الآيــة

أعوذ بالله من الشيطان الرجيم

هال تعالى:

(التوبة - 105)

حدق الله العظيم

Dedication

All praise to Allah, today we fold the days, tiredness and the errand summing up between the cover of this humble work......

To the utmost knowledge, to our greatest and most honored prophet Mohammed-may peace and grace from Allah be upon him......

To the spring that never stops giving to my mother who weaves my happiness with strings from her merciful heart......To my Mother.

To whom he strives to bless comfort and welfare and never stints what he own s to push me in the success way who taught me to promote life stairs wisely and patiently......To my Dearest Father.

To whose love flows in my veins, and my heart always remembers them.....To my Dear Husband, Daughter, Sisters, and Brothers.

To those who taught us letters of gold and words of jewel of the utmost and sweetest sentences in the whole knowledge, who reworded to us their knowledge simply and from their thoughts made lighthouse guides us through the knowledge and success path......To our Honored Teachers and Professors.

چُهُالِعُ

اليوم والحم حالله نطوى تعرب الأيام وخلاصة المشوار بين دفق م هذا العمل الله عليه المتواضعإلى منارة العلم سيد الخلق إلى رسولنا الكريم محمد صلى الله عليه وسلو.....

إلى الينبوع الذي لا يمل العطاء إلى أمس التي حاكم مصعادتي بنيوط من قلبها إلى أمي.

إلى من سعى لأنعم بالراحة والمناء والذي لم يبذل بشي، من أجل دفعى في طريق النجاح والذي علمنى ان أرتقى سلو الدياة بحكمة وصبر.....إلى والدي العزيز.

إلى من حبمه يجري في مروقي ويلمج بذكراهم فوادي إلى زوجي العزيز وأدي من حبمه يجري في مروقي ويلمج بدكراهم فوادي

إلى من علمونا حروفاً من ذهب وكلمانت من درر من أسمى وأحلى عبارات في والعلم، وإلى من صاغوا لنا علمم ومن فكرهم منارة تنير لنا مسيرة العلم والعلم، وإلى من صاغوا لنا علمم ومن فكرهم منارة تنير النا علم والنجاح...... إلى أساتذتنا الكرام.

Acknowledgement

It is my pleasure and I am heartened to extend my thanks and gratitude to my teacher, and administrators *Prof.Dr. Hussein Elarabi Hussein—Head of Building and Road Research Institute-University of Khartoum*, which civilians from the sources ofhis knowledge a lot, which is what dawdle days all lend a helping hand to me and in all areas, and thank God that pleased in the Derby and is pleased by my order and it may be that old to prolong remains a beacon glistening in the light of science and scientists.

I extend also sincere thanks to my teachers in my university *Sudan University of Science & Technology*, for any one of them gave me help and support enabled me to proceed at a steady pace in the scientific career.

I will never forget that did not advance thanks and utmost respect and appreciation to Eng. *Salihmohammed*, and Eng. *Saheryosif* in Building and Road Research Institute-University of Khartoum- who stood by my side since the beginning of my research and very scientific now and may God give them all the good Me.

In the end, I am pleased to extend my sincere thanks to all of my extended a helping hand in the scientific career.

يسرني ويثلج صدري أن أتقدم بالشكر والإمتنان إلى أستاذي، ومشرفي الأستاذ الدكتور لحسين العربيدسين -مدير معمد بدوره البناء والطرق - جامعة الدرطوس الذي مدني من منابع علمه بالكثير، والذي ما توانى يوماً عن مديد المساعدة لي ، وحمداً لله بأنيسره في دربي ويسر به أمري وياربي ليبقى نبراساً متلألئاً في نور العلم والعلماء.

و أتقدم كذلك بجزيل الشكر إلى أساتذة جامعتي جامعة السودان للعلوم والتكنولوجيالكل من قدم لي فيمم مساعدة ومسانده مكنتني من المضي بخطى ثابتة في مسيرتي العلمية.

ولم ولن أنسى أن أتتقدم بغائق الشكر والاحترام والتقدير إلى الممندس/حالع محمد والممندسة/سدر يوسف بمعمد بحوث البناء والطرق - جامعة الخرطوم- و اللذين سانداني ووقفا بجانبي منذ بداية عملى في البحث، وجزاهم الله عني كل النير.

كما أتقدم بجزيل الشكر إلى أساتذتي أعضاء لجنة النقاش الموقرين على ما تكبدوه من عناء في قراءة رسالتي المتواضعة وإغنائها بمقترحاتهم القيمة.

وفيي النماية يسرني أن أتقدم بجزيل الشكر إلى كل من مد لي يد العون في مسيرتي العلمية.

Abstract

This research deals with the concept of natural soil in terms of how the composition, properties, size, shape of grains, strength, and classified, and singled to discuss bearing capacity of the soil, where are the most important topics in soil engineering. Also the research deals with different types of bearing capacity and how can be determined from equations and plate load test, and to compare them. The research identifies structural fills which used in embankments, and their properties and laboratory tests to determine their quality and suitability for use.

Various types of structural fill materials were collected from different areas were used in the research. These soils were tested in the laboratory and classified, and one of them was chosen as a model for the plate load test. A Steel box with a specific dimension was used as a model for the plate load test. The selected structural fill was placed in the box in layers, and each layer compacted and tested to find value of bearing capacity. Also field density test has been carried out on each layer. The bearing capacity values were calculated using Terzaghi's bearing capacity equations. A comparison between the bearing capacity values for each layer had been done.

It was found that all structural fill samples used are classified as clay of medium plasticity. The bearing capacity value for a soil layer measured by plate load test was initially decreased and then increased with increasing the thickness of the layers and more compaction process. It is also concluded that the better compaction of a soil layer result in values of bearing capacity from equations and plate load test are very close.

المستخلص

تناول هذا البحث مفهوم التربة عامة من ناحية كيفية تشكيلها وخواصها ومقاسات وشكل حبيباتها وقوامها وتصنيفها. وإختصت بمناقشة السعة التحميلية للتربة حيث هي من أهم المواضيع في هندسة التربة.وتناول البحث أيضاً أنواع السعة التحميلية وكيفية إيجادها من المعادلات ومن إختبار التحميل والمقارنة بينهما. تم التعرف علي المواد المستخدمة في الردميات وخواصها والإختبارات المعملية لها لتحديد نوعيتها وصلاحيتها للإستخدام.

إستخدمتعدة أنواع من مواد الردم جمعت من مناطق مختلفة ، وإختبرت في المعمل وتم تصنيفها، وأختيرت إحداها كنموذج لإختبار التحميل. حيث أستخدم صندوق من الفولاذ بأبعاد معينة، ووضعت فيه عينة التربة المختارة على شكل طبقات، ودمكت كل طبقة وأجرى عليها إختبار التحميل ووجدت قيمة السعة التحميلية لكل منها. كما تم عمل إختبار الكثافة الحقلية ومنه حسبت قيمة السعة التحميلية لكل طبقة بواسطة معادلات (ترزاقي) لإيجاد السعة التحميلية وتمت المقارنة بين قيمتي السعة التحميلية لكل طبقة.

تم التوصل إلى أن كل عينات التربة المستخدمة كانت طينية متوسطة اللدونة من إختبار التصنيف، وقيمة السعة التحميلية لطبقات التربة من إختبار التحميل قلت في البداية ثم ذادت مع ذيادة سمك الطبقات وذيادة عملية الدمك. كما أنه كلما كان دمك الطبقة جيدا كانت قيمتي السعة التحميلية المحسوبة والناتجة من إختبار التحميل متقاربتان جداً.

Table of Content

Rank	Title	Page
	الآية	I
	Dedication	II
	الإهداء	III
	Acknowledgement	IV
	شكروتقدير	V
	Abstract	VI
	المستخلص	VIII
	Table of content	IX
	List of figures	XIV
	List of tables	XVII
	List of pictures	XVIII
Chapter One: Introduction		
1	Introduction	1
1.1	background	1
1.2	Objectives	2
1.3	Methodology	2
1.4	Research layout	3
Chapter Two: Literature Review		
2.1	Introduction	4
2.2	Soil in general	4
2.3	Formation of soils	4

2.3.1	Mechanical Weathering	5
2.3.2	Chemical weathering	5
2.4	General types of soils	5
2.4.1	Residual and transported	6
2.4.2	Organic and Inorganic Soils	7
2.4.3	Names of Some Soils that are generally used	7
	in Practice	
2.5	Soil particle size and shape	8
2.5.1	Specific surface	10
2.6	Soil mass structure	11
2.7	Index properties of soils	13
2.7.1	The shape and size of particles	14
2.7.1.1	Sieve analysis	15
2.7.1.2	The hydrometer analysis	16
2.7.1.3	Grain size distribution curves	18
2.7.2	Relative density of cohesion less soils	21
2.8	Consistency of clay soil	22
2.8.1	Atterberg limits	23
2.9	General considerations for classification of	24
	soils	
2.9.1	Field identification of soils	25
2.9.1.1	Coarse-grained soil materials	25
2.9.1.2	Fine-grained soil materials	26
2.9.2	Classification of soils	28
2.9.2.1	U.S. Department of agriculture system	28

2.9.2.2	AASHTOsoil classification system	30
2.9.2.2.1	Classification procedure	32
2.9.2.3	Unified Soil Classification System (USCS)	34
2.10	Comments on the systems of soil	41
	classification	
	Chapter Three: Bearing Capacity	
3.1	Bearing capacity	42
3.2	Bearing capacity failure	43
3.3	Bearing capacity terms	45
3.3.1	Ultimate bearing capacity of soil	45
3.3.2	Net ultimate bearing capacity	45
3.3.3	Allowable load bearing capacity	45
3.3.4	Safe bearing capacity	46
3.4	Bearing capacity values for different types of	47
	soil	
3.5	Terzaghi's bearing capacity theory	51
3.5.1	Terzaghi's bearing capacity equations	51
3.5.2	Modifications of bearing capacity equations	58
3.6	Meyerhof's bearing capacity theory	59
3.6.1	Meyerhof's bearing capacity equations	59
3.6.2	Meyerhof's bearing capacity, shape, depth,	62
	and inclination factors	

	Chapter Four: Materials and Testing	
4.1	Introduction	65
4.2	Structural Fills	65
4.3	Laboratory Tests	69
4.3.1	Atterburg's Limits	69
4.3.2	Sieve Analysis	74
4.3.3	Compaction Test	80
4.3.4	SOILS Proficiency Testing California	85
	Bearing Ratio (CBR)	
4.3.5	Direct Shear Test	93
Chapter Five: Plate Load Test		
5.1	Introduction	96
5.2	Test setup	98
5.3	Testing procedure	98
5.3.1	Gravity loading or reaction loading method	98
5.3.2	Reaction truss method	99
5.4	Interpretations of results	101
5.5	limitations of plate load test	103
5.6	plate load test	103
5.7	Sand Cone Test (ASTM D1556-90)	111
5.8	Estimations of bearing capacities values from	113
	equations	
5.9	Summary	115

Chapter Six: Discussion and Comments		
6	Discussion and Comments	116
Chapter Seven: Conclusion		
7.1	Conclusion	119
7.2	Recommendations	121

List of Figures

Figure	Title	Page
(2.1)	shapes of coarser fractions of soils	9
(2.2)	schematic diagrams of various types of structures	12
(2.3)	Essential measurement for calibration of	18
	hydrometer method	
(2.4)	grain size distribution curves	21
(2.5)	packing of grains of uniform size	22
(2.6)	U.S. Department of Agriculture textural	30
	classification	
(2.7)	Chart for use in AASHTO soil classification	34
	system	
(2.8)	plasticity chart for fine - grained soils	36
(3.1)	General Shear	43
(3.2)	Punching Shear	44
(3.3)	Local Shear Failure	44
(3.4)	failure surface	51
(3.5)	Terzaghi's Bearing Capacity Factor Nc	54
(3.6)	Terzaghi's Bearing Capacity Factor Nq	54
(3.7)	Terzaghi's Bearing Capacity Factor N _v	55
(3.8)	Terzaghi's Bearing Capacity Factors	55
(3.9)	Modifications of bearing capacity due to water	58
	table	
(4.1)	the cone penometer devices	69

(4.2)	liquid limit test for hattab(1) sample	71
(4.3)	liquid limit test for hattab (2) sample	72
(4.4)	liquid limit test for El housh sample	73
(4.5)	liquid limit test for Jabil Toria sample	74
(4.6)	The vibration machine of sieves	75
(4.7)	Sieve Analysis test for hattab (1) sample	76
(4.8)	Sieve Analysis test for hattab (2) sample	77
(4.9)	Sieve Analysis test for El housh sample	78
(4.10)	Sieve Analysis test for Jabil Toria sample	79
(4.11)	compaction test devices	82
(4.12)	compaction test for Hattab (1) sample	82
(4.13)	compaction test for Hattab (2) sample	83
(4.14)	compaction test for El housh sample	84
(4.15)	compaction test for Jabil Toria sample	85
(4.16)	California bearing ratio test. (a) View of cylinder	86
	and dials; (b) schematic diagram.	
(4.17)	CBR test for Hattab (1) sample	89
(4.18)	CBR test for Hattab (2) sample	90
(4.19)	CBR test for El houshsample	91
(4.20)	CBR test for Jabil Toria sample	92
(4.21)	direct shear test	93
(4.22)	direct shear apparatus	94
(5.1)	plate-bearing test.(a) View of plates and dials;(b)	97
	schematic diagram	
(5.2)	plate load test	97
(5.3)	plate load test-reaction by gravity loading	99

(5.4)	plate load test-Reaction by truss	100
(5.5)	load settlement curve	102
(5.6)	plate load test for first layer	107
(5.7)	plate load test for second layer	108
(5.8)	plate load test for third layer	109
(5.9)	plate load test for fourth layer	110
(5.10)	plate load test for four layers	111
(5.11)	sand cone test	112
(6.1)	bearing capacity from plate load test	117
(6.2)	Estimated bearing capacity	117

List of Tables

Table	Title	Page
2.1	Particle size classification by various systems	11
2.2	US Standard sieves	16
2.3	Soil fraction as per U.S. department of	29
	agriculture	
2.4	AASHTO Soil Classification	33
2.5	the unified soil classification system	
2.6	Unified Soil Classification System-fine-grained	40
	soils	
3.1	Bearing capacity values for different types of	47
	soil	
3.2	"	48
3.3	"	49
3.4	"	50
3.5	Terzaghi's Bearing Capacity Factors	53
3.6	Terzaghi's modified Bearing Capacity Factors	57
3.7	Bearing Capacity Factors	62
3.8	Meyerhof's Bearing Capacity, shape, depth,	63
	and inclination factors	
3.9	Meyerhof's Bearing capacity factor $N_{\gamma} = (N_q -$	64
	1) $\tan (1.4\acute{O})$	
4.1	soil classifications according to plasticity index	70

List of Pictures

Picture	Title	Page
(4.1)	structural fill samples	68
(4.2)	cone penometeter	69
(4.3)	the nest of sieve	75
(4.4)	mould and hammer	82
(5.2)	model of plate load test	104
(5.3)	sample of plate load test	105
(5.4)	(a) a layer (b) circular plate (c) setting up of	106
	plate load test (d) hydraulic jack	