

Sudan University of Science and Technology College of Graduate Studies

Assessment of Plasma Levels of Magnesium and Zinc in Sudanese Patients with Renal Failure under Hemodialysis in Khartoum State

تقويم مستويات المغنيسيوم والخارصين في بلازما الدم لدى مرضى الفشل الكلوي السودانيين الذين يخضعون للغسيل الدموى بولاية الخرطوم

A dissertation submitted in partial fulfillment for master degree in Medical laboratory science (clinical chemistry)

By:

Lana Gamal Mohamed Mukhtar

B.sc clinical chemistry and histopathology, college of medical laboratory sciences (The National Ribat University 2012)

Supervised by:

Dr. Nuha Algaili Abubaker

Assistant. Professor of clinical biochemistry
(SUST)

Nov.2015

اقْرَأْ بِاسْمِ رَبِّكَ الذِي خَلَقَ ﴿١﴾ خَلَقَ الْإِنسَانَ مِنْ عَلَقٍ ﴿٢﴾ اقْرَأْ وَرَبُّكَ الْوَرُ بِلْكَ الْأَكْرَمُ ﴿٢﴾ الذِي عَلَمَ بِالْقَلَمِ ﴿٤﴾ عَلّمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ ﴿٥﴾

صدق الله العظيم

سورة العلق الآيات 1-5

Dedication

To those who always believe on my efforts...

To my lovely parents who have been my constant source of inspiration

To my sweet sister for her understanding support

To all those who help me to proceed ahead ...

lana

Acknowledgement

First of all thanks to Allah for giving me the power, patience and willing to complete this study.

Greatest thank to Dr.Nuha ELgaili who had been a gentle supervisor and a good leader who give me useful advices and show me the way to success.

Thank and appreciation to Kidney transplanted association hospital and National Center for Research Environment & Natural Resource & Desertifiation Research Inestitute for providing me with reagents needed for my work. Also thanks extended to their staff of lab.

My sincerely gratitude to Mr. Omer Mohamed, Miss. Nada Mohamed who help me to carry out the practical part of the study.

Special thanks to my friends Maab Eltahir ,Eman Abdelkareem For encouragement for designing this study.

Finally thank to all Volunteers whom the blood sample had been collected from.

Abstract

This a case control study was carried out to measure plasma levels of the magnesium and zinc in patients with renal failure under hemodialysis. sixty samples were collected from patients in period between May to September 2015, chosen randomly from Sudanese Kidney Transplanted Association hospital and ALnaw teaching hospital, and thirty apparently, healthy individuals as controls, to assess the effect of hemodialysis on magnesium and zinc levels.

Measurement of plasma zinc was done by using Atomic Absorption Spectrophotometer Model 210 VGP Buck Scientific, and plasma magnesium by using Cobas-c311 autoanalyzer, and results were analyzed using statistical package of social sciences (SPSS), (T.test and Pearson correlation) computer program.

The study showed that the plasma zinc was significantly decreased, (p-value =0.00), in the Sudanese patients under hemodialysis group, and the plasma levels of magnesium were significantly increased, (p-value =0.00 in the patients under hemodialysis group

Mean \pm SD for controls versus cases

 $(.24033\pm.075514 \text{ versus } .77267\pm.200154)\text{mg/l for zinc}$

(2.729±.49397 versus 1.8400±.13025) mg/dl for magnesium

Results also showed a significant negative correlation between zinc level and duration of dialysis(p-value=0.003,r=-0.378).

Also there was a significant negative correlation between magnesium level and duration of dialysis.(p-value=0.005,r=-0.358).

Also showed there was insignificant negative correlation between zinc level and age (p-value=0.193,r=-0.170).

Also there was an insignificant negative correlation between magnesium level and age.(p-value=0.703,r=-0.050).

It is concluded that; the plasma level zinc was significantly decreased, in the patients with renal failure under hemodialysis, and the plasma levels of magnesium were significantly increased, in the patients with renal failure under hemodialysis. and there were no differences between plasma levels of both zinc and magnesium among the gender. Also there was negative correlation between plasma levels of magnesium, zinc and age, duration of hemodialysis.

مستخلص الدراسه

اجريت هذه الدراسه لمقارنه مستويات معدني المغنيسوم و الخارصين في مرضي الفشل الكلوي الذين يخضعون للغسيل الدموي. ستون عينه اخذت من هؤلاء المرضي في الفتره مابين منتصف شهر مايو وحتي نهايه سبتمبر. تم اختيارهم بطريقه عشوائيه من مستشفي جمعيه زارعي الكلى السودانيه و مستشفى النو التعليمي, مع ثلاثون من الاصحاء كمجموعه تحكم "مجموعه ضابطه" لنقيس مدي تاثير الغسيل الدموي علي مستويات الماغنيسوم و الخارصين.

تم قياس مستوى الخارصين بواسطة جهاز الامتصاص الذري اصدار 210, وتم قياس المغنيسيوم بواسطة جهاز كوباس سي 311 وتم تحليل البيانات بواسطه برنامج الحزمه الاحصائيه للعلوم الاجتماعيه. (معامل ارتباط برسون واختبارتي)

توصلت نتائج هذه الدراسه الي ان هناك انخفاض ملحوظ في مستويات الخارصين في المرضي الذين يخضعون للغسيل الدموي, كان الاحتمال الاحصائي للمقارنه 0.00. وان هنالك ارتفاع ملحوظ في الماغنيسوم وكان الاحتمال الاحصائي للمقارنه 0.00. وكانت النتائج كالاتي:-

"المتوسط+الانحراف المعياري عن مجموعه التحكم مقارنه بالمرضي"

0.0775514±0.24033 مقابل 0.20015 ±0.77267 مليجر ام/لتر اللخار صين

0.49397±2.7295 مقابل 0.13025±1.8400 مليجر ام/ديسيلتر المغنيسيوم

تحليل ارتباط برسون اظهر علاقة سلبية ذات دلاله احصائية بين معدل الخارصين و الفتره الزمنيه للغسيل الدموي: (القيمه المعنويه= 0.003 ومعامل برسون للارتباط = 0.378)

كذلك اظهر علاقه سلبية ذات دلاله احصائية بين معدل المغنيسيوم و الفتره الزمنيه للغسيل الدموى:(القيمه المعنويه= 0.005 ومعامل برسون للارتباط = -0.358).

تحليل ارتباط برسون اظهر علاقة سلبية بين معدل الخارصين و العمر: (القيمه المعنويه= 0.193 و معامل برسون للارتباط=-0.170).

كذلك اظهر علاقه سلبية بين معدل المغنيسيوم و العمر: (القيمه المعنويه= 0.703 و معامل برسون للارتباط = -0.050).

خلصت هذه الدراسه الي ان مستوى الخارصين يحدث به نقصان ملحوظ في مرضى الفشل الكلوي النين يخضعون للغسيل الدموي. كما ان مستوى المغنيسيوم يحدث به زياده ملحوظه في مرضي الفشل الكلوي الذين يخضعون للغسيل الدموي. كذلك لا يوجد فرق في مستويات المغنيسيوم والخارصين بين الذكور والاناث وبين الأعمار. كما أن مستويات المغنيسيوم والخارصين لا تتأثر بالفترة الزمنيه للغسيل الدموي.

Contents NO Titles Pages Dedication I 1 2 II Acknowledgment 3 Ш Abstract مستخلص البحث V 4 5 List of contents VII List of Tables 6 XII 7 XII List of Figures 8 Abbreviations XIII **CHAPTER ONE** Introduction 1.1 1 1.2 Rationale 4 Objectives 5 1.3 **CHAPTER TWO** 2 Literature review 6 The Kidney 2.1 6 2.1.1 Renal anatomy 6 **Renal Function** 7 2.1.2 2.1.2.1 Assessment of renal function 8 Renal failure 9 2.1.3

2.1.3.1	Acute renal failure	9
2.1.3.2	Chronic renal failure	9
2.1.3.3	Causes of chronic renal failure	10
2.1.3.4	Risk factors chronic renal failure	10
2.1.3.5	Symptoms chronic renal failure	11
2.1.3.6	Classification of chronic kidney diseases	12
2.1.4	Dialysis	13
2.1.4.1	Types of dialysis	13
2.1.4.2	Hemodialysis	13
2.1.4.3	Dialyzer	14
2.1.4.4	Peritoneal dialysis	15
2.2	Magnesium	15
2.2.1	Physiology role of magnesium in the body	16
2.2.2	Clinical consequences of alteration in magnesium	18
2.2.2.1	Hypomagnesemia	18
2.2.2.2	Hypermagnesemia	20
2.3	Zinc	21
2.3.1	Absorption of zinc	22
2.3.2	Physiological function of zinc	23

2.3.3	Zinc toxicity	24
2.3.4	Zinc deficiency	24
2.3.5	Individuals at risk of zinc deficiency	25
2.3.6	Blood zinc and chronic renal failure	26
	CHAPTER THREE	
3.	Material And Methods	28
3.1	Materials	28
3.1.1	Study Approach	28
3.1.2	Study Design	28
3.1.3	Study Area	28
3.1.4	Study Population	28
3.1.5	Inclusion And Exclusion Criteria	28
3.1.6	Sample Size	29
3.1.7	Ethical Consideration	29
3.1.8	Data Collection	29
3.1.9	Sample Collection And Processing	29
3.1.10	Requirements	29
3.2	Methods	30
3.2.1	Estimation of zinc:	30

3.2.1.1	Principle of the reaction	30
3.2.1.2	Procedure	30
3.2.1.3	Calculation	30
3.2.1.4	Reference values	31
3.2.2	Estimation of magnesium	31
3.2.2.1	Principle of the reaction	31
3.2.2.2	Procedure	31
3.2.2.3	Calculation	31
3.2.2.4	Reference values	32
3.2.3	Quality contro	32
3.2.4	Statistical analysis	32
	CHAPTER FOUR	
4.	Results	33
CHAPTER FIVE		
5.1.	Discussion	39
5.2	Conclusion	42
5.3	Recommendation	43
	References	44
	Appendices	49

List of Tables

Number	Description	Pages
4-1	Comparison of the mean of plasma zinc and magnesium in patients with renal failure under hemodialysis group and control group	34

List of Figures:

Number	Description	Pages
4-1	Correlation between zinc and duration of	35
	dialysis	
4-2	Correlation between magnesium level and	36
	duration of dialysis	
4-3	Correlation between zinc level and age	37
4-4	Correlation between magnesium level and	38
	age	

Abbreviations

Abbreviation	Full term
ACR	albumin:creatinine ratio
AKI	Acute kidney injury
ATP	Adenosine triphosphate
APD	Automated peritoneal dialysis
CAPD	Continuous ambulatory peritoneal dialysis
CRD	Chronic renal disease
CVD	Cardiovascular disease
DNA	Deoxyribonucleic acid
ESRD	End stage renal disease
GFR	Glomerular filtration rate
GI	Gasroitestinal
HD	Hemodialysis
PD	peritoneal dialysis
PTH	Parathyroid hormone
RFTs	Renal function tests
RNA	Ribonucleic acid (RNA)
ROMK	Renal outer medullary potassium channel
WHO	World health organization