Chapter 1
Approximation of Ground State and Properties of Convergence

In this chapter we show some approximations of eigenvalues and eigenfunctions, and the
first result in full generality in the direction of Bouleau-Hirsch conjecture. Moreover, in
multivariate settings, we study the particular case of Sobolev spaces : we show that a
convergence for the Sobolev norm WP(R%; RP) toward a non-degenerate limit entails
convergence of push-forward measures in the total variation topology.

Sec(1.1): Eigenvalues and Eigenfunctions of Dirichlet Laplacians

Let Q be a bounded connected open setin [1", N >2, and let —A, >0 be the Dirichlet
Laplacian defined in L*(Q2). Let A, >0 be the smallest eigenvalue of —A,, and let ¢,>0
be its corresponding eigenfunction, normalized by ¢, |, = 1. For sufficiently small ¢ >0

we let R(¢) be a connected open subset of Q satisfying
R(e)g{x eQ: diSt(X,OQ)Zs}. (1)

Let —A_ >0 be the Dirichlet Laplacian on R(¢), and let A_ > 0 and ¢, > O be its ground
state eigenvalue and ground state eigenfunction, respectively, normalized by ||¢, [, =1. For
functions f defined on Q, we let S_ f denote the restriction of f to R(¢).

For functions g defined on R(¢) , we let T g be the extension of g to Q satisfying

T .0)2) = {g(z) if zeR(e)

0 if zeQ\R(¢).

In this section we show the following.

Theorem(1.1.1)[1]: Suppose that Q is a bounded simply connected open set in [J 2. Let
R = sup{dist(z,0Q):z € Q}
be the inradius of Q, let |Q2| be the area of Q, and let A, <E, be the first and second
smallest eigenvalues of —A,. Let y <I" be the first and second smallest eigenvalues of the
Dirichlet Laplacian on the unit disc in [ .
(i) Forall € €(0,27'R), we have

|/15 _/IQ | < Clgl/a (2)
where
C, = (512/3)%’9/47/4R QP 3)
(i) For all £ € (0,27'R), we have
||¢Q -T.9, o S I:Cz +C,(E, —19)71/2 +C,(E, _10)71}81/2 (4)
Where

C, = 40967 "*y°R®|Q[*,

C3 _ 88301}/7F7Z_21/4R -12 |Q |19/4 +9812}/6F7z'_9/2R -21/2 |Q |4’

C4 _ 54146252}/12F27Z_9R —41/2 |Q |8 +668473}/10F2ﬂ'_15/2R -35/2 |Q |13/2
+12032501y " T2 *“R P | QP (5)



Proof : We first show (2). For ¢ € (0,27 'R), we have, by (28) and (36),
(-adg..6.)- 27| = [[-a)- a4, 4.)
< A -T. (a1,

< K,"4R ‘4;/2K2|Q|
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K, = (%j ;/27r_3/4R -3 |Q|g/4.
The minimax principle and (6) now give
2t <agh < (-Ag 4,.4,)

< 27 +K, &7,

where

which implies (2) since
A A, < 2R~y
Next we let E, <E, <--- be the higher eigenvalues of —A, with corresponding eigen
functions y,,,, -, normalized by |y, |, =1. Let

b, = Hpo+Y.0,(EW, = 1o+, 7
Then "
(1, -V +6, = ¢, -9,
= (A2 =23)(A78) + 25 [(-A7) - (A1 4,
+ 25 (A (1, — Do, + 6,1
Hence

b, =25 (A, = (A =20 A20) + A3A) ~(-aDls,  (8)
Therefore, by (2), (28), (33) and (36), we have

b~ (ADB| = IR (A, — )|
+27122 \

e
[T. (-80S, = (AT, (-A)S, + (-45)]
HT. (A8, + (AT, (-A)S, - (-45)]
o vy T
YR 7C %K, | “ + 2R *y 4K R V22 4Ry K, |0
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1

L”—>L”

LrosL 1

IA

©)

where
K, = 4096y°z R * | + (—40996j yia R 2o,

Combining (7), (9) and the inequality
0.6197R? < A, < E,< TR
from [4], we have, for all ¢ € (0,27'R),

(10)
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= lof*
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n=2
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> | TR ?(1.2394)(E, —AQ)(ion (e)zj
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= (L2394 °R2|Q[ " (E, — Ay)

2
2

> (L2394 *R?|Q)* (E, - 4,)
Thus (8), (2), (28), (36) and (11) give, for £ € (0,27'R),
6. < @2=-2)-27. .l
+ A.(A%)S, - (-A7)
< 3yRC, " %K, |0
+ 3y’ R KK, (1.2394) )TR Q| (E, — A,) 2™
= [K,+K(E,—A,) 2] (12)
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where
13/4

K, = 4096y°z "R |Q|
and
19/4

K, = 98304(L.2394) Y277 2R 2|0
' (%68) (1.2394) YTz "R 2|0,

since ||g, |, =1 =

¢8

- -1
,»(7) and (11) give, forall ¢ € (0, 27°R),
11—, | < (1.2394) TR PQIK2(E, - Ay) e

= K7(Ez _/19)7181 (13)
Where

15/2

K, = (1.2394)74096°y"°I"*z "*R *|Q)

2
+(1.2394)™ (—4(:3916 j yrn R \Q\G

2
+2(1.2394) ( 4036 j}/grzﬂ_ﬂMR =z,

Hence (7), (12) and (13) imply that, for ¢ € (0, 27'R),
||¢Q _T5¢g OOS (1_#5) ¢Q||OO + 5‘5‘ S

o0

K 7 (E 27 /1@)_182122 H—Ag
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+ [Ks + Ke(Ez - ﬂ’Q)_l/Z]gl/Z
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[K,(E,-A,) "2 *RYA’R K, |Q| +K +K(E,—1,) e"?

which gives (4).



Note that (i) In [2], Davies showed that if Q is a bounded simply connected open set in [ 2,
then for any S € (0,), there exists ¢ =c ()21 such that

|4, — A, | < c&’ (14)
for all sufficiently small & > 0. Davies showed that the estimate (14) also holds for higher
eigenvalues of —A,. The estimate (2) is therefore an improvement of Davies' result for the
ground state eigenvalue.

(ii) The case when Q is the cardioid in[] *shows that the term &2 on the right-hand side
of (4) cannot be improved.

(iii) The eigenvalue gap E, — A, in (4) depends on the geometry of Q in a very comp-
licated manner. We refer to [3,4,5] and references therein for recent estimates of this
quantity.

(iv) A weaker version of (4) was proved in [6] for the case when Q is the Koch snowflake
in[ 2,

Theorem(1.1.2)[1]: Let Q be a bounded connected open set in 0" ,N > 2, satisfying the
following two assumptions.
(Al) There exist c,>1 and >N such that forall t > 0 and all X, ye Q,

Ko (t.x,y) < ¢ t ¢, (x)do(y), (15)

where K, (t,x,Y ) is the heat kernel of el
(All) There exist ¢, 21 and a >0 such that

P, (X) < c,dist (x,0Q)* (X € Q). (16)
Then there exist ¢, >1, 5 >0 and 0> a®/(2u) such that:

|2, —Aq| < cé&’ 17)
and

T4, ~ 4|, < cé’ (18)

provided that 0< e < 9.
Proof: Let 0< A, <E,<E,<--- be the eigenvalues of —A, with corresponding eigen-

functions ¢y, .-+~ normalized by ||y ||, =1. Let

T5¢g = :ug¢Q + Zan (E)I//H = lu5¢Q +€55' (19)
n=2
We first show that there exist c> 1 and b > 0 such that if 0< & <b, then
2, = 25| < Cé”, (20)

where 6 is as in (43). Lemma (1.1.11) implies that for t > &', we have

(T2 S g do)—e | = [(T.™'s, ~e ) g)

< ‘ e T e™ s | [l [al,
< C&" [l
=C¢g’

Thus, by the minimax principle,
e -Cg’ < <eAR‘”th¢Q,Sg¢Q> <e’ <e,
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which implies (20). Next we have
(=D +4. = T4~
= eh (TgeAR‘”gbg)—e‘ﬂ (e
= (e* —elﬂ)(TgeAR‘f)¢g)+elQ (TgeAR‘”SE —gt )ngbg
re'e’ [ (u, ~Dy+4, |

Hence
g, —eretg = (eh —e )T e™wg +e (TgeA”f)Sg —g )ngbg (21)
By (20), (21) and Lemma (1.1.11), we have

~ ~ 112 ~ ~
20 Jap A -1 Jan A
Ce™ = ||gp, —e’™e Q¢5szc Hgbg—e e g,

2
2

2
= CY e Mo, (e, | = CTY (e ) g (o)’
n=2 2 n=2
N 2 _~-1|7
2 C7 o) =C7a . (22)
where 0 is as in (43). Therefore (21) and (22) give
{Z;g < H(e}»‘c _eAQ)eAR(g)Wg +e10”-|—geAR(c)Sg _eAQ . Lwelc eAR(C)ﬁbg
ve'fetg,| <ce. (23)
Since |¢,|, =1, (19) and (23) imply that

- | <C&,
which implies (18) with @ given by (43).
Note that (i) Eigenvalue estimates of the form (17) have been obtained in [2] for bounded
connected open sets 0 in [ " with nonsmooth boundary under different assumptions.
(ii) Assumptions (Al) and (All) hold for bounded connected John sets © in [ " that
satisfy the following twisting external cone condition.
(Alll) There exist 1y, €(0,1) such that for all x ,€0Q and all 0<r <r,, we have
vol(B (x,,r)\Q) = & vol (B (x,.r)), (24)
where B(xo, r) is the ball with centre x, and radius r, and vol(E) denotes the volume of E
(a proof of this can be found in [7] and [8]).
For the rest of this section, we shall write
d(x) = dist (x,0Q) (x €eQ)
and
Q(e) ={xeQ:d(x)>¢}
We shall write || for the area of an open connected set Q in [J ?, and write R for the
inradius of Q. We shall need the following definitions and results.
Proposition(1.1.3)[1]: Let D be a connected open subset of Q. Then for all zeD , we
have
EZ[TQ_TD] = EZ[EX(TD)[TQ]] (25)
where {X (t)},_ denotes the Brownian motion, 7, and 7, are the exit times from Q and D

t>

respectively, and E * is the expectation with respect to the Brownian motion measure.
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If D is a simply connected open set in [ “and z € D , then we define the density of the
hyperbolic metric at z by o,(z)=|G'(z)|, where G : D— D is any conformal map from D
onto the unit disc D with G(z ) =0.1f z;,z, € D, then we define the hyperbolic distance

between z,and z, by
1
Po(21,2,) = irll_f{ }’
0

where the infimum is taken over all rectifiable paths I"contained in D withI(0)=z, and
I'(1)=z,. We shall need the following.

Proposition(1.1.4)[1]: Let D be a bounded simply connected open set in %, and let
G :D — D be aconformal map onto D . Then

po(2) = (z D). (26)
If Dl %is a bounded connected open set, then we write G (z,,z,) for the integral kernel
of —Ag". We shall put G, (z,,z,) =0 if either z, or z, is not in D.

Proposition (1.1.5)[1]: Let D be a bounded simply connected open set in [J 2. Then for all
Z,,2 €D, we have

Gy (2,,2) = (27)log [coth (py (24,2))]. (27)
Lemma (1.1.6)[1]: For all € in (0, 1), we have
. (-a)s. £ )=(-agt)] < K& f], (28)
forall f e L”(Q), where
Kl — 371_—3/4 |Q |3/4 (29)

Proof. Using (25) and writing @ =u +1iv ., we have
’Tg <_ ;l)sg _<_ Ql) = SugIQGQ(a)l’a)Z)_GR(g)(a)l’a)Z)dUZdVZ
wle

L™ (Q)>L” ()

=SupE %(TQ) -E wl(TR(g))

(ORS¢
=supE “[E" ) (z,)]. (30)
(ORS¢
We now estimate the last expression in (30). By (26) and Koebe's distortion theorem (see
[13]) , we have

47 (z)t <o (z) <d@z)t (2 Q) (31)
Let z €OR (g). For o € Q2, (31) implies that
po(z,0) =4 j (d(z)+r)"

|og[(1+ |1z —w|d(z )-1)1’4]
So (27) implies that
G,(z,0) < (27)*log{coth[(1+|z —w|d (z)™)"*])}
= (2n)*{log[(d (2 )+]z —w|)"* +d (z)"*]

—log[d (z)+]z —~@ )" ~d (z)"1}. (32)
Let Q > 0 be defined by



7Q? =q).
Then, writing @ = u +1v , (32) and symmetric rearrangement imply that
Elle,] = jQGQ(z,w) dudv

< (27)™ IQIog[(d (2)+|z —0|)*+d (2)"]
—log[d (z)+|z —|—d (z)"*]dudv

< I:{Iog[(d (2)+1r)"?+d ()" ]-log[(d (z ) +r)"* —d (z )*]}rdr
=d(z)

o0

d )/Q{Iog[(1+3)1/2 +Sl/2] _ Iog[(1+s)lj2 _Sll2]S _3}dS

< 4d(z)? jd“’( o8 s
8

§H_3/4 |Q |3/4 d (Z )]JZ

< g‘u—BM |Q |3/4 81/2

(33)
where we have used the inequality
log[(L+5s)"? +s"?] < 252 (s >0).
Combining (30) and (33), we obtain
8
A NS —(=A < o O 34 34 12
L8295~ D]y = S| a1 2
— §7L_—3/4 |Q |3/4 81/2,
3
which proves the lemma.
Proposition(1.1.7)[1]: Writing @ =u +1iv , we have forall z € Q
jQGQ(z,a))Z dudv < K,, (34)
where
K, = 82 |~ (35)
Lemma(1.1.8)[1]: We have
-2
H_AQ LIl (Q) < K, (36)
where K, is as in (35).

Proof: Let | (z,,z,) be the integral kernel of —AZ”. Then, by (34),
1(2,,2,) = | Go(2,,0) Gy (@,2,)dudv

2 1/2 2 1/2
{IQGQ(Zl,w) dudv} {IQGQ(a),ZZ) dudv
K2

H_A;?Z LI (Q) < ”I”w < K,

We assume that Q is a bounded connected open set in [] " satisfying the assumptions
(Al) and (All). We let K(¢) be an (N — 1)-dimensional C ”surface in Q(g)\ Q(2¢) such

IA

IA

Hence
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that for any x € 0Q(¢), and y € 0Q(2¢), and any path ¢(x ,y) joining x and y, we have
/(x,y)NnK(g) Q.
We let
U (e) ={x € Q: there exist y € Q(2¢&)and a path /(x,y)
joining x toy with /(x,y) K (g) =J}.
Lemma(1.1.9)[1]: Forallt>0and x €U (&), we have

P [ty ) <t <7q] < PY[z, 2t —s]dm, (y.,s),  (37)

.[K ()x[0t)
where P is the Brownian motion measure and m_ is the Borel measure on K (g)€[0,t)
satisfying

m, (B x(s;,8,)) = P” [s,<7, (&) <s,,X (7, (g)) €B]
for all Borel sets B c K (¢) and 0<s, <s, <t.

Proof: For all n e[l , let {Bi,n}i(ln) be a collection of subsurfaces of K (&) such that each

B, , has piecewise C “ boundary and

|y1_y2| <27 (yl’yzeBi,n)-
Then we have
Px[ru(g) <t<rt,]

2 m(n)
= Z Z Pty €[27"(k =Dt, 27°kt), X (7)) €B; 17 >1]
k=1 i1
AT B B
= Z Z E”* [z, (&) e[27(k =Dt, 27°kt), X (g, (g))e Bi,n;l[TQ>t]]
k=1 i1
ALY X -n -n
< kz; Z:, E* [ty €27 (k =Dt 27K X (7)) €Bi i, ]
AR = X (o)
= ZZ E*[r, €[2"(k =Dt, 27°kt),X (z,,)) €B; ;E™ ¢ [ZI.[TQ>t /2] 1]
k=1 i=1
2" m(n) kt

= Y Y E'lry e[ 2"k -Dt, 2 kt)X(rU())eB,n,Px(’“‘”)[ >t2—ﬂ(38)

k=1 i=1
Since

yeB;
27" (k -1)t<s<2 "kt

" (k =Dt kt () kt
ZE {Tum [ o ’ij(um)EB.n,PX DN >t ——

2" m(n) _
z. PX|:TU(8)€|:(k2—nl)t, ;—:],X(TU(S))EBL“}[ infn Py[rQ>t—S]}

IA
mM”

i=1 2n
2 mm (k =Dt kt _
< ;HP {Tu(s)e[—zn , 2n),X(U(S))GB |yrl£ PY [ty >t —s]
27" (k -Dt<s<2 "kt

and since the function
(y,s)—> P [r, >t -s]
is a bounded continuous function on K(g)x [0, t), we have



S (k-Dt Kt (o o) Kt
|.m212E L'U(s)e[Z—”’ 2n]’X(U<s>) B, iP" Y g >t o5

- IK(S)X[WPV [z, >t —s]dm, (y,s). (39)
The lemma follows from (38) and (39).
Proposition(1.1.10)[1]: Let D be a connected open set in 0", N >2, and let K, (t, X, y)

be the heat kernel corresponding to e . Then there exists ¢>1 such that for all t > 0 and
all x,y eD,

2 \1+N /2
[%Ko(t,x,y)} < ct(”’z’{u| _ty| } o Pyl (40)

For functions f defined on Q, we shall let A_f be the restriction of f to U(e). For
functions g defined on U(e), we shall write B, g for the extension of g to Q, satisfying
g(x) if x eU (¢),
(B, 9)(x) = .
if x eQ\U (¢g).
Lemma(1.1.11)[1]: There exists ¢c>1 such that if

O<pB<au™ and O<v<mln(aﬁ 2P j (42
u N +4
then for all sufficiently small & > 0, we have
e*'f —Be <celt>¢", f elL™(Q)), (42)
where
0 = min(f-2"Vv(N +4),a—Bu,aff — ). (43)

Proof: Forall x eU (¢) and 0 < r <t, we have

et ()=B ™A, f ()= |EXlzg >t5f (X )-E*[r >t F ()]
= |EX[TU(5) <t <TQ;f (Xt)]|
< |f . P [z <t <7q]
< |f “wjx(g)x[o,t)Py[TQ >t—s]dm, (y.s)

_ y _
L ( o P [ra =t =51 cm (v.9)| 44
First suppose that x € Q(g”). If t > &', then we have, by Proposition (1.1.10),

J‘K(E)X[ta/’,t)l:)y [TQ >1 _S]dmx (y !S) < P’ |:TU (&) E[t _8ﬂ’t):|

- IU(g)KU(g)(t —8ﬁ,X,y)—KU(5)(t,x,y)dy

1
< Cgﬂt—(N 12)-2 < Cgﬁ—Z v(n+4). (45)

Also, by assumptions (Al) and (All), we have



IK (g)X[O,t—gﬂ)Py [TQ >t _S]dmx (y 13)

B
= J.K(E)xlio,t—g/’),'.QKQ(g ly vz ) ddex (y ’S)

< jK o e ce g de (z)*dzdm (y,s)
= ceg“ ™ (46)
Next suppose that X € Q\ Q(g”). Thenfort > &, assumptions (Al) and (All) imply that
P* [z, >t] = jQKQ(t,x,y)dy < Ct e <Cg™™, (47)

The lemma now follows from (44) to (47).
Finally, we note that if we put
B = 3a/by andv = o®/6u?,
Then B and v satisfy the condition (41) and, since 2<N <u and O<a <1, one can
check that @ given by (43) then satisfies

Sec(1.2): Dirichlet Structures

We set a new property, namely the strong energy image density S.E.I.D., which is a
kind of quantitative version of E.I.D.. More precisely, in univariate cases and for general
Dirichlet forms, we show that if X, converge toward X in the D domain of a Dirichlet

structure, then X ., (Lrqx 1.0pd P ) converges in total variation toward X «(Lgrx 1.6yd P).

We redemonstrate the fact that convergence for the Dirichlet topology is preserved by
Lipschitz mappings in the univariate case, which has been established in [69]. Besides, in

the multivariate case, we show that the distribution of X eDP whose square field operator
matrix is almost surely definite, is a Rajchman measure.
We study multivariate cases for the W"P(Q) Sobolev structures (Q open subset or(] ¢ )

and establish a weaker form of S.E.I.D. but with rather precise estimates. Indeed, we need
some additional assumptions in order to ensure that the Jacobian of the mappings is integ-
rable, which enables us to show an integration by parts formula.

Let us mention that the proof provides with a generalization of a recent result from H.
Brezis and H.M.Nguyen (c.f.[43]). Besides, these results are extended to the case of the
Ornstein-Uhlenbeck form in the Wiener space giving a generalization (by a purely algebraic
method and avoiding every coarea type arguments) of classical results from Bouleau-Hirsch
[37]. Every results are heavily inspired by [39], where functional calculus and completeness
of D are combined, in order to show E.I.D.. As explained of this section, the proof has a
common structure with [39]. In [39], the preponderant argument is the completeness of D
whereas in these proofs we use the infinitesimal generator A (inducing the Dirichlet form
g[-,-]). Although these two facts are totally equivalent (c.f.[36]), we highlight that using the
generator is a more powerful approach of E.I.D..

We focus on the univariate case for a general structure. Next, we end by studying the

particular case of Sobolev spaces Writing W*P ().
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Originally introduced by Beurling and Deny (c.f. [34]), a Dirichlet form is a symmetric
non-negative bilinear form &[-,-] acting on a dense subdomain D (¢) of an Hilbert space H,

such that D (¢) endowed with the norm /<X ,X >y, +&[X ,X] is complete.

In the sequel we only focus on the particular case of local Dirichlet forms admitting square
field operators. In order to avoid unessential difficulties, we restrict our attention to the case
of probability spaces (Q,F ,P) instead of measured spaces . The (Q,F ,m) next definition

is central.
Definition(1.2.1)[33]: Following the terminology of [37], in this section, a Dirichlet
structure will X denote a term (QQ,F ,P,D,T") such that:

(@) (,F ,P) is a probability space.

(b) D is a dense subdomain of L*(P).

(©) I'T-,-1:D xD — L(P) is bilinear, symmetric, non-negative.

(d) Forallm > 1, forall X =(X,,...,X,)eD", and forall F eC*'(0"™,0) and K-

Lipschitz:
(i)F (X )eD,
(il )T[F(X), F(X ﬂ:iiaﬂx )OIF (X[ X, X |

(e) Setting £[X ,X |= E(F[X X ]) the domain D endowed with the norm:

=B (X ) =2 [x X,
is complete. Thus, ¢ is a Dirichlet form with domain D on the Hilbert space L?(P).

Let us recall briefly, that there exists an operator A defined ona D(A) dense subdomain

of L?(P) such that:
(I) U eD (A)ifandonly if there exists C, >0 satisfying :

vX eD, |E{T[X UT}| < CyyE(X?),
an  forall Y €DMA) foran X €D andall z eDAL*(P), we have :
E{T[X, U]z} = - E{XZA[UJ}+E{XT[Z U]},
()  D(A)is dense in D for the norm | - | .
Let us enumerate the notations adopted in the present section :
(i) For X eD,weset T[X |=T[X ,X ]and ¢[X |=¢[X X ],
(i) forX =(X,,...X ,)eD":
C[X., X, T[X,X,] . T[X,X,]
rx,,X rx,,X . I'[X,, X
F[X] _ F[Xt,X} _ [ ?’ 1] [ 2:’ 2] [ 2:’ n] ,
X, X,] T[X,X,] .. T[X,X,]

(iii ) for ¢ «C*(0,0), we set V(x )= (3,6(X ) 3,6(x ),
(iv) in a topological space(E,T ), x, ——>x naturally means that x, converges

toward x in the topology T
11



(v) for a random variable X taking values in [J ”,L, is the distribution of X and I:X &)

its characteristic function,

vi ) for a Radon measure 1, we set = sup <@, u> the total variation o
M Hy (i pl} H H

(vii ) finally, in the spaces [ *,| - | will be the Euclidean norm.

The following definition is preponderant in this section.
Definition(1.2.2)[33]:Let S = (Q,F ,P,D,I") be a Dirichlet structure. We say that S satisfies

the energy image density criterion, if and only if, forall p =1, forall X =(X,..,X ) eD":
X.(L (dP)<<d4,).

{detT[X >0
Conjecture. (Bouleau-Hirsch)
Every Dirichlet structure (in the sense of (1.2.1) satisfies the criterion E.I1.D..

As already mentioned, we refer to [39, 40, 41] for examples and sufficient conditions
entailing E.I.D.. The most illustrative example of this kind of structure is the Sobolev space

HY(Q, 4, ) where Q is a bounded open subset of [, and 4, the d -dimensional Lebesgue
measure In this case:

(i ) D=H(Q),
(iii) T [$1=V -V,

(v) elol= 15

Theorem(1.2.3)[33]: Let S =(Q,F,P,D,I') be a Dirichlet structure. Let (X ) and X

nel

[Voive da,
Q

be in the domainD . We assume that X , ——X , then for any Z L'(P) supported in

X 1>0}:

fuplE{(¢(X 1)~ $(X))Z } —5—0. (48)
For instance, if almost surely I'[X]>0 , then Han -L, HTV ————0.
Proof: Let M be a positive constant and let us fix a sequence ¢, in E,, such that:
1
Sup E{(d(X ))-¢(X))Z}-E{(4, X )-4,(X))ZL}| < P

Up to extracting a subsequence, we assume that (¢, (X ) —¢, (X)) converges weakly in

L*(P) towardY e L”(P). In particular, forallU e D(A) and all W e D nL"(P):
E{(¢, (X )=, X)X, U W j———EY TX U W .

Using Lemma (1.2.9), we deduce E{Y I'TX ,U]W }=0: Besides, D(A)is dense in D for

the norm |- |, and DA L”(P) is dense in L'(P) so that Y I'[X ]=0 as. and hence

YZ =0 a.s., and in consequence,

lim = sup E{(@(X,)-¢(X))2} = E{Z} = 0.

* peEy
In the general case, let us notice that:

12



sup E{(@OX )00 ey | = sup E{@OX )9 102 |

b<Ey o<t

R R

M > w0

Corollary(1.2.4)[33]: S =(Q,F ,P,D,I') be a Dirichlet structure and let (X ) _ and X be

nell

inD . If X, —2—X then for any Lipschitz map F,F(X ) —2>F(X).

n—o

Proof: Let us be placed under the assumptions of Corollary, let f be a Borel representation
of F'and let K be the Lipschitz constant of F. First, as the mapping F is K-Lipschitz, it is
straightforward that:

FX ) —2sF (X)),
For real valued variables of D, the E.I.D. criterion enables Lipschitz functional calculus.
Thus, we have:

TR )-F O] = £ (X TIX 1+ 0OT(X)
— 2f (X,)F 0OT[X,. X ],

= FX)-FX )’T[X ]+R,,
with

E{R. |} < K*E{IT[X ]-TX][}+2K? \/E[X =X ]\/E[U | ——=—0.
Moreover,
E{f (X)-f X )'TIX T} = E{( (X,)*~F (X))[IX]}

+ 2E{f )TIX](F (X)-f (X )}

=A,+B,.
By Theorem (1.2.3), we know that for every bounded Borelian mapping ¢:00 —[ and
every Z in L*(P) supported in {I'[X ]# 0},

E{(¢(X ) -¢(X ))Z}—5—0

In particular:

(i) For Z =T[X] and ¢ =f *, we obtain that limA_=0.

(i) For Z =f (X)ITX] and ¢ =f , we obtain that lim B =0.
In conclusion:

lim E{TTF (X)) -F(X)]} = 0

and the corollary is proven.
Now we come to following Theorem , it is the first result in full generality in the direction
of showing the conjecture of Bouleau-Hirsch. In order to exploit the uniformity provided by

Theorem (1.2.3), we will use linear combinations of the variables (X ,,---,X ) and (X \”,
e, X P,

Theorem(1.2.5)[33]: Let S=(Q,F,P,D,I) a Dirichlet structure and let X =(X©®,---,
X Py and X =(X ®,---,X ) be in D”. Besides, we assume that almost surely det '[X |>0

and that X | —2—X . Then:

n—ow

13



sup L, ()L Q)| =0 (49)
¢cen P
Particularly, we get that I:X (4 )Wm, that is to say L, isa Rajchman measure.

Proof: Let us be placed under the assumptions of the Theorem , and let £, be in [ such
that:

<

sup E{ei<xn,§> _ei<x,g>}_E{ei<xn,gn> _ei<x,gn>}
¢cendP

Now, we rewrite the right term:

)
n

! <X el Gl 2
Efe! ™o —e™ o) = Eqe ar Tl sy

By compactness of the Euclidean p -sphere, up to extracting a subsequence, we may assume

that ¢ ——— ¢, where |[¢]|=1. We then deduce that:

.

¢ D
Xn, n —)X,Z:.
< ||cn||> o)

Besides I'[<X ,{>]=¢ I'X T ¢ >0. We are under the assumptions of Theorem (1.2. 3) by
choosing ¢, (x)=e'l“", and thanks to (51) we get lim E{e'™~%~—e'™ %~} = 0. Using
inequality (50):

sup
¢en?

In order to show that L, is Rajchman, it is enough to make a convolution. More precisely,
letY, =X + (U, U » ) where U, are i.i.d. with common law 1[0,1]()() dx . In fact, the

Ly, () =L ()] —5-0

variables U, may be thought as the coordinates of the usual Dirichlet structure:
([0.13, B([0.11), Ty (x) dx, HY([0.11), ITg] = ((#)")".

In addition, Y —2 X where D is the domain of the product structure:

n— oo

$ x([0.1], B([0,1]), 15 (x) dx , H*([0.1]), TTg] = ((4)°)".

Being absolutely continuous, I_AY () ———0. We may use the first part of the Theorem

[4==s
which ensures that:

sup
¢en?

L ©)-L ©)—5—0

to complete the proof.
Theorem(1.2.6)[33]: Let d >p be two integers, and Q be an open subset of [ ¢ . (Fn) be a

sequence in W (Q,[] *) converging to F in W*"(Q,01 ) and K in L'(Q,[1) a measurable
map supported in{detI'[F]# 0}, where IT[F]=VF.'VF . Then
(F,).(Kd 1) —T—F.(KdA)

Proof: Let ,=(F,).(KdA), u = F.(K dA). We fix o in C¢ (Q,[]) supported on some

bounded open set Q', and we write:
14



J‘Hpq’ du— 0P du, = 1,+1,+1,
with

l, = [ (poF)ad (F) dA-[ (poF)el ,(F,) dA

I, = [ (poF)o@ (F)-J (F)) dA

|, = jQ(gooF —poF ) (K -l ,(F)) dA.

Since (F,) is bounded in W*P ('), using Lemma (1.2.14) with r=s =p we can bound |,
by C HFn— FHL,,(Q,) where C does not depend on n. Besides, integrals |,and I, are res-
pectively less than 2||J , (F,)—J , (F) .

”'un _'u”TV <C ”Fn B F”LP(Q') + 2”‘] (F) =3, (F)
+00, We get

and This leads to
e H@d | (F)-K

Letting n tend to

(i(o)

lim sup|p, —p|,, < |03, (F)-K

Q)"

SinceJ KF) e (Q.), (F)[dA) and since CZ(Q,0)is dense in L}(Q,[J , (F)[dA), we

may choose w such that |wd | (F) -K is as small as wished. We deduce:

Q)

lim sup|u, — x|, = 0.

n — +ow

Note that: The conclusion of Theorem (1.2.6) would remain true replacing the assumption
F, 2@ ,F py

n — 4o

Fn Prob F

n —+ow

-
sup|iVi F, < +o0 .

n LP(Q)
1
J, (F)—23,(F)
n — +w

This is a consequence of the following estimate : for v in C°(0 ?,0) supported in
[-M,M ]"such that |y, <1,

[, oF)I Fo di-] oF)  (Fo d]

< [ (IF.6)-F@)|A2M )| det(Vi @,V F,,. Vi )| d 2.

The right term tends to 0 under above assumptions, which next allows to conclude as in
Theorem (1.2.6) proof.

Corollary(1.2.7)[33]: We endow [~ with the Gaussian probability P = N (0,1)" . Let p
an integer, (F,) a sequence in W*P(P) converging to Fin W"?(P). Let I a finite subset of
7 with cardinal p and K in L'(P) supported in {detT[F]= 0} where [[F]=VF.'VF .
Then

(F.). (KdP) —/Y—>F,(Kdp)

15



Proof: We fix an integer d larger thanmax1 . Foryin 0" and x in [J ¢ we denote iy (x ) =
(x Y ) Up to extracting a subsequence of (F,), we can assume that for almost every y in
0",

A Lp o d d .
F oi —W I CTNODY) >Foi,.

n
Y n — +ow

Thus, for almost every y in 0, and every y in C°(U ", 1)) satisfying [Jy'[ ., <1,
J‘rd(WO(Fnoiy)(X)—t//o(Fo iy)(x))(K 0 iy(x))e—\x\z "
- IIXISM <WO(F0 0 iy)(x)_l//O(F 0 iy)(X))(K 0 iy()())e_‘x‘2 dx

" -[|x|>|v| (WO(FH oi )x)-ywo(Fo iy)(x))(K 0 iy(X))e_M dx
= A, +B,.
Using a Markov inequality, for all 0> 0 there exist M >0 such that sup, , B <0. Besides,

A_tendsto 0 as ntends to +oo uniformly in w by Theorem (1.2.6). Integrating on y, we
deduce that:

er(wan—woF)K dpP

= [ [ woF,0i))-yoFoi))NKoi,x) e ™" dxd P(y)
tends to 0 uniformly in y as ntends to +oo.

In the same way as Corollary (1.2.4), we can deduce from Theorem (1.2.6) that the
convergence in WP (Q) is preserved by Lipschitz mapings. But in this case contrarly to
Corollary (1.2.4), a non-degenerescence of the limit is required.

Corollary(1.2.8)[33]: Let d > p be two integers, Q be an open set of [J ¢ and (EF), F
belong to W*? (€, P) such that

F Y ,F

n—-+o0

det T[F] =det(§F.t§F)> Oae.

Then for any Lipschitz mapping ®:0° -0 :
®oF, —¥" sdoF.

n—+o0

Proof: Since @ is Lipchitz it is straightforward that
®oF —~>doF.

n — +ow

Next, fixing k in {1...,d }, we have

O (@oF,-®oF) = > o,f"@®0F)-0,f 6,P0F)
i=1
= >0, f(0®oF,-0,®0F)+R,
i=1
where R, ——2_0.
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Now we fix i in {1,...,d}, and we want to show that 0, f,(0,® o F, — 0,®0F) converges
to 0in L" (Q). Since this sequence is clearly bounded in L? (Q), it is sufficient to show the
convergence in L? (Q), and hence we can assume that A(Q2)<+oo0. We will follow the

loc
same strategy that in proof of corollary (1.2.4). First, we write that
[o:®@0F, ~8,00F |, = [ (3,®0F,) d2

L*©

~ 2| (5,00F)(3,®0F)dA+[ (,®0F)*dA
By Theorem (1.2.6), we know that for any bounded borelian map¢ :0 P — [ and any
mapping K in L'(Q),
lim jQ(gD o F)KdA= Ig(go o F)Kd .

n—+o

In particular:
(i) ForK=1and ¢ =0,®?, we obtain

lim [ @,®0F,) di = [ (,®0F) dA

n — +ow

(ii) For K =0,® o F and ¢ =0, ® , we obtain
lim [ @,®0F)3,®0F)di = [ (5,®0F) di.

n — +ow

Thus, we deduce that 6,® o F. converges toward 6,® o F in L*() ,and hence in L" (Q)
by Holder inequality since 0, ® is bounded. Finally, writing that

< 2

L' ©@

o, f, (@ o F,—p o F)

o, f.1,

0, f;1>M} LP(Q)+M ||€DO Fn—(DO F L (@)

Where M is arbitrarily large, we deduce that o, f, (poF, ) converges toward o, f. (poF)
in L”(Q).

Let us mention that in the multivariate setting, the integration by parts relies on Schwartz
property (8,8, = 0,8, ), and we failed in finding an analogue in the general context.

Lemma(1.2.9)[33]: For all M >0, let E,, :{gbeCCO([—M M) 6] gl}. Then for any
sequence ¢, in E,, , forany U eD(A )and anyW eL”(P)nD:
r!i—rﬂo E{(¢n(x n)_¢n(x ))F[X ’U ] W } = 0.

Proof. Let us be placed under the assumptions of the lemma. Using functional calculus we
have:

1—‘[q)n (X n)_q)n (X )’ U ] = ¢n (X n)r[x n U ]_¢n (X )F[X U ] (52)
Cauchy-Schwarz inequality entails:
E{Ir[X ,,U1-TIX U1} < JEIX, -X 1|E[U] . (53)
Functional calculus (52) and inequality (53) ensure that:
[E{T[®, (X ,)=®,(X),U W } —E{(¢,(X )=, (X)),TTX ,U W }|
< |w |, JEIX, -X 1JE[U]. (54)
Moreover, the usual integration by parts leads to:
E{r[q)n(x n)_q)no( )9U ] W } = E{((Dn(x n)_q)n(x ))(F[U aW ]
—AU W)} (55)

17



Finally using both (54) and (55), we get:
[E{(¢, X )=, X NITX U TW }
< E{{®,(X,)-®,X)[|[TTUW ]-AU]W [}
E{IX, =X [A@M)) |[TUW ]-AU]TW [}
+ |w ||, VEIX, -X IJE[U] (56)
Since, |[TUW ]-A[U]W | € L'(P), inequality (56) ensures that:
lim E{(¢(X,)-¢, X)X UIW | = 0.

We introduce the following definition which is a generalization to the multivariate case.
Definition(1.2.10)[33]: Let S =(Q,F ,P,D,I') a Dirichlet structure. We will say that S

satisfies the "strong" energy image density E.I.D., if for any X =(X,---,X ) and any
sequence X | =(X ,---,X )in D” with |X , - X ||,, —==—0 and for any

IA

Z elMP): sup E{(¢(xn)—¢(x))1{detr[X]>0}z}wo. (57)

[#lco o )<2
The terminology of E.I.D. is justified by the next proposition.
Proposition(1.2.11)[33]: Let S =(QQ,F ,P,D,I') be a Dirichlet structure satisfying S.E.
I.D., then it satisfies the criterion E.1.D..
Proof: Let A be a Borel subset of [J " negligible with respect to the Lebesgue measure and

let X =(X,,---X ) bein D". Let us be given U =(,,---,U,) n random variables i.i.d. with

common law 1, (x) dx and defined on an independent probability space (f), F, |S)_ Let us
take Z =1 and let us apply E.1.D.:

lim E{E{(ZA(X +£UA)_%A (X )jl{detT[X] >0}}} =0 (58)
n — o n

But Fubini theorem entails:

E{E{;{AO( +%U)}} = E{E{;{A(X +%U)}} = 0.
Finally, (58) ensures that E{;(AO()l{detr[x] >0}} = 0.

We show a weaker version of E.I.D. criterion in the Sobolev spaces W," (0 ") . The result
is weaker because we need stronger moments on the variables T'[X ]. Fortunately, in every

practically encountered cases, this assumption is fulfilled. Besides, in the particular setting
of standard Sobolev spaces, we are able to show several generalisations of the S.E.I.D.
criterion.

Let us be placed under the assumptions of the theorem(1.2.6). If | = {il,---,i } IS a subset

p

of {1,...,d), for f in W"*(Q,0 ) we denote v, f =©;,f .0 f), and forF=(f,,...f ) in

W*P(Q,0 "), we denote J | (F) = det&. fl,...,e. f,) . With these Notations, we have
detrfF1= > P, F)



Thus, up to replacing K by K1, ., , we will assume that K is supported in {J , (F) = 0}
from some subset | ={i,,---,i,}.

Lemma(1.2.12)[33]: For f,,..., f in W*?(Q,0 ))and  in C;(Q,0):

[ o det(vVit,vif,..Vit)dA = =] f, det(Vi@,V/f,.. Vi f,)d A
Proof: Without loss of generality, we can assume that 1 ={1,..., p}. Besides, since C 2Q,0)

is dense in W*(Q,01)and (f,.....f ) det(V,f,,...,V,f,)is continuous from W*? (€,01°)

into L*(2,0 ), we can also assume that f,...,f ,are C % on Q. Noticing that
o det(V: f,,Vif,,. Vi) + f,det(Vio,Vif,,..Vif,)

= det (Vi (@f),Vif,.,Vif,).
and that

[ det (Vi(@f),Vi,..Vif,) d2 = J (25(6)80(1)f1---80(p)fp] d 2.
Q

oeS,

= —J wfl{z5(0)50(1)(80(2)f2"'ao(p)fp)] dA.
Q

oeS,
it is sufficient to prove the algebraic relation
Z 8(0')86(1)(86(2)f2...86(p) fp) = 0.

cEeS,

The left term equals »_° h, where
h =2 £0) 0,000 T[]0 f

cEeS, j#k

Denoting by 7 the transposition (1, k) we have
h, = Z g(oo T)aaor(l) ao‘of(k) leaa(j) f

ce$, j=k
= - Z 3(G)ao(k) o) 1H60'(J) = —h,
ce$, j =k

so that h, is null, which completes the proof.

Using this integration by parts, we will establish this new one more general, relating
integral of poF and 0,¢ o F against some weights.

Lemma(1.2.13)[33]: For F =(f,,...,f, )inW*"(Q,0 "), ¢in C*(0P,0)and o in CYQ,0)
[ (@poF)al ,(F) di = —[ poF det(Vi o,V f,,..Vi1,) dA

Proof: Let ® = (o, qz,...,qp), where @, is the k —th canonical projection on LI 9. Then
®oF = (poF, f,,.., f ), and Lemma (1.2.12) applied to poF, f,,..., f leads to

[[©),(@0F)dA = ~[ pof det(Vi o,V f,Vif,) dA.
Noticing that J | (@) = 0,90 we have
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J,(@oF) = (J,(®)oF)] ,(F) = (6,p0oF)J (F),
which completes the proof.
Lemma(1.2.14)[33]: For F =(f,, .., f ) and G =(g,,...g,) in W**(Q,0°), for y in

C°RP,0) with HI//HCO <1, for @ in C}(Q,00) and for r,s positive numbers with
1 1

-—=1:
r+p s
J o) (F)o di-[ (v0G),G)o d4| < C|F-G],,
where
p-1
C = sup||[Vif, +[Vi gy Vio
1<k <p L*(Q) L*(Q) ®

Proof: Let us denote H :(fl,...,fk ,gk+1,...gp)for k =0,...,p . Since

(WoF) ,(F)—(yoG) ,G) = S (woH, ) ,(H,)~(woH,)I, (H,),

k=0

up to replacing(F,G ) by (H,,H,.,), we may assume that F and G differ from only one

coordinate, namely j . Besides, up to a permutation, we may assume j =1, sothat f, =g,
for k #1. We set

Then by Lemma (1.2.13),
jg(woF)wJ ((F)dA

jg(y/oc; Yol ,(G)dA

[ poF det (Vi 0,V1 .-, V1 f)d A

[ poG det (Viw,Vif,-Vif,)dA
and hence
UQ(WOF)J (F)o d2-[ (oG ,G)o d/l‘
< [ |poF —poG||det(Vi w,Vi -,V f,)| dA.
Since |0,¢| =|w| < 1, we have
(poF (X) = oG (x)| = Liix))z//(t,fz(x),...,fp(x))dt < [f, () - g, (x)|

and Lemma (1.2.14) is then as a consequence of the Holder inequality.
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