CHAPTER ONE

INTRODUCTION

1.1 Background

Stability of power system is the core of power system security protection
which is one of the most important problems researched by electrical
engineers, and has been and continues to be of major concern in system
operation. This arises from the fact that in steady state (under normal
conditions) the average electrical speed of all the generators must remain the
same anywhere in the system. This is termed as the synchronous operation of
a system. Any disturbance small or large can affect the synchronous
operation. For example, there can be a sudden increase in the load or loss of
generation. Another type of disturbance is the switching out of a transmission
line, which may occur due to overloading or a fault. The stability of a system
determines whether the system can settle down to a new or original steady
state after the transients disappear [1].

The first step in a stability study is the derivation of a mathematical
model for the system during the transient. The elements included in the model
are those affecting the acceleration (or deceleration) of the machine rotors.
Generally, the components of the power system that influence the electrical
and mechanical torques of the machines should be included in the model.
Thus the basic ingredients for solution are the knowledge of the initial
conditions of the power system prior to the start of the transient and the
mathematical description of the main components of the system that affect the
transient behavior of the synchronous machines. The number of power system
components included in the study and the complexity of their mathematical

description will depend upon many factors. In general, however, differential



Equations are used to describe the various components. Study of the dynamic
behavior of the system depends upon the nature of these differential
Equations. If the system Equations are linear (or have been linearized), the
techniques of linear system analysis are used to study dynamic behavior. The
most common method is to simulate each component by its transfer function.
The various transfer function blocks are connected to represent the system
under study. The system performance may then be analyzed by such methods
as root-locus plots. Frequency domain analysis (Nyquist criteria), and Routh's
criterion. The above methods have been frequently used in studies pertaining
to small systems or a small number of machines. For larger systems the state-
space model has been used more frequently in connection with system studies
described by linear differential equations. Usually time solutions of the
nonlinear differential equations are obtained by numerical methods with the
aid of digital computers, and this is the method usually used in power system
stability studies [2].

Low frequency oscillations in range of (0.1- 0.8) Hz are observed when
large power systems are interconnected by weak tie lines. These oscillations
may sustain and grow, causing system separation if no adequate damping is
available. Moreover, low frequency oscillations present limitations on the
power transfer capability [3].

The voltage regulator introduces a damping torque component but it observed
w that under heavy loading conditions the voltage regulator give negative
damping. To offset this effect and to improve the system damping in general,
“power system stabilizer” (PSS) has been used [3]. Power system stabilizers
(PSSs) are now routinely used in the industry to damp out oscillations. An
appropriate selection of PSS parameters results in satisfactory performance

during system disturbances [4].



1.2 Project Objectives

e Analyze the response of multi-machines system when subject to

small and large disturbance.
e Design power system stabilizer (PSS) controller.

e Study the influence of PSS in power system stability.

1.3 Statement of Problem

The stability problem is concerned with the behavior of the synchronous
machines after they have been perturbed. If the perturbation does not involve
any net change in power, the machines should return to their original state. If
an unbalance between the supply and demand is created by a change in load,
In generation, or in network conditions, a new operating state is necessary. In
any case all interconnected synchronous machines should remain in
synchronism if the system is stable; i.e., they should all remain operating in
parallel and at the same speed.

One of major problem in power system operation is related to small signal
instability caused by insufficient damping in the system the AVR view of the
system usually increases the value of synchronous torque but gives negative
damping. PSS or the power system stabilizer damping out low frequency
oscillations in the power system and contributes to the electro-mechanical
torque components without effecting in the synchronizing torque in the

system; so it is suitable for the small signal analysis modes.

1.4 Methodology

First, differential Equations describing the power system, state space
model were derived devolved and linearized. Eignvalues has been computed

from state matrix (A).



The frequency modes have been determined from this eignvalues . The
low frequency mode(inter area mode) with low damping ratio identified.
Finally the PSS has been added in optimal location to increase the damping

ratio which return the system in stability condition.

1.5 Thesis Lay-out

» Chapter One: This chapter represents a general introduction to the
power system stability, project objectives and statement of problem.

» Chapter Two: Includes the definition, classification of stability and
modeling of power system.

» Chapter Three: Linearization of multi-machines system and power
system stabilizer (PSS) design.

» Chapter Four: Represent the results of the eigenvalue analysis and
time domain simulation of small signal and transient stability. The case

study (4-machines, 10-busbars).

> Chapter Five: Represent the project conclusion and recommendations.



CHAPTER TWO

DEFINITION OF STABILITY AND POWER
SYSTEM MODELING

In this chapter stability of power system has been defined and classified
into rotor angle stability, frequency stability and voltage stability. After that

all of power system component have been modeled.

2.1 Definition of Stability

Stability is known as the tendency of the power system to develop
restoring forces equal to or greater than the disturbing forces to maintain the

state of equilibrium [5].
2.2 Classification of Power System Stability

The understanding of stability problems is greatly facilitated by the
classification of stability into various categories. While classification of
power system is an effective and convenient means to deal with the
complexities of the problem, the overall stability of the system should always
be kept in mind. Solution to stability problems of one category should not be

at the expense of another [3].

Figure 2.1 gives an overall picture of the power system stability problem
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Figure 2.1 Classification of Power System Stability
2.3 Rotor Angle Stability

Rotor angle stability is the ability of interconnected synchronous
machines of a power system to remain in synchronism. The stability problem
involves the study of the electromechanical oscillation inherent in power

systems.

The rotor angle stability phenomena in terms of the following two types:
2.3.1 Small Signal (or Small-Disturbance)

Small signal (or small-disturbance) stability is the ability of the power
system to maintain synchronism under small disturbances; it is causes by

small variations in loads and generation [5].
2.3.2 Transient Stability

Transient stability is the ability of the power system to maintain
synchronism when subjected to a severe transient disturbance. Disturbance of
widely varying degrees of severity and probability of occurrence can occur on
the system. The system is, however designed and operated so as to be stable

for a selected set of contingencies [5].



2.4 Types of Oscillations

In today’s practical power system, small signal stability is largely a

problem of insufficient damping of oscillations. The stability of the following

types of oscillations is of concern:

Local modes are machine-system modes associated with the swinging
of units at a generating station with respect to the rest of the power
system. The term local is used because the oscillations are localized at
one station or a small part of the power system, Frequency Range is:
0.7to 2 Hz.

Inter-area modes are associated with the swinging of many machines in
one part of the system against machines in other parts. They are caused
by two or more groups of closely coupled machines being
interconnected by weak ties, Frequency Range is: 0.1 to 0.7 Hz.

Control modes are associated with generating units and other controls.
Poorly tuned exciter, speed governors, HVDC converters and static
VAR-compensator are the usual cause of instability of these modes.
Torsional modes are associated with the turbine-generator shaft system
rotational components. Instability of torsional modes may be caused by
interaction with excitation controls, speed governors, HVDC controls,
and series-capacitor-compensated lines, with frequencies ranging from
4 Hz [1].

2.5 Power System Modeling

In this section all of the power system component which uses in this

project were modeled. Figure 2.2 represent the power components.
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Figure 2.2 Power System Components
2.5.1 Synchronous Machine Modeling

Mathematical model of a synchronous machine was developed to use in
stability computations, figure 2.3illustrates a synchronous machine with

salient pole [6].
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Figure 2.3: The windings in the synchronous generator and their axes.



Referring to figure (2.3) the following windings are depicted:

* The three stator windings denote a, b, and c.

* Field winding denoted F. This winding carries the field current,
which gives rise to the field flux. This rotating flux induces the
voltages in the stator windings.

» Short circuited damper winding in the d-axis denoted by D.

» Short circuited damper winding in the q-axis denoted by Q.

The basic voltage Equations which descript the machine in a-b-c reference

system are:

Stator Voltage Equations

: d .
Vai = Lail'si ¥ — Vai =1,...n (2.1)
. d .
Ubi = Lil'si ¥ — Wb i=1,...n (2.2)
. d .
Vei = Lgilsi + 2 Ve 1=1,...n (2.3)
Rotor voltage equation
: d :
Vsdi = Ligil'ai T I Vidi 1=1,...n (24)

Where v is flux linkage,v, i and r is winding voltage , current and resistance

In the a-b-c reference system respectively.
Park's Transformation

It is convenient to transform all synchronous machine stator and network
variable into a reference frame that converts balance three-phase

sinusoidal variations into constant. Such a transformation is
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The machine stator voltage, current, and flux linkage in the synchronously

rotating reference frame are
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Where Tgqi IS the machine i transformation [7].
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Stator Voltage Equations

d . :

SE Ypi = Lpilsi T Yoi + Vpi 1=1,...n (210)
d . :

€ — VYaqi = lgifsi - Yoi t Vaqi i=1,...,n (2.11)

£ 2= oi = ioifs + Voi i=1,...,n (2.12)

Where vpi, vai,Voi, ipi, Laiioi, Woi, Yoi and yo; are the stator voltage, current,
and flux linkage in the dqO reference system. w; is the rotor speed and rg; is the

stator resistance and € = 1/ws.
Rotor Voltage Equation
. d .
Vidi = Lrdilfai T 2 Vi I=1,....n (2.13)

Where v, i1, g @Nd i are the field voltage, current, resistance and flux

components in the dq0 reference system respectively. wjis the rotor speed.
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Figure 2.4: Three sets of fictitious perpendicular windings representing the

synchronous generator.
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Equation of motion

The mechanical dynamics in the rotor are represented by the following

equations:

8= wi— Ws i=1,...,n (2.14)
@i =(ws/2Hi)* (Trmi - Tei - Trwi) i=1,....n (2.15)
Where

H is inertia time constant in seconds.

T, is the mechanical torque.

T, is the electrical torque.

Ty IS the damping torque coefficient given in per unit.
6 is the angular position of the rotor.

ws 1S the synchronous speed.

w IS the rotor speed.

2.5.2 Transformer Modeling

The transformers are generally used as inter-connecting (IC)
transformers and generator transformers. These transformers are usually with

off-nominal-turns-ratio and are modeled as equivalent 7 circuit [8].

Vv i/2
[ |
<'T‘\Io TapI L ] | Tapo
Side Side
(a—21) a-—a)
Y. =Y

Figure 2.5:The transformer as equivalent 7 circuit
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Where,

ye= L
t~
z;: represents the series impedance at nominal — turns — ratio.
a: represents per unit off-nominal tap position.
The transmission network is represented by an algebraic equation given by
YpysV =1
Where,
Ysus: Bus admittance matrix.
V: Vector of bus voltages.

I: Vector of injected bus currents.

The above equation is obtained by writing the network equations in the node-

frame of reference taking ground as the reference.
2.5.3 Transmission Line Modeling

Transmission Lines are modeled as a nominal n circuit [8] as shown

in Figure (2.6).

| |
From L Z J Too
Node Node
2 2
o O

Figure 2.6:Transmission Lines as a nominal © circuit.
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Z: represents the series impedance of the line.

% : represents half of the total line charging y, at each node.

2.5.4 Excitation System Modeling

The main objective of the excitation system is to control the field
current of the synchronous machine. The field current is controlled so as to

regulate the terminal voltage of the machine.

There are three distinct types of excitation systems based on the power

source for exciter:

1) DC Excitation Systems: (DC) which utilize a DC generator with

commutator.

2) AC Excitation Systems: (AC) which use alternators and either stationary
or rotating rectifiers to produce the direct current needed.

3) Static Excitation Systems :(ST) in which the power is supplied through
transformers and rectifiers.

The firsttwo types of exciters are also called rotating exciters which are

mounted on the same shaft as the generator and driven by the prime mover[1].

The exciters can be of the following types
1. Field controlled dc generator — commutator.
2. Field controlled alternator.
a) Field controlled alternator with non-controlled rectifier (using diodes).
1) With slip rings and brushes (stationary rectifier).
i) Brushless, without slip rings (rotating rectifier).
b) Alternator with controlled rectifier.
3. Static exciter with
a) Potential source controlled rectifier in which the excitation power is

supplied through a potential transformer connected generator terminals.
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b) Compound source (using both current and voltage transformers at the
generator terminals) with
1) Non-controlled rectifier (control using magnetic elements such as
saturable reactors).

1) Controlled rectifier (for controlling the voltage).

In the static excitation systems all components are static or stationary.
Static rectifiers, controlled or un controlled, supply the excitation current
directly to the field of main synchronous generator through slip rings. The
supply of power to the rectifiers is from the main generator (or the station
auxiliary bus) through a transformer to step down the voltage to an

appropriate level, or in some cases from auxiliary windings in the generator.
The advantages of the static excitation system are

1) Expanded rang for excitation voltage and current with high amplification.
2) Very fast response.

3) Simplicity of design.

Vit

Vref K A Efd

+ 1+sT,

Figure 2.7: Static Excitation System

A signal coming from a PSS can be added to the voltage reference in
the AVR input, this signal is used to modulate the excitation of the generator

with the aim of achieving rotor oscillation damping.
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2.5.5 Power System Stabilizer (PSS) Modeling

A PSS can help to damp generator rotor oscillations by
providing an additional input signal that produces a torque component that is
in phase with the rotor speed deviation [9].

It consists of a washout circuit, dynamic compensator, torsional filter and

limiter as shown in figure (2.8).

max

Ao | K sT,, AV, [148T, AV / Vo
—> PSS s DO E— >
1+sT, 1+sT, /

. Lead lag i
ain min . .
J Wash out compensator limiter

Figure 2.8: Power System Stabilizer Construction

» Washout Circuit

The washout circuit is provided to eliminate steady-state bias in the output
of PSS which will modify the generator terminal voltage. The PSS is
expected to respond only to transient variations in the input signal (say rotor
speed) . This is achieved by subtracting from it the low frequency components
of the signal obtained by passing the signal through a low pass filter. The
washout circuit acts essentially as a high pass filter and it must pass all
frequencies that are of interest.

» Phase Compensator

The compensator is made up to single lead-lag stage where Ks is the gain
of PSS and the time constants, T; was chosen to provide a phase lead for the
input signal in the range of frequencies that are of interest (0.1 to 3.0 Hz).

With static exciters, only one lead-lag stage may be adequate.
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» Gain

The gain of PSS is to be chosen to provide adequate damping of all critical
mode under various operating conditions. Although PSS may be tuned to
give optimum damping under such condition, the performance will not be
optimal under other conditions. The critical modes include not only local

and inter area modes, but other modes.

» PSS output limits

The output of the PSS must be limited to prevent the up normal change in
terminal voltage of PSS. The positive limit of PSS output is of importance
during the change of load for higher value of the terminal voltage (due to the
increase in speed or frequency).The negative limit of PSS output is of
importance during the back swing of the rotor (after initial acceleration is
over). we uses a -0.05 per unit as the lower limit and 0.1 to 0.2 as the higher

limit.

> Input signal

The common signal which used as input to the PSS are: rotor speed
deviation (Aw) ,bus frequency (Af) ,electrical power (A P The signal must
be obtained from local measurements. Since the basic function of power
system stabilizer (PSS) is to add damping to the rotor oscillations [1]. In this
work a speed signal is used as input signal. The overall transfer function of
the PSS is:

_ Ko A+8T)(ETy )

TE=", sT,)(L+sT, ) (2.16)
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CHAPTER THREE

LINEARIZED MODEL OF MULTI
MACHINES SYSTEM AND PSS DESIGN

3.1 Introduction

When the system is subjected to a small load change, it tends to acquire a
new operating state. During the transition between the initial state and the new
state the system behavior is oscillatory. If the two states are such that all the
state variables change only slightly (i.e., the variable x; changes from X;, to

Xio+ AX; Where AXx, is asmall change in x;), the system is operating near the

initial state. The initial state may be considered as a quiescent operating
condition for the system. To examine the behavior of the system when it is
perturbed such that the new and old equilibrium states are nearly equal, the
system equations are linearized about the quiescent operating condition. By
this we mean that first-order approximations are made for the system
Equations. The new linear Equations thus derived are assumed to be valid in a
region near the quiescent condition.

As an example of product nonlinearities, consider the product X; x;. Let
the state variables x; and x;have the initial values x;, and X;,. Let the changes

in these variables be Ax; and Ax; .Initially their product is given by Xio Xjo.
The new value becomes

(Xip +AX; )Xo+ AX;) =X, X o+ Xio AX;+ X0 AX +AX; AX;

The last term is a second-order term, which is assumed to be negligibly small.

Thus for a first-order approximation, the change in the product X;X; is given by

(X, +AX, )(on—|—AXj)—XiOXjO =X, Axi+xi0ij
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We note that X;, and X, are known quantities and are treated here as coeff-

icients, while Ax; and Ax;are “incremental” variables [2]. The trigonometric

nonlinearities are treated in a similar manner as

CoS(J, + Ad ) =C€0S S, COSAS —sin,sin Ad

With COSAO =1 and Asind = Ad .therefore
cos(o, + A0 ) —C0S S, = (—sin5,)Ao

The incremental change in coso is then (—sin,)AdS ; the incremental variable
IS AS and its coefficient is -sind,. Similarly, we can show that the incremental
change in the term sin ¢ is given by
sin(o, + Ad ) —sin g, = (cos o,)Ad

The equivalent circuit of multi-machine system can be shown below

: (o —7/2) __ iri _ :
(Idi+J|qi)e " _IGi67 _IDi+JIQi

jx'di Rsi .1
-0 ® -
P : i m+1 P Vs
Li (V.)( ® Network e Ltn+l( m+1)
+ JQLi (Vi ) _ o + JQLm+1 (Vm+1)
e | =YV
(]
jX'dm Rsm ®
-0 @
/m n I
P (Ve df | Plo (Vo)
+iQun (Vi) IR (Vo)

Figure 3.1: Interconnection of the synchronous machine dynamic circuit and

the rest of the network.
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Six Order Model Differential Equations

8i=a)i—ws
(1) :_[Tml_ Iql_ (X - ) dIIQI_Di(a)i _ws):|
E,qlsz,m |: Eq +(Xg =X )lg +Eg

B _—T]; [ E _(Xqi _X(;i)lqi:|

qoi

E:”ql_ [E, - E” + Idl (Xdl Xdl )]

TH

doi

.”di _T " [E Egu I ( ;. Xg. )]

qoi

A fast exciter has been added; whose state space Equation is

) 1 K ..
Efdi :_—Efdi + A (\/ref _Vi)

TAi TAi

Fori=1,...,n

Algebraic Equations
(a) Stator Algebraic Equations

i i6-3)
0 Ve +JXd|(|d|+J|q|) -

(E+ () —xi) 1, +JEL Je' 7
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In polar form

Ei -V, cos(6 —6)—Xglg =0 (3.9)
Eg +V,sin(s —6)—-xi1, =0 (3.10)

Fori=1,...,n
(b)Network Equations
The network Equation separate into generator buses Equations and load

buses Equations

Generator Buses

I3V sin(6; —6)+14V,; cos(6; —6,)

+PV; —Z\/inY x €0s(6, —6, —a ) =0 (3.11)
=]

IdiVi Cos(é‘i _Qi)_lqivi Sin(é} _6).)
+Q,V, _ZVinY i SIN@, -6, — ) =0 (3.12)
k=1

Fori=1,...,n

Load Buses

PV, +QV; =DV VY, cos(6 -6, — ) (3.13)
k=1

PV, +QV, =D VV Y, sin(6 -6, —a) (3.14)
k=1

Fori=1,...,n
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3.2 Linearization

Let the state-space vector x have an initial state X, at time t=t,, at the
occurrence of a small disturbance, i.e., after t=t,", the states will change
slightly from their previous positions or values. Thus

X =X +AX
Note that X, need not be constant, but we do require that it be known.

The state-space model is in the form
x=Tf (x,1)
Which
Xo+ Ax:f(XO +A X, t)
From which we obtain the linearized state-space Equation

Ax=A(Xg) AX+ B(Xo) u

Where A and B are state matrixes. Therefore the system variable be

Vi=Vi+AVi é‘i:é‘io‘FAé‘i a)l :0)i0+Aa)l
0 =0,+A0 E i =E ot AE Y, E's =Eq+ AE4y
Efdi = Efdi +AEfdi E “qi =E “qio‘l'AE "qi E "di =E "di0+AE "di

3.2.1 Linearization of The Differential Equations
The linearization of the fourth order differential equations and the static

excitation system (3.1) — (3.7) yields

d A&
~=Y _Aw
" o, (3.15)
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dAw
dt

gio

l n n n n
=M [ATyi —E "o Al — (X' =X ) Iy Al —E "0 Al

i (3.16)
—AE "diO Idi _(X"di _X"qi )IdiAIqi _DiAa)i —AE "in Iqi]
dAE'. 1 , .
dt s :T - [‘AE g T (Xai =X )ALy +AEfdi:| (3.17)
dAE', 1 . .
dt d :T ‘i [_AE di—(Xqi_Xqi )Alqi} (3.18)
dAE ", 1
qi _ ' n 1 n
a7 - [AE g —AE "G + (X — X'y )Aldi:| (3.19)
dAE ", 1 : " : "
- - [AE 4= AE "y — (X = X"y )ALy | (3.20)
- 1 Ko
AEfdi :__AEfdi + (Avref _Avi) (3.21)
Ai Ai

Writing (3.15) through (3.21) in matrix notation, we obtain
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[0 1 0] 0 0 0] 0 |
| .
0 _ DI 0 0 qio _ IdIO 0
- _ M i M i M i
Ao 0 _1t 0 0 0 L |[ A9
Aa)i Tq’oi Tq’0| Aa)i
AE . 1 AE
qai . qi
AE: |_|0 O 0 T 0 0 0 AE!
AE AE "
o 0 - 0 - 0 o0 :
AEd'i' Tdoi Tdoi AEdi
[ABw ] o o 0 =1 CJ— o |[LAF
qui qui
0 0 0 0 0 0 —i
L TAi
_ 0 0 _
—(XG —Xgi ) g —Egio  —(Xgi —Xgi )l —Egio
M, M,
(Xdi_xéi) 0
Td,oi
0 —(Xqi —Xgi ) Al N
T o Al
(X'di_x:j,i) 0
T o
. —(x =X
Tq;,i
_ - O] 0 |
0] 0 1
— 0
0 0 M
0 0
0 0 A6, 0 0 AT
o o v oo )
0 o i 0 0 ref
K 0 0
0 ——A _
TAi o I<AI
- - L Tai
Put
Al AG. AT,
d
’ Alqi ’ ) AVl ’ AVref

24

(3.22)



Then

AX; = A AX; +By Al +B, AV +EAV, i=1,...,n  (3.23)

3.2.2 Linearization of Algebraic Equations
The linearization of algebraic equations (3.9)and(3.10) in matrix form

yields

[ AS.

Ao,
AE
AE
AE
AE ]
AE

L fdi |

|:Viocos(§i0_‘9io) —Sin(é‘io—@io)}LA(ﬂ j
+ =0

V., cos8(0.,-6,) 0 0 0 0 1 O
V,,sin(6,-6,) 0 0 01 00

V,8In(5;,—-6,) —C0s(d;, - 6,) |\ AV, (3.24)
Rewriting (3.24) we obtain
0=C,Ax; +D;Al; +D, AV (3.25)
In matrix notation, (3.25) can be written as
0=C,Ax +D,Al  +D,AV (3.26)

Where C;, D,, and D, are block diagonal.
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3.2.3 Linearization of the Network Equations
For generator buses (3.11) and (3.12)

707 | [1aVi0008(8,5—8) ~ 1V oSin(G,-6,)] 0 0 0 0 0 0] as
O | [~14V,08in(85=6,4) =14V, C08(5,—6,) | 0 0 0 0 0 0| Aw
0 0 00000 0| 2
0= 0 0000 0 0|2
0 0 00000 02"
0 0 00000 0fAE%
01| 0 0000 0 0JLAu]
V,08in(Sio—6,0)  ViC08(54—6,) |
Vi4C08(5y—6,) Vio8in(d;,—6,)
O O AIdi
+ 0 0 LI_}L
0 0 ¢
0 0
L 0 0 u
14V ioc08(6, -0, )+1Vigsin(5,,-6,,) [V 0SNG, —80) +1,V,€08(6,, —b,) |
+\/io§\/koYik sin(6, -6, — ) +VIOZ:\/ko . €os(@ -y aP(;TOT')
1Vi08IN(S0 = G0) + V10 COS(Gi0 = G0) 1,V €08(8, —6,4) 1,V 1 SiN(5;0 —0,,)
—viokZ_;vkoYiksin(ao—eko—aik) z\/ko sing, —6,, - Ik)+8QanV(Vi) (A@ij
k #i i AVi
0 0
0 0
0 0
0 0
L 0 O .
kao w SIN(G, =6, —ay) kao i €0s(0, =6, — )
k;tl
kao i C0S(G, =6, — ) =V, Zn:V w i SING, =0, — )
A - Ab,
T o )
0 0
0 0
0 0
L O 0 .
1=1,...,n (3.27)
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Rewriting (3.27) we obtain

C21 Axl D31 Al gl
0= ' : + - : +
C,, [\ AX, D,, ) Al -
D41,1 D4l,n Avgl D51,n+1 D51,m | AV(n+1 (3'28)
: : : : + : : : :
D4n,1 D4n,n AVgn D5n,n+1 D5n,m_ Avén

Where the various sub matrices of (3.28) can be easily identified. In matrix
notation,(3.28) is

0=C,Ax +D,Al , +D,AV  + DAV, (3.29)

Where
AG,
v o[

For the non-generator buses i=1,...,n.
Note that C,, D3 are block diagonal, where D,, Ds are full matrices.

For load buses (3.13) and (3.14) which are written of form matrix as shown

below:
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O O O ©o o o o

ZV oV ko) i SIN(G, — 6, — ) _ZV o i C0S(6, -6, —ay) -|-—6P" i)
k=1 =)

v,
k #i
_ZV ioV koY ik COs(eio _eko _aik) _ZV koY ik Siﬂ(@io _eko —aik)+—aQ" N')
k=1 = N

k #i

o O O o o
O O O o o

_Vio kaoY ik Sin(eio _gko —(Zik) _Vio ZY ik COS(@iO —0k0 _aik)
k=1

k=1
k #i

_Vio ZV koY ik Sin(eio _gko —(Zik) _Vio ZY ik Sin((9i0 —t9k0 —aik)
k=1 k=1
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k=i AG,
0 0 AV,
0 0
0 0
0 0
. O 0 -
(3.30)
Rewriting (3.30) we obtain
D6m+1,1 D6m+1,m Avgl D7m+l,m+1 D7m+1,n AV/,m+1
O = . . . + . (331)
D6n,1 D6n,m Ang D7n,m+1 D7n,n Alen



In matrix notation, (3.31) can be written as

0=D,AV, +D AV,

Where Dg and D5 are full matrices.

Rewritten equations (3.23),(3.26),(3.29) and (3.32) together as follow :

AX; =A,;AX; +B Al g +BZiAVgi +E,AV,
0=C,Ax +D,Al , +D,AV

0=C,Ax +D,Al , +D,AV  + DAV,

0=D,AV, +D AV,
From (3.34) we obtain

Al, =-D,;'C,AX —D,'D,AV
Substitute (3.37) in (3.35) as shown
C,AX +D,(-D,"C,AX -D,"D,AV )+D,AV +DAV, =0
Let

|D,-D;D, "D, |=K,
And
|[C,-D,D,C, |=K,
Then

K,AX +K,AV  +DAV, =0

Substitute (3.37) in (3.33) we find
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(3.32)

(3.33)
(3.34)

(3.35)
(3.36)

(3.37)

(3.38)

(3.39)



AX =(A,-B,D,'C,)AX+(-B,D,"D, +B,)AV , +E,Au

K,AX +K,AV  +DAV, =0

0=D,AV, +D AV,

Equations (3.40)-(3.42) can be put in a form of matrix shown below

AX) (A,-BD,'C, -BD,'D,+B,

0 |=| K, K,
0 0 D,
Let

J?

- [Al - BlDlilcl]

B'=-B,D,”'D, +B,

So,

AX =A'AX+B’AV  +EAu

K,AX +K AV + DAV, =0
0=D AV, +D AV,

From (3.46)

AV, =-D DAV,

Substitute (3.47) in (3.45) we find
K,AX +FAV =0

Where

F =K,-D,D,”D,
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AVg +| 0 |Au

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



From (3.48)

AV, =-F7'K,AX

Substitute (3.50) in (3.44) we find
AX =Ay s AX+E,AU

Where

A, =A'-BF K,

(0 @ e . 0 0
A, Qo o
Ady
e ||
AE,
el |
AE
ME, | |F
AZl a&l v e e e
A“f.i =0 0 . . 0 10
Aa')i G e e e : :
AECII T,
AEL | | e
S
YA
AEd!II e e e e
AE,, A
||
Qg o+
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d,,

Ao,
ds,

Y

) ai*n,i*n_

(3.50)

(3.51)

(3.52)

Ao,
AE",
AE'y,
AE",
AE",
AEfdl
AZ,
A¢,
Aw,
AE ',
AE Idi
AE"
AE";
AE IIdi
AEfdi
AZ.

qi




3.3 Design of Power System Stabilizer

The steps involved in designing a PSS are as follows:
1. Computation of GEPS(s).
2. Design of compensator using phase compensation technique.

3. Determination of compensator gain.
3.3.1 Computation of GEPS(s)

A PSS acts through generator, exciter system, and power system
(GEPS). Therefore, a PSS must compensate the phase lag through the GEPS.
To obtain the phase information of GEPS, the frequency response of the
transfer function between the exciter reference input (i.e., PSS output) and the
generator electrical torque should be observed. In computing this response,
the generator speed and rotor angle should remain constant, otherwise, when
the excitation of a generator is modulated, the resulting change in electrical
torque causes variations in rotor speed and angle and that in turn affect the
electrical torque. As we are interested only in the phase characteristics
between exciter reference input and electrical torque, the feedback effect
through rotor angle variation should be eliminated by holding the speed
constant. This is achieved by removing the columns and rows corresponding

to rotor speed and angle from the state matrix.

ATe(S)
GEPS(s) = @ (3.53)

Where

AT, (s) is the electrical torque and Av(s) is the output of the PSS.
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A PSS must compensate the phase lag through the GEPS.

Phase angle of GEPS(jw), for machine-1

X:0.7082
Y:-233

phase angle - degree
&
S

0.5 1 15 2 25 3 35 4
frequency-Hz

Figure 3.2 Phase Angle of GEPS

3.3.2 Design of Compensator G (S)

If a PSS is to provide pure damping torque at all frequencies, ideally,
the phase characteristics of PSS must balance the phase characteristics of

GEPS at all frequencies.

The following criteria are chosen to design the phase compensation for PSS:
e Compute the phase angle from the GEPs transfer function.

e Substitute the phase angle in the compensator transfer function

“(1+sTy)

Where Ty, T, are time constant of PSS and Ks is the gain of PSS.

To determine T, and T,the phase angle lead @, to be provided by the

compensator is related to T, and T, as

. 1-x
Sin(@,) = Toa (3.55)
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Where « is the ratio between T, and T,
a=12 (3.56)

The center frequency at which it offers a phase lead @,, is given by

1
w =
" Vary

(3.57)

3.3.3 Determination of compensator gain

To set the gain of the PSS, the following criterion are generally
employed
1. Based on the gain for instability

Where,

K *PSS is the instability gain, which determine by trial and error.

2. Damping factor of the critical mode: Here, the gain is selected such that
damping factor for the mode is above some typical value say 0.05.
3. High frequency gain: The high frequency gain of PSS is given by

KPSS% this should not be too high as it would lead to noise

amplification decreasing the effectiveness of a PSS.

3.3.4 Stabilizer Limits

The positive output limits of the stabilizer is set at a relatively large

value in the range of 0.1 to 0.2 per unit.
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3.4 Interfacing PSS to the System Matrix

To see the performance of the system with PSS, the system matrix needs
to be modified to account for PSS.

The state space equations for single stage PSS can be written as

- : 1
AV, =Kpss |:Aa)| _T_Avlj| (3.58)
AV, = av, —A—VS+T—1AV1
LT, T (3.59)

Substitute equation (3.16) in equation (3.58)

1 n n n n
M_[ATMi —E oAl — (X di_Xqi)Iqi Aly—E "o Al

AV, =Kpes | . (3.60)
—AE "o lg — (X' =X Mg Al =D A, —AE "4 1 ]_'I'_AV1

w

Substitute equation (3.60) in equation (3.59), and then add it in the system

matrix, i.e. equation (3.52) [8].
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CHAPTER FOUR

SIMULATION AND RESULTS

In the previous chapter the power system stabilizer (PSS) was designed.
This chapter is an important part of project. In this chapter the eigenvalue
analysis and time-domain simulation have been represented for the multi-
machines system. The results are obtained through simulations of the system
response for different operating conditions: the system with static AVR and

the system with PSS for different cases.
4.1 Methods of Analysis of Small Signal Stability

1. Eigenvalue analysis.

2. Synchronizing and damping torque analysis.
3. Frequency response- and residue-based analysis.

4. Time-domain solution analysis.
4.2 Eigenvalue Analysis for Small Signal Stability

Eigenvalue analysis is used to study oscillatory behavior of power
systems and hence has been described in detail. The system is linearized about
an operating point and typically involves computation of eigenvalues. After

linearization of system equations the system can be described as

Ax= A Ax(t) + B Au(t) 4.1)
A=0c+tjo (4.2)

Where A is the state matrix and A is the eigenvalues of the matrix A. The real

component of the eigenvalues gives the damping ratio and the imaginary
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component gives the frequency of oscillations. When at least one of the

eigenvalues has positive real part (o) the system is unstable.

The frequency of oscillation in Hz is given by
f=— (4.3)

The damping ratio is given by

—0

> Vorrad) ()

The damping ratio { determines the rate of decay of the amplitude of the

oscillation. The time constant of amplitude decay is [1/ |o[].

4.3 Advantages of Eigenvalue or Modal Analysis

With eigenvalue techniques, oscillations can be characterized easily,
quickly and accurately. Different modes, which are mixed with each other in
curves of time-domain simulation, are identified separately. Root loci plotted
with variations in system parameters or operating conditions provide valuable
insight into the dynamic characteristics of the system.

Using eigenvectors coherent groups of generators which participate in a
given swing mode can be identified. In addition, linear models can be used to
design controllers that damp oscillations. Further, information regarding the
most effective site of controller, tuning of existing one, installation of new
controller can be decided.

Eigenvalue or modal analysis describes the small-signal behavior of the
system about an operating point, and does not take into account the nonlinear
behavior of components such as controller's limits at large system

perturbations. Further, design and analysis carried out using various indices
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such as participation factors, residues, etc. may lead to many alternate options.
These options need to be verified for their effectiveness using system
responses for small/large disturbances. In such cases, time-domain
simulations are very essential. In this project, time-domain simulation, and
modal analysis in the frequency domain should be used in a complement

manner in analyzing small-signal stability of power systems [8].

4.4 Case Study

A 4 machines, 10-busbars power system has been used to demonstrate
the modal analysis of a power system. The single line diagram of the system
Is shown in Figure (4.1).

a 3

Gl G3

Load A Load B

G2 G4

Figure 4.1: Four Machines Power System
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4.5 Eignvalue Analysis

In this section eignvalue method has been used to analyze the stability

problem of the system in two cases.
4.5.1 Base Case

In this case, generators are provided with a static exciter with no PSS.
Further, constant impedance type load model has been employed for both real
and reactive components of loads. The eigenvalues, damping ratio, frequency
of oscillations, and the type of mode of oscillations are shown in Table 4.1.

All of the real parts are negative which mean the system is stable but it
Is observed that the system is poorly damped for inter area mode of oscillation
and having (damping ratio less than 5%). There are a different oscillation
frequencies but we interested here in a swing modes (local modes and inter
area mode of oscillations (0.3-2 HZ)). The eigenvectors for swing modes have
been determined by using slip-participation matrix; which represent the nature
of oscillatory modes.

The figures (4.2)-(4.4) give a good picture for the types of swing modes.

39



Table 4.1: The eginvalues of the system without PSS

SL_ Eigenvalue damping | frequency(Hz) | Nature of
Number ratio mode
1 -42.919 1 0 Non swing
2 -42.713 1 0 Non swing
3 -16.025 + 17i 0.68594 2.7056 Non swing
4 -16.025 - 17i 0.68594 2.7056 Non swing
5 -38.695 1 0 Non swing
6 -37.619 1 0 Non swing
7 -33.931 1 0 Non swing
8 -33.606 1 0 Non swing
9 -16.4 + 12.228i 0.80167 1.9462 Non swing
10 -16.4 - 12.228i 0.80167 1.9462 Non swing
11 -27.453 1 0 Non swing
12 -25.333 1 0 Non swing
13 -1.1037 +7.4473i 0.1466 1.1853 Local
14 -1.1037 - 7.4473i 0.1466 1.1853 Local
15 -1.0488 + 6.7981i 0.15247 1.082 Local
16 -1.0488 - 6.7981i 0.15247 1.082 Local
17 -0.03722+4.4583i 0.0083487 0.7095 Inter area
18 -0.037222 - 4.4583i | 0.0083487 0.70956 Inter area
19 -1e-006 1 0 Non swing
20 -17.541 1 0 Non swing
21 -15.619 + 0.90814i 0.99831 0.14454 Non swing
22 -15.619 - 0.90814i 0.99831 0.14454 Non swing
23 -13.619 1 0 Non swing
24 -4.5 1 0 Non swing
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25 -5.0199 1 Non swing
26 -4.8931 1 Non swing
27 -4.686 1 Non swing
28 -1e-006 1 Non swing

270

270

Figure 4.3: The swing for machines 3 and 4 for mode number 15
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180

270

Figure 4.4: The swing for machines 1,2 and machines 3,4 for mode numberl17

4.5.2 Controlled Case
Here the PSS controller has been added to the system however, before
adding it the optimal location of PSS has been determined.

+» Participation Factor

Despite the fact that eigenvectors are a good indication of the relative
activity of the states within a mode, it is not a good indicator of the
importance of states to the mode from a control aspect. To overcome this
shortcoming, a matrix containing the measures of the association between the
state variables and the modes is formed by combining the right and left
eigenvectors. This matrix is known as participation matrix P.

Pu | | i || W
p=[p, ... p,]opi=| i |=| ] : (4.5)
Poi ] [P IV
Let a certain element py;, also known as the participation factor be defined as
the measure of the relative participation of the ky, state variable in the iy, mode

and given as follows
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Pi = ' (4.6)

In power system, participation factors give good indications for power
system stabilizers placement. As previously mentioned, PSS is a device use to
provide supplementary signal to add damping at the generator shaft. Hence,
the participation factor is use to identify the states that correspond have the
highest participation in the mode (in general rotor speed and rotor angle). If
the corresponding rotor angle and/or rotor speed participation factor of a
generator in a mode is zero, then that particular generator state does not
contribute to the damping of the mode. However if the participation factor is
real positive, adding damping at the generator will increase the damping of

the mode whereas if negative, it will have adverse effects [10].

The contribution greater than (0.5) has been assumed that it is high
contribution in the mode not depend on the cost of the controllers. Table (4.2)

shows the contribution of all generators in inter-area mode.

Table 4.2: The contribution of all generators in inter-area mode

State variable Magnitude(Normal PF) | angle(Normal PF)degree
Slip-1 1.0000 -3.49
Slip-2 0.9561 2.79
Slip-3 0.6431 0.92
Slip-4 0.3798 -1.51
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Form the method of design the PSS; which represented in the previous
section the PSSs have been designed for machine 1, 2, and 3. Table 4.3

represent the parameters of PSSs.

Table 4.3: The parameters of PSSs

27.5 10 0.34147 0.14790 0.1 -0.1
27.5 10 0.33534 0.13216 0.1 -0.1
14.0 10 0.36956 0.17785 0.1 -0.1

All eignvalues are listed in Table (4.4), all of the real parts are negative
which mean the system is stable; the PSSs raise the damping ratio from
(.84%) to (29.03%) for inter area mode.

Figure (4.5) below give a comparison between base case and controlled case.

120.00%

100.00%

80.00%

60.00% B with out PSSs

W with PSSs

40.00%

20.00%

0.00% -

local mode 1 local mode 2 inter area mode

Figure 4.5: Comparison of damping ratio with and without PSSs
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Table 4.4: The eginvalues of the system with PSSs

SL_ Eigenvalue Damping frequency(Hz) Nature
number ratio of modes
1 -48.055 1 0 Non swing
2 -43.774 1 0 Non swing
3 -41.253 1 0 Non swing
4 -38.598 1 0 Non swing
5 -2.5695 + 17.582i 0.1446 2.7983 Non swing
6 -2.5695 -  17.582i 0.1446 2.7983 Non swing
7 -33.98 1 0 Non swing
8 -33.643 1 0 Non swing
9 -9.2027 +  16.499i 0.48711 2.626 Non swing
10 -9.2027 - 16.499i 0.48711 2.626 Non swing
11 -13.867 + 14.013i 0.70338 2.2303 Non swing
12 -13.867 - 14.013i 0.70338 2.2303 Non swing
13 -27.522 1 0 Non swing
14 -25.378 1 0 Non swing
15 -22.887 1 0 Non swing
16 -19.997 1 0 Non swing
17 -17.438 1 0 Non swing
18 -3.7804 + 8.5207i 0.40555 1.3561 Local

19 -3.7804 -  8.5207i 0.40555 1.3561 Local

20 -1.0935 +  3.6044i 0.29031 0.57366 Inter area
21 -1.0935 -  3.6044i 0.29031 0.57366 Inter area
22 -7.4896 1 0 Non swing
23 -7.0925 1 0 Non swing
24 -4.343 + 2.5028i 0.86642 0.39834 Non swing
25 -4.343 - 2.5028i 0.86642 0.39834 Non swing
26 -5.3177 1 0 Non swing
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27 -4.7351 1 0 Non swing
28 -2.3946 +  1.3382i 0.87293 0.21298 Non swing
29 -2.3946 -  1.3382i 0.87293 0.21298 Non swing
30 -1.3796 1 0 Non swing
31 -1e-006 1 0 Non swing
32 -0.10311 1 0 Non swing
33 -0.10119 1 0 Non swing
34 -1e-006 1 0 Non swing

The nature of oscillatory modes was shown in figures (4.6) and (4.7)

180
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_________

270

0.0002

i/[\0.00015/

Figure 4.6: Plot of slip for machines 3 and machines 4

270

Figure 4.7: Plot of slip for machines 1,2 and machines 3,4
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4.6 Time Domain Simulation

The time domain simulations were performed to validate the results of

modal analysis. The effectiveness of the PSSs is assessed by their ability to

damp low frequency oscillations under various operating conditions.

Furthermore, the PSS must be able to stabilize the system under transient

conditions. Therefore, two types of time domain simulations are performed,;

small signal and transient simulations.
4.6.1 Small Disturbance

The

The small disturbance has been assumed.
Perturbation of reference voltage for generator two
The reference voltage perturbed due to change in excitation system

voltage by magnitude (0.01) per unit.

» The system without PSS

response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.8)-(4.11).
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Figure 4.8: Response of rotor angle deviation
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Figure 4.9: Response of rotor speed deviation
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Figure 4.11: Response of output active power
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» The system with PSS
The response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.12)-(4.15).
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Figure 4.12: Response of rotor angle deviation
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Figure 4.13: Response of rotor speed deviation
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generator field voltage

output active power
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Figure 4.14:Response of generator field voltage
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Figure 4.15: Response of output active power
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4.6.2 Large Disturbances

Three cases have been assumed.

e Three phase fault occurs at bus four

» The system without PSS

The response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.16)-(4.19).
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Figure 4.16: Response of rotor angle deviation
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Figure 4.17: Response of rotor speed deviation
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generator field voltage
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Figure 4.18:Response of generator field voltage
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Figure 4.19: Response of output active power

» The system with PSS

The response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.20)-(4.23).
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Figure 4.23: Response of output active power

e Three phase fault occurs at bus nine and tripping in line (Six —
nine)

» The system without PSS
The response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.24)-(4.27).
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Figure 4.24: Response of rotor angle deviation
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Figure 4.27:Response of output active power

» The system with PSS
The response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.28)-(4.31).
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Figure 4.28: Response of rotor angle deviation
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e Ramping of Tm for generator three

The mechanical power decreased by ramping function to half value at
0.5 sec.

» The system without PSS
The response of the rotor angle deviation, rotor speed deviation, generator

field voltage and output active power were shown in figures (4.32)-(4.35).
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Figure 4.33: Response of rotor speed deviation
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Figure 4.34:Response of generator field voltage
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Figure 4.35:Response of output active power

> The system with PSS

The response of the rotor angle deviation, rotor speed deviation,
generator field voltage and output active power were shown in
figures (4.36)-(4.39).
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Figure 4.36: Response of rotor angle deviation
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Figure 4.37: Response of rotor speed deviation
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Figure 4.38:Response of generator field voltage
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Figure 4.39: Response of output active power

4.8 Results Analysis

K/
0’0

>

L)

4

0

L)

Frequencies of swing modes in all cases have the same values
approximately in eignvalue method, and time domain simulation
method as shown in table (4.5).

Implementation of PSSs reduces the settling time for all cases
effectively specially at small disturbance. Table (4.6) represent the
settling time for all conditions.

PSSs decreases the maximum overshoot specially at small
disturbance; but not effective at large disturbances except the
reference generator, and the generator far away from the fault
location; as example the maximum overshoot problem was
discussed for rotor angle deviation; as shown in figures (4.40)-
(4.43).
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+ Method of calculation the frequency from time domain simulation

1) Plot the response of speed deviation:
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Figure 4.40: Method of calculation the frequency

T,=1.35-0.5=0.85 sec/cycle.
T,=3.62-2.22= 1.4 sec/cycle.

2) the oscillation frequencies is the inverse of the cycle times

1
= —=11764Hz.
.85

1
= — =0.7142 Hz.
1.4

3) repeat the above steps for all figure.
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Table 4.5: Comparison in frequency of oscillation between eignvalue and time

domain simulation methods

Cases Oscillation frequencies
Without PSS With PSS
Eigenvalue Time domain | Eigenvalue Time domain
Perturbation 1.1853 1.400
1.3561 1.1000
of Vref
1.0820 1.0800
0.57366 0.55000
0.7096 0.7100
Fault at bus 4 11853 11628
1.3561 1.4000
1.0820 1.0500
0.7096 0.6993 0.57366 0.5900
Fault at bus 9 1.1853 1.2400
And trip line 1.3561 1.1000
(SiX_nine) 1.082 0.9200
0.70956 0.6800 0.57366 0.5700
Ramping of
1.1853 1.100 1.3561 0.9800
Tm
1.082 0.9810
0.70956 0.69444 0.57366 0.59000
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Table 4.6: The settling time for all cases

The cases | Variables Settling time (sec)
Without PSS With PSS
Perturbation AS Oscillatory 1.0
of Vi Aw Oscillatory 30
= Oscillatory 2.0
P Oscillatory 2.0
Fault at bus AS Oscillatory 3.5
4 Aw Oscillatory 4.0
= Oscillatory 3.0
P Oscillatory 2.0
Fault at bus AS Oscillatory 4.0
9 and trip Aw Oscillatory A5
Ii.ne (six- = Oscillatory 4.5
nine) P Oscillatory 4.5
Ramping of AS Oscillatory 5.0
Tm A Oscillatory 5.0
= Oscillatory 5.0
P Oscillatory 4.5
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Figure 4.41: The maximum overshoot of rotor angle deviation at perturbation
of V¢ for generator two
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Figure 4.42: The maximum overshoot of rotor angle deviation at fault
condition at bus 4
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Figure 4.43: The maximum overshoot of rotor angle deviation at fault
condition at bus 9 and trip line (6-9)

0.6

0.5

0.4 -

03 - ® without PSS

B with PSS
0.2 -

Delta 1 Delta 2 Delta 3 Delta 4

Figure 4.44: The maximum overshoot of rotor angle deviation at ramping of
Tm in generator three
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The problem of the power system stability (rotor angle stability) of
multi-machines system has been addressed in this thesis by using eignvalue
method, and time domain simulation. The system in base case (the system
without PSS) is a stable at normal condition (no disturbance occurs) but have
poor damping. To provide adequate damping ratio, the power system

stabilizer has been designed by using phase compensation technique.

Before design of PSS the optimal location of PSS has been specified
according to participation factor, which represent the contribution of
machines in modes. After that the effect of PSS has been discussed for small

and large disturbances.

Finally the power system stabilizer (PSS) is a cost effective way of
improving the damping of electromechanical oscillations of rotor and return
the stability to the system. Also it improves the power transfer capability of

transmission lines.
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5.2 RECOMMENDATIONS

In this project design and optimal location of PSS to improve dynamic
stability were determined, speed deviation was taken as the input signal; other

investigations:

e Change the input signal to PSS such as terminal bus frequency or
electrical power output.

e Use dual input power system stabilizer signals such as speed and
electrical power output are used.

e Use other methods to appropriate tuning of PSS parameters such
as Particle Swarm Optimization (PSO) technique or Multi-
Objective Honey Bee Mating Optimization (MOHBMO) [11],
[12].

e Use other methods to specify the optimal location of PSS such
as Genetic Algorithm (GA) method [13].

e Improve the stability by using another controller addition to
PSS such as one of the flexible AC transmission system
(FACTS) family.
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