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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

        Stability of power system is the core of power system security protection 

which is one of the most important problems researched by electrical 

engineers, and has been and continues to be of major concern in system 

operation. This arises from the fact that in steady state (under normal 

conditions) the average electrical speed of all the generators must remain the 

same anywhere in the system. This is termed as the synchronous operation of 

a system. Any disturbance small or large can affect the synchronous 

operation. For example, there can be a sudden increase in the load or loss of 

generation. Another type of disturbance is the switching out of a transmission 

line, which may occur due to overloading or a fault. The stability of a system 

determines whether the system can settle down to a new or original steady 

state after the transients disappear [1]. 

           The first step in a stability study is the derivation of a mathematical 

model for the system during the transient. The elements included in the model 

are those affecting the acceleration (or deceleration) of the machine rotors. 

Generally, the components of the power system that influence the electrical 

and mechanical torques of the machines should be included in the model. 

Thus the basic ingredients for solution are the knowledge of the initial 

conditions of the power system prior to the start of the transient and the 

mathematical description of the main components of the system that affect the 

transient behavior of the synchronous machines. The number of power system 

components included in the study and the complexity of their mathematical 

description will depend upon many factors. In general, however, differential 
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Equations are used to describe the various components. Study of the dynamic 

behavior of the system depends upon the nature of these differential 

Equations. If the system Equations are linear (or have been linearized), the 

techniques of linear system analysis are used to study dynamic behavior. The 

most common method is to simulate each component by its transfer function. 

The various transfer function blocks are connected to represent the system 

under study. The system performance may then be analyzed by such methods 

as root-locus plots. Frequency domain analysis (Nyquist criteria), and Routh's 

criterion. The above methods have been frequently used in studies pertaining 

to small systems or a small number of machines. For larger systems the state-

space model has been used more frequently in connection with system studies 

described by linear differential equations. Usually time solutions of the 

nonlinear differential equations are obtained by numerical methods with the 

aid of digital computers, and this is the method usually used in power system 

stability studies [2]. 

          Low frequency oscillations in range of (0.1- 0.8) Hz are observed when 

large power systems are interconnected by weak tie lines. These oscillations 

may sustain and grow, causing system separation if no adequate damping is 

available. Moreover, low frequency oscillations present limitations on the 

power transfer capability [3]. 

The voltage regulator introduces a damping torque component but it observed 

w that under heavy loading conditions the voltage regulator give negative 

damping. To offset this effect and to improve the system damping in general, 

“power system stabilizer” (PSS) has been used [3]. Power system stabilizers 

(PSSs) are now routinely used in the industry to damp out oscillations. An 

appropriate selection of PSS parameters results in satisfactory performance 

during system disturbances [4].  
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1.2 Project Objectives 

 Analyze the response of multi-machines system when subject to 

small and large disturbance. 

 Design power system stabilizer (PSS) controller. 

 Study the influence of PSS in power system stability. 

1.3 Statement of Problem 

        The stability problem is concerned with the behavior of the synchronous 

machines after they have been perturbed. If the perturbation does not involve 

any net change in power, the machines should return to their original state. If 

an unbalance between the supply and demand is created by a change in load, 

in generation, or in network conditions, a new operating state is necessary. In 

any case all interconnected synchronous machines should remain in 

synchronism if the system is stable; i.e., they should all remain operating in 

parallel and at the same speed. 

      One of major problem in power system operation is related to small signal 

instability caused by insufficient damping in the system the AVR view of the 

system usually increases the value of synchronous torque but gives negative 

damping. PSS or the power system stabilizer damping out low frequency 

oscillations in the power system and contributes to the electro-mechanical 

torque components without effecting in the synchronizing torque in the 

system; so it is suitable for the small signal analysis modes. 

1.4 Methodology  

        First, differential  Equations describing  the power system, state space 

model were derived devolved and linearized. Eignvalues has been computed 

from state matrix (A).  
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         The frequency modes have been determined from this eignvalues . The 

low frequency mode(inter area mode) with low damping ratio identified. 

Finally the PSS has been added in optimal location to increase the damping 

ratio which  return the system in stability condition. 

1.5 Thesis Lay-out 

 Chapter One: This chapter represents a general introduction to the 

power system stability, project objectives and statement of problem. 

  Chapter Two: Includes the definition, classification of stability and 

modeling of power system. 

  Chapter Three: Linearization of multi-machines system and power 

system stabilizer (PSS) design. 

  Chapter Four: Represent the results of the eigenvalue analysis and 

time domain simulation of small signal and transient stability. The case 

study (4-machines, 10-busbars).  

  Chapter Five: Represent the project conclusion and recommendations. 

 

 

 

 

 

 

 



 
5 

CHAPTER TWO 

DEFINITION OF STABILITY AND POWER 

SYSTEM MODELING 

 

         In this chapter stability of power system has been defined and classified 

into rotor angle stability, frequency stability and voltage stability. After that 

all of power system component have been modeled. 

2.1 Definition of Stability 

         Stability is known as the tendency of the power system to develop 

restoring forces equal to or greater than the disturbing forces to maintain the 

state of equilibrium [5]. 

2.2 Classification of Power System Stability 

         The understanding of stability problems is greatly facilitated by the 

classification of stability into various categories. While classification of 

power system is an effective and convenient means to deal with the 

complexities of the problem, the overall stability of the system should always 

be kept in mind. Solution to stability problems of one category should not be 

at the expense of another [3]. 

 Figure 2.1 gives an overall picture of the power system stability problem 
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 Figure 2.1 Classification of Power System Stability 

2.3 Rotor Angle Stability 

               Rotor angle stability is the ability of interconnected synchronous 

machines of a power system to remain in synchronism. The stability problem 

involves the study of the electromechanical oscillation inherent in power 

systems. 

The rotor angle stability phenomena in terms of the following two types: 

2.3.1 Small Signal (or Small-Disturbance) 

          Small signal (or small-disturbance) stability is the ability of the power 

system to maintain synchronism under small disturbances; it is causes by 

small variations in loads and generation [5]. 

2.3.2 Transient Stability 

           Transient stability is the ability of the power system to maintain   

synchronism when subjected to a severe transient disturbance. Disturbance of 

widely varying degrees of severity and probability of occurrence can occur on 

the system. The system is, however designed and operated so as to be stable 

for a selected set of contingencies [5].    
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2.4 Types of Oscillations 

         In today’s practical power system, small signal stability is largely a 

problem of insufficient damping of oscillations. The stability of the following 

types of oscillations is of concern: 

 Local modes are machine-system modes associated with the swinging 

of units at a generating station with respect to the rest of the power 

system. The term local is used because the oscillations are localized at 

one station or a small part of the power system, Frequency Range is: 

0.7 to 2 Hz. 

 Inter-area modes are associated with the swinging of many machines in 

one part of the system against machines in other parts. They are caused 

by two or more groups of closely coupled machines being 

interconnected by weak ties, Frequency Range is: 0.1 to 0.7 Hz. 

 Control modes are associated with generating units and other controls. 

Poorly tuned exciter, speed governors, HVDC converters and static 

VAR-compensator are the usual cause of instability of these modes. 

 Torsional modes are associated with the turbine-generator shaft system 

rotational components. Instability of torsional modes may be caused by 

interaction with excitation controls, speed governors, HVDC controls, 

and series-capacitor-compensated lines, with frequencies ranging from 

4 Hz [1].  

2.5 Power System Modeling 

        In this section all of the power system component which uses in this 

project were modeled. Figure 2.2 represent the power components. 
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Figure 2.2 Power System Components 

2.5.1 Synchronous Machine Modeling 

          Mathematical model of a synchronous machine was developed to use in 

stability computations, figure 2.3illustrates a synchronous machine with 

salient pole [6]. 
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Figure 2.3: The windings in the synchronous generator and their axes. 
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Referring to figure (2.3) the following windings are depicted: 

• The three stator windings denote a, b, and c. 

• Field winding denoted F. This winding carries the field current,            

which gives rise to the field flux. This rotating flux induces the                                                     

voltages in the stator windings. 

 • Short circuited damper winding in the d-axis denoted by D. 

 • Short circuited damper winding in the q-axis denoted by Q. 

The basic voltage Equations which descript the machine in a-b-c reference 

system are: 

Stator Voltage Equations 

 ai =  airsi + 
 

  
 ψai                                                              i= 1,…n             (2.1) 

 bi =  birsi + 
 

  
 ψbi                                                             i= 1,…n             (2.2) 

 ci =  cirsi + 
 

  
 ψci                                                              i= 1,…n             (2.3) 

Rotor voltage equation 

 fdi =  fdirfdi + 
 

  
 ψfdi                                                           i= 1,…n             (2.4) 

Where  ψ  is flux linkage, ,   and r is winding voltage , current and resistance 

in the a-b-c reference system respectively. 

Park's Transformation 

   It is convenient to transform all synchronous machine stator and network  

variable  into  a  reference  frame  that  converts  balance  three-phase 

sinusoidal variations into constant. Such a transformation is  
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The machine stator voltage, current, and flux linkage in the synchronously 

rotating reference frame are 

 

 

                 i=1,…n                        (2.7) 

 

 

     i=1,…,n                       (2.8)                     

 

 

 

                        i=1,…,n                     (2.9) 

 

Where Tdqoi is the machine i transformation [7]. 
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Stator Voltage Equations    

ε
 

  
 ψDi =  Dirsi + ψQi +   Di                                          i=1,…,n                  (2.10)  

 ε 
 

    
 ψQi =  Qirsi - ψDi +   Qi                                       i=1,…,n                   (2.11) 

 ε 
 

  
 ψOi =  Oirsi +   Oi                                                i=1,…,n                   (2.12) 

Where   Di,  Qi, Oi,  Di,  Qi, Oi, ψDi, ψQi and ψOi  are the stator voltage, current, 

and flux linkage in the dq0 reference system. 𝜔i is the rotor speed and rsi is the 

.stator resistance and ε     s    

Rotor Voltage Equation  

 fdi =  fdirfdi + 
 

  
 ψfdi                                                        i=1,…,n                 (2.13) 

Where   fdi,  fdi, rfdi and  ψfdi are the field voltage, current, resistance and flux 

components in the dq0 reference system respectively. 𝜔i is the rotor speed. 
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Figure 2.4: Three sets of fictitious perpendicular windings representing the          

synchronous generator. 
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Equation of motion 

       The mechanical dynamics in the rotor are represented by the following 

equations: 

 ̇i = 𝜔i – 𝜔s                                                                  i=1,…,n                       (2.14) 

𝜔̇i =(𝜔s/2Hi)*(Tmi - Tei - Tfwi)                                i=1,…,n                       (2.15) 

Where  

     H is inertia time constant in seconds. 

     Tm is the mechanical torque. 

     Te is the electrical torque. 

     Tfw is the damping torque coefficient given in per unit. 

       is the angular position of the rotor.  

    𝜔s is the synchronous speed.   

   𝜔 is the rotor speed. 

2.5.2 Transformer Modeling 

          The transformers are generally  used  as  inter-connecting  (IC) 

transformers and generator transformers. These transformers are usually with 

off-nominal-turns-ratio and are modeled as equivalent  π  circuit [8]. 
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Figure 2.5:The transformer as equivalent  π  circuit 
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Where,  

  = 
 

  
 

                                                             

 a: represents per unit off-nominal tap position. 

The transmission network is represented by an algebraic equation given by 

     ̅    ̅

Where, 

                                   

         ̅                         

         ̅ Vector of injected bus currents.                                                

 The above equation is obtained by writing the network equations in the node-

frame of reference taking ground as the reference. 

2.5.3 Transmission Line Modeling 

           Transmission Lines are modeled as a nominal  π  circuit [8] as shown 

in Figure (2.6). 
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Figure 2.6:Transmission Lines as a nominal π  circuit. 
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Z: represents the series impedance of the line. 

 

 
 : represents half of the total line charging y, at each node.  

2.5.4 Excitation System Modeling 

          The  main  objective  of  the  excitation  system  is to control the field 

current of the synchronous machine. The field current is controlled so as to 

regulate the terminal voltage of the machine. 

       There are three distinct types of excitation systems based on the power 

source for exciter: 

1) DC Excitation Systems:  (DC)  which  utilize  a  DC  generator   with 

commutator. 

2) AC Excitation Systems: (AC) which  use alternators and either stationary 

or rotating rectifiers to produce the direct current needed. 

3) Static Excitation Systems :(ST) in which  the power is supplied  through 

transformers and rectifiers. 

The  first two  types of  exciters are  also  called  rotating  exciters  which  are 

mounted on the same shaft as the generator and driven by the prime mover[1]. 

The exciters can be of the following types 

1. Field controlled dc generator – commutator. 

2. Field controlled alternator. 

    a) Field controlled alternator with non-controlled rectifier (using diodes).  

        i) With slip rings and brushes (stationary rectifier). 

       ii) Brushless, without slip rings (rotating rectifier). 

    b) Alternator with controlled rectifier. 

3. Static exciter with 

   a) Potential source controlled rectifier in which the excitation power is              

supplied through a potential transformer connected  generator terminals. 
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   b) Compound source (using both current and voltage transformers at the  

generator terminals) with 

         i) Non-controlled rectifier (control using magnetic elements   such as 

saturable reactors). 

        ii) Controlled rectifier (for controlling the voltage). 

 

           In the static excitation systems all components are static or stationary. 

Static rectifiers, controlled or un controlled, supply the excitation current 

directly to the field of main synchronous generator through slip rings.  The 

supply of power to the rectifiers is  from the main generator (or the station 

auxiliary bus) through a transformer to step down the voltage to an 

appropriate level, or in some cases from auxiliary windings in the generator. 

The advantages of the static excitation system are 

 1)  Expanded rang for excitation voltage and current with high amplification.  

 2)  Very fast response. 

 3)  Simplicity of design. 

∑
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Figure 2.7: Static Excitation System 

            A signal coming from a PSS can be added to the voltage reference in 

the AVR input, this signal is used to modulate the excitation of the generator 

with the aim of achieving rotor oscillation damping.  
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2.5.5 Power System Stabilizer (PSS) Modeling 

           A  PSS  can  help  to  damp  generator  rotor  oscillations   by  

providing   an additional input signal that produces a torque component that is 

in phase with the rotor speed deviation [9]. 

It consists of a washout  circuit, dynamic compensator,  torsional  filter and 

limiter as shown in figure (2.8). 
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Figure 2.8: Power System Stabilizer Construction 

 Washout Circuit 

      The washout circuit is provided to eliminate steady-state bias in the output 

of PSS  which will modify the generator terminal voltage. The PSS is 

expected to respond only to transient variations in the input signal (say rotor 

speed) . This is achieved by subtracting from it the low frequency components 

of the signal obtained by passing the signal through a low pass filter. The 

washout circuit acts essentially as a high pass filter and it must pass all 

frequencies that are of interest. 

 Phase Compensator  

     The  compensator  is made up to single lead-lag stage where Ks is the gain 

of PSS and the time constants, T1 was chosen to provide a phase lead for the 

input signal in the range of frequencies that are of interest (0.1 to 3.0 Hz). 

With static exciters, only one lead-lag stage may be adequate. 
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 Gain  

     The gain of PSS is to be chosen to provide adequate damping of all critical 

mode under various operating   conditions.  Although  PSS  may  be tuned to 

give optimum damping under such condition, the performance will not be 

optimal under other conditions. The  critical  modes  include  not  only local 

and inter area modes, but other modes. 

 

 PSS output limits 

      The output of the PSS must be limited to prevent the up normal change in 

terminal voltage of PSS. The positive limit of   PSS output is of importance 

during the change of load for higher value of the terminal voltage (due to the 

increase in speed or frequency).The negative limit of PSS output is of 

importance during the back swing of the rotor (after initial acceleration is 

over). we uses a -0.05 per unit  as the lower limit and 0.1 to 0.2 as the higher 

limit. 

 

 Input signal 

     The common  signal which used as input  to the PSS are: rotor speed 

deviation ( 𝜔  ,bus frequency (    ,electrical power (  Pe).  The signal must 

be obtained from local measurements. Since the basic function of power 

system stabilizer (PSS) is to add damping to the   rotor oscillations [1]. In this 

work a speed signal is used as input signal. The overall transfer function of 

the PSS is:  
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CHAPTER THREE 

LINEARIZED MODEL OF MULTI 

MACHINES SYSTEM AND PSS DESIGN 

 

3.1 Introduction 

        When the system is subjected to a small load change, it tends to acquire a 

new operating state. During the transition between the initial state and the new 

state the system behavior is oscillatory. If the two states are such that all the 

state variables change only slightly (i.e., the variable xi changes from xi0 to   

xio+ xi  where xi is a small change in xi), the system is operating near the 

initial state. The initial state may be considered as a quiescent operating 

condition for the system. To examine the behavior of the system when it is 

perturbed such that the new and old equilibrium states are nearly equal, the 

system equations are linearized about the quiescent operating condition. By 

this we mean that first-order approximations are made for the system 

Equations. The new linear Equations thus derived are assumed to be valid in a 

region near the quiescent condition. 

       As an example of product nonlinearities, consider the product xi xj. Let 

the state variables xi and xj have the initial values xio and xjo. Let the changes 

in these variables be xi  and x j .Initially their product is given by xio xjo.   

The new value becomes 

(x x )(x x ) x x x x x x x xio i jo j io jo io j jo i i j          

The last term is a second-order term, which is assumed to be negligibly small. 

Thus for a first-order approximation, the change in the product xi xj is given by 

0(x x )(x x ) x x x x x xio i jo j io jo jo i i j        
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      We note that xjo and xio are known quantities and are treated here as coeff- 

icients, while xi and x j are “incremental” variables [2].  The trigonometric 

nonlinearities are treated in a similar manner as 

0 0 0cos( ) cos cos sin sin         
 

With cos   1 and  sin   .therefore                

 

0 0 0cos( ) cos ( sin )          

 

The incremental change in cos is then 0( sin )   ; the incremental variable 

is  and its coefficient is -sin 0 . Similarly, we can show that the incremental 

change in the term sin  is given by 

0 0 0sin( ) sin (cos )         

The equivalent circuit of  multi-machine system can be shown below  
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Figure 3.1: Interconnection of the synchronous machine dynamic circuit  and  

the rest  of the network. 
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Six Order Model Differential Equations 

 

 ̇i = 𝜔i –𝜔s                                                                                                    (3.1) 
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[E E (x x )]qi qi di di di

doi

I
T

     


                                                                  (3.5) 

 

   ̇ di =
1

[E E (x x )]di di qi qi qi

qoi

I
T

     


                                                                 (3.6) 

 

A fast exciter has been added; whose state space Equation is 

1
( )Ai

fdi fdi ref i

Ai Ai

K
E E V V

T T
   

                                                   (3.7)     
 

                                                             For i=1,…,n 

Algebraic Equations 

(a)  Stator Algebraic Equations 

( )
2

( )
2

0 ( )

E (x x ) I

i
i

i

j
j

i di di qi

j

di qi di qi qi

v e jx I jI e

jE e













   

       

                                                (3.8) 
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          In polar form 

cos( ) 0qi i i i di diE V x I                                                             (3.9) 

 

sin( ) 0di i i i qi qiE V x I                                                       (3.10) 

                                                                                 For i =1,…,n 

(b) Network Equations 

The network Equation separate into generator buses Equations and load 

buses Equations                                    

 

Generator Buses 

 

1

sin( ) cos( )

cos( ) 0

di i i i qi i i i

n

li i i k ik i k ik

k

I V I V

P V V V Y

   

  


  

                                                 (3.11) 

 

1

cos( ) sin( )

sin( ) 0

di i i i qi i i i

n

li i i k ik i k ik

k

I V I V

Q V V V Y

   

  


  

                                                 (3.12) 

                                                                              For i=1,…,n 

 

Load Buses 

 

1

cos( )
n

li i li i i k ik i k ik

k

P V Q V V V Y   


                                                (3.13) 

1

sin( )
n

li i li i i k ik i k ik

k

P V Q V V V Y   


                                               (3.14) 

                                                                               For i=1,…,n 
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3.2 Linearization 

        Let the state-space vector x have an initial state x0 at time t=t0 ,  at the 

occurrence of a small disturbance, i.e., after t=t0
+
,  the states will change  

slightly from their previous positions or values. Thus 

x x x   

     Note that x0 need not be constant, but we do require that it be known. 

The state-space model is in the form 

 

 ̇= (x, t)f  

    Which 

 ̇0 +   ̇=f(x0 +  x, t) 

 

From  which  we  obtain  the  linearized  state-space  Equation 

 

  ̇= A(x0) x+ B(x0) u 

 

Where A and B are state matrixes. Therefore the system variable be 

Vi  = Vi + Vi                    0i i i   
                     0i i i     

0i i i   
           0' ' 'q i q i q iE E E 

          
E'di = E'di +  E'di 

fdi fdi fdiE E E 
    0'' '' ''q i q i q iE E E 

            0'' '' ''d i d i d iE E E   

 

3.2.1  Linearization of The Differential Equations 

          The linearization of the fourth order differential equations and the static 

excitation system (3.1) – (3.7) yields 

 

  i
i

d

dt





                                                                                             (3.15)  
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0 0

0 0

1
[ '' (x'' x'' ) I I ''

'' (x'' x'' ) '' ]

i
Mi qi qi di qi qi di di di

i

di di di qi di qi i i qi qi

d
T E I E I

dt M

E I I I D E I






        

      
       (3.16) 

 

' 1
' (x x' ) I

'

qi

qi di di di fdi

doi

d E
E E

dt T


       

                                 
(3.17)

 

 

' 1
' (x x' ) I

'

di
di qi qi qi

qoi

d E
E

dt T


                                               (3.18) 

 

'' 1
' '' (x' x'' ) I

''

qi

qi qi di di di

doi

d E
E E

dt T


                                               (3.19) 

 

'' 1
' '' (x' x'' ) I

''

di
di di qi qi qi

qoi

d E
E E

dt T


                                             (3.20)                                                                                          

 

1
( )Ai

fdi fdi ref i

Ai Ai

K
E E V V

T T
                                                       (3.21)                                                                             

 

Writing (3.15) through (3.21) in matrix notation, we obtain 
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0 1 0 0 0 0 0

0 0 0 0

1 1
0 0 0 0 0

1
0 0 0 0 0 0

1 1
0 0 0 0 0

1 1
0 0 0 0 0

1
0 0 0 0 0 0

qio dioi

i i i

i

i qoi qoi

qi

di qoi

qi

doi doidi

fdi

qoi qoi

Ai

I ID

M M M

T T

E

E T

E

T TE

E

T T

T





 

   

 
  
   
      
         
   

 



 

0 0

(x x ) I (x x ) I

(x x )
0

(x x )
0

(x' x )
0

(x x )
0

i

i

qi

di

qi

di

fdi

di qi qi dio di qi di qio

i i

di di

doi

qi qi

qoi

di di

doi

qi qi

qo

E

E

E

E

E

E E

M M

T

T

T

T










 
  
 

 
    
 
 

 
   







          





 







  



0 0

0 0
0 0

1
00 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0
0

di

qi

i

i

Mii

refi

Ai

Ai

Ai

Ai

I

I

M

T

VV

K
K

T
T



 
 
 
 
 
 
 
 

  
     

 
 
 
 
 
 
 
 

 
   
   
   
   
                    
   
   
   

   
    

 

 

                                                                                                                    (3.22) 

Put 

giI = 
di

qi

I

I

 
 
 

,         giV = 
i

iV

 
 
 

,     iV = 
Mi

ref

T

V

 
 
   
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Then 

 

1 1 2i i i i gi i gi i ix A x B I B V E V                     i=1,…,n       (3.23) 

 

3.2.2 Linearization of Algebraic Equations 

          The linearization of algebraic equations (3.9)and(3.10) in matrix form 

yields 

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

cos( ) 0 0 0 0 1 0

sin( ) 0 0 0 1 0 0

cos( ) sin( )
0

sin( ) cos( )

i

i

qi

i i i

di

i i i

qi

di

fdi

ii i i i i

i i i i i i

E
V

E
V

E

E

E

V

V V





 

 

   

   

 
 


 
 

    
      

 
 

  

     
   

                                         (3.24) 

Rewriting (3.24) we obtain 

 

1 1 20 i i i gi i giC x D I D V                                                                 (3.25) 

 

In matrix notation, (3.25) can be written as 

 

1 1 20 g gC x D I D V                                                                           (3.26) 

 

Where  C1, D1, and D2 are block diagonal. 
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3.2.3 Linearization of the Network Equations 

         For generator buses (3.11) and (3.12) 

0 0 0 0 0 0

0 0 0 0 0 0

cos( ) sin( ) 0 0 0 0 0 00

0 sin( ) cos( ) 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

di i i i qi i i i i

idi i i i qi i i i

qi

di

I V I V

I V I V

E

E

    

   

        
               
  

   
  
  
  
  

    

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

''

''

sin( ) cos( )

cos( ) sin( )

0 0

0 0

0 0

0 0

0 0

cos( ) sin( )

V sin(

qi

di

fdi

i i i i i i

i i i i i i

di

qi

di i i i qi i i i

io ko ik

E

E

E

V V

V V

I

I

I V I V

V Y

   

   

   

 
 
 
 
 
 
 
 
 
  

  
 

  
 
 

  
      
 
 
 
 

   



0 0 0 0 0 0

1
1

0 0 0 0 0 0
0 0 0 0

1

sin( ) cos( )

( )) V cos( )

sin( ) cos( ) cos( ) sin(

V sin( )

di i i i qi i i i

n
n

li i
io ko ik

io ko ik io ko ik
k

k ik i

di i i i qi i i i
di i i i qi i

n

io ko ik io ko ik

k
k i

I V I V

P V
V Y

V

I V I V I V I V

V Y

   

     

     

  









  

     


    

  

 



0 0

1

1 1

)

( )
V sin( )

0 0

0 0

0 0

0 0

0 0

V sin( ) V cos( )

V cos(

i i

n
li i i

io ko ik io ko ik

k i
i

n n

io ko ik io ko ik io ko ik io ko ik

k k
k i

io ko ik io ko

Q V
V Y

V V

V Y V Y

V Y

 

  

     

  



 


 
 
 
 
 
 

 
 

      
     

 
 
 
 
 
 
  

     

  





 

1 1

) V sin( )

0 0

0 0

0 0

0 0

0 0

n n

ik io ko ik io ko ik

k k
k i

K

K

V Y

V

  


 


 
 
 
 
   
 
   
   

  
 
 
 
 
 
 

 

i=1,…,n            (3.27) 
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Rewriting (3.27) we obtain 

 

1121 31

2 3

1 n 141,1 41,n 51, 1 51,

4 ,1 4 , 5 , 1 5 , n

0

g

n n n gm

g n m

n n n gn n n n m

IxC D

C x D I

V VD D D D

D D V D D V





     
     

       
             

       
      

      
            

            (3.28) 

 

Where the various sub matrices of (3.28)  can  be easily identified. In matrix 

notation,(3.28) is 

 

2 3 4 50 g gC x D I D V D V                                                             (3.29) 

Where 

V = 
K

KV

 
 
   

 

For the non-generator buses i=1,…,n. 

 

     Note that C2, D3 are block diagonal, where  D4, D5  are full matrices. 

 

For load buses (3.13) and (3.14) which are written of form matrix as shown 

below: 
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1 1

1 1

( )
sin( ) cos( )

0

0 ( )
cos( ) sin( )

0

0
0 0

0
0 0

0
0 0

0
0 0

0 0

n n
li i

io ko ik io ko ik ko ik io ko ik

k k i
k i

n n
li i

io ko ik io ko ik ko ik io ko ik

k k i
k i

P V
V V Y V Y

V

Q V
V V Y V Y

V

     

     

 


 



      

 
 

        
  
 

  
 
 
 
 

 



 

 

1 1

1 1

V sin( ) V cos( )

V sin( ) V sin( )

0 0

0 0

0 0

0 0

0 0

i

i

n n

io ko ik io ko ik io ik io ko ik

k k
k i

n n

io ko ik io ko ik io ik io ko ik

k k
k i

K

K

V

V Y Y

V Y Y

V



     

     



 


 








  
  
 





 
 



 
      
 
 
      
 
  

  
 

 
 
 
 
 
 

 

 
 
 
 

 

             (3.30) 

 

Rewriting (3.30) we obtain 

 

1 16m 1,1 6 1,m 7m 1,m 1 7 1,

6 ,1 6 ,m 7n,m 1 7 ,n n

0

g mm m n

n n gm n

V VD D D D

D D V D D V

    


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      (3.31) 
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In matrix notation, (3.31) can be written as 

 

760 gD V D V                                                                          (3.32) 

 

Where  D6  and D7 are full matrices. 

Rewritten equations (3.23),(3.26),(3.29) and (3.32) together as follow : 

1 1 2i i i i gi i gi i ix A x B I B V E V                                                (3.33) 

             (3.34)  1 1 20 g gC x D I D V      

2 3 4 50 g gC x D I D V D V                                                             (3.35)  

760 gD V D V                                                                                      (3.36) 

From (3.34) we obtain  

1 1

1 1 1 2   g gI D C X D D V                                                                       (3.37) 

Substitute (3.37) in (3.35) as shown 

1 1

2 3 1 1 1 2 4 5C D ( ) 0g gX D C X D D V D V D V                                       (3.38) 

Let 

1

4 3 1 2 1   D D D D K     

And 

1

2 3 1 1 2C D D C K     

Then 

2 1 5 0gK X K V D V                                                                        (3.39) 

Substitute (3.37) in (3.33) we find 
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1 1

1 1 1 1 1 1 2 2 1( ) X ( ) gX A B D C B D D B V E u                                           (3.40)  

2 1 5 0gK X K V D V                                                                      (3.41)        

760 gD V D V                                                                          (3.42)  

Equations (3.40)-(3.42) can be put in a form of  matrix shown below 

1 1

1 1 1 1 1 1 2 2 1

2 1 5

6 7

0

0 0

0 0 0

g

X A B D C B D D B X E

K K D V u

D D V

           
      

         
           

                  (3.43)     

Let  

A'=   [ 1

1 1 1 1A B D C ] 

1

1 1 2 2B B D D B   
 

So, 

1X gX A B V E u                                                                                (3.44) 
 

2 1 5 0g lK X K V D V                                                                      (3.45)   

760 gD V D V                                                                                 (3.46)  

From  (3.46)  

7

1

6 gV D D V                                                                                      (3.47) 

Substitute (3.47) in (3.45) we find 

2 0gK X F V                                                                                       (3.48) 

Where  

1

1 5 7 6F K D D D                                                                                    (3.49) 
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From  (3.48) 

1

2gV F K X                                                                                        (3.50) 

Substitute (3.50) in (3.44) we find 

1XSY SX A E u                                                                                     (3.51) 

Where  

1

2SY SA A B F K                                                                                   (3.52) 
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3.3 Design of Power System Stabilizer 

        The steps involved in designing a PSS are as follows: 

1. Computation of GEPS(s). 

2. Design of compensator using phase compensation technique. 

3. Determination of compensator gain. 

 3.3.1 Computation of GEPS(s) 

         A PSS acts through generator, exciter system, and power system 

(GEPS). Therefore, a PSS must compensate the phase lag through the GEPS. 

To obtain the phase information of GEPS, the frequency response of the 

transfer function between the exciter reference input (i.e., PSS output) and the 

generator electrical torque should be observed. In computing this response, 

the generator speed and rotor angle should remain constant, otherwise, when 

the excitation of a generator is modulated, the resulting change in electrical 

torque causes variations in rotor speed and angle and that in turn affect the 

electrical torque. As we are interested only in the phase characteristics 

between exciter reference input and electrical torque, the feedback effect 

through rotor angle variation should be eliminated by holding the speed 

constant. This is achieved by removing the columns and rows corresponding 

to rotor speed and angle from the state matrix. 

 

GEPS(s) = 
      

      
 (3.53)     

 

Where 

       is the electrical torque and        is the output of the PSS. 
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A PSS must compensate the phase lag through the GEPS.  

 

Figure 3.2 Phase Angle of GEPS 

 

3.3.2 Design of Compensator GC (s) 

          If a PSS is to provide pure damping torque at all frequencies, ideally, 

the phase characteristics of PSS must balance the phase characteristics of 

GEPS at all frequencies. 

The following criteria are chosen to design the phase compensation for PSS: 

 Compute the phase angle from the GEPs transfer function. 

 Substitute the phase angle in the compensator transfer function  

 

Gc(s) = 
         

       
                                                                 (3.54) 

 

Where T1, T2 are time constant of PSS and KS is the gain of PSS. 

 To determine T1 and T2the phase angle lead  m to be provided by the 

compensator is related to T1 and T2 as 

Sin( m) = 
   

   
                                                                                     (3.55) 
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Where     is the ratio between T2 and T1 

 = 
  
  

                                                                                                                        (3.56) 

The center frequency at which it offers a phase lead  m is given by 

𝜔m =  
 

√   
                                                                                     (3.57) 

3.3.3 Determination of compensator gain 

          To set the gain of the PSS, the following criterion are generally 

employed 

1. Based on the gain for instability 

*

2

PSS
PSS

K
K   

Where,  

*

PSSK  is the instability gain, which determine by trial and error. 

2. Damping factor of the critical mode: Here, the gain is selected such that 

damping factor for the mode is above some typical value say 0.05. 

3. High frequency gain: The high frequency gain of PSS is given by 

1

2
PSS

T
K

T
 this should not be too high as it would lead to noise 

amplification decreasing the effectiveness of a PSS. 

3.3.4 Stabilizer Limits 

     The positive output limits of the stabilizer is set at a relatively large 

value in the range of 0.1 to 0.2 per unit. 
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3.4 Interfacing PSS to the System Matrix 

         To see the performance of the system with PSS, the system matrix needs 

to be modified to account for PSS.  

The state space equations for single stage PSS can be written as   

1 1

1
PSS i

w

V K V
T


 

     
 

                                                                  (3.58) 

 

1 1
1

1 2 2

s
s

VV T
V V

T T T


    

                                                                    (3.59)
 

      Substitute equation (3.16) in equation (3.58)    
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E
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 
 
  
 

 


 


 (3.60) 

Substitute equation (3.60) in equation (3.59), and then add it in the system 

matrix, i.e. equation (3.52) [8].
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CHAPTER FOUR 

SIMULATION AND RESULTS 

 

        In the previous chapter the power system stabilizer (PSS) was designed. 

This chapter is an important part of project.  In this chapter the eigenvalue 

analysis and time-domain simulation have been represented for the multi-

machines system. The results are obtained through simulations of the system 

response for different operating conditions: the system with static AVR and 

the system with PSS for different cases.  

4.1 Methods of Analysis of Small Signal Stability 

1. Eigenvalue analysis. 

2. Synchronizing and damping torque analysis. 

3. Frequency response- and residue-based analysis. 

4. Time-domain solution analysis. 

4.2 Eigenvalue Analysis for Small Signal Stability 

       Eigenvalue analysis is used to study oscillatory behavior of power 

systems and hence has been described in detail. The system is linearized about 

an operating point and typically involves computation of eigenvalues. After 

linearization of system equations the system can be described as  

∆ ̇= A ∆x(t) + B ∆u(t)                                                                                 (4.1) 

   λ = σ ± jω                                                                                                  (4.2) 

 Where A is the state matrix and λ is the eigenvalues of the matrix A. The real 

component of the eigenvalues gives the damping ratio and the imaginary 
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component gives the frequency of oscillations. When at least one of the 

eigenvalues has positive real part (σ) the system is unstable. 

The frequency of oscillation in Hz is given by 

 

f = 
 

  
                                                                                                           (4.3) 

 

The damping ratio is given by 

 

ζ = 
  

√       
                                                                                              (4.4) 

 

 The damping ratio  ζ determines the rate of decay of the amplitude of the 

oscillation. The time constant of amplitude decay is [1/ |σ|]. 

 

4.3 Advantages of Eigenvalue or Modal Analysis 

        With eigenvalue techniques, oscillations can be characterized easily, 

quickly and accurately. Different modes, which are mixed with each other in 

curves of time-domain simulation, are identified separately. Root loci plotted 

with variations in system parameters or operating conditions provide valuable 

insight into the dynamic characteristics of the system. 

        Using eigenvectors coherent groups of generators which participate in a 

given swing mode can be identified. In addition, linear models can be used to 

design controllers that damp oscillations. Further, information regarding the 

most effective site of controller, tuning of existing one, installation of new 

 controller can be decided. 

         Eigenvalue or modal analysis describes the small-signal behavior of the 

system about an operating point, and does not take into account the nonlinear 

behavior of components such as controller's limits at large system 

perturbations. Further, design and analysis carried out using various indices 
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such as participation factors, residues, etc. may lead to many alternate options. 

These options need to be verified for their effectiveness using system 

responses for small/large disturbances. In such cases, time-domain 

simulations are very essential. In this project, time-domain simulation, and 

modal analysis in the frequency domain should be used in a complement 

manner in analyzing small-signal stability of power systems [8]. 

 

4.4 Case Study 

        A 4 machines, 10-busbars power system has been used to demonstrate 

the modal analysis of a power system. The single line diagram of the system 

is shown in Figure (4.1). 

 

 

G1

G2 G4

G3

Load A Load B

37810

4

9651

1

 

Figure 4.1: Four Machines Power System 
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4.5 Eignvalue Analysis 

        In this section eignvalue method has been used to analyze the stability 

problem of the system in two cases. 

4.5.1 Base Case  

          In this case, generators are provided with a static exciter with no PSS. 

Further, constant impedance type load model has been employed for both real 

and reactive components of loads. The eigenvalues, damping ratio, frequency 

of oscillations, and the type of mode of oscillations are shown in Table 4.1. 

          All of the real parts are negative which mean the system is stable but it 

is observed that the system is poorly damped for inter area mode of oscillation 

and having (damping ratio less than 5%). There are a different oscillation 

frequencies but we interested here in a swing modes (local modes and inter 

area mode of oscillations (0.3-2 HZ)). The eigenvectors for swing modes have 

been determined by using slip-participation matrix; which represent the nature 

of oscillatory modes. 

The figures (4.2)-(4.4) give a good picture for the types of swing modes. 
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Table 4.1: The eginvalues of the system without PSS 

SL_ 

Number 

Eigenvalue damping    

ratio 

frequency(Hz) Nature  of 

mode 

1 -42.919 1 0 Non swing 

2 -42.713 1 0 Non swing 

3 -16.025 + 17i 0.68594 2.7056 Non swing 

4 -16.025 - 17i 0.68594 2.7056 Non swing 

5 -38.695 1 0 Non swing 

6 -37.619 1 0 Non swing 

7 -33.931 1 0 Non swing 

8 -33.606 1 0 Non swing 

9 -16.4 + 12.228i 0.80167 1.9462 Non swing 

10 -16.4 - 12.228i 0.80167 1.9462 Non swing 

11 -27.453 1 0 Non swing 

12 -25.333 1 0 Non swing 

13 -1.1037 +7.4473i 0.1466 1.1853 Local  

14 -1.1037 - 7.4473i 0.1466 1.1853 Local  

15 -1.0488 + 6.7981i 0.15247 1.082 Local  

16 -1.0488 -  6.7981i 0.15247 1.082 Local  

17 -0.03722+4.4583i 0.0083487 0.7095 Inter area 

18 -0.037222 - 4.4583i 0.0083487 0.70956 Inter area  

19 -1e-006 1 0 Non swing 

20 -17.541 1 0 Non swing 

21 -15.619 + 0.90814i 0.99831 0.14454 Non swing 

22 -15.619 - 0.90814i 0.99831 0.14454 Non swing 

23 -13.619 1 0 Non swing 

24 -4.5 1 0 Non swing 
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Figure 4.2: The swing for  machines 1 and 2 for mode number  13 

 

 

 

Figure 4.3: The swing for  machines 3 and 4 for mode number 15 

25 -5.0199 1 0 Non swing 

26 -4.8931 1 0 Non swing 

27 -4.686 1 0 Non swing 

28 -1e-006 1 0 Non swing 
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Figure 4.4: The swing for machines 1,2 and machines 3,4 for mode number17 

 

4.5.2 Controlled Case 

           Here the PSS controller has been added to the system however, before 

adding it the optimal location of PSS has been determined. 

 Participation Factor 

          Despite the fact that eigenvectors are a good indication of the relative 

activity of the states within a mode, it is not a good indicator of the 

importance of states to the mode from a control aspect. To overcome this 

shortcoming, a matrix containing the measures of the association between the 

state variables and the modes is formed by combining the right and left 

eigenvectors. This matrix is known as participation matrix P. 

 
1 1 1

1

i i i

n

ni ni ni

p

p p p pi

p

 

 

     
     

   
     
          

                                             (4.5) 

Let a certain element pki, also known as the participation factor be defined as 

the measure of the relative participation of the kth state variable in the ith mode 

and given as follows 
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                                                                         (4.6) 

 

        In power system, participation factors give good indications for power 

system stabilizers placement. As previously mentioned, PSS is a device use to 

provide supplementary signal to add damping at the generator shaft. Hence, 

the participation factor is use to identify the states that correspond have the 

highest participation in the mode (in general rotor speed and rotor angle). If 

the corresponding rotor angle and/or rotor speed participation factor of a 

generator in a mode is zero, then that particular generator state does not 

contribute to the damping of the mode. However if the participation factor is 

real positive, adding damping at the generator will increase the damping of 

the mode whereas if negative, it will have adverse effects [10]. 

      The contribution greater than (0.5) has been assumed that it is high 

contribution in the mode not depend on the cost of the controllers. Table (4.2) 

shows the contribution of all generators in inter-area mode. 

 

Table 4.2: The contribution of all generators in inter-area mode 

angle(Normal PF)degree Magnitude(Normal PF) State variable 

 

-3.49 1.0000 Slip-1 

2.79 0.9561 

 

Slip-2 

0.92 0.6431 

 

Slip-3 

-1.51 0.3798 

 

Slip-4 

 

i
Ki

KK

p
a




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         Form the method of design the PSS; which represented in the previous 

section the PSSs have been designed for machine 1, 2, and 3. Table 4.3 

represent the parameters of  PSSs.  

 

Table 4.3: The parameters of  PSSs 

No_ 

gen 

KPSS TW T1 T2 VS max VS min 

1 27.5  10 0.34147 0.14790    0.1 -0.1 

2 27.5  10 0.33534 0.13216    0.1 -0.1 

3 14.0 10 0.36956 0.17785    0.1 -0.1 

 

        All eignvalues are listed in Table (4.4), all of the real parts are negative 

which mean the system is stable; the PSSs raise the damping ratio from 

(.84%) to (29.03%) for inter area mode.  

Figure (4.5) below give a comparison between base case and controlled case.  

 

 

 

Figure 4.5: Comparison of damping ratio with and without PSSs 
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Table 4.4: The eginvalues of the system with PSSs 

SL_ 

number          

Eigenvalue Damping 

ratio 

frequency(Hz) Nature 

of modes 

1 -48.055 1 0 Non swing 

2 -43.774               1 0 Non swing 

3 -41.253               1 0 Non swing 

4 -38.598                         1 0 Non swing 

5 -2.5695 +     17.582i 0.1446 2.7983 Non swing 

6 -2.5695 -     17.582i 0.1446 2.7983 Non swing 

7 -33.98               1 0 Non swing 

8 -33.643               1 0 Non swing 

9 -9.2027 +     16.499i 0.48711 2.626 Non swing 

10 -9.2027 -     16.499i 0.48711 2.626 Non swing 

11 -13.867 +     14.013i 0.70338 2.2303 Non swing 

12 -13.867 -    14.013i 0.70338 2.2303 Non swing 

13 -27.522               1 0 Non swing 

14 -25.378               1 0 Non swing 

15 -22.887               1 0 Non swing 

16 -19.997               1 0 Non swing 

17 -17.438               1 0 Non swing 

18 -3.7804 +     8.5207i 0.40555 1.3561 Local 

19 -3.7804 -     8.5207i 0.40555 1.3561 Local 

20 -1.0935 +     3.6044i 0.29031 0.57366 Inter area  

21 -1.0935 -     3.6044i 0.29031 0.57366 Inter area 

22 -7.4896               1 0 Non swing 

23 -7.0925               1 0 Non swing 

24 -4.343 +     2.5028i 0.86642 0.39834 Non swing 

25 -4.343 -     2.5028i 0.86642 0.39834 Non swing 

26 -5.3177               1 0 Non swing 
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27 -4.7351               1 0 Non swing 

28 -2.3946 +     1.3382i 0.87293 0.21298 Non swing 

29 -2.3946 -     1.3382i 0.87293 0.21298 Non swing 

30 -1.3796               1 0 Non swing 

31 -1e-006               1 0 Non swing 

32 -0.10311               1 0 Non swing 

33 -0.10119               1 0 Non swing 

34 -1e-006               1 0 Non swing 

 

The nature of oscillatory modes was shown in figures (4.6) and (4.7) 

 

Figure 4.6: Plot of slip for machines 3 and machines 4 

 

Figure 4.7: Plot of slip for machines 1,2 and machines 3,4 
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4.6 Time Domain Simulation 

        The time domain simulations were performed to validate the results of 

modal analysis. The effectiveness of the PSSs is assessed by their ability to 

damp low frequency oscillations under various operating conditions. 

Furthermore, the PSS must be able to stabilize the system under transient 

conditions. Therefore, two types of time domain simulations are performed; 

small signal and transient simulations. 

4.6.1 Small Disturbance 

           The small disturbance has been assumed. 

 Perturbation of reference voltage for generator two 

The reference voltage perturbed due to change in excitation system 

voltage by magnitude (0.01) per unit. 

 

 The system without PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.8)-(4.11). 

Figure 4.8: Response of rotor angle deviation 
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Figure 4.9: Response of rotor speed deviation 

 

Figure 4.10:Response of generator field voltage 

Figure 4.11: Response of output active power 
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 The system with PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.12)-(4.15). 

Figure 4.12:  Response of rotor angle deviation 

 

Figure 4.13: Response of rotor speed deviation 
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Figure 4.14:Response of generator field voltage 

 

 

Figure 4.15: Response of output active power 
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4.6.2 Large Disturbances  

Three cases have been assumed. 

 Three phase fault occurs at bus four 

 

 The system without PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.16)-(4.19). 

 

Figure 4.16: Response of rotor angle deviation 

Figure 4.17: Response of rotor speed deviation 
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Figure 4.18:Response of generator field voltage 

 

Figure 4.19: Response of output active power 

 

 The system with PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.20)-(4.23). 
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Figure 4.20: Response of rotor angle deviation 

Figure 4.21: Response of rotor speed deviation 

                 

Figure 4.22:Response of generator field voltage 
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Figure 4.23: Response of output active power 

 

 

 Three phase fault occurs at bus nine and tripping in line  (six – 

nine) 

 

 The system without PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.24)-(4.27). 

 

 

Figure 4.24: Response of rotor angle deviation 
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                      Figure 4.25: Response of rotor speed deviation 

 

 

                Figure 4.26:Response of generator field voltage 
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Figure 4.27:Response of output active power 

 

 The system with PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.28)-(4.31). 

 

 

Figure 4.28: Response of rotor angle deviation 
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                     Figure 4.29: Response of rotor speed deviation 

 

Figure 4.30:Response of generator field voltage 

 

          Figure 4.31:Response of output active power    
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 Ramping of Tm for generator three 

 

The mechanical power decreased by ramping function to half value at 

0.5 sec. 

 

 The system without PSS 

The response of the rotor angle deviation, rotor speed deviation, generator 

field voltage and output active power were shown in figures (4.32)-(4.35). 

Figure 4.32: Response of rotor angle deviation 

 

 

Figure 4.33: Response of rotor speed deviation 
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Figure 4.34:Response of generator field voltage 

 

 

Figure 4.35:Response of output active power 

 

 The system with PSS 

The response of the rotor angle deviation, rotor speed deviation, 

generator field voltage and output active power were shown in 

figures (4.36)-(4.39). 
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Figure 4.36: Response of rotor angle deviation 

Figure 4.37: Response of rotor speed deviation 

 

 

Figure 4.38:Response of generator field voltage 
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Figure 4.39: Response of output active power 

 

 

4.8 Results Analysis 

 Frequencies of swing modes in all cases have the same values 

approximately in eignvalue method, and time domain simulation 

method as shown in table (4.5). 

 Implementation of  PSSs reduces the settling time for all cases 

effectively specially at small disturbance. Table (4.6) represent the 

settling time for all conditions.  

 PSSs decreases the maximum overshoot specially at small 

disturbance; but not effective at large disturbances except the 

reference generator, and the generator far away from the fault 

location; as example the maximum overshoot problem was 

discussed for rotor angle deviation; as shown in figures (4.40)-

(4.43).  
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 Method of calculation the frequency from time domain simulation 

 

1)  Plot the response of speed deviation: 

 

Figure 4.40: Method of calculation the frequency 

 

                      T1= 1.35-0.5=0.85 sec/cycle. 

                      T2= 3.62-2.22= 1.4 sec/cycle. 

 

2) the oscillation frequencies  is the inverse of the cycle times 

 

                       F1= 
 

 
  =  

 

   
 = 1.1764 Hz . 

                       F2= 
 

  
  =  

 

   
 = 0.7142 Hz. 

 

3) repeat the above steps for all figure. 
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Table 4.5: Comparison in frequency of oscillation between eignvalue and time 

domain simulation methods 

Cases Oscillation frequencies 

Without PSS With PSS 

Eigenvalue Time domain Eigenvalue Time domain 

Perturbation 

of  Vref 

1.1853 1.400 
1.3561 1.1000 

1.0820 1.0800 
 

0.57366 

 

 

0.55000 
0.7096 0.7100 

Fault at bus 4 
1.1853 1.1628 

1.3561 1.4000 

1.0820 1.0500 
 

0.57366 

 

0.5900 0.7096 0.6993 

Fault at bus 9 

And trip line 

(six-nine) 

1.1853 1.2400 
1.3561 1.1000 

1.082 0.9200 

0.57366 0.5700 
0.70956 0.6800 

Ramping of 

Tm 

1.1853 1.100 
1.3561 0.9800 

1.082 0.9810 
 

0.57366 

 

0.59000 0.70956 0.69444 
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Table 4.6: The settling time for all cases 

The cases  Variables Settling time (sec) 

Without PSS With PSS 

Perturbation 

of  Vref 

  Oscillatory 1.0 

  Oscillatory 3.0 

Efd Oscillatory 2.0 

P Oscillatory 2.0 

Fault at bus 

4 

  Oscillatory 3.5 

  Oscillatory 4.0 

Efd Oscillatory 3.0 

P Oscillatory 2.0 

Fault at bus 

9 and trip 

line (six-

nine) 

  Oscillatory 4.0 

  Oscillatory 4.5 

Efd Oscillatory 4.5 

P Oscillatory 4.5 

Ramping of 

Tm 

  Oscillatory 5.0 

  Oscillatory 5.0 

Efd Oscillatory 5.0 

P Oscillatory 4.5 
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Figure 4.41: The maximum overshoot of rotor angle deviation at perturbation 

of Vref for generator two 

 

 

Figure 4.42: The maximum overshoot of rotor angle deviation at fault 

condition at bus 4 
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 Figure 4.43: The maximum overshoot of rotor angle deviation at fault 

condition at bus 9 and trip line (6-9) 

 

 

  

Figure 4.44: The maximum overshoot of rotor angle deviation at ramping of 

Tm in generator three 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 CONCLUSION 

        The problem of the power system stability (rotor angle stability) of 

multi-machines system has been addressed in this thesis by using eignvalue 

method, and time domain simulation. The system in base case (the system 

without PSS) is a stable at normal condition (no disturbance occurs) but have 

poor damping. To provide adequate damping ratio, the power system 

stabilizer has been designed by using phase compensation technique. 

      Before design of PSS the optimal location of PSS has been specified 

according to participation factor, which represent the contribution of 

machines in modes. After that the effect of PSS has been discussed for small 

and large disturbances. 

      Finally the power system stabilizer (PSS) is a cost effective way of 

improving the damping of electromechanical oscillations of rotor and return 

the stability to the system. Also it improves the power transfer capability of 

transmission lines.    
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5.2 RECOMMENDATIONS 

        In this project design and optimal location of PSS to improve dynamic 

stability were determined, speed deviation was taken as the input signal; other 

investigations: 

 Change the input signal to PSS such as terminal bus frequency or 

electrical power output. 

 Use dual input power system stabilizer signals such as speed and 

electrical power output are used. 

 Use other methods to appropriate tuning of PSS parameters such 

as Particle Swarm Optimization (PSO) technique or Multi-

Objective Honey Bee Mating Optimization (MOHBMO) [11], 

[12]. 

  Use other methods to specify the optimal location of PSS such 

as Genetic Algorithm (GA) method [13]. 

   Improve the stability by using another controller addition to 

PSS such as one of the flexible AC transmission system 

(FACTS) family.  

 


