hypothesis € > 0, and by use of Holder inequality and by (111) we can estimate

- N-m(N-2)
()| < gl , M im0 < C(N,m)llgllgﬂ rmo

. . N
or equivalently in terms of S te,

4e
@)l < CN, &)llglln,, ri+ze. (112)
2
The conclusion of the Lemma follows directly from (112).
Corollary(2.2.20)[206]: Let p,w,e > 0 be some exponents . Lete < 2 be any given

p—(e+1)
exponent such that

26" N 113
2 —¢ ' ( )
Let O € RY be any domain, x, € Q, and let u; be a sequence of solutions for the problem
(1+&)p
(P1) in Q withu; € LP(Q) and f € Lr-(+1(Q). Then
f [V ?dx < CrV=2llull,If Il qeep V7 € (O, dist(x,,00)/2), (114)
B(x0,7)NQ p—(e+1)

with € = C(N, g, dist(x,, 0Q)).
Proof. We assume that x, = 0 and we define r + ¢ := dist(x,, d ) in such a way that
B(x,r) is totally contained inside Q for € > 0 and under the notation of Corollary (2.2.18),
QF = B(0,r) and by S; = dB(0,r) for any € = 0. Under our hypothesis and in virtue of
Corollary (2.2.19) that we apply with g = u; f , we know that (99) holds for any ¢ < 2 that
satisfies
2¢?
2—¢

> N. (115)
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Notice that € > 0.
In the sequel we chose any exponent & < 2 satisfying (115), so that (99) holds and
moreover Corollary (2.2.19) says that

T+8.L/}( ) r+& i_
f ds < CON, &)l Il ceaero f SNYZEE g
0

3—¢
S p—(+1) Y0

< C(N, ) lulllF Il qreyp - (116)
p—(e+1)

We are now ready to prove (114), ¢ still being a fixed exponent satisfying (115).
We recall that the first eigenvalue of the spherical Dirichlet Laplacian on the unit sphere is
equal to N — 1, thus hypothesis (96) in the present context reads

inf (r?o(r))=N-1, (117)

0<r<r+e&
so that (96) holds for any 6 < N — 1. Let us choose ¢* exactly equal to the one that

satisfies

e =—J(N—=2)2+ 406"+ N.
one easily verifies that 6 < N — 1. because of (115).
As a consequence, we are in position to apply Corollary (2.2.18) which ensures that, if
u; are solutions for the problem (P1), then the function in (107) is non decreasing. In
particular, by monotonicity we know that for every e > 0,

1 ||7ui|2 l/}(S)
dx < <r2‘8f9 e dx>+ (2-29) PEEE

;rlx—xo

- 1 f |Vu;|? p
- (r+e) 278 Jar, | = xo|N 2 g

2
r+&

r@2—¢) f V6D 4. (118)

and we conclude that for every ¢ > 0,

|Vu;|2dx < KrV—e,
of

_ 1 |V, |? ’”’81/}(5)
K_<(r+8)2‘8fg;+&_lx—xol"’2 >+(2_ )f >

Let us now provide an estimate on K. To estimate the first term in K we use (98) to write

||7ui|2 2
T dx < CIN m eIVl 2y + (20 + £)) (119)
O e | — xol @

with

Then we use (109) to estimate

Y2 +e¢)) < CIN, &, D)Null,llf Il are)p
p—(e+1)

and from the equation satisfied by u; we get
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”D ui”LZ QO u’l fdx < ”u ” ”f” (1+e)p
( )
p—(s+1)

so that in total we have

7|2
f g < OO, gl 1N ey

r+£ |x _lN 2 p—(e+1)
Finally, the last estimate together with (116) yields

K < CN, 7, Ollwllplfll arep
p—(e+1)

and this ends the proof of the Proposition.

Corollary(2.2.21)[206]: Let p % € >0 be some exponents. Let € < 2 be any given

exponent such that
22
2—¢
Then one can find an € = () such that the following holds. Let O € RN be any (&, 7 + ¢)
Reifenberg flat domain for some r+¢&> 0, let x, € dQ and let u; be a sequence of

> N. (120)

(1+9)p

solutions for the problem (P1) in Q with u; € LP(Q) and f € Lr-G+D(Q). Then

r+e¢
| pwpar < el gy vre (055) (121)
B(x0,7)NQ

p—(e+1) 2
with C = C(N, 1, ¢).
Proof. As before we assume that x, = 0 and we denote by Q; := B(0,r) n Q and by S :=
0B(0,7) N Q. To obtain the decay estimate on fQ+||7ul-|2dx we will follow the proof of

Corollary (2.2.20): the main difference is that for boundary points, (117) does not hold. This
is where Reifenberg-flatness will play a role.
Let € < 2, be an exponent satisfying (120), so that invoquing Corollary (2.2.19) we have

fr+£ l/}( )
0

< +o00, (122)

p—(e+1)
Next, we recall that the first eigenvalue of the spherical Dirichlet Laplacian on a half

sphere is equal to N — 1 (as for the total sphere). For t € (—1,1), let S; be the spherical cap
S;:=0B(0,1) n {xy > t} so that t = O corresponds to a half sphere. Let 1,(S;) be the first
Dirichlet eigenvalue in S; . In particular, t +— A,(S;) is continuous and monotone in t.
Therefore, since and A,(S;) - Oast | —1, thereis t*(2 — €) < 0 such that
e =—J(N—2)2+ 41,(t") + N

By applying the definition of Reifenerg flat domain, we infer that, if ¢ < t*(n)/2, then
0B (x,,7) N Q is contained in a spherical cap homothetic to S;- for every € > 0. Since the
eigen-values scale of by factor 2 when the domain expands of a factor 1/r, by the
monotonicity property of the eigenvalues with respect to domains inclusion, we have

2N — -2
—)
As a consequence, we are in position to apply the monotonicity Corollary (Corollary (2.2.
18)) which ensures that, if u; is a sequence of solutions for the problem (P1) and x, € 01,
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then the function in (107) is non decreasing. We then conclude as in the proof of Corollary
(2.2.20), i.e. by monotonicity we know that forevery0 < e <1 —r,

1 1 [Vu;|? "P(s)
N fQ+||7ui|2 dx < <r2‘3f9+ T dx | + (2—8)[0 e ds

< 1 f [V, |? g
(T
2 =z
(r+8)l/}( )
2 Y(s
+ (2 - e)f i ds. (124)
0

hence for every € > 0,

|Vu;|2dx < KrV—¢,

1 Vu;|? r+&) (s
K = —2—8f —l 1|N_2 dx |+ (2 - e)f l/}3(_3 ds,
GRS N o s

Then we estimate K exactly as in the end of the proof of Corollary (2.2.20), using (98),
(109) and (122) to bound

with

K < CN, 7, )llull, I f 1l areyp
p—(e+1)

and this ends the proof of the Proposition.

Corollary(2.2.22)[206]: Let p,%,e > 0 be some exponents. Let € < 2 be any given

exponent such that
2e2
2—¢
Then one can find an £ = £(N) such that the following holds. Let O € R" be any (e, +

€)-Reifenberg-flat domain for some r + & > 0, and let u; be a sequence of solutions for
(1+&)p

the problem (P1) in Q with u; € LP(Q) and f € Lr-(+0(Q). Then

_ r+e¢
f 2z < CrV= gL lIf | qeeyy VX EDLVT € (o,—), (126)
B(x,r)NQ p—(e+1) 6

> N. (125)

with C = C(N,, ¢).
Proof. By Corollary (2.2.20) and Corollary (2.2.21), we already know that (126) holds true
for every x € dQ, or for points x such that dist(x, 9Q) = (r + £)/3. It remains to consider
balls centered at points x € Q verifying
dist(x,0Q) < (r + £)/3.

Let x be such a point. Then Corollary (2.2.20) directly says that (126) holds for every radius
r such that 0 < r < dist(x,0Q)/2, and it remains to extend this for the radii r in the range

dist(x,00)/2 <r < (r + ¢)/6. (127)
For this purpose, let y € 9Q be such that
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dist(x,0Q) = |lx —y|| < (r + ¢€)/3.
Denoting d(x) := dist(x, Q) we observe that for the r that satisfies (127) we have

B(x,r) € B(y,r +d(x)) € B(y,3r). (128)
Then since y € 9Q, Corollary (2.2.21) says that
[ vuiar < e eIl aep vrE©G a2, (29)
B(x,r)NQ p—(e+1)

so that (126) follows, up to change C with 3¥-¢C.

Corollary(2.2.23)[206]: Let p,%,e > 0 be some exponents. Let 0 < e <1 be any

given prescribe exponent such that
22
1-2¢)
Then we can find an € = e(N) such that for 2 € R" and (&, 72 + ¢)-Reifenberg flat domain
for some £ > —72, and let the sequence u; be solutions for (P1) in Q such that

(1+¢&)p

>u;el’(Q) and f el ?(Q). Then

> N (130)

Z u; € C 0’l_g(B(x, (r2+¢)/12) n Q) vx € Q.

Hence

Z”ui”C 012 g 2y = C (N' r?e, Z”ui”p Il avepm )
i i

p—(e+1)
Proof. In spite of Corollary (2.2.13) we have
[ v ar < €29 iy 171 g
B(x;r?) = I p—(e+1)
vx € Q,r%2 € (0,(r? + £)/6), (131)

with ¢ = € (N,r?, ). By the classical Poincaré inequality in a ball B(x,r?)
1

N 2
| = @aelar < conr?t2) ([ N jpufax
B(x,r2) ; B(x,r?) i

<C r2(V+13)  yx e Q, r> € (0,(r* +£)/6), (132)

with ¢ =C <N,r2, & Lillully If Il arow > which implies that

p—(e+1)

& — —
Z w; € LY (B(x, 2 +€)/12) N Q) vx € Q.

2

2Y_ < 1 and hence Theorem (2.2.12) gives that

eN+2¢2

So 0<
Z w € COMEB(x, (% + £)/12) N )
i
where € = C<N,T2,8,Zi||ui||p Il a+ep >

p—(e+1)
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