Dedication

To my family

To my fiance

Acknowledgment

All thanks to Almighty Allah the Sustainer of the Universe. I would like to express my gratitude to my supervisor, Dr. Elfatih Ahmed Hassan for standing beside me during this study and providing me with scientific support to conduct this work.

I am ever so grateful to my dearest parents who have supported, encouraged and inspired me endlessly throughout my life.

Abstract

The aim of this work was to explore conversion of oil extracted from the seeds of *Balanites aegyptiaca* in to biodiesel. The sample of *Balanites aegyptiaca* fruits was collected from Khartoum state. Normal hexane was used to extract the oil and the oil content of seed was found to be 30% (w/w). Physicochemical studies were conducted on the extracted oil, such as free fatty acid, density, viscosity, color, moisture content, and refractive index. The results were found 1.53%, 0.945 g/cm³, 11cps, 3, 0.0%, 1.47 respectively. The oil was subjected to IR analysis where the active functional groups were determined. The extracted oil was converted into biodiesel using transesterification reaction. The product was subjected to IR and GC-MS analysis. The major components in the biodiesel were found to be: 9-octadecenoic acid amounting to 44.64%, Linolic acid amounting to 43.33%, Hexadecanoic acid amounting to 6.581%, Octadecanoic acid, methyl ester amounting to 5.451%. The results showed that the prepared biodiesel was of good quality.

مستخلص البحث

هدف هذه الدراسه بحث إمكانية تحوبل الزبت المستخلص من بذور شجرة الهجليج إلى وقود حيوي. تم جمع عينات ثمرة شجرة الهجليج من ولاية الخرطوم. أستخدم الهكسان لإستخلاص الزيت منها ووجد أن محتوى الزيت في البذره 30%(وزن/وزن). أجريت الإختبارات الفيزيوكيميائيه على الزيت المستخلص، مثل الأحماض الدهنيه الحره، الكثافه، اللزوجه، اللون، محتوى الرطوبه، ومعامل الانكسار. وجدت النتائج 1.53%، 1.54%، 1.55% (جرام سم٣)، 11، 3، 0,0%، 1.47 على التوالي. تم تحليل الزيت بجهاز الاشعة تحت الحمراء. تم تحويل الزيت المستخلص إلى وقود حيوي عن طريق الأستره في وسط قاعدي وتم التحليل بتقنية الأشعه تحت الحمراء وكروماتو غرافيا الغاز إومطيافية الكتله حيث تم تحديد المكونات الأساسيه في الوقود الحيوي و التي كانت:

9-octadecenoic acid وبلغت نسبته 44.64%.

Linolic acid وبلغت نسبته 43.33%.

Hexadecanoic acid وبلغت نسبته 6.581%.

Octadecanoic acid, methyl وبلغت نسبته 5.451%.

أوضحت النتائج أنه وقود حيوى ذو خصائص جيدة.

List of Contents

Title	Page	
Dedication	I	
Acknowledgment	II	
Abstract (English)	III	
مستخلص البحث	IV	
List of contents	V	
List of tables	VI	
List of figures	VI	
Chapter (1): Introduction and literature Review		
1.1 Introduction	1	
1.2 Advantages	1	
1.3 Limitations	2	
1.4 Making biodiesel: Transesterification	2	
1.5 Balanites aegyptiaca	3	
1.5.1 Taxonomical classification	3	
1.6 Botanical description	3	
1.7 Fruit and seed description	3	
1.8 Flowering and fruiting habit	4	
1.9 Distribution and habitat	4	
1.10 Traditional Uses	4	
1.11 Aim of the study	6	
Chapter (2): Materials and methods		
2.1 Materials	7	
2.1.1 Sample	7	
2.2 Methods	7	
2.2.1 Oil extraction	7	
2.2.2 Oil percentage	7	
2.2.3 Determination Free fatty acid	7	
2.2.4 Density	8	
2.2.5 Viscosity	8	
2.2.6 Color	8	
2.2.7 Moisture content	8	
2.2.8 Refractive index	8	
2.3 Biodiesel preparation	8	

2.4 Testing of biodiesel	9	
2.4.1 Infra red analysis	9	
2.4.2 Gas chromatography-mass spectrometric analysis	9	
Chapter (3): Results and discussions		
3.1 Balanites aegyptiaca seed oil analysis	10	
3.1.1 Physicochemical analysis	10	
3.1.2 IR analysis	11	
3.2 Biodiesel analysis	12	
3.2.1 IR analysis	12	
3.2.2 GC-MS analysis	13	
3.3 Conclusion	19	
3.4 References	20	

List of tables

Title	Page
Table 3.1: comparison between physicochemical properties of Balanites aegyptiaca seed oil and Jatropha oil used for biodiesel	10
Table 3.2: components of biodiesel	13

List of figures

Title	Page
Transesterification reaction	3
FT IR spectrum of the balanites aegyptiaca seed oil	11
FT IR spectrum of the biodiesel	12
Chromatogram of biodiesel showing the major components	14
MS spectrum of hexadecanoic acid, methyl ester	15
MS spectrum of Linoleic acid, methyl ester	16
MS spectrum of 9-octadecenoic acid, methyl ester	17
MS spectrum of octadecanoic acid, methyl ester	18